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A B S T R A C T

Background: The individual treatment response in people with relapsing-remitting multiple sclerosis (RRMS) 
remain unpredictable. In order to support medical decisions, we aimed to predict response to fingolimod 
compared to placebo, by developing and validating prognostic multivariable models.
Methods: We included two-year follow-up from intention-to-treat populations of two multi-country placebo- 
controlled randomized controlled trials (RCT) of daily fingolimod 0.5 mg. The data was accessed via Clinical-
StudyDataRequest.com (Proposal Number: 11223) The RCTs were in adult RRMS patients with active disease. 
We used four Cox proportional hazards based penalized (elastic net and grouped lasso) and tree methods 
(transformation tree and forest) to predict time-to relapse and other relevant efficacy and safety endpoints in 
data from the RCT FREEDOMS. Treatment arm, 80 baseline variables and their interaction with treatment were 
considered as candidate predictors in the models. A nested cross-validation scheme ensured independent tuning 
parameter optimization and internal model performance evaluation. The generalizability of the models with the 
highest cross-validated time-dependent area under the receiver operating curve (AUC) was further evaluated in 
terms of discrimination (AUC), calibration (plots, intercept, slope), clinical utility (decision curve analysis), and 
treatment response plots by external validation in data from the RCT FREEDOMS II.
Results: The best performing model predicting relapse risk (331 events) in the development sample (n=843) was 
an elastic net regression with main terms for four predictors alongside treatment: EDSS score, volume of Gad-
olinium enhanced T1 lesions, number of relapses in the last 2 years, and number of prior MS treatments. In 
external validation (n=713), it had an AUC of 0.68 (95% CI 0.63–0.72), but the predictions were overestimating 
the actual risk (358 events) with a calibration-in-the-large of -0.17 (-0.3 - -0.04) and a slope of 1.06 (0.78–1.35). 
Almost no heterogeneity (variability 0.001) was detected in the predicted relapse risk change in response to 
fingolimod. FREEDOMS II participants were predicted to have 0.21 to 0.31 absolute relapse risk reduction with 
fingolimod compared to placebo. The selected model predicting new or enlarging T2 magnetic resonance im-
aging (MRI) lesions had an AUC of 0.74 (0.70–0.78), moderate calibration, but no treatment response variability. 
The final model predicting confirmed disability progression had an AUC of 0.59 (0.54–0.64) and the predicted 
treatment response heterogeneity was not significant. The overall safety outcome could not be predicted with 
sufficient discrimination. However, the final model predicting infections or neoplasms had an AUC of 0.69 
(0.63–0.74) and non-significant treatment response heterogeneity. For the efficacy outcomes, important pre-
dictors were related to (para)clinical disease activity or disability. Unexpected influential predictors included 
concomitant disorders.
Conclusion: Relapse and new or enlarging T2 MRI lesions were moderately predictable in an independent sample 
with the developed prognostic models. Fingolimod was expected to decrease the risk of these events for all 
patients, with no predictable heterogeneity. Disability and safety outcomes could not be well-predicted and it is 
yet unresolved whether the change in their risk as response to fingolimod is heterogeneous or not.
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Abbreviations
AUC area under the receiver operating curve
AUC(t) time-dependent area under the curve
Brier(t) time-dependent Brier score
DCA decision curve analysis
EPV events per variable
FREEDOMS FTY720 Research Evaluating Effects of Daily Oral therapy 

in Multiple Sclerosis
ROC receiver operating characteristic
SI supplementary information
TRIPOD+AI Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis + Artificial 
Intellegence

3m-CDP disability progression confirmed 3 months after its onset
9HPT 9-hole peg test
AE adverse event
CI confidence interval
DMT dozen disease-modifying treatments
EDSS expanded disability status scale
Gd gadolinium
KM Kaplan-Meier
MRI magnetic resonance imaging
PH proportional hazards
RCT randomized controlled trial
RRMS relapsing-remitting multiple sclerosis
SAE serious adverse event
T2 T2-weighted

1. Introduction

Relapsing-Remitting Multiple Sclerosis (RRMS) is a chronic debili-
tating disease. The progress and severity of the disease is described as 
highly heterogeneous (Ziemssen et al., 2019) and difficult to predict 
(Brown et al., 2020; Havas et al., 2020). The availability of more than a 
dozen disease-modifying treatments (DMT), the individual responses to 
which are also considered to vary, compounds the difficulty of clinical 
decision making. Prior identification of patients likely to benefit or be 
harmed from a specific treatment can be useful (Baecher-Allan et al., 
2018). Subgroup analyses identify differential treatment response for a 
limited number of binary-coded patient characteristics, with drawbacks 
like reference class, inflated error rates, lack of sufficient adjustment, 
and neglecting safety (Wang et al., 2007). Prognostic models predicting 
individual health outcomes or treatment response constitute an alter-
native to relying on average event rates or rough groups (Kent et al., 
2018).

The bulk of the published prognostic models in RRMS patients lack 
external validations, are at risk of overoptimistically-biased results, have 
difficult-to-collect predictors and do not comply with the reporting 
guidelines (Reeve et al., 2023). Their widespread implementation is 
hindered by the lack of methodological compliance for valid and 
accessible models (Steyerberg et al., 2013). Additionally, it is unclear if 
there is predictable treatment effect heterogeneity or a prognostic model 
would suffice to explain the observed heterogeneity. Multivariable 
treatment response prediction in the ideal setting of randomized clinical 
trial (RCT), was employed for a few DMTs and efficacy outcomes 
(Chalkou et al., 2021b; Pellegrini et al., 2020a) with mixed results.

Fingolimod is a high-efficacy treatment option for RRMS patients 
used as first- or second-line treatment in RRMS patients (Wiendl et al., 
2021). The immunosuppressant nature of DMTs may induce leukopenia 
or lymphopenia, increasing infections and neoplasms (Winkelmann 
et al., 2016). A published prediction of individual response to fingoli-
mod is missing, although it is an increasingly utilized DMT (Holstiege 
et al., 2022). Studies in Germany identified fingolimod to be most 
frequently used after first-line DMTs, received by 10–14% of RRMS 
patients (Müller et al., 2020; Ohlmeier et al., 2020). Around 18–30% of 

RRMS patients did not receive any DMT, representing the option of no 
treatment.

To personalize medicine in RRMS, we developed and externally 
validated multivariable models predicting prognosis and response to 
fingolimod. The primary endpoint was relapse within 2 years. Other 
efficacy and safety endpoints were also predicted. Finally, we identified 
variables predictive of these endpoints.

2. Material and methods

We performed the analysis in R (4.2.0), see Supplementary Infor-
mation (SI) SI1. For reporting, we used TRIPOD+AI (SI2).

2.1. Design

The datasets from the multi-country phase III FREEDOMS 
(01.2006–08.2007, 22 countries) and FREEDOMS II (06.2006–03.2009, 
eight countries) (ClinicalTrials.gov NCT00289978 and NCT00355134) 
RCTs were repurposed and used respectively in model development and 
external validation (Fig. 1). The primary objective of both trials was to 
compare the 24-month relapse rate in RRMS patients randomized to 
daily placebo, fingolimod 0.5 mg, or fingolimod 1.25 mg (1:1:1). Visits 
and examinations occurred at baseline, two weeks, one, two, three 
months, and every three months afterwards. MRI scans were taken at 
baseline and months six, 12, and 24.

Approvals from institutional review boards and patient informed 
consents were in place for the FREEDOMS trials and their results are 
reported elsewhere(Calabresi et al., 2014; Derfuss et al., 2016; Devon-
shire et al., 2012; Kappos et al., 2010). The anonymized data were made 
available to us by Novartis via the data sharing platform www.clin-
icalstudydatarequest.com (Proposal Number: 11223) until end of 2023. 
This project was deemed exempt from approval by the Ethics Committee 
of LMU Munich (Project Number: 19–838).

FREEDOMS trials included RRMS patients aged 18–55 years, and 
diagnosed based on the McDonald 2005 criteria. The participants had to 
have an EDSS score lower than 6.0, and at least one relapse during the 
year or two relapses during the two years before randomization. A time 
gap between a previous DMT and randomization was also required. In 
our study, we included the intention-to-treat population randomized to 
the approved daily dose of fingolimod, 0.5 mg, or placebo, representing 
the option of no treatment.

2.2. Variables

In addition to the randomized drug as placebo or fingolimod 0.5 mg, 
we considered 80 potentially prognostic variables at baseline as candi-
dates, covering various domains like demographic and clinical param-
eters, comedications, concomitant diseases, laboratory and quality of 
life measures (SI3 Table S1). Except from age (eight categories), all 
categorical variables were binary. The modeling methods implicitly or 
explicitly included interaction terms of drug with all the candidate 
predictors, bringing the number of terms considered to 175.

The primary outcome was confirmed relapse, as defined in the trials. 
The other efficacy outcomes were new or enlarging lesions in T2 MRI 
scans (T2 MRI), and disability progression confirmed 3 months after its 
onset (3m-CDP). We investigated a general safety outcome of any 
serious adverse event (SAE) or trial discontinuation due to an adverse 
event (AE) (Safety), and an AE from the system organ classes of in-
fections and infestations or neoplasms (Immune safety). Parameters 
were standardized and assessed by trained investigators blinded to the 
treatment assignment. The endpoints were time-to-first event since 
randomization until the 24-month visit (720 days). For stability, we 
censored observations without event on the first of the participant’s last 
visit or day 765.
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2.3. Statistical methods

We described the treatment arms in the development and validation 
samples using median and range or by frequencies. We reported event 
numbers and stratified Kaplan-Meier (KM) curves. For sample size 
considerations, we report events per variable (EPV) in the development 
sample and the event numbers in the validation (Moons et al., 2019).

2.3.1. Development
We considered four modeling methods in a benchmarking experi-

ment. Two were tree and forest of conditional transformation models (R 
packages tram and trtf), which detect effect modification via splitting 
variables (Seibold et al., 2016). The base model was a Cox Proportional 
Hazards (PH) regression containing the drug as the explanatory 

variable. The remaining methods were PH regressions regularized with 
an elastic net (glmnet) or a grouped lasso with ridge penalty (grpreg), 
which normalize the predictors during model fitting but report rescaled 
coefficients. The dataset for the penalized regressions included an 
unpenalized term for treatment, all predictors, and treatment by pre-
dictor interactions. We selected the individual predictor main terms and 
their treatment interactions together in the grouped lasso method.

For compatibility, we imputed the datasets for the tree and forest by 
a random forest method (missForest) but the datasets for the regularized 
regressions by predicted mean matching or logistic regression by 
chained equations (mice). The dataset for the grouped lasso regression 
was imputed once whereas we imputed the dataset for the elastic net 
regression five times and weighted the observations. The imputation 
datasets included the day of event or censoring and the Nelson-Aalen 

Fig. 1. Overview of methods 
Methods employed to develop and externally validate prognostic and treatment response prediction models in the two randomized controlled trial datasets: 
FREEDOMS and FREEDOMS II. CV: cross-validation, AUC(t): time-dependent area under the receiver operator characteristic curve, P@24m: risk of event at 24- 
months, FTY: fingolimod 0.5 mg, Pl: placebo.
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estimate of the cumulative hazard at that day. The training, test, and 
external validation datasets were imputed separately.

To choose the best method and parameters, we used nested 5-fold 
cross-validation, balanced by treatment arm. Parameter optimization 
was in the inner loops. For the tree, we tuned significance level for 
variable selection, and the minimum number of observations at a ter-
minal node. For the forest, we tuned the number of predictors consid-
ered at split, and minimum number of observations at the terminal 
nodes. For the regularized regressions, we tuned the mixing parameter 
of lasso and ridge penalties, and the penalty parameter.

We applied the model optimized within and fitted to the training set 
to the outer loop, the test set, and evaluated the discrimination by cu-
mulative time-dependent area under the curve (AUC(t)) (Bansal and 
Heagerty, 2018) between baseline (day 0) and days 180, 360, and 720. 
As a sensitivity analysis, we estimated time-dependent Brier score (Brier 
(t)). We chose the modeling method with the highest average AUC(t) in 
the test sets. We generated the final prediction model by fitting the 
chosen method to the whole development sample.

Any variable selected by more than one outer cross-validation folds 
were recorded for that modeling method, and those deemed important 
by more than two methods were labeled important. Only for random 
forest, we assessed permutation-based importance and considered the 
predictors with a log-likelihood importance greater than the absolute 
value of its minimum as important. We refrain from reporting effect 
estimates because the penalized nature or tree structure of the models 
make quantitative interpretation misleading.

2.4. Validation

With the final models, the probabilistic prognostic and treatment 
response predictions in the external validation sample were calculated. 
We estimated the 24-month AUC(t) with 95% confidence interval (CI) 
and plotted model and noninformative model Brier(t). We plotted, 
overall and stratified, 24-month receiver operating characteristic (ROC), 
and calibration curves. We estimated calibration-in-the-large by the 
intercept in a Poisson regression of actual outcome adjusting for the 
expected event numbers until censoring; and calibration slope by the 
linear predictor in a Cox PH regression of the actual outcome adjusting 
for the baseline hazard. Via decision curve analysis (DCA), we evaluated 
the net benefit of the model compared to the blanket decisions of 
intervention to all or no patients. We investigated the heterogeneity in 
response to fingolimod by treatment effect curves and measures like 
proportion recommended fingolimod, and variance in predicted treat-
ment effect (Janes et al., 2014).

3. Results

There were 843 and 713 participants in the development and vali-
dation samples, respectively 425 and 358 of whom were randomized to 
fingolimod 0.5 mg and the rest to placebo. During follow-up, respec-
tively 331 (39%) and 235 (33%) participants experienced a relapse, thus 
EPV for development was 1.9. A 24-month visit was not recorded for 112 
(13%) and 148 (21%) participants in the development and validation 
samples. The KM curves in both samples revealed significantly higher 
probability of staying relapse or new T2 MRI lesion free under fingoli-
mod compared to placebo (Fig. 2, Table S3, Figure S1). No significant 
difference between the arms was observed for the remaining outcomes.

At baseline in both populations (Table S4) over 70% were female and 
in their 30s or 40s, the median EDSS score was 2, and the median 
number of relapses during the 2 years prior was 2. Compared to the 
development, participants in the validation population were older and 
had a longer disease duration, were more likely to have used other 
DMTs, had a lesser MRI lesion load, but more comedications and 
concomitant diseases. On average, 0.3% of the values were missing per 
predictor in both datasets. Respectively in development and validation 
datasets, 16% and 6% of the participants had at least one missing value 

(Figure S2). There were no noticeable baseline characteristic differences 
between the treatment arms within datasets.

3.1. Development

The elastic net, with five terms, or grouped lasso, with 65 terms in 
their final models had the best discrimination for predicting relapse 
(AUC(t) 0.69) in cross-validation (Table 1). For parsimony, elastic net 
was chosen, the optimized parameter of which showed the use of only 
lasso penalization (Table S5). The final model contained only main 
terms: total EDSS score, total volume of Gd-enhanced T1 MRI lesions, 
number of relapses in the last 2 years, and number of prior MS treat-
ments (SI4). Additionally, total volume of T2 MRI lesions, and 
concomitant metabolism and nutrition disorders were important pre-
dictors of relapse.

Elastic net performed similarly to grouped lasso in predicting T2 MRI 
lesions (AUC(t) 0.71), and immunosuppressant safety (AUC(t) 0.60), but 
was again chosen as final due to parsimony. In predicting 3m-CDP (AUC 
(t) 0.67) and the safety outcomes (AUC(t) 0.54), the transformation 
forest outperformed others. According to Brier(t), the chosen modeling 
methods would be the same, except for the safety outcome, for which 
elastic net (0.084) was marginally better than transformation forest 
(0.085) (Table S6).

Total volume and number of Gd-enhanced T1 MRI lesions, and total 
volume of T2 MRI lesions were the most important predictors of new T2 
MRI lesions. For predicting 3m-CDP, 9-hole peg test (9HPT) and 
concomitant musculoskeletal and connective tissue disorders were 
important. For predicting safety concomitant gastrointestinal disorders, 
and for immunosuppressant safety, comedications of genitourinary 
system and sex hormones were important.

3.2. Validation

Median individual prediction for 24-month relapse risk was 0.42 
(range 0.21–0.87) (Table 2). The AUC of 0.68 (95% CI: 0.63–0.72) for 
the relapse model was close to the cross-validation (Table 1). The Brier 
(t) from the model was greater than from the noninformative model but 
not significantly (Figure S3). The calibration plot (Fig. 3) and 
calibration-in-the-large (-0.17, -0.3 - -0.04) revealed risk overestimation 
while the calibration slope (1.06, 0.78–1.35) was acceptable (Table S7). 
According to the DCA, basing decisions on this model would be bene-
ficial between the 24-month risk thresholds of 20–50% (Fig. 4). Patients, 
who prefer avoiding a relapse with less than 20% risk, given the risks 
and costs of treatment, should be treated, whereas those that require at 
least 50% risk should omit treatment. Treatment effect curves revealed 
an absence of qualitative heterogeneity (Fig. 5, Figure S4). Daily fin-
golimod was predicted to be more beneficial than placebo for all patients 
in this dataset. Median predicted individual reduction in 24-month 
relapse risk by fingolimod compared to placebo was 0.25 (range 
0.21–0.31), with a very low variance (0.001), indicating lack of pre-
dictable treatment effect heterogeneity (Table S8).

New or enlarging T2 MRI lesion predictions had an AUC of 0.74 (95% 
CI 0.70–0.78) and significant improvement in Brier score. The 
calibration-in-the-large (-0.08, -0.18–0.01) and the calibration slope 
(1.07, 0.83–1.31) were acceptable. The range of risk thresholds for 
which the prediction model was beneficial was wide but high (40–90%, 
Figure S5). The variability of predicted treatment response was very low 
(0.001). There was a lack of treatment response heterogeneity and all 
patients would be recommended fingolimod. With 0.29 (range 
0.12–0.32), the highest median predicted individual risk reduction by 
fingolimod was for this outcome.

With an AUC of 0.59 (95% CI 0.54–0.64), the CDP model performed 
worse than expected, and overestimated the risk: calibration-in-the- 
large 0.17 (0.02–0.32). The predictions were beneficial in a narrow 
threshold range (25–35%). The median predicted individual risk 
reduction in response to fingolimod was null and although only 52% 
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Fig. 2. Kaplan-Meier curves for relapse in development (left) and external validation (right) datasets 
Survival probability is presented as a function of time in days per trial arm: active fingolimod 0.5 mg as FTY720 and control arm as Placebo. Numbers above the x- 
axis represent patients still under risk every 6 months.
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(48–56%) of the participants would be recommended fingolimod, 
overlapping CIs of the risk curves precludes a significant treatment 
response heterogeneity.

The safety model had an AUC of 0.50 (95% CI 0.44–0.55), indicating 
no discriminative power, so further results are omitted. The immuno-
suppressant safety was predicted with an AUC of 0.69 (0.63–0.74), 
although the model was significantly miscalibrated given by the 
calibration-in-the-large (-0.15, -0.24 - -0.07) and the calibration slope 
(0.66, 0.43–0.89). The model use seemed relevant for decisions with a 
risk threshold of 75%. The model revealed a non-significant qualitative 
heterogeneity where 49% (45–53%) of the participants would be rec-
ommended fingolimod and the median predicted individual risk 
reduction was null.

4. Discussion

We developed an easy-to-report and -implement prognostic model 
predicting 2-year relapse risk in RRMS patients. It is parsimonious with 
five main effect terms routinely collected in neurology clinics. This 
model had a moderate discrimination in external validation (AUC 0.68). 
Our result is similar to the internally validated c-statistics of 0.65 
(Chalkou et al., 2021a), of 0.62 (Chalkou et al., 2021b), and of 0.65 
(Stühler et al., 2020) from models predicting relapse in similar studies. 
Our model overestimated the risk and may need recalibration. Basing 
decisions on this model would be useful when the threshold for decision 

Table 1 
Time-dependent area under the curve (AUC(t)) and number of predictors.

Method Relapse T2 MRI 3m 
CDP

Safety Immune 
safety

Transformation 
tree

0.50 (3) 0.47 
(3)

0.54 
(0)

0.51 (2) 0.54 (2)

Transformation 
forest

0.64 0.68 0.67 0.54 0.60

Elastic net 0.69 (5) 0.71 
(9)

0.56 
(11)

0.51 (2) 0.60 (45)

Grouped lasso 0.69 
(65)

0.71 
(19)

0.55 
(35)

0.50 
(17)

0.60 (81)

External Validation 0.68 0.74 0.59 0.50 0.69

First four rows: Average AUC(t) at 6, 12, and 24 months estimated via cross- 
validation in the model development dataset for competing methods. In 
parenthesis are the number of splits in interaction with treatment (trans-
formation tree) or the terms (elastic net and grouped lasso) in the model fits. The 
transformation forest algorithm does not select variables, hence had all 80 
predictors in interaction with treatment. The finally chosen methods are in bold.
Last row: AUC(t) at 24 months estimated for the final models in the external 
validation dataset. T2 MRI: New/enlarging lesions, 3m CDP: Confirmed 
disability progression, Immune safety: Immunosuppressant safety.

Table 2 
Summary of prognostic and treatment response predictions in external 
validation.

Outcome Overall 
Event

Event in 
FTY720 
arm

Event in 
Placebo 
arm

Treatment 
response

Relapse 0.42 
(0.21–0.87)

0.28 
(0.21–0.71)

0.53 
(0.42–0.87)

0.25 
(0.21–0.31)

New/enlarging 
lesions

0.68 
(0.38–0.98)

0.47 (0.38- 
0.87)

0.76 
(0.69–0.98)

0.29 
(0.12–0.32)

Confirmed disability 
progression

0.22 
(0.10–0.37)

0.23 
(0.10–0.34)

0.22 
(0.11–0.37)

0.00 
(-0.18–0.18)

Safety 0.16 
(0.06–0.34)

0.16 
(0.06–0.33)

0.16 
(0.07–0.34)

0.00 
(-0.23–0.23)

Immunosuppressant 
safety

0.86 
(0.59–1.00)

0.86 
(0.59–1.00)

0.86 
(0.70–0.99)

0.00 
(-0.13–0.12)

First three columns: Median (range) predicted individual event probabilities at 
24 months, overall and by treatment arms; FTY720: fingolimod. Last column: 
Median (range) of predicted individual response to fingolimod at 24 months, 
calculated in a counterfactual manner in all participants by predicting the risk of 
outcome when the treatment is fingolimod 0.5 mg and taking its difference from 
the predicted risk of outcome when the drug is placebo.

Fig. 3. Calibration and receiver operator characteristic (ROC) plots in external validation 
Calibration plot binned to ten predicted risk groups (left) and ROC curve (right) overall and stratified by trial arm (active fingolimod 0.5 mg arm as FTY720 and 
control arm as Placebo) at month 24. Also provided are area under the curve (AUC) and Brier score as percentages.

Fig. 4. Decision curve analysis in external validation 
Expected net benefit, in units of proportion of true positives, under different 
strategies of intervention to all, none, or by the final relapse model across the 
entire probabilistic threshold range.
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making is between 20% and 50% 2-year relapse risk, covering almost 
three-fourths of the predicted event probabilities. Previously investi-
gated decision-relevant relapse risk thresholds are 4–25% for first line 
DMTs, and 19–40% for natalizumab (Chalkou et al., 2023). We expect 
the threshold for fingolimod to cover a similar range and our prediction 
model to have net benefit.

There was no predictable heterogeneity in treatment response. The 
individual absolute risk of 24-month relapse was predicted to be 
21–31% lower with fingolimod compared to placebo for all patients in 
the validation. Others similarly reported lack of qualitative heteroge-
neity for marketed DMTs. In a meta-analysis, the main terms for the 
three studied DMTs and the developed prognostic score were statisti-
cally significant but their interaction was not (Chalkou et al., 2021b). 
Another study that included fingolimod alongside five other DMTs 
found less than 0.01 difference in cross-validated c-statistic from the 
model with main terms and the model with treatment interaction terms 
(Stühler et al., 2020).

The four selected predictors had the same direction of effect and 
were selected by another relapse risk model (Chalkou et al., 2021b). Our 
results also confirm the findings from the FREEDOMS trials’ subgroup 
analysis that patients with higher baseline disease activity or disability 
had higher relapse rates (Derfuss et al., 2016). These predictors repre-
sent disability (total EDSS score) and symptoms (number of relapses in 
the last 2 years). Higher total volume of Gd-enhanced T1 MRI lesions, 
which detect new inflammatory activity, also decreased the 
time-to-relapse. Exposure to more DMTs pre-baseline increased the 
relapse risk. Other important predictors were total volume of T2 MRI 
lesions and concomitant metabolism and nutrition disorders. Age or sex 
were not found to be influential independent predictors by our multi-
variable methods.

The outcome predicted with best performance, new or enlarging T2 
MRI lesions, had an AUC of 0.74. There was no predictable heteroge-
neity also for this outcome in response to fingolimod. Its most important 
positively correlated predictors were other lesion markers like volume 
and number in T1 MRI and volume in T2 MRI.

The 3m- CDP was predicted more successfully by the transformation 
forest, indicating higher-order interactions to be explanatory for 
disability. Its AUC in external validation (0.59) was comparable to in-
ternal validation from similar studies: worse than 0.65 for disability 
progression (Pellegrini et al., 2020b) and 0.69 for CDP (De Brouwer 
et al., 2021; De Brouwer et al., 2022), but better than 0.56 for another 

CDP model (Stühler et al., 2020). The null median predicted treatment 
response was in agreement with the source trial results, FREEDOMS II 
(Calabresi et al., 2014). Hand dexterity (9HPT), and concomitant 
musculoskeletal and connective tissue disorders were the most impor-
tant predictors of 3m-CDP. Also important in the forest were EDSS total 
and cerebral function scores. Lesion number or volume in T1 or T2 MRI 
were not important in any of the methods, hinting at the “clinico-r-
adiological paradox”, that disease activity and disability progression 
may have different mechanisms (Barkhof, 2002).

A novelty of our study was predicting safety-related outcomes. The 
overall safety could not be modeled with sufficient discrimination, 
pointing to the tension in their modeling: the difficulty in capturing 
varying underlying mechanisms when the grouping is coarse versus the 
rarity of SAEs. The outcome of infections and infestations and neoplasms 
could be better predicted (AUC 0.69). For this outcome, baseline 
lymphocyte count was one of twenty-nine important predictors selected 
by the regression models.

In terms of predicting the treatment response heterogeneity, 
randomization is the unbiased way and RCT data is completer and more 
standardized. Yet, there are barriers to this prediction, like the impos-
sibility of observation, lack of known strong effect modifiers, and that 
RCTs are underpowered to detect multiple weak interactions (Rekkas 
et al., 2020). There is a strong deterministic assumption underlying the 
discourse on treatment response heterogeneity: the variability in the 
outcomes observed in the active arm in an RCT is a quality of the patient 
and cannot vary within the patient in a random manner (Senn, 2018). 
Our study based on (para)clinical parameters shows that this assumption 
is questionable for the relapse outcome in response to fingolimod.

In terms of prognosis, despite the high quality of the dataset on 
which they are based on, our models are limited and are very early in 
their developmental stage. They can only be used to predict risk under 
no treatment, i.e. placebo, or fingolimod. Even before predicting the 
individual prognosis of relapse under no treatment, which can support 
the decision on how strong of a DMT to use, our models are not yet ready 
for implementation. RCT participants are expected to have higher dis-
ease activity and less comorbidities compared to the overall RRMS pa-
tients (Trojano et al., 2017), hence the prediction models developed in 
this study require validation in, and maybe calibration to, routine 
datasets before any clinical implementation.

5. Conclusions

The developed and externally validated prognostic model predicting 
relapse under no treatment or fingolimod should be further externally 
validated, recalibrated, and tested in impact studies. Only after these 
stages are successful, it can be implemented as a tool and used for de-
cision support in clinical practice. We found no predictable heteroge-
neity of disease activity in response to fingolimod. Fingolimod would be 
a good treatment option to RRMS patients if 21% absolute relapse risk 
reduction compared to placebo outweighs its possible safety risks. 
Further research is warranted to investigate our exploratory findings, 
namely the prognostic value of concomitant diseases in predicting 
clinical outcomes in RRMS.
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