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Abstract 

Neuromyelitis optica spectrum disorder (NMOSD) is a paradigmatic autoimmune disease of the central nervous 
system (CNS), in which the water channel protein Aquaporin-4 (AQP4) is targeted by a self-reactive immune response. 
While the immunopathology of human NMOSD is largely dependent on antibodies to astrocytic AQP4, the role 
of AQP4-specific T cells for the localization and quality of NMOSD lesions in the CNS is not known. Only recently, we 
established that thymic B cells express and present AQP4 in the context of MHC class II molecules to purge the naive 
T cell receptor repertoire of AQP4-specific clones. Here, we exploited this finding to investigate the lesion localization 
in the CNS of B cell conditional AQP4-deficient (Aqp4ΔB) mice, which harbor AQP4-specific precursors in their naive 
T cell repertoire and can be sensitized to mount a strong AQP4(201–220)-specific  CD4+ T cell response. Sensitization 
of Aqp4ΔB mice with AQP4(201–220) was sufficient to induce clinical disease. The spatiotemporal lesion distribution 
and the glial cell response in AQP4(201–220)-induced experimental autoimmune encephalomyelitis (EAE) was com-
pared to classical MOG(35–55)-induced EAE in Aqp4ΔB mice. In contrast to MOG-EAE, AQP4(201–220)-induced EAE 
was characterized by midline lesions in the brain, retinal pathology, and lesions at the grey matter/white matter 
border zone in the spinal cord. Therefore, we conclude that antigen-specific T cells dictate the localization of NMOSD-
lesions in the CNS.
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Introduction
Neuromyelitis optica spectrum disorder (NMOSD) is 
an autoimmune disease of the central nervous system 
(CNS), in which the water channel protein Aquaporin-4 
(AQP4) abundantly expressed on astrocytes is the target 
antigen [21]. The autoimmune attacks result in severe 
inflammatory tissue destruction in the spinal cord, optic 
nerves, and other areas of the CNS [24, 34], which rap-
idly leads to the accumulation of severe disability if left 
untreated. Disability is consistently relapse-associated in 
NMOSD, and, unlike multiple sclerosis (MS), no progres-
sive disease course has been reported, suggesting a dif-
ferent type of tissue response in NMOSD as compared to 
MS [35].

The immunopathology of NMOSD is largely driven 
by autoantibodies to AQP4. Anti-AQP4 antibodies bind 
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to astrocytic AQP4, which is structurally organized in 
so-called orthogonal arrays of particles, resulting in 
complement-dependent and (perhaps to a lesser degree) 
antibody-dependent cell-mediated cytotoxic lysis of 
astrocytes [21]. The localization of NMOSD-lesions in 
the CNS corresponds to the abundance of AQP4 expres-
sion, which is different in distinct CNS niches [19, 24, 
31]. While NMOSD lesions in the area postrema are less 
destructive and have been blamed on the unopposed 
access of anti-AQP4 antibodies from the serum to the 
CNS in circumventricular organs where endothelial cells 
lack tight junctions [27], the development of NMOSD 
lesions in the spinal cord and optic nerves is not well 
understood. Early work suggested that the blood–brain 
barrier in these sites needed to be altered by T cell-
mediated inflammation to facilitate the entry of anti-
AQP4 antibodies into the CNS parenchyma [3, 4]. In 
these models, myelin basic protein (MBP)-specific T cells 
were used to induce subclinical or mild EAE, followed by 
the transfer of purified patient-derived or monoclonal 
anti-AQP4 antibodies. Although the pathology in these 
models resembled human NMOSD lesions [3, 4, 28], the 
contribution of AQP4-specific T cells to the localization 
of NMOSD lesions could not possibly be solved in these 
heterologous systems.

While the contribution of AQP4-specific T cells to 
lesion development in NMOSD remains to be deter-
mined, AQP4-specific T cells are indispensable for the 
generation of anti-AQP4 antibodies in the systemic 
compartment. Anti-AQP4 antibodies are hypermutated 
(affinity matured) and class-switched (IgG1) antibod-
ies that must have gone through a germinal center (GC) 
reaction where AQP4-specific B cells received help from 
AQP4-specific T cells [6]. Previously, we and others have 
reported that T cells are tightly tolerized against AQP4 in 
the thymus, resulting in the virtual absence of AQP4-spe-
cific T cell clones in a healthy naive T cell repertoire [30, 
33]. More recently, we established that B cell conditional 
AQP4-deficient (Aqp4ΔB) mice harbor AQP4-specific T 
cells in their T cell repertoire and develop an encepha-
lomyelitis upon immunization with the I-Ab-restricted 
AQP4(201–220) epitope [1]. Since Aqp4ΔB mice still 
express AQP4 in the CNS and everywhere else (except 
in B cells), they represent a prime model to investigate T 
cell responses against AQP4 and the ensuing immunopa-
thology in different organ systems.

In this study, we characterized the T cell-driven immu-
nopathology against AQP4 and compared it to the T 
cell-dependent immunopathology against the widely 
characterized CNS autoantigen myelin oligodendro-
cyte glycoprotein (MOG) in Aqp4ΔB mice. In both cases, 
we used active immunization against the major I-Ab-
restricted epitopes of MOG and AQP4, i.e. MOG(35–55) 

and AQP4(201–220), and analyzed the induced experi-
mental autoimmune encephalomyelitis (EAE) clinically, 
by flow cytometry, and by immunohistochemistry to 
understand how antigen-specific T cells contribute to 
lesion localization in NMOSD.

Material and methods
Mice
Aqp4flox/flox mice [9] were kindly provided by O. P. 
Ottersen, Mb1-Cre mice [11] were kindly provided by 
M. Schmidt-Supprian, and DEREG mice [15] were kindly 
provided by T. Sparwasser. All mouse strains were on a 
C57BL/6J background. Mice were housed in a patho-
gen‐free facility at the Technical University of Munich. 
All experimental protocols were approved by the stand-
ing committee for experimentation with laboratory 
animals of the Bavarian state authorities and carried 
out in accordance with the corresponding guidelines 
(ROB-55.2-2532.Vet_02-17-234, ROB-55.2-2532.Vet_02-
20-01, ROB-55.2-2532.Vet_02-20-23, ROB-55.2-2532.
Vet_02-21-154).

Antigens
Mouse MOG(35–55), MEVGWYRSPFSRVVHLYRNGK, 
and mouse AQP4(201–220), HLFAINYTGASMNPARS-
FGP, were synthesized by Auspep (Tullamarine, Aus-
tralia) or Biotrend (Cologne, Germany), respectively.

EAE induction
Mice were immunized subcutaneously at the base of 
the tail with 200 μl of an emulsion containing 200 μg 
of MOG(35–55) or AQP4(201–220), dissolved in PBS 
and emulsified with 250 µg Mycobacterium tuberculosis 
H37Ra (BD Difco) in mineral oil (CFA). In addition, mice 
received 200 ng pertussis toxin (Ptx, Sigma, Cat# P7208) 
i.v. on days 0 and 2 after immunization. Where indicated, 
mice received i.v. injections of 20 μg of a monoclonal 
antibody that recognizes mouse AQP4 (rAb‐53) or con-
trol rAb-2B4 against measles virus nucleocapsid protein 
as described previously [3, 33]. The murine anti‐AQP4 
antibody (rAb‐53) was a human-mouse chimeric recom-
binant antibody (rAb) generated by replacing the human 
IgG1 Fc region of an AQP4‐specific, NMOSD patient-
derived CSF plasma cell clone with a mouse IgG2a Fc 
region [3]. Both rAb-53 and rAb-2B4 were kind gifts of 
J. Bennett (Denver). Clinical signs of disease were moni-
tored daily with scores as follows: 0, no disease; 1, loss of 
tail tone; 2, impaired righting; 3, paralysis of both hind 
limbs; 4, tetraplegia; 5, moribund state [13]. Clinical data 
of some Aqp4ΔB mice (n = 13 in the MOG(35–55)-immu-
nized group and n = 11 in the AQP4(201–220)-immu-
nized group) were previously published [1].
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Histology
Mice were sacrificed under deep anesthesia by intracar-
dial perfusion with PBS followed by perfusion with 4% 
w/v paraformaldehyde (PFA) solved in PBS. All organs 
were removed and fixed in 4% PFA overnight. Vertebral 
columns, including the spinal cords, were additionally 
decalcified with Osteosoft® (Sigma-Aldrich) for 72 h 
before paraffin embedding. To examine the entire CNS, 
10–15 sections, each 2 μm thick, with 50 µm intervals 
apart, were prepared from the spinal cord and brain. In 
contrast, the optic nerves and eye bulbs were prepared 
in their entirety with 2 µm thick sections. Immunohis-
tochemistry was performed using a Leica Bond Rxm 
System with a Polymer Refine detection kit (Leica). A 
list of all used antibodies is provided in the supplemen-
tary material section. DAB was used as chromogen, 
and counterstaining was performed with hematoxylin. 
The slides were then scanned on a Leica AT2 system, 
and the images were analyzed using QuPath v0.3.2 soft-
ware (https:// qupath. github. io, University of Edinburgh, 
Scotland).

Quantification of histological samples was performed 
automatically with computer-assisted algorithms pro-
vided by QuPath. All annotations were performed in a 
blinded manner. To detect total cell counts, regions of 
interest (ROI) were annotated and analyzed automati-
cally by positive nuclear detection. For the semiquan-
titative analysis, regions containing at least one to five 
CD45-immunoreactive cells were identified and repre-
sented as data points on schemes prepared according to 
the atlas of Paxinos and Watson [22]. To quantify the loss 
of AQP4-reactivity, the grey matter areas of axial spinal 
cord sections were annotated and analyzed by positive 
pixel detection.

Isolation of mononuclear cells from CNS
At defined time points, CNS-infiltrating cells were iso-
lated after perfusion through the left cardiac ventricle 
with PBS. The brain with attached optic nerves and the 
spinal cord were extracted and digested with collagenase 
D (2.5 mg/ml) and DNase I (1 mg/ml) at 37 °C for 45 min. 
After passing the tissue through a 70-μm cell strainer, 
cells of the spinal cord and brain were separated by dis-
continuous Percoll gradient (70%/37%) centrifugation. 
Mononuclear cells were isolated from the interphase for 
further analyses (flow cytometry).

Flow cytometry
Single-cell suspensions were incubated with LIVE/DEAD 
fixable dyes (Aqua [405 nm excitation]) and mouse Fc 
Block in PBS (phosphate-buffered saline) for 15 min on 
ice. Cells were washed with fluorescence-activated cell 

sorting (FACS) buffer (2% FCS in PBS) and incubated 
with antibodies against surface markers for 30 min on 
ice. For intracellular cytokine staining, cells were stimu-
lated ex  vivo with 50 ng/ml PMA (Sigma-Aldrich, Cat# 
P1585), 1 μg/ml ionomycin (Sigma-Aldrich, Cat# 10,634), 
and monensin (1 μl/ml BD GolgiStop, Cat# 554,724) at 
37  °C for 2.5 h. Subsequent to LIVE/DEAD and surface 
staining, cells were fixed and permeabilized (Cytofix/
Cytoperm and Perm/Wash Buffer; BD Biosciences, Cat# 
554,722 and 554,723) and stained with antibodies against 
intracellular markers overnight. A list of all antibodies is 
provided in the supplementary material section.

Flow cytometric analysis was performed on a Cyto-
FLEX flow cytometer (Beckman Coulter) with CytExpert 
software (v.2.3.1.22), and flow cytometric data were ana-
lyzed using FlowJo software (v10.5.1, BD Biosciences).

Statistical analysis
Statistical evaluations of cell frequency measurements 
and cell numbers were performed with one-way-ANOVA 
and post hoc tests when more than two populations were 
compared. Two-way ANOVA followed by post hoc mul-
tiple comparison tests was used, as indicated in the figure 
legends. EAE incidence was calculated using Kaplan–
Meier analysis, and the P-values were analyzed using 
a log-rank test (Mantel-Cox). A P-value of P < 0.05 was 
considered significant. Calculations and the generation 
of graphs were performed using Graph Pad Prism v10.9.0 
(GraphPad software). Figures were prepared with Adobe 
Illustrator 2022 (v.26.0.1).

Licenses
In Supp. Figure  1a pictures from Servier Medical Art 
were used that are licensed under a Creative Commons 
Attribution 3.0 Unported License (https:// creat iveco 
mmons. org/ licen ses/ by/3. 0/).

Results
Inflammatory infiltrates affect AQP4‑rich CNS niches 
in AQP4(201–220)‑induced EAE
The absence of AQP4 expression in B cells allows AQP4-
specific T cells to seed secondary lymphoid tissues, 
thereby creating a sufficiently large precursor frequency 
to elicit a productive T cell response upon immunization 
with the AQP4(201–220) peptide [1]. As a consequence, 
Aqp4ΔB mice are susceptible to AQP4(201–220)-induced 
EAE. Since Aqp4ΔB mice are also susceptible to conven-
tional MOG(35–55)-induced EAE, we could directly 
compare the clinical and histopathological phenotype 
of these two diseases. The two disease models exhibit 
a comparable phenotype, with motor deficits sugges-
tive of a spinal cord syndrome affecting the tail and 
limbs in a symmetrical manner (Fig.  1a, b). Following 
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immunization, mice started exhibiting motor deficits on 
day 11 that peaked around day 18. A subsequent recov-
ery period spanned until day 30 (Fig. 1b). Incidence and 
disease severity according to the established EAE scoring 
scale were significantly higher in MOG(35–55)-induced 
EAE than in AQP4(201–220)-induced EAE (Fig. 1a–c).

To further investigate whether the inflammatory infil-
trates in the CNS were different in MOG vs. AQP4-
induced EAE, we performed flow cytometric analyses 
of the CNS infiltrating immune cells. Here, we did not 
observe significant differences in the composition or 
functional phenotype of the mononuclear cell infiltrates 
either in the brain or in the spinal cord of MOG-induced 
vs. AQP4-induced EAE (Supplementary Fig. 1).

Since the EAE score is biased toward detecting spinal 
cord disease, the clinical phenotype may miss alternative 
lesion locations in AQP4-induced EAE. Therefore, we 
performed an extensive immunohistochemical workup of 
all CNS compartments, including the retina and the optic 
nerve, in AQP4-induced versus MOG-induced EAE. 
Individual EAE mice with a score greater than 2.0 were 
analyzed when they reached the peak of disease according 
to the conventional EAE score and during recovery (on 
d32 after immunization). Lesions were defined as aggre-
gates of CD45-reactive cells in the forebrain, cerebel-
lum, spinal cord, olfactory bulb, optic nerve, and retina. 
At the peak of clinical disease (d15–d18), MOG(35–
55)-induced EAE-mice demonstrated extensive sharply 
delineated mononuclear cell infiltrates across the cer-
ebellum, spinal cord, olfactory bulb, and optic nerves 
(Fig. 2a). In AQP4(201–220)-induced EAE, we observed 
longitudinal, scattered lesions in the white matter of the 
lumbar and cervicothoracic spinal cord, often localized 
in the grey matter/white matter border zone. In addi-
tion, inflammatory lesions were frequently found in the 
diencephalon and in the retina in AQP4-induced EAE. In 
contrast to the lesion distribution in AQP4-induced EAE, 

lesions were very rare in the diencephalon and essentially 
absent in the retina in MOG-induced EAE (Fig.  2a, b). 
In summary, the localization of inflammatory infiltrates 
was largely consistent with the expression of MOG and 
AQP4 expression in different CNS compartments [31]. 
In contrast to MOG, AQP4 is abundantly expressed in 
peripheral tissues such as the kidney. Here, we noticed 
infiltrates of  CD45+ cells in the kidney parenchyma of 
one out of five AQP4(201–220)-immunized mice but in 
none of the MOG(35–55)-immunized animals (Supple-
mentary Fig. 2).

As reflected by the clinical score, the recovery from 
spinal cord disease was more pronounced in AQP4(201–
220)-induced EAE than in MOG(35–55)-induced 
EAE in Aqp4ΔB mice (Fig. 1). Similar to the spinal cord, 
the persistence of  CD45+ infiltrates in brain sites was 
shorter after AQP4(201–220)-immunization than after 
MOG(35–55)-immunization, suggesting that inflamma-
tion per se is well cleared after an AQP4 targeted T cell 
response, even in the retina and the optic nerve (Supple-
mentary Fig. 3).

Immunopathology and tissue response in MOG(35–55)‑ 
versus AQP4(201–220)‑induced EAE in Aqp4ΔB mice
Autoimmunity directed against AQP4 affected overlap-
ping and distinct CNS niches as compared with auto-
immunity directed against MOG. However, due to the 
T-cell-driven inflammatory response in our peptide-
induced disease model, the composition and quality of 
the inflammatory infiltrates were very similar in MOG-
induced and AQP4-induced EAE. To assess the configu-
ration of individual inflammatory lesions and the glial 
response they elicited, we analyzed the tissue reactivity to 
Iba-1, LFP-PAS, AQP4, and GFAP, together with staining 
for CD45 in serial sections.

In the spinal cord, CD45-immunoreactive lesions in 
MOG-induced EAE were mostly located in the dorsal and 

Fig. 1 Incidence and disease severity in MOG(35–55)-induced vs. AQP4(201–220)-induced EAE in Aqp4ΔB mice. a EAE incidence and b EAE 
severity (mean ± s.e.m.) in MOG- versus AQP4-peptide-induced EAE. c Simple linear regression analysis of disease scores of clinically sick MOG(35–
55)- and AQP4(201–220)-immunized Aqp4ΔB mice. Statistical analysis was performed using Mantel-Cox log-rank tests and two-way ANOVA 
with Sidak’s post-test to compare incidences (a) and disease course (b), respectively
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anterolateral white matter tracts. These lesions formed 
dense and confluent formations that had contact with 
the meningeal compartment (Fig.  3a). In AQP4(201–
220)-induced EAE, a patchy pattern of CD45-immuno-
reactive lesions was observed, occurring in two distinct 
localizations: Scattered formations that had contact with 
the meninges and delineated lesions at the border zone 
between grey and white matter (Fig. 3b). Demyelination 
and reactivity of microglia (Iba-1) and astrocytes (GFAP) 
were more pronounced in the spinal cords of mice with 
MOG(35–55)-induced EAE in contrast to AQP4(201–
220)-induced EAE, where AQP4 loss was a characteristic 
feature (Fig. 3a, b).

In the brain, distinct from MOG-induced EAE (Fig. 4a), 
a key feature of AQP4(201–220)-induced EAE was the 
localization of inflammatory lesions in the midline of the 
diencephalon in proximity to the third ventricle and also 
around the fourth ventricle (Fig. 4b)—lesion sites that are 
consistent with what was described in human NMOSD 
[23, 24]. Lesions were characterized by loss of AQP4 
reactivity (Fig.  4b). In contrast, these CNS niches were 
hardly affected in MOG(35–55)-induced EAE, and sites 
of inflammatory lesions in MOG-induced EAE did not 
lose AQP4-reactivity although astrocyte reactivity and 

microgliosis was uniformly more pronounced in MOG-
induced than in AQP4-induced EAE (Fig. 4a, b).

The lesion pattern in the optic nerves was also dis-
tinct in MOG-induced vs. AQP4-induced EAE. While 
optic nerve lesions in MOG-induced EAE often included 
perineural areas and were widespread along nerve fib-
ers in the optic nerve parenchyma, optic nerve lesions 
in AQP4-induced EAE were patchy (Fig.  5a, b). Optic 
nerves in MOG(35–55)-induced EAE exhibited a robust 
glial response, with pronounced Iba-1 and GFAP reac-
tivity, accompanied by extensive demyelination (Fig. 5a). 
While demyelination and reactive astrocytes were also 
present in the optic nerves after AQP4(201–220)-immu-
nization, the overall inflammatory response was less pro-
nounced than in MOG(35–55)-induced EAE (Fig. 5b).

The most notable difference between MOG-peptide 
and AQP4-peptide-induced EAE in Aqp4ΔB mice was 
observed in the retina. As previously reported by us 
and others, retinal changes are a hallmark of MOG(35–
55)-induced EAE [2, 18]. These changes include reac-
tive astrocytosis and retinal ganglion cell loss. However, 
direct inflammatory infiltrates of hematopoietic cells 
were never observed in the retina of MOG-EAE mice 
(Fig.  6a). In contrast, we observed  CD45+ immune cell 

Fig. 2 Lesion topology in the CNS in AQP4(201–220)-induced EAE at the peak of disease. Semiquantitative analysis of the lesion distribution 
in the CNS at the peak (d2 after disease onset) of a MOG(35–55)- and b AQP4(201–220)-induced EAE. Schemes were prepared according to Paxinos 
and Watson [22]. Each data point represents a formation containing at least one to five CD45-immunoreactive cells as identified by QuPath 
automated cell detection. The coloring indicates whether the detection was present in a single group or in both, as specified in the legend
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infiltration in the inner retinal layers accompanied by 
significant AQP4 loss and microglial activation in AQP4-
EAE (Fig. 6b). These lesions resulted in ganglion cell loss.

In summary, spinal cord grey matter/white mat-
ter border lesions, midline lesions in the diencephalon, 
and loss of AQP4-immunoreactivity in the proximity 

Fig. 3 Spinal cord pathology in MOG(35–55)-induced versus AQP4(201–220)-induced EAE. Representative immunostaining for CD45, Iba-1, LFB-PAS 
(L/P), AQP4, and GFAP in spinal cord sections obtained from a MOG(35–55)- and b AQP4(201–220)-immunized Aqp4ΔB mice at the peak of EAE (n = 3 
independent experiments). Scale bars a, b 400 µm (top) and 25 µm in enlarged image sections
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of inflammatory lesions were unique to AQP4-induced 
EAE. Reactive astrocytosis, as assessed by GFAP-reactiv-
ity, and microglia activation (Iba-1 signal) were generally 

more widespread in MOG-induced EAE than in AQP4-
induced EAE. In the recovery stage (around d32), the 
glial response was still observed in the spinal cord, 

Fig. 4 Topology and pathology of brain lesions in MOG(35–55)-induced vs. AQP4(201–220)-induced EAE. Representative immunostaining for CD45, 
Iba-1, LFB-PAS (L/P), AQP4, and GFAP in the brains (sagittal section) of Aqp4ΔB mice with a MOG(35–55)-induced and b AQP4(201–220)-induced EAE 
at the peak of disease (n = 3 independent experiments). Scale bars 400 µm (top) and 100 µm in enlarged image sections
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cerebellum, and optic nerves of MOG-EAE. In contrast, 
the tissue response in AQP4-EAE was largely cleared 
by d32, and even AQP4-reactivity was restored in areas 

most affected in AQP4-EAE at the peak of the disease 
(Supplementary Figs. 4–7).

Although AQP4(201–220) peptide-immunized mice 
do not raise an anti-AQP4 antibody response [33], we 

Fig. 5 Pathology of optic nerve lesions in MOG(35–55)-induced vs. AQP4(201–220)-induced EAE. Representative immunostaining for CD45, Iba-1, 
LFB-PAS (L/P), AQP4, and GFAP in the optic nerves of Aqp4ΔB mice with a MOG(35–55)-induced and b AQP4(201–220)-induced EAE at the peak 
of disease (n = 3 independent experiments). Scale bars 200 µm (top) and 100 µm in enlarged image sections
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observed some lesion-associated loss of AQP4-reactiv-
ity in AQP4(201–220)-immunized Aqp4ΔB mice, sug-
gesting that an antigen-specific T cell response alone 

was sufficient to induce loss of AQP4-reactivity in 
AQP4(201–220)-induced EAE. To gauge the additional 
contribution of anti-AQP4 antibodies to the pathology of 

Fig. 6 Retinal pathology in MOG(35–55)-induced vs. AQP4(201–220)-induced EAE. Representative immunostaining for CD45, Iba-1, LFB-PAS 
(L/P), AQP4, and GFAP in the retinas of Aqp4ΔB mice with a MOG(35–55)-induced and b AQP4(201–220)-induced EAE at the peak of disease (n = 3 
independent experiments). Scale bars 100 µm (top) and 50 µm in marked image sections
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 AQP4+ astrocytes in this model, we immunized Aqp4ΔB 
mice with AQP4(201–220) and, upon first clinical signs 
of disease, treated them with two injections of a control 
antibody (rAb-2B4) or a pathogenic anti-AQP4 antibody 
that recognizes an extracellular epitope of AQP4 (rAb-53, 
[33]). The loss of AQP4-immunoreactivity in white and 
grey matter (as detected by an antibody directed against 
the C-terminal intracellular domain of AQP4) was sig-
nificantly more extensive in anti-AQP4-treated than in 
control-treated mice (Fig. 7a, b). In particular, in the cer-
vical and lumbar spinal cord grey matter where AQP4-
peptide immunized Aqp4ΔB mice showed only small 
lesions (Figs. 2b, b), these lesions were markedly enlarged 
upon additional administration of rAb-53 (Fig.  7a, b). 
Therefore, while an AQP4-specific T-cell response alone 
can induce pathology to  AQP4+ astrocytes, the structural 
damage is largely amplified in the additional presence of 
AQP4-specific antibodies.

Discussion
Activated AQP4(201–220)-specific T cells produce a 
retino-optico-diencephalo-spinal autoimmune inflamma-
tory syndrome, which differs from MOG(35–55)-induced 
EAE as to lesion localization, intensity of inflammation, 
and glial cell response. Direct inflammatory infiltrates in 
the retina and in midline-associated areas of the dien-
cephalon were only found in AQP4(201–220)-induced 
EAE while absent in MOG(35–55)-induced EAE. In 
the spinal cord, AQP4(201–220)-induced lesions were 
located at the white matter/grey matter border zone, 
whereas MOG(35–55)-induced inflammation emerged 
from the meningeal compartment and extended into 
white matter tracts. Overall, reactive astrocytosis and 

microglial activation appeared to be less pronounced in 
AQP4(201–220)-induced than in MOG(35–55)-induced 
EAE. Consistently, in remission, immunopathology 
was essentially cleared in AQP(201–220)-induced EAE. 
Therefore, AQP4(201–220)-specific T cells determine 
a different lesion topology as compared with MOG(35–
55)-induced EAE but have per se (in the absence of an 
anti-AQP4-antibody response) a lower potential than 
MOG(35–55)-specific T cells to promote sustained tissue 
inflammation.

While EAE was induced by adoptive transfer of in vitro 
activated AQP4-specific T cells [12, 36], it has been 
impossible to investigate the encephalitogenic poten-
tial of AQP4-specific T cells in an active immunization 
model since the T cell repertoire is essentially purged of 
AQP4-specific precursors in naive wild-type animals. 
Thymic tolerance largely determines the loss of AQP4-
reactive clones in the T cell compartment [1, 33]. How-
ever, in a scenario where thymic tolerance to AQP4 
is broken (by genetic ablation of Aqp4 in B cells [1]), 
additional layers of T cell tolerance to AQP4 might be 
operational [29]. While Aqp4ΔB mice exhibit an inflam-
matory AQP4(201–220) T cell response, they also harbor 
AQP4-specific  Foxp3+ Treg cells. Therefore, peripheral 
AQP4-specific T-cell tolerance awaits further analysis, in 
particular, because AQP4 is an autoantigen that is widely 
expressed in many tissues. Differences in the regulation 
of the I-Ab restricted T cell response to AQP4 vs. MOG 
may also partially explain the differences in disease inci-
dence and inflammatory burden in AQP4(201–220)-im-
munized vs. MOG(35–55)-immunized Aqp4ΔB mice [29].

The immunopathology of MOG(35–55)-induced EAE 
has meticulously been characterized in its different stages 

Fig. 7 The extent of the CNS damage in NMOSD depends on the presence of anti-AQP4 antibodies. a Representative immunostaining for AQP4 
and b quantification of AQP4 loss in the grey matter of transverse spinal cord sections of Aqp4ΔB mice immunized with AQP4(201–220) and treated 
with either control antibody (rAb-2B4) or anti-AQP4-antibody (rAb-53). Mice received i.v. injections of 20 μg of the respective monoclonal 
antibodies at day 0 and 2 after disease onset. One day after the last injection, mice were sacrificed and perfused for histological work-up. AQP4 
loss was defined as 1—positively detected (AQP4-reactive) pixels per region of interest (ROI) area (grey matter). Scale bars 50 µm, data shown 
as mean ± s.d. Multiple spinal cord sections of two control-treated and two rAb-53-treated mice were analyzed. Statistical analysis was performed 
using two-tailed unpaired t-tests. *P < 0.05
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[5]. This analysis supported the idea that the inflamma-
tory process in MOG(35–55)-induced EAE starts in 
the meningeal compartment and extends into the CNS 
parenchyma across the glia limitans but at the same 
time induces distal activation of the deep parenchymal 
vascular compartment as well as microglial activation. 
Accordingly, CNS niches most exposed to the CSF space 
(like the spinal cord and the middle cerebellar peduncle) 
were the first to be affected by inflammatory alterations 
and showed distal axonal damage in MOG(35–55)-in-
duced EAE [5]. The lesion pattern of MOG(35–55)-in-
duced EAE in Aqp4ΔB mice is consistent with this report, 
including the observation that the olfactory bulb and 
tract were strongly affected by inflammatory infiltrates.

Reports of actively induced AQP4-EAE have essen-
tially been lacking due to the resistance of C57BL/6 
mice to mount AQP4-specific T-cell responses [33]. Yet, 
it has been shown that an encephalomyelitic syndrome 
can be evoked in mice by adoptive transfer of AQP4-
specific T cells derived from Aqp4–/– mice [12, 30, 33]. 
AQP4(201–220) is the major I-Ab-restricted immuno-
genic epitope of AQP4 [30, 33]. While immunization of 
Aqp4–/– mice with AQP4(135–153) also elicits an AQP4-
specific T cell response [12], AQP4(135–153), which is a 
peptide comprised in the C-loop of AQP4, is unlikely to 
be a naturally processed epitope of AQP4 since immu-
nization of Aqp4–/– mice with full-length AQP4 protein 
fails to elicit an AQP4(135–153)-specific response while 
an AQP4(201–220)-specific T cell response can read-
ily be recalled [33]. The immunopathology of EAE, in 
which AQP4 is targeted, has only been described in a 
setting where AQP4(201–220)-specific or AQP4(135–
153)-specific Aqp4–/– T cells were differentiated ex  vivo 
into Th17 cells and then adoptively transferred into 
naive recipient mice [12, 30]. The spinal cord and optic 
nerve, but not other areas of the CNS, were analyzed 
and exhibited inflammatory infiltrates with a focus on 
the meningeal compartment [30]. Little or no loss of 
AQP4 reactivity in astrocytes is observed upon trans-
fer of AQP4(135–153)-specific T cells [12]. While the 
quality of the inflammatory infiltrates in these adoptive 
transfer models is consistent with our results, the com-
parability to our model in terms of the dynamics and 
topology of lesions is limited since we elicited EAE with a 
natural epitope in a polyclonal T cell repertoire by active 
immunization. In fact, wild-type mice are resistant to 
AQP4(201–220)-induced EAE due to efficient thymic 
deletion of AQP4-specific precursor T cells. Conversely, 
while global Aqp4–/– mice develop robust AQP4-specific 
T-cell responses, they cannot serve as a disease model 
since they lack the target antigen in the CNS [1, 33].

An extensive histological workup of EAE induced 
by AQP4-specific T cells has also been performed in 

Lewis rats [36]. Here again, AQP4-specific T cells were 
adoptively transferred into naive Lewis rat recipients. 
AQP4(268–285) was identified to be an immunogenic 
and naturally processed epitope of AQP4 in the con-
text of RT1.BL (the Lewis rat MHC class II complex). 
Notably, the localization of lesions induced by adoptive 
transfer of AQP4(268–285)-specific T cells in Lewis 
rats, in particular in the retina, around the third ventri-
cle and at the white matter/grey matter border zone in 
the spinal cord, was similar to what we observed in our 
AQP4(201–220)-induced EAE [36, 37].

Our model cannot be a faithful model of human 
NMOSD since it lacks an intrinsic anti-AQP4 anti-
body response, which is the major limitation of the 
present model. However, we provide evidence that an 
AQP4-specific T cell response evoked from a natural 
polyclonal T cell repertoire is able to induce encepha-
lomyelitis at sites that recapitulate the lesion localiza-
tion in human NMOSD. Therefore, T cells alone are 
sufficient to reproduce the topology of NMOSD lesions 
in the CNS, suggesting that AQP4-specific T cells are 
involved in dictating the hot spots of immunopathol-
ogy in NMOSD. The i.v. administration of a murinized 
monoclonal anti-AQP4-antibody [33] to AQP4(201–
220)-immunized Aqp4ΔB mice markedly enlarged the 
loss of AQP4-reactivity in all localizations with T cell-
dependent inflammatory infiltrates, in particular in 
the cervical and lumbar spinal cord grey matter. Since 
inflammatory lesions (albeit much smaller) were also 
found at these sites in the absence of anti-AQP4 anti-
bodies, antigen-specific T cells are an important deter-
minant of the lesion topology in this NMOSD model. 
This observation is consistent with previous studies 
that highlight the significance of antigen-specific T 
cells for instructing the sites of anti-AQP4 antibody-
induced lesions depending on the expression pattern 
of the respective T cell target antigen [14, 25, 26]. Nev-
ertheless, the extent of individual lesions in NMOSD 
and—in the case of very high-affinity anti-AQP4 anti-
bodies—perhaps also the localization of NMOSD 
lesions is driven by anti-AQP4 antibodies alone with no 
or only minor contribution of antigen-specific T cells 
[10, 20]. The anti-AQP4 antibody used in the present 
study (rAb-53) was engineered by replacing the human 
IgG1-Fc with a mouse IgG2a-Fc in a human NMOSD 
CSF plasma cell-derived clone that recognizes both 
human and mouse AQP4 [3, 33]. NMOSD patient-
derived anti-AQP4 antibodies preferentially recog-
nize the M23 isoform of AQP4 that forms orthogonal 
arrays of particles in astrocytes [7, 20]. The affinity to 
these conformational AQP4 epitopes is a determinant 
of their effector function in terms of complement bind-
ing and, thus, extension of lesions [32].
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In the absence of an anti-AQP4 antibody response, T 
cell-mediated pathology was more severe in MOG(35–
55)-induced EAE than in AQP4(201–220)-induced EAE, 
although, in both scenarios, the CFA-dependent adju-
vant effect resulted in a strong systemic T cell activation. 
While differences in the immune regulation of the T cell 
response against these two autoantigens might exist (see 
above), differences in the tissue response in the CNS 
might also contribute to the differences in immunopa-
thology. MOG(35–55)-induced EAE is characterized by 
oligodendrocyte apoptosis and extensive inflammatory 
axonal damage. In contrast, AQP4(201–220)-induced 
EAE targets astrocytes that might have greater regenera-
tive potential unless secondary damage largely mediated 
by anti-AQP4 antibodies with complement-mediated 
effector functions (that were lacking in our model) also 
affects oligodendrocytes and axons. In fact, in human 
NMOSD, the quality of the CNS damage depends on 
anti-AQP4 antibodies [28, 36]. Extremely high-affinity 
anti-AQP4 antibodies might even be able to establish 
NMOSD lesions in the absence of activated T cells in the 
CNS compartment [10].

In summary, AQP4(201–220)-induced EAE in Aqp4ΔB 
is a useful tool for investigating the effector functions 
of AQP4-specific T cells in CNS autoimmunity. This 
model provides an experimental platform to investigate 
tissue responses in the CNS when an astrocytic antigen 
is directly targeted as compared to antigens (like MOG) 
that are expressed in oligodendrocytes. For instance, it 
is unclear whether astrocytes are able to present AQP4 
epitopes in the context of MHC class II molecules in 
an inflamed environment. Conversely, the astrocyte 
response might be different when they are a direct tar-
get of an autoimmune reaction as compared to a scenario 
where they are bystanders to an oligodendrocyte-directed 
attack. This aligns with the observed difference in micro-
glial activation between MOG- and AQP4-induced EAE. 
There is a growing body of evidence supporting the 
critical involvement of astrocytes during inflammatory 
insults to the CNS [8, 17]. Astrocytes might even exhibit 
an immunologic memory mediated by epigenetic modi-
fication, licensing them as competent mediators of CNS 
inflammation [16]. Considering the differential glial com-
position of distinct CNS compartments with specialized 
glial cell subsets such as retinal Müller cells, modeling 
of astrocyte-specific autoimmunity will provide novel 
avenues to better understand compartmentalized inflam-
mation to develop tailored therapeutic interventions 
in a situation where astrocytic and not oligodendroglial 
antigens are directly targeted by a specific autoimmune 
response.
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