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Abstract
A scoring system is a simple decision model that checks a set of features, adds a certain 
number of points to a total score for each feature that is satisfied, and finally makes a deci-
sion by comparing the total score to a threshold. Scoring systems have a long history of 
active use in safety-critical domains such as healthcare and justice, where they provide 
guidance for making objective and accurate decisions. Given their genuine interpretability, 
the idea of learning scoring systems from data is obviously appealing from the perspective 
of explainable AI. In this paper, we propose a practically motivated extension of scoring 
systems called probabilistic scoring lists (PSL), as well as a method for learning PSLs from 
data. Instead of making a deterministic decision, a PSL represents uncertainty in the form 
of probability distributions, or, more generally, probability intervals. Moreover, in the spirit 
of decision lists, a PSL evaluates features one by one and stops as soon as a decision can 
be made with enough confidence. To evaluate our approach, we conduct case studies in the 
medical domain and on standard benchmark data.
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1 Introduction

Predictive models generated by modern machine learning algorithms, such as deep neural 
networks, tend to be complex and difficult to comprehend, and may not be appropriate in 
applications where a certain degree of transparency of a model and explainability of deci-
sions are desirable. Besides, depending on the situation and application context, time and 
computational resources for applying decision models might be limited. For example, a 
human’s resources to collect, validate, and enter data might be scarce, or decisions must be 
taken quickly, in the extreme case even by the human herself without any technical device.

So-called scoring systems provide a simple, genuinely interpretable model class as an 
alternative. In a nutshell, a scoring system is a decision model that checks a set of fea-
tures, adds (or subtracts) a certain number of points to a total score for each feature that is 
satisfied, and finally makes a decision by comparing the total score to a threshold. Scor-
ing systems have a long history of active use in safety-critical domains such as healthcare 
(Six et al., 2008) and justice (Wang et al., 2023), where they provide guidance for making 
objective and accurate decisions. Given their genuine interpretability, scoring systems are 
appealing from the perspective of explainable AI, which is why the idea of learning such 
systems from data has recently attracted attention in machine learning.

Building on our previous work (Hanselle et al., 2023), this paper contributes to existing 
methodology for scoring systems as follows:

• We propose a practically motivated extension of scoring systems called probabilistic 
scoring lists (PSL), as well as a method for learning PSLs from data.

• To increase uncertainty-awareness, a PSL produces predictions in the form of probabil-
ity distributions (instead of making deterministic decisions).

• Moreover, to increase cost-efficiency, a PSL is conceptualized as a decision list: It eval-
uates features one by one and stops as soon as a decision can be made with enough 
confidence.

Moreover, we extend (Hanselle et al., 2023) in various ways:

• We make the PSL method amenable to continuous variables by developing discretiza-
tion techniques for turning numerical attributes into binary features, either in a preproc-
essing step or progressively in the course of the PSL procedure.

• In order to calibrate probability estimates, we consider beta calibration in addition to 
isotonic regression.

• We propose a method for quantifying epistemic uncertainty, i.e., uncertainty about the 
probability estimates in a PSL.

• Going beyond simple decisions, we propose a variant of PSL that is appropriate for the 
task of ranking, i.e., sorting a set of instances from most likely positive to most likely 
negative, leveraging training data in the form of relative comparisons.

• We also expand the empirical evaluation by adding additional datasets and experimen-
tal studies.

Following a brief overview of related work in the next section, we introduce PSLs in 
Sect. 3 and address the problem of learning such models from data in Sect. 4. To evaluate 
our approach, we conduct as series of experimental studies in Sect. 5f, prior to concluding 
the paper with an outlook on extensions and future work in Sect. 6.
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2  Related work

The use of machine learning models for decision support has recently gained consider-
able attention. In many safety-critical application domains such as healthcare or justice, 
the interpretability of the predictions made by such models is an essential requirement, 
because a decision maker who is unable to understand a prediction is unlikely to trust 
and base their decision on the model.

Methods such as LIME (Ribeiro et  al., 2016) and SHAP (Lundberg & Lee, 2017) 
can be used to create explanations for any model, including powerful black-box models 
like deep neural networks. An alternative to using such post-hoc explainers is the use of 
inherently interpretable models, which is of particular interest in high stakes decision-
making (Rudin, 2019). Models such as linear regression or decision trees are considered 
inherently interpretable. By inspecting their simple structure, one can see how different 
features influence the predictions across instances and gain a global understanding of 
the model. This interpretability comes at the cost of reduced flexibility, potentially lead-
ing to a loss in predictive accuracy. However, if genuine interpretability is a must, this 
loss has to be accepted.

One of the practically most relevant model classes of this kind are scoring systems, 
which are the de facto standard tool in clinical decision support but also used in other 
domains. Scoring systems assign integer weights to all features, which are added up for 
all positively evaluated features of a particular patient. Typically, this total score is a 
degree of severity which is compared with a threshold to form a decision. Over the past 
decades, a plethora of scoring systems has been developed which are in active use in 
healthcare. Prominent examples include the SAPS (Metnitz et al., 2005; Moreno et al., 
2005; Le Gall et al., 1993, 1984) and APACHE (Knaus et al., 1981, 1985, 1991) scoring 
systems for assessing mortality in intensive care, the SOFA score (Vincent et al., 1996) 
for sepsis-related organ failure assessment or the  CHA2DS2-VASc score (Lip et  al., 
2010) for predicting stroke risk of patients with atrial fibrillation.

The scoring systems in healthcare commonly assign small integer scores to the fea-
tures. This simple structure makes them applicable in practice, imposing low cogni-
tive load for the practitioners and making predictive outcomes easy to understand and 
communicate.

While scoring systems are typically handcrafted by domain experts, there has been 
increasing interest in algorithmically deriving scoring systems from data using machine 
learning methods. In a series of papers, Ustun and Rudin developed the so-called Super-
sparse Linear Integer Model (SLIM) for inducing scoring systems from data, as well 
as an extension called RiskSLIM (Ustun & Rudin, 2016, 2017, 2019). Their methods 
are based on formalizing the learning task as an integer linear programming problem, 
with the objective to find a meaningful compromise between sparsity (number of vari-
ables included) and predictive accuracy. The problem can then essentially be tackled by 
means of standard integer linear program solvers.

In several applied fields, one also finds methods of a more heuristic nature. Typi-
cally, standard machine learning methods such as support vector machines or logistic 
regression are used to train a (sparse) linear model, and the real-valued coefficients of 
that model are then turned into integers, e.g., through rounding or by taking the sign. 
Obviously, approaches of that kind are rather ad-hoc, and indeed, can be shown to yield 
suboptimal performance in practice (Subramanian et  al., 2021). From a theoretical 
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perspective, certain guarantees for the rounded solutions can nevertheless be given 
(Chevaleyre et al., 2013).

A related research direction is the learning of simple decision heuristics that are con-
sidered plausible from the perspective of cognitive psychology. Again, however, this is a 
relatively unexplored field, in which only a few publications can be found so far—Sim-
sek and Buckmann (2016) collect and empirically compare some of these heuristics.

Decision lists have been primarily used in inductive rule learning (Fürnkranz et  al., 
2012), where each term consists of a conjunction of conditions, which are sufficient to 
make a prediction in case the conditions are satisfied, or else continue with the next rule. 
They have been shown to generalize both, k-term CNF and DNF expressions, as well as 
decision trees with a fixed depth k (Rivest, 1987). Practically, they represent a simple way 
for tie-breaking in situations where multiple rules cover the same example: in that case, the 
first rule in the list is given priority. They can be easily learned, as their structure mirrors 
the commonly covering or separate-and-conquer strategy (Fürnkranz, 1999), which learns 
one rule at a time, typically by appending rules to the list, assuming that most important 
rules are tried first, but prepending has also been tried (Webb, 1994). While rules are typ-
ically used for classification, they may also be viewed as simple probability estimators, 
using the class distribution among the covered examples as the basis for various estima-
tion techniques (Sulzmann & Fürnkranz, 2009). However, these are known to be overly 
optimistic, because the way the conditions are selected results in a bias towards the positive 
examples during learning (Možina et  al., 2019). Also, in decision lists in rule learning, 
the probability estimates are derived from the last rule in isolation, practically ignoring all 
previous rules, whereas, as will be seen later, the probability distributions in PSLs are suc-
cessively refined.

3  Probabilistic scoring lists

Consider a scenario where decisions need to be made in different contexts, which are char-
acterized in terms of a set of variables or features F = {f1,… , fK} . A concrete situation is 
specified by a vector x = (x1,… , xK) , where xi is the value observed for the feature fi , and 
the set of all conceivable vectors of that kind forms the instance space X  . Features can be 
of various kinds, i.e., binary, (ordered) categorical, or numeric. Decisions are taken from a 
decision space Y , which is normally finite, typically comprising a small to moderate num-
ber of alternatives to choose from.

A decision model is a mapping h ∶ X ⟶ Y , i.e., y = h(x) is the decision suggested 
by h in the context x . Note that such models can be represented in different ways. For the 
reasons already explained, we shall focus on scoring systems in this paper. In a nutshell, 
scoring systems consist of a set of simple criteria (presence or absence of certain charac-
teristics or features) that are checked, and if satisfied, contribute a certain number of points 
to a total score. The final decision is then based on comparing this score to one or more 
thresholds. Formally, scoring systems can be seen as a specific type of generalized additive 
models (Hastie, 1990) defined over a set of features.

Definition 1 (Scoring system). A scoring system over a set of (binary) candidate features 
F  and score set S ⊂ ℤ is a triple h = ⟨F, S, t⟩ , where F = {f1,… , fK} ⊂ F  is a subset of the 
candidate features, S = (s1,… , sK) ∈ S

K are scores assigned to the corresponding features, 



Machine Learning (2025) 114:55 Page 5 of 31 55

and t ∈ ℤ is a decision threshold. For a given decision context x = (x1,… , xK) ∈ {0, 1}K , 
i.e., the projection of an instance to the feature set F, the decision prescribed by h is given 
by

where [[⋅]] is the indicator function.1

Note that, according to this definition, scoring systems are binary classifiers 
( Y = {0, 1} ). They can also be seen as linear classifiers with weights si restricted to be 
elements of the score set S . When features are strictly binary, scoring systems essentially 
resemble Boolean threshold functions and share many of their properties (Crama & Ham-
mer, 2011). Thus, scoring systems are clearly limited in terms of expressivity. In particular, 
note that they are not capable of modeling feature interactions unless these are manually 
added as additional (compound) features (for example, the synergy/redundancy between 
two features xi and xj can be modeled by adding the logical conjunction xi,j = xi ∧ xj as an 
additional feature and assigning it a positive/negative score).

In the following, we generalize such scoring systems in two ways: from deterministic to 
probabilistic, and from a single decision model to a decision list.

As for the first extension, the idea is to return a probability distribution over Y instead 
of a binary decision (1), i.e., to assign a probability p(y) to each decision y ∈ Y . The latter 
can be interpreted as the probability that y is the best or correct decision, which (implicitly) 
presupposes the existence of a kind of ground truth. Without loss of generality, we can 
assume that the ground truth distinguishes between a class of positive cases and a class of 
negative cases, and that the decision is a prediction of the correct class. Therefore, we shall 
use the terms “decision” and “class” interchangeably.

We contextualize the distribution p , not directly with x , but rather with the total score 
T(x) assigned to x . In other words, we consider conditional probabilities p(⋅ |T(x)) on Y . 
This appears meaningful and is in line with the assumption that the total score is indica-
tive of the class — in fact, standard scoring systems can be seen as a special case, return-
ing probability 1 for the positive class when exceeding the threshold and probability 0 
otherwise.

Definition 2 (Probabilistic scoring system, PSS). A probabilistic scoring system 
(PSS) over candidate features F  and score set S ⊂ ℤ is a triple h = ⟨F, S, q⟩ , where 
F = {f1,… , fK} ⊂ F  , S = (s1,… , sK) ∈ S

K , and q is a mapping Σ ⟶ [0, 1] , where

is the set of possible values for the total score that can be obtained by any instance x ∈ X  , 
and q(T) = p(y = 1 ∣ T) is the (estimated) probability for the positive class (y = 1) given 
that the total score is T (and hence 1 − q(T) = p(y = 0 ∣ T) the probability for the negative 
class).

(1)h(x) = [[T(x) ≥ t ]] = [[

K∑
i=1

s
i
x
i
≥ t ]],

Σ∶=

{
T =

K∑
i=1

si xi
|||| s1,… , sK ∈ S, x1,… , xK ∈ {0, 1}

}

1 [[P]] = 1 if predicate P is true (positive decision) and [[P]] = 0 if P is false (negative decision).
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Note that an increase in the total score should only increase but not decrease the 
probability of the positive decision, so that probabilistic scoring systems should satisfy 
the following monotonicity constraint:

This property is again in line with standard scoring systems and appears to be important 
from an interpretability perspective: A violation of (2) would be considered as an incon-
sistency and compromise the acceptance of the decision model. Therefore, in the remain-
der of the paper, we consider only monotonic probabilistic scoring systems.

Our second extension combines probabilistic scoring systems with the notion of 
decision lists. The underlying idea is as follows: Instead of determining all K feature 
values xi right away, these values are determined successively, one after the other, in a 
predefined order. Each time a new feature is added, the total score T is updated, and the 
probability q(T) of the positive class is determined. Depending on the latter, the process 
is then continued or stopped: If the probability is sufficiently high or sufficiently low, 
the process is stopped, because a decision can be made with enough confidence; other-
wise, the process is continued by adding the next feature. In summary, a PSL consists of 
i) an ordering of features, ii) the associated scores and iii) a probability function map-
ping total scores to probability estimates at each stage.

Table 1 depicts a PSL with four features F = {f1, f2, f3, f4} . As can be seen from the 
assigned scores, all features except f1 are indicative of the positive class, i.e., the pres-
ence of f2 , f3 or f4 increases the probability of the positive class, whereas the presence 
of f1 decreases the probability.

The decision process starts with an empty feature set and a prior probability of 0.3 
for the positive class. After seeing the first feature f3 with a weight s3 = +1 , the pos-
sible scores are T = 0 if the feature does not hold (the value of the feature is x3 = 0 ), or 
T = +1 , if x3 = 1 . In the former case, the probability for the positive decision decreases 
to 0.2, in the latter case it increases to 0.4. The next feature is f1 with a weight of 
s1 = −2 , resulting in a total of four possible scores, ranging from T = −2 (if x3 = 0 and 
x1 = 1 ) to T = +1 (if x3 = 1 and x1 = 0 ). Note that the absence of f1 , in this case, may 
increase the probability of a positive score to 0.6. Adding the remaining features contin-
ues this process, until we get a diverse set of seven probability estimates (five of which 
are different) corresponding to the seven different score values we can obtain for the 

(2)∀T , T � ∈ Σ ∶ (T < T �) ⇒ q(T) ≤ q(T �) .

Table 1  Example of a PSL with feature set F = {f1, f2, f3, f4} and score set S = {0,±1,±2}

The first two columns show the newly selected feature and the complete features list at that stage, while the 
third column shows the score assigned to the newly added feature. The remaining columns show the prob-
abilities assigned to the total scores q(T) = p(y = 1 ∣ T) for each stage

Feature added Feature list Score Total score

−2 −1 0 +1 +2 +3 +4

– – – – – 0.3 – – – –
f3 {f3} +1 – – 0.2 0.4 – – –
f1 {f1, f3} −2 0.1 0.2 0.5 0.6 – – –
f2 {f1, f2, f3} +1 0.1 0.2 0.6 0.7 0.9 – –
f4 {f1, f2, f3, f4} +2 0.1 0.1 0.2 0.6 0.7 0.9 0.9
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24 = 16 possible instances. For example, the instance x = (1, 1, 1, 1) would be assigned a 
probability of q(2) = 0.7 , based on its total score of T(x) = +2.

Note the monotonicity (2) in the scores in each row (higher score values result in higher 
probabilities for the positive decision). Also note that if the final maximal probability of 0.9 
is considered to be sufficiently high for making a positive decision, the process could already 
have been stopped after seeing the first three features for any instance x = (0, 1, 1, ∗) , irrespec-
tive of its value x4 for the fourth feature f4.

Formally, we can define a probabilistic scoring list as follows:

Definition 3 (Probabilistic scoring list, PSL). A probabilistic scoring list over candidate 
features F  and score set S ⊂ ℤ is a triple h = ⟨F, S, p⟩ , where F = (f1,… , fK) is a list of 
(distinctive) features from F  , S = (s1,… , sK) ∈ S

K , and q is a mapping

such that

Here, Σk is the set of possible values for the total score at stage k, i.e.,

A value q(k, T) is interpreted as the probability of the positive decision if the total score at 
stage k is given by T.

Note that k = 0 is included in (3). This case corresponds to the empty list, where no feature 
has been determined at all. The corresponding value q(0, 0) can be considered as a default 
probability of the positive class. In general, the score set S can be any subset of ℤ . However, 
to guarantee good interpretability, it is common to chose small sets with small values. Moreo-
ver, the score of 0 is usually omitted, because features with this score are simply disabled and 
hence effectively removed from the model.

4  Learning probabilistic scoring lists

While standard scoring systems have often been handcrafted by domain experts in the past, 
more recent methods for the data-driven construction of scoring systems aim to achieve a 
good trade-off between the complexity of models and the quality of their recommendations 
(Ustun & Rudin, 2016). This is crucial for the successful adoption of decision models in prac-
tice, as overly complex models are difficult to analyze by domain experts and impede the man-
ual application by human practitioners.

Instead of learning standard scoring systems, we are interested in the task of learning prob-
abilistic scoring lists, i.e., in constructing a PSL h from training data

(3)q ∶

K⋃
k=0

(k,Σk) ⟶ [0, 1]

(4)∀ k ∈ {0, 1,… ,K}, T , T � ∈ Σk ∶ (T < T �) ⇒ q(k,T) ≤ q(k, T �) .

(5)Σk =

{
T =

k∑
i=1

si xi
|||| s1,… , sk ∈ S, x1,… , xk ∈ {0, 1}

}
.

(6)D =
{
(xi, yi)

}N

i=1
⊂ X × Y .
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This essentially means determining the following components:

• the subset of features to be included and the order of these features;
• the score assigned to each individual feature;
• the probabilities for the resulting combinations of stage and total score.

A first question in this regard concerns the quality of a model h: What do we actually mean 
by a “good” probabilistic scoring list? Intuitively, a good PSL allows for making decisions 
that are quick and confident at the same time. Thus, we would like to optimize two criteria 
simultaneously, namely, to minimize the number of features that need to be determined 
before a decision is made, and to maximize the confidence of the resulting decision. This 
compromise could be formalized in different ways, but regardless of how an overall perfor-
mance measure is defined, the problem of optimizing that measure over the space of pos-
sible PSLs will be computationally hard (Chevaleyre et al., 2013).

4.1  A greedy learning algorithm

As a first attempt, we therefore propose a heuristic learning procedure that is somewhat 
inspired by decision tree learning. Starting with the empty list, the next feature/score com-
bination (xk, sk) is added greedily so as to improve performance the most,2 and this is con-
tinued until no further improvement can be obtained.

To this end, each (remaining) feature/score combination is tried and evaluated as follows: 
Let Σk be the set of total scores T in stage k as defined in (5), and Q = {(NT , q̂T ) ∣ T ∈ Σk} 
the set of probability estimates q̂T = q̂(k,T) for total scores T ∈ Σk , together with the num-
ber NT of training examples being assigned this score. The feature/score combination is 
then evaluated in terms of the expected entropy:

where H is the Shannon entropy

Thus, according to (7), the entropy of each distribution q̂T is weighted by the probability 
that this distribution occurs.

4.2  Probability estimation

As for the estimation of the probabilities q(k,  T), the most obvious idea would be a 
standard frequentist approach, i.e., to estimate them in terms of relative frequencies 
PT∕NT , where NT is again the number of training examples with total score T, and PT 
is the number of examples with total score T and class y = 1 (in stage k). However, 
as these estimates are obtained independently for each score T, they may violate the 

(7)E(Q) =
∑

(NT ,q̂T )∈Q

NT

N
H
(
q̂T
)
,

H(q) = −q ⋅ log(q) − (1 − q) log(1 − q) .

2 As the importance of a feature x
k
 , and hence the score s

k
 , can only be decided relative to other features, 

the choice of the score for the first feature is ambiguous; assuming this feature to be important, we have 
given it the largest score possible.
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monotonicity condition (2). A better idea, therefore, is to estimate them jointly using a 
probability calibration method (de Menezes e Silva Filho et al., 2023). To this end, the 
original data D , or a subset Dcal specifically reserved for calibration (and not used for 
training), is first mapped to the data

to which any calibration method can then be applied. One of the most popular techniques, 
isotonic regression (Niculescu-Mizil & Caruana, 2005), amounts to finding values q̂(k,T) 
as solutions to the following constrained optimization problem:

Another common calibration method is the use of a logistic regression, which, however, 
assumes class-wise normally distributed scores. Kull et al. (2017) show that this assump-
tion does not hold for common classifiers and propose the more flexible beta calibration, 
which defines a mapping [0, 1] ⟶ [0, 1] of the following form:

where a, b ≥ 0 and m ∈ [0, 1] are parameters. These parameters are fitted by minimizing 
log-loss on the calibration data (8). In our case, the �-values are (linear) transformations of 
the total scores T from Σk to [0, 1]. Both approaches, isotonic regression and beta calibra-
tion, are illustrated in Fig. 1.

Note that, from a probability estimation point of view, the estimation of one distribu-
tion per total score T ∈ Σk is a meaningful compromise between a global probability 
estimate (not taking any context features into account) and a per-instance estimation, 
i.e., the prediction of an individual distribution p(⋅| x) tailored to any specific instance 
x . Obviously, the former is not informative enough, while the latter is very difficult to 
obtain, due to a lack of statistical information related to a single point (Foygel Barber 
et  al., 2021). According to our assumption, all instances with the same total score T 
share the same probability. Therefore, those instances in the training data with the same 
score form a homogeneous statistical subgroup

(8)C∶=
{
(T(x), y) ∣ (x, y) ∈ Dcal

}
⊂ Σk × Y ,

minimize
∑

(T ,y)∈C

(
q̂(k, T) − y

)2

s. t. ∀T , T � ∈ Σk ∶ (T < T �) ⇒ (q̂(k,T) ≤ q̂(k,T �))

(9)q̂(k, 𝜏) =
1

1 + ma(1 − m)−b 𝜏−a (1 − 𝜏)b
,

Fig. 1  Example of calibration with isotonic regression and beta calibration, using the medical dataset intro-
duced in Sect. 5. The values on the x-axis correspond to the total scores. As class labels are either 0 or 1, 
the data points C are plotted with jittering for better visualization
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to which statistical estimation methods can be applied. While this is in line with other 
local prediction methods, such as probability estimation trees (PETs) (Provost & Domin-
gos, 2003), the distinguishing feature here is the way in which the instance space X  is 
partitioned. For example, compared to PETs, PSLs appear to have a more rigid structure, 
because the succession of tests (features) is fixed and can not vary depending on the value 
of the features (like in trees). Moreover, the size of the partition, |Σk| , will normally be 
smaller than the up to 2k different leaf nodes in a tree (leaves with same scores are merged). 
Overall, we consider a single sequence of k feature evaluations more interpretable than 
navigating through up to 2k different paths through a PET.

4.3  Feature binarization

The features F  in a PSL are assumed to be binary. However, in many practical applica-
tions, instances are also characterized by continuous attributes. To make scoring systems 
amenable to these kinds of data, continuous attributes need to be turned into binary fea-
tures through binarization. This is done by selecting a threshold tj for each feature fj ∈ F  
and assigning a value of 0 for values below the threshold and 1 otherwise. Such a discre-
tization from numerical values into binary features is unavoidably accompanied by a loss 
of information. To lose as little information as possible about the connection between the 
feature value and the class label, we employ the entropy minimization heuristic (Fayyad & 
Irani, 1993). We can make use of this heuristic either for preparing the data in a preproc-
essing step (preprocessing) or as a subroutine that is used during the greedy construction 
of the PSL (in-search).

When feature binarization is carried out as a preprocessing step, all features are treated 
independently. For each (numerical) feature fj , we consider all possible bisections of the 
dataset when thresholding with tj , where tj is any mid-point between two consecutive val-
ues assumed by that feature in the training data:

All possible bisections are enumerated, and we finally select the threshold that leads to the 
minimal expected entropy by considering the cardinality and relative frequency of the posi-
tive class in each bisection:

with E defined according to (7).
Instead of finding the optimal threshold t∗

j
 by ordering all xi,j and exhaustively testing 

every candidate threshold between two consecutive values in a brute-force manner, one 
can also make use of a heuristic that is computationally less costly. By assuming quasi-
convexity of the expected entropy with respect to the threshold point, hierarchical binary 
search can be used instead. In practice, this assumption does not necessarily hold, but is 
computationally less expensive, as only a logarithmic number of candidate thresholds need 

DT∶=
{
(xi, yi) ∈ D ∣ T(x) = T

}
,
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Y>

tj
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to be considered. In the empirical evaluation in Sect. 5, both the heuristic and brute-force 
threshold selection are evaluated.

As an alternative to preprocessing, feature binarization can also be carried out in-search, 
i.e., during the proposed greedy learning algorithm. Here, the features are not treated inde-
pendently, but rather sequentially. Recall that when constructing a PSL, the greedy learn-
ing algorithm chooses a feature and an associated score in each stage k. Alongside these 
choices, it now also chooses the binarization threshold for continuous features. Thus, at 
construction in stage k, the features selected at stages 1,… , k − 1 have already been bina-
rized. Again, binarization is done by enumerating all candidate thresholds tk and selecting 
the one that minimizes expected entropy of the resulting partitioning:

with q̂tk (k, T) the probability estimate for total score T at stage k when the kth feature is 
binarized by threshold tk.

4.4  Beyond probabilities: capturing epistemic uncertainty

Going beyond standard probabilistic prediction, various methods have recently been pro-
posed in machine learning that seek to distinguish between so-called aleatoric and epis-
temic uncertainty (Senge et al., 2014; Hüllermeier & Waegeman, 2021). Broadly speaking, 
aleatoric uncertainty refers to inherent randomness and stochasticity of the underlying data-
generating process. This type of uncertainty is relevant in our case, because the dependence 
between total score T and decision/class assignment y is presumably non-deterministic. 
Aleatoric uncertainty is properly captured in terms of probabilities, i.e., by the approach 
introduced above.

Epistemic uncertainty, on the other side, refers to uncertainty caused by a lack of knowl-
edge, e.g., the learner’s uncertainty about the true distribution p = p(⋅| T) . In a machine 
learning context, this uncertainty could be caused by insufficient or low-quality training 
data. Obviously, it is relevant in our case, too: Proceeding further in the decision list, the 
training data will become more and more fragmented, because the number of possible val-
ues for the total score increases. Consequently, the estimation q̂T of a conditional probabil-
ity p(y = 1 ∣ T) will be based on fewer and fewer data points, so that the epistemic uncer-
tainty increases (even if the joint estimation of these probabilities for all scores T alleviates 
this effect to some extent).

Representing this uncertainty is arguably important from a decision-making point of 
view. For example, proceeding in the list and adding another variable may imply that the 
(predicted) distribution becomes better in the sense of having lower entropy, but at the 
same time, the prediction itself may become more uncertain. In that case, it is not clear 
whether the current stage should be preferred or maybe the next one — the answer to this 
question will depend on the attitude of the decision maker (toward risk), and probably also 
on the application.

A natural approach to capturing epistemic uncertainty is to replace point estimates q̂T 
of pT = p(y = 1 ∣ T) by interval estimates — epistemic uncertainty is then reflected by the 
interval widths. Formally, we can view the true probability pT as the (unknown) parameter 
of a Bernoulli distribution (binomial proportion). There is vast statistical literature on esti-
mating confidence intervals for binomial proportions, and various constructions of such 

t∗
k
= argmin

tk
E
(
{(NT , q̂tk (k, T)) ∣ T ∈ Σk}

)
,
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intervals have been proposed. For example, the Clopper–Pearson interval (Clopper & Pear-
son, 1934) with confidence level 1 − � can be expressed as lT ≤ pT ≤ uT with

where NT is the number of negative examples, PT the number of positive examples, and 
F[c;d, d�] is the c-quantile from an F-distribution with d and d′ degrees of freedom.

On the basis of individual confidence intervals of that kind, a complete confidence band {
[l∗
T
, u∗

T
] |T ∈ ΣT

}
 , i.e., a sequence of intervals for all total score values, can be constructed 

as follows:

• First, one has to guarantee a simultaneous confidence of 1 − � . The simplest way to 
do so is to apply Bonferroni correction, i.e., to compute individual intervals [lT , uT ] for 
confidence level 1 − �∕|Σk|.

• Second, monotonicity constraints can be incorporated by correcting the intervals as fol-
lows: 

Note that, although the correction (10–11) may lead to inconsistencies (empty intervals), 
it still guarantees the 1 − � confidence (under the assumption of monotonicity): With prob-
ability (at least) 1 − � , we have pT ∈ [lT , uT ] simultaneously for all T ∈ Σk , which in turn 
implies pT ≥ pV ≥ lV for all V ≤ T  and pT ≤ pV ≤ uV for all V ≥ T .

In order to assure that the confidence band covers the calibrated (point) estimates q̂(k,T) , 
one may consider another correction step (which obviously maintains monotonicity):

4.5  Ranking

In addition to the standard probabilistic binary classification task, we also consider PSL 
for the task of ranking. Instead of a model that assigns each instance to the positive or the 
negative class, we now seek a model that is able to prioritize instances from most likely 
positive to most likely negative—in the literature, this problem is known as the bipartite 
ranking problem (Kotlowski et al., 2011). Again, models of that kind are highly relevant 
and have many practical applications.

When having access to standard training data, i.e., a set of instances labelled positive or 
negative, this can essentially be accomplished using the PSL as is. More specifically, a PSL 
can be trained in exactly the same way as in the case of binary classification. Then, given 
a set X ⊂ X  of instances to be ranked, the PSL can be used to predict a probability q̂(x) for 

lT =

(
1 +

NT + 1

PT F[�∕2;2PT , 2(NT + 1)]

)−1

,

uT =

(
1 +

NT

(PT + 1)F[1 − �∕2;2(PT + 1), 2NT ]

)−1

,

(10)l∗
T
← max{lV ∣ V ∈ Σk, V ≤ T}

(11)u∗
T
← min{uV ∣ V ∈ Σk, V ≥ T}

(12)l⋆
T
← min{ l∗

T
, q̂(k, T) }

(13)u⋆
T
← max{ u∗

T
, q̂(k,T) }
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each x ∈ X , and the ranking �̂� of X is obtained by sorting all x ∈ X in decreasing order of 
their (predicted) probabilities. Indeed, it can be shown that most common loss functions for 
bipartite ranking, comparing a predicted ranking �̂� with a binary ground-truth, are mini-
mized (in expectation) by sorting instances in decreasing order of their probability of being 
positive (Kotlowski et al., 2011). An important example of such a loss is the well-known 
AUC measure3 (Fawcett, 2006).

However, in the realm of ranking, training data is often given in the form of relative 
comparisons x ≻ x

′ between instances x, x′ ∈ X  , suggesting that x is preferred to (should 
be ranked higher than) x′ . Then, in contrast to the first scenario, the PSL algorithm can-
not be applied in a straightforward way. In particular, the expected entropy (7) cannot be 
computed as an impurity measure and selection criterion in the greedy learning algorithm. 
Instead, one has to refer to a ranking loss.

Given a set of pairwise comparisons D∶={xi ≻ x
�
i
}N
i=1

 , the pairwise soft rank loss is 
defined as follows:

with

This loss, which is related to the Kendall correlation coefficient, imposes a penalty of 0 
for pairs that are correctly ordered, 0.5 for ties, and 1 for incorrect orderings. It can be 
computed in each stage k of the PSL algorithm—the probabilities q̂(x) are then given by 
q̂
(
k, T(x)

)
 . The PSL algorithm itself is then modified in the sense that, in every stage k, 

it finds the feature/score combination that yields the smallest SRL instead of the smallest 
expected entropy.

PSL has an interesting and intuitive interpretation in the context of ranking: Starting 
with the entire set X as a single tie group, it successively refines a ranking by splitting such 
groups into smaller subgroups and sorting these subgroups. In the first stage, all instances 
are assigned the same probability, i.e., there are only ties, and we start with an AUC of 
0.5. As we progress throughout the stages, the set of total scores becomes larger, and more 
and more ties are being resolved. The process can then be stopped as soon as a sufficient 
resolution has been reached. This is particularly useful in scenarios in which one is not 
interested in retrieving the complete ordering of alternatives, but rather in eliciting the top 
(or bottom) m alternatives.

(14)SRL(D)∶=
1

N

N∑
i=1

�(xi, x
�
i
)

�(x, x′) =

⎧⎪⎨⎪⎩

0 if q̂(x) > q̂(x�)

0.5 if q̂(x) = q̂(x�)

1 if q̂(x) < q̂(x�)

.

3 Actually, AUC in an accuracy measure, so the loss would be obtained by 1−AUC.
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5  Empirical evaluation

In this section, we present an experimental evaluation of our proposed method. Unless 
stated differently, the figures show the models’ mean performance and a 95% confidence 
interval of the mean, aggregated over 100 Monte Carlo cross-validation (MCCV) splits 
with 2/3 used for training and 1/3 used in testing. Additionally, the score set {±1,±2,±3} 
was chosen. As PSL (per default) assumes features to be binary, numerical features are 
binarized in a preprocessing step as discussed in Sect. 4.3.

The detailed experimental setup and implementation is publicly available4 as is the 
implementation of the learning algorithm.5

In the next sections, we will attempt to answer the following research questions: 

RQ1:  Is greedy search sufficient to find a good model?
RQ2:  Are the probability estimates of PSL well calibrated?
RQ3:  How can the epistemic uncertainty in PSL stages be quantified?
RQ4:  How does PSL perform when considering real-world attribute deployment costs?
RQ5:  How does binarization as preprocessing compare with in-search binarization? Do 

the heuristic simplifications in the binarization hamper PSL performance?
RQ6:  Is PSL applicable for ranking tasks? How well does it perform when being trained 

on class labels versus preference data?

First, however, we briefly summarize the datasets and baseline methods used in this 
study.

5.1  Datasets

5.1.1  Coronary heart disease data

The dataset for this case study has originally been used to evaluate the diagnostic accuracy 
of symptoms and signs for coronary heart disease (CHD) in patients presenting with chest 
pain in primary care. Chest pain is a common complaint in primary care, with CHD being 
the most concerning of many potential causes. Based on the medical history and physical 
examination, general practitioners (GPs) have to classify patients into two classes: patients 
in whom an underlying CHD can be safely ruled out (the negative class) and patients in 
whom chest pain is probably caused by CHD (the positive class).

Briefly, 74 general practitioners (GP) recruited consecutively patients aged ≥ 35 who 
presented with chest pain as primary or secondary complaint. GPs took a standardized 
history and performed a physical examination. Patients and GPs were contacted 6 weeks 
and 6 months after the consultation. All relevant information about course of chest pain, 
diagnostic procedures and treatments had been gathered during 6 months. An independ-
ent expert panel of one cardiologist, one GP and one research staff member reviewed each 
patient’s data and established the reference diagnosis by deciding whether CHD was the 
underlying reason of chest pain. For details about the design and conduct of the study, we 
refer to Bösner et al. (2010).

4 https:// github. com/ TRR318/ pub- ml- psl/ relea ses/ tag/ v1.1.0.
5 https:// github. com/ TRR318/ scikit- psl/ relea ses/ tag/ v0.7.2.

https://github.com/TRR318/pub-ml-psl/releases/tag/v1.1.0
https://github.com/TRR318/scikit-psl/releases/tag/v0.7.2
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Overall, the dataset comprises 1199 (135 CHD and 1064 non-CHD) patients 
described by ten binary attributes: ( f1 ) patient assumes pain is of cardiac origin, ( f2 ) 
muscle tension, ( f3 ) age gender compound, ( f4 ) pain is sharp, ( f5 ) pain depends on 
exercise, ( f6 ) known clinical vascular disease, ( f7 ) diabetes, ( f8 ) heart failure, ( f9 ) pain 
is not reproducible by palpation, ( f10 ) patient has cough. Note that, by way of domain 
knowledge, all these features can be encoded in such a way that the presence of a fea-
ture does always increase the likelihood of the positive class. Therefore, scoring sys-
tems can be restricted to positive scores. For the following experiments, the missing 
feature values have been imputed using the mode, representing the most frequent value 
of each feature.

5.1.2  Further datasets

In addition to the CHD dataset, we also consider two datasets from the UCI repository 
(Patrício et al., 2018; Ramana & Venkateswarlu, 2012). The first is concerned with the 
prediction of breast cancer for patients in Coimbra, Portugal. It comprises 9 features 
including resistin, glucose, age, and BMI. The dataset is of small size, with only 116 
instances, of which 64 are positive. The second UCI dataset is concerned with Indian 
liver patients (I-Liver). It contains 583 instances, of which 416 are positive, i.e., the 
majority of patients are positive. The dataset contains 10 features including age, sex, 
total proteins. In contrast to the CHD data, the UCI datasets contain numeric features, 
which have to be binarized, e.g., by using the methods described in Sect. 4.3.

Furthermore, we employ two larger datasets. The first one is the California Hous-
ing dataset, which is available in the StatLib repository (Pace & Barry, 1990). This 
dataset with 20,460 entries and 8 features is originally a regression dataset regard-
ing house prices, which we transformed into a classification dataset, where the target 
column indicates whether the house price is above (1) or below (0) the median. The 
fourth dataset in our study is the Fairlearn ACSIncome dataset (Ding et al., 2021). The 
original dataset consists of 10 features and overall 1,664,500 entries, of which we sub-
sampled 50,000 for computational reasons. Additionally, the categorical features have 
been transformed to binary features. The detailed datapreparation process can be found 
in the experiment repository.

Finally, we consider two datasets which include feature acquisition costs: BUPA 
liver disorder and the Thyroid dataset (Forsyth, 2016; Quinlan, 1986). BUPA contains 
345 observations and consists of 5 features that result from blood tests sensitive to liver 
disorders caused by excessive alcohol consumption. The cost of these features range 
from $5.17 to $9.86. The target variable indicates the number of half-pint equivalents 
of alcoholic beverages consumed per day, where class 0 is defined as “ <3 ” and class 
1 “ ≥ 3 ”. The Thyroid dataset originally consists of 7200 data points of three classes 
indicating whether a patient is hypothyroid, hyperthyroid or has balanced thyroid lev-
els. As PSL is a binary classifier, we removed the hypothyroid patients (smallest class) 
from the dataset, resulting in a binary classification dataset of 7034 observations with 
20 features. The features range from simple information like the patient’s age (impos-
ing cost of $1) and blood tests for thyroid hormones TSH, T3, TT4, T4U with cost 
ranging from $9.31 up to $22.75. In both datasets, the cost of a feature that results 
from a blood test is discounted if a blood test has already been conducted for another 
feature. For a detailed description of the data, we refer to Turney (1995).
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5.2  Baseline methods

Our method is compared with logistic regression (LR) as a baseline. We consider LR a 
sensible comparison for two reasons: First, LR is a linear model and thus comes with a 
high degree of interpretability: The influence of the features on the predictions is clearly 
determined by their associated coefficients in the regression model. Additionally, LR is 
known to yield well-calibrated probability estimates, which is essential for a comparison to 
PSL in order to assess the trustworthiness of its probability estimates.

For specific research questions, we use additional baselines as needed. In order to assess 
the early stopping capabilities at prediction time, we compare PSL with a decision tree 
(DT). Unlike LR, DTs do typically not yield well-calibrated probability estimates, but 
they can be queried sequentially, allowing prediction with feature subsets similar to PSL. 
This allows for a comparison relating attribute deployment cost to predictive performance. 
For evaluating probabilistic predictions, or, more specifically, a possible loss in predictive 
accuracy as a price to pay for interpretability, we additionally include a random forest (RF) 
and an XGBoost classifier. Although both of them are ensemble methods and exhibit a 
complex structure hindering inherent interpretability, they are considered state-of-the-art 
methods for probabilistic tabular classification and are thus an interesting comparison.

5.3  RQ1: Expected entropy minimization

The introduced algorithm iteratively selects the feature/score pair that minimizes the 
expected entropy (7) for each stage. As can be seen in Fig. 2, entropy continues to decrease, 
but the improvements diminish stage by stage and almost vanish after the addition of the 
fifth feature. Interestingly, this result is very much in agreement with previous studies on 
this data, and the top-5 features in Fig.  2 exactly correspond to those features that have 
eventually been included in the “Marburg Heart Score”, a decision rule that is now in prac-
tical use.6

As our algorithm minimizes expected entropy on the training data greedily, one may 
wonder to what extent expected entropy is also minimized globally, i.e., across all stages. 

Fig. 2  Evaluation of the greedy learning algorithm (blue line) on the coronary heart disease dataset. The 
light blue lines show the complete search space induced by all feature permutations and possible score 
assignments. The features, selected by the greedy algorithm in every stage, are also labelled on the x-axis. 
The visualization was created for a score set S = {1, 2, 3} (Color figure online)

6 https:// www. mdcalc. com/ calc/ 4022/ marbu rg- heart- score- mhs.

https://www.mdcalc.com/calc/4022/marburg-heart-score-mhs
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To get an idea, we compared the expected entropy curve produced by the greedy algorithm 
with the curves produced by all other PSLs. With the score set S = {1, 2, 3} —a complete 
enumeration of the resulting set of PSLs is still feasible. As can be seen from Fig. 2, the 
greedy approach (shown in solid blue) performs well, at least on the CHD dataset. Fig-
ure 3 illustrates the result of the greedy parameter search on the BCC dataset. As we can 
see here, the curve of the selected model is clearly not the lower envelope, i.e. it does not 
achieve stagewise optimal performance. This may be due to the greedy search approach, 
which acts myopically in the sense that it irrevocably selects the locally best option and 
therefore could be missing out on global optima. However, note that stagewise optimal per-
formance may also be impossible to achieve with a single scoring list, as the stagewise best 
performing models may stem from separate lists having different prefixes of feature/score 
pairs.

5.4  RQ2: Investigating probability estimates

Next, we investigate the trustworthiness of the probability (point) estimates of our pro-
posed method. As already outlined in Sect. 4.4, the training data becomes more and more 
fragmented when progressing in the PSL, as the set of possible total scores grows. Conse-
quently, the probability estimates for the individual instances are based on fewer and fewer 
training data. While the final probabilistic predictions are based on a joint estimation in 

Fig. 3  Evaluation of the greedy algorithm on the breast cancer Coimbra dataset with a score set of 
S = {−2,−1,+1,+2} (refer to Fig. 2 for details)

Fig. 4  Stagewise Brier score for PSLs on the test datasets
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terms of probability calibration, it is not clear how the quality of the estimations develops 
throughout the PSL stages.

We evaluate this quality by computing the stagewise Brier score (Brier, 1950). Let 
Tk(xi) denote the total score of some instance xi at stage k. Having access to a set of test 
data Dtest∶={(xi, yi)}

N
i=1

 , the Brier score at stage k is given by

Fig.  4 shows the stagewise Brier score for all considered datasets when using isotonic 
regression or beta calibration for PSL. As a baseline, we also train a LR model, using the 
same features as PSL in each stage. Note that, compared to PSL, LR is more flexible in the 
sense that scores are real-valued and not restricted to (small) integers. Additionally, the 
learning algorithm of LR employs L2-regularization in order to prevent the model from 
overfitting. For all approaches, the features were binarized in advance (preprocessing) 
using the bisect heuristic (cf. Sect. 4.3).

As we can see, isotonic regression and beta calibration perform quite similarly for each 
of the considered datasets. On the CHD dataset, both are also on par with the stagewise 
logistic regression, which is known to produce well-calibrated models. However, on the 
BCC as well as the I-Liver dataset, the PSL variants achieve worse Brier scores than the 
logistic regression baseline. Their Brier scores even increase for higher stages, which is 
likely to be an overfitting effect: The dotted line indicates the performance of an unregu-
larized LR, whose performance is very similar to the two considered PSL variants. Recall 
that the BCC dataset only contains 116 instances. The regularized LR manages to avoid 

BS(k)∶=
1

N

N∑
i=1

(
q̂(k,Tk(xi)) − yi

)2
.

Fig. 5  Stagewise Brier score for PSLs on the BCC as well as large datasets
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overfitting the training data and achieves better generalization performance in terms of 
stagewise Brier score. Although PSL is a quite restricted model with only a few integer 
weights, it tends to overfit if there is not enough training data available, e.g., in the case of 
the BCC dataset. Thus, when relying on point estimates and having only access to small 
amounts of training data, PSL needs to be regularized to circumvent this problem. We 
employed a regularized Beta calibration in order to avoid this overfitting effect. Although 
it outperforms the other PSL variants on the BCC dataset, it still falls significantly short of 
the LR baseline in terms of performance. Another alternative is to go from point to interval 
estimates, e.g., by using the Clopper–Pearson confidence intervals introduced in Sect. 4.4, 
whose application will be examined in Sect. 5.5.

To estimate the cost of interpretability in terms of predictive performance, we also com-
pared PSL to state-of-the-art probabilistic classifiers XGBoost and RF. Figure 5 shows the 
stagewise Brier score of these predictors for the large dataset ACSIncome and California 
Housing in comparison to BCC. Here, we consider both binarized datasets and the original 
datasets including numerical features and use the PSL variant employing isotonic regres-
sion for porbability estimation. Although PSL is designed for binary features, we want to 
estimate how much performance is lost due to binarization. This is particularly relevant for 
the RF and XGBoost baselines, which can split several times on numerical features, effec-
tively partitioning the feature space into smaller, more homogeneous regions. For binary 
features this is not possible. A full comparison of train and test performance of all consid-
ered methods on all datasets is depicted in Appendix A and a comparison of binarization 
techniques will be presented in Sect. 5.7.

For the binarized version, the two baseline models and and PSL deteriorate after 5 
features, while LR remain improving their performance on the small BCC dataset. This 
is likely due to an overfitting effect of the flexible baseline models as well as overfitting 
of PSLs isotonic regression as discussed above. For the two large datasets, the baseline 
models dominate the performance of PSL, although not always by a large margin. PSLs 
performance deteriorates after stage 5 on the California Housing dataset. As more fea-
tures increase the capacity of the learner, this may look like a standard overfitting effect. 
However, there is also an alternative, in a sense even opposite explanation. Note that we 
do not observe this deterioration for LR, which can modulate the influence of any addi-
tional feature in a very flexible way, by appropriately tuning the weight coefficient—up 
to completely ignoring a presumably unuseful feature by setting its weight to 0. PSL does 
not have this ability. Instead, it can only weight all features in (more or less) the same way. 
Therefore, in cases where adding another feature might be useful, but with a weight much 
smaller than the others, it might be better to omit it completely instead of giving it the same 
influence as the more important features. Seen from this perspective, the class of scoring 
systems is simply not flexible enough, and the deterioration might be due to a problem of 
underfitting rather than overfitting.

We observe a less homogeneous behavior for the original datasets including numerical 
features. On the BCC dataset, the flexible baseline methods RF and XGBoost are disadvan-
tageous for lower stages. This is most likely due to an overfitting effect, as the feature space 
is very low dimensional at these stages. This causes the flexible models to make overly 
specific splits, that do not capture the underlying data distribution. In the higher stages, this 
disadvantage vanishes and PSLs performance deteriorates similar to the binarized case. 
For the ACSIncome dataset, XGBoost is the favorable method, dominating the other meth-
ods stagewise. Interestingly, RF is suffering from an overfitting effect here, although the 
dataset is much larger than BCC with 50,000 samples. XGBoost again dominates the other 
method on the California Housing dataset, whereas RF achieves similar performance. 
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Here, we observe the most pronounced performance gap to PSL and LR, as opposed to the 
binary case. One key consideration here, is that California Housing is known for exhibiting 
higher order feature interactions, e.g. between longitude and latitude of the house locations. 
Recall that linear models like PSL and LR are not able to capture these interactions, while 
XGBoost and RF can. While this might explain a significant part of the performance gap 
between XGBoost/RF and LR/PSL, these interactions seem to be of limited importance 
on already binarized data for this particular dataset. Nevertheless, LR utilizes numerical 
features more extensively than PSL, resulting in lower Brier scores throughout the stages.

5.5  RQ3: Uncertainty quantification and decision‑making

In the previous section, we have discussed that the probability estimates in higher stages 
of the model are based on less and less data points as they get more fragmented. In this 
section, we investigate the applicability of the Clopper–Pearson confidence interval intro-
duced in Sect. 4.4 in medical decision-making.

Figure 6 illustrates the point estimates as well as the confidence intervals exemplarily 
for several stages of a PSL trained on the CHD data. As expected, we observe an increased 
size of the confidence intervals in higher stages. This is not only caused by the increasingly 
fewer data points the relative frequency estimate is based on, but also by the Bonferroni 
correction, that grows in the size of the set of total scores |Σk| . For example, in stage 4, 
there is not a single data point that exhibits a total score of 7, hence the confidence bounds 
are fully determined by the neighboring total scores.

Since the CHD dataset is quite imbalanced, there are fewer data points for positive sam-
ples, hence the confidence intervals for predicting high true-class probabilities are wider, 
as there are fewer data points for the respective total scores. For stage 6 and beyond (see 
Fig. 6) the lower confidence bound never exceeds 0.5, meaning that the positive class can 
never be predicted with high confidence. Note, that the Clopper–Pearson confidence inter-
val is a conservative guarantee of the probability estimate, i.e., when computing an 95% 
interval, the probability of the true parameter pT laying outside the interval is at most 5%.

Fig. 6  Probability estimates of all possible total scores for the first 4 stages and stage 7 of the PSL, trained 
on the full CHD dataset. The error bars show the 95% confidence interval described in Sect. 4.4
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Following this illustration of the Clopper–Pearson confidence intervals, we will show-
case their usefulness in the context of risk-averse decision-making in medicine. In medical 
diagnosis, the consequences of a false negative prediction, i.e., not treating an ill patient, 
are typically far more severe than of a false positive. This asymmetry can be captured by 
a loss function that assigns a loss of 1 to a false positive and a loss of M ≫ 1 to a false 
negative:

In the medical domain, this also goes under the notion of “diagnostic regret”, and various 
empirical methods for eliciting preferences in decision-making (i.e., the cost factor M) have 
been proposed in the literature (Tsalatsanis et al., 2010; Moreira et al., 2009).

To minimize the risk of the decision, the negative class should only be predicted if its 
probability ( 1 − p̂ ) is M times as high as the probability for the positive p̂ class:

The (estimated) expected loss for this risk-minimizing decision is therefore 
E(ŷ) = min{1 − p̂,M ⋅ p̂} . This decision boundary for M = 10 is visualized in Fig. 6. This 
decision strategy nicely emphasizes the importance of (accurate) probabilistic predictions 
and, more generally, uncertainty-awareness, in safety-critical domains.

To incorporate risk-awareness into the decision-making process, we propose to select 
not with respect to the point estimate of the probability, but the upper confidence bound. 
Again, referring to Fig.  6, we can observe that deciding with respect to the probability 
point estimate, data points with score 0 at stage 0 are classified negatively as they lay 
below the decision boundary. When using the upper confidence bound instead, all data 
points are classified negatively, as the upper confidence bound is slightly above the deci-
sion threshold.

Again, we compare the PSL variants to an LR model that is trained on the same features 
as the PSL on each stage. Accounting for uncertainty, we do not use the point estimate for 
the predicting the positive class but rather the upper bound of the corresponding 50% Clop-
per–Pearson confidence interval of the PSL estimate.

Predicted Positive Predicted Negative

Actual Positive 0 (TP) M (FN)

Actual Negative 1 (FP) 0 (TN)

(15)ŷ =

{
1 if 1 − p̂ < M ⋅ p̂

0 otherwise

Fig. 7  Expected loss, calculated using the upper confidence bound of the 50% confidence interval
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Figure 7 shows the loss for M = 10 . The PSL has been configured with three different 
score sets. For the CHD dataset, we can see that all three PSL variants perform quite simi-
larly, with small improvements for larger score sets. Moreover, they are all on a par with 
LR, sometimes even a bit better, which is quite remarkable. For all variants, we observe a 
monotonic decrease in loss until the fifth feature is added. Again, in the large majority of 
cases, the five top-features correspond to the features also included in the Marburg heart 
score. Adding further features leads to a slight deterioration for PSL.

The performance decrease after stage 5 can be explained similarly to the observations 
in Fig. 5.

For the BCC and the I-Liver dataset, the plots look drastically different. Recall, that at stage 
0, the probability estimate is simply the relative frequency of the positive class in the training 
data. Thus, all instances are classified identically. Employing the risk-averse decision rule, we 
classify all patients as positive. Advancing from this is only possible if we make true negative 
predictions. For each false negative prediction, we need to make at least M = 10 true negative 
predictions, otherwise the expected loss will increase. Depending on the classification task at 
hand, this may be a very difficult problem. We observe that the PSL with 50% confidence inter-
vals refrains from changing the initial classification, which results in a constant value of expected 
loss throughout the stages. LR on the other hand acts less risk-averse and introduces negative 
predictions for the BCC dataset. However, it does not introduce enough true negative predictions 
in order to compensate for the false negatives, resulting in a deterioration of the expected loss. 
For the I-Liver dataset, both methods refrain from changing the initial classification when more 
features become available.

5.6  RQ4: Attribute deployment cost

Designed as a decision list and providing probability estimates after each evaluated feature, 
PSL supports an early stopping strategy: predictions can possibly be made early without 
acquiring the full set of features. This allows for situation-adapted and possibly less costly 
predictions sensitive to the decision context at hand. Strictly speaking, PSL is not cost-sen-
sitive, because the selection of features is solely based on the criterion of informativeness 
and does not consider any notion of cost. Or, stated differently, it implicitly assumes that all 
features have the same cost.

Nevertheless, we conducted a first study to assess the performance of PSL with regard to 
the trade-off between accuracy and cost. To this end, we used data from Turney (1995), which 
comes with feature acquisition costs, namely the BUPA liver disorder dataset and the Thyroid 
dataset. For an overview of the features and the associated costs, we refer to the appendix of 
Turney (1995). As a baseline to compare with, we used a decision tree classifier7 (DT), because 
it can be applied with a varying number of features in a way similar to PSL: One simply makes 
a prediction based on the class distribution in the node reached after splitting on k features, even 
if that node is not yet a leaf node (in case a leaf node is reached earlier, a decision is made at that 
node).

For this experiment, we use the train-test-split that is associated with the individual 
datasets. Each instance was evaluated with an increasing amount of at most k features 
for both models. PSL was only stopped early if the probability collapses to extreme 0 
or 1 estimates or if k features were used. This way, we can compare model sequences of 
increasing cost and complexity.

7 The DT was trained with entropy as a splitting criterion.
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Figure 8 shows the Brier score for PSL and DT at different cost levels induced by the maxi-
mum number of features k. Note that these cost levels do not necessarily coincide for DT and 
PSL, as DT’s leafs may be reached earlier than PSL’s final prediction. The overall cost is the sum 
of attribute costs spent for making predictions for all instances in the test dataset. For the BUPA 
dataset, we observe that the Brier score decreases for each added feature. However, DT yields 
worse probability calibration at higher cost levels. A possible explanation is that DT bases its 
probabilistic predictions solely on the data points in the current node, whereas PSL employs iso-
tonic regression for probability estimation and thus also incorporates information from the neigh-
boring buckets due to the monotonicity constraint. Overall, in this example, PSL yields highly 
competitive results despite being less flexible than DTs.

For the much larger Thyroid dataset, we observe that PSL and DT perform very simi-
lar and also at very similar cost points at the early stages. While both methods deterio-
rate in performance at higher cost levels, the deterioration is more pronounced for PSL. 
This may be explained by effects similar to those observed in Sects. 5.4 and 5.5, as PSL 
cannot freely adjust the influence of additional features due to the discrete score set.

5.7  RQ5: Binarization

As described in Sect. 4.3, dealing with numerical features is of great practical importance. We 
compare the in-search binarization of numerical features with the case in which the features 
are binarized independently in a preprocessing step. Additionally, we evaluate our heuristic 
optimization method, with which only a logarithmic number of candidate binarization thresh-
olds need to be checked.

Fig. 8  Brier score achieved by PSL and DT with increasing amount of features used. The dashed line indi-
cates the Pareto frontier of costs and Brier score with respect to both methods. Note that for the Thyroid 
dataset the first point at cost 0 was cut off, as this point is the same for PSL and DT and removing it yields a 
more insightful plot for the remaining points

Fig. 9  Comparison of pre-binarization and in-search binarization, with heuristic and brute-force threshold 
optimization
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Figure 9 shows the comparison on the BCC and the I-Liver in terms of the stagewise expected 
entropy. In both datasets, the in-search binarization is advantageous. The advantage becomes 
more pronounced throughout the stages of the PSL. Intuitively, this can be explained by the fact 
that in preprocessing, the features are binarized individually. In contrast to that, the in-search pro-
cedure binarizes the features sequentially during the greedy construction of the PSL. Thus, when 
adding a feature/score pair to the PSL, it can take into account dependencies between already 
selected features and the newly chosen feature by setting the binarization threshold accordingly. 
As discussed previously, in  situations where adding another feature with the same weight as 
previous (more important) features is undesirable, abstaining from using a feature is a sensible 
option and avoids performance deterioration. In-search binarization can enable this, by setting 
the threshold higher than the maximum value of the feature, effectively ignoring it even if a non-
zero score is assigned.

For both methods, we observe that the bisecting search heuristic leads to a negligible dete-
rioration of performance in terms of expected entropy. Consequently, we consider in-search 
binarization with the bisect search a sensible default configuration and use it for the remaining 
experiments of this paper.

5.8  RQ6: Ranking

In the following, we will evaluate the ranking performance of our proposed method. To this 
end, we consider the AUC (Area under the ROC Curve) (Fawcett, 2006). For a binary scoring 
classifier, the AUC can be interpreted as the probability of ranking a randomly chosen positive 
example before a randomly chosen negative example.

When fitting the classifier, we consider two settings: In the first one, we assume to have a 
training dataset as described in the previous experiments of this paper. Here, we use the standard 
greedy learning algorithm optimizing the expected entropy (7) (blue line). In the second sce-
nario, we exclusively require access to pairwise comparisons x ≻ x′ with x, x� ∈ X and instanti-
ate the PSL with the pairwise soft rank loss (14) (orange line).

Figure  10 shows the stagewise AUC. For the CHD dataset, we observe a monotonic 
increase for both settings. For the other two datasets, the values increase in the beginning until 
a plateau is reached at stage 4. The two settings lead to very similar results for the BCC and 
I-Liver datasets. For the breast cancer dataset, optimizing expected entropy leads to better 
AUC values than the soft rank loss. However, as already mentioned, the BCC dataset is very 
small. We conclude that the PSL is generally applicable for the task of ranking.

6  Summary and conclusion

In this paper, we introduced probabilistic scoring lists, a probabilistic extension of scoring sys-
tems. While retaining the genuine interpretability of standard scoring systems, PSL provides 
additional information about uncertainty by turning scores into well-calibrated probability esti-
mates. Moreover, these estimates can be gradually refined by adding more features. This may 
be important if features are expensive or time-consuming to obtain, so that rough estimates can 
be obtained quickly and decisions can be made early without the need to obtain scores for all 
features.

Our experiments on binary and binarized datasets showed that our greedy learning 
algorithm manages to construct well-performing models. We compared PSL with sensible 
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baseline methods, demonstrating its suitability for situated decision support and combining 
the following strengths:

• Interpretability and transparency,
• well-calibrated probability estimates,
• uncertainty-aware interval estimates.
• early stopping at prediction time,

We additionally evaluated a method for feature binarization within the learning procedure 
of PSL and showcased its applicability for ranking tasks.

Building on the approach presented in this paper, we plan to address the following 
extensions in future work:

• Although the greedy learning algorithm proposed in this paper seems to perform quite 
well, more sophisticated algorithms for learning PSLs should be developed, including 
algorithms tailored to specific loss functions.

• So far, our proposed learning algorithm does not consider feature costs. In practice, 
the cost of feature acquisition may vary drastically for different features. For example, 
measuring the temperature of a patient can be done much more easily than a sophis-
ticated blood test. An interesting direction for future work is to consider feature costs 
explicitly and develop a learning algorithm for cost-effective PSLs (Clertant et  al., 
2019).

• In practice, some features may be not available at inference time, e.g., because there is 
no access to laboratory equipment in the field. Here, it would be interesting to consider 
default scores for missing features and develop a more sensitive version of PSL that 
produces models that are robust to missing features.

• So far, we have only examined PSL from an algorithmic point of view. Conducting a 
user study and investigating how suitable it is for the task of supporting human decision 
makers is of major interest. This also involves the development of usability features 
such as advanced visualizations of PSL stages.

• In the current implementation, the score set is a hyperparameter that has to be set in 
advance. We would like to investigate ways to automatically select score sets that lead 
to performant yet meaningful and interpretable scoring lists.

Fig. 10  Stagewise AUC (area under the ROC curve) for all datasets. The blue line illustrates learning 
directly using the original expected entropy loss, while the orange line corresponds to learning from prefer-
ence data derived from the dataset using SRL (Color figure online)
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Appendix

A Train and test performance on all datasets

Figure  11 shows the brier score of several PSLs configured with different score sets as 
well as various baselines on non-binarized data. Figure 12 shows evaluations for the same 

Fig. 11  Brier score for baseline methods and PSL instantiations with different score sets for all datasets 
without binarization
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Fig. 12  Brier score for baseline methods and PSL instantiations with different score sets for all binarized datasets
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learning algorithms, however, on the binarized datasets. Note, that the CHD dataset only 
consists of binary features and is thus omitted from the non-binarized plot. Train and test 
performance are reported, in order to identify overfitting.
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