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ABSTRACT
Background  A growing arsenal of treatment options 
for relapsing multiple sclerosis (RMS) emphasises the 
need for early prognostic biomarkers. While evidence for 
individual markers exists, comprehensive analyses at the 
time of diagnosis are sparse.
Methods  Brain and spinal cord lesion numbers, 
cerebrospinal fluid parameters, initial symptoms, 
and Expanded Disability Status Scale (EDSS) score 
were determined at the time of diagnosis. Confirmed 
disability accumulation (CDA), defined as a sustained 
EDSS increase over 6 months, was determined during 
a 5-year follow-up. All-subsets multivariable logistic 
regression was performed to identify predictors of CDA. 
Model performance was assessed via receiver operating 
characteristic analysis, and individual risks were 
calculated. Analyses were repeated with progression 
independent of relapse activity (PIRA) as an outcome.
Results  113/417 (27.1%) people with RMS 
experienced CDA on follow-up. Intrathecal IgG 
synthesis, a higher number of spinal cord lesions, age 
and polysymptomatic manifestation were identified as 
independent predictors of CDA. The resulting prediction 
model yielded an area under the curve (AUC) of 0.75 
with a 95% CI of 0.70 to 0.80. Individuals exceeding 
the optimal thresholds for the three most significant 
predictors had a 61.8% likelihood of experiencing CDA, 
whereas those below all three thresholds had a CDA 
rate of 4.5%. The only significant baseline predictor 
differentiating PIRA from relapse-associated worsening 
was a higher number of spinal cord lesions (AUC=0.64, 
95% CI 0.54 to 0.74).
Conclusions  Intrathecal IgG synthesis, spinal cord 
lesion number, age and polysymptomatic manifestation 
are independent predictors of early CDA in newly 
diagnosed RMS.

INTRODUCTION
Treatment options for multiple sclerosis (MS), 
a chronic inflammatory disorder of the central 
nervous system, have seen a dramatic expansion 
over the last three decades. The current landscape 
of disease-modifying therapies (DMTs) is character-
ised by a multitude of drugs with different modes of 
action, potencies and side effects. This abundance 
of choice confronts physicians with the conundrum 

of finding the best DMT for the individual patient. 
Since treatment initiation often takes place at 
the time of first diagnosis, reliable prognoses of 
disease courses at this early stage are crucial for an 
informed decision. Initial attempts at predicting the 
accumulation of disability in MS were made even 
before any form of DMT was available.1 Since then, 
a considerable number of prognostic models have 
been suggested, employing a wide range of potential 
predictors, outcome measures and methodologies.2

Focusing on parameters available in clinical 
routine, associations with future disability accumu-
lation have been reported for the number of both 
brain lesions3–5 and spinal cord lesions6–9 as well as 
cerebrospinal fluid (CSF) pleocytosis10 and intra-
thecal Ig synthesis—assessed qualitatively through 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Different clinical, imaging and cerebrospinal 
fluid biomarkers are known to be associated 
with confirmed disability accumulation (CDA) 
in relapsing multiple sclerosis (RMS). However, 
little is known about their comprehensive 
prognostic value at the time of diagnosis.

WHAT THIS STUDY ADDS
	⇒ In a cohort of 417 people with RMS, intrathecal 
IgG synthesis, spinal cord lesion number, age 
and polysymptomatic manifestation were 
identified as independent predictors of CDA 
over a 5-year follow-up.

	⇒ The individual risk of CDA was higher with each 
additional threshold exceeded for the different 
predictors.

	⇒ Spinal cord lesion number was the only 
baseline predictor differentiating progression 
independent of relapse activity from relapse-
associated worsening on follow-up.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ By relying on a number of routine diagnostic 
parameters, our findings may help in estimating 
the likelihood of disability accumulation in 
individuals newly diagnosed with RMS, thereby 
guiding early treatment decisions.
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the detection of oligoclonal bands (OCB)11–14 or quantitatively 
via Ig indices.15–17 Furthermore, an association between disability 
accumulation and the anatomical localisation(s) of the demyelin-
ating event leading to diagnosis has been observed.1 18–21 As of 
yet, however, the combined prognostic value of these routine 
parameters at the time of diagnosis has not been comprehen-
sively evaluated. Moreover, it has recently been shown that 
progression independent of relapse activity (PIRA) is responsible 
for a relevant part of disability accumulation, even in the early 
course of the disease.22 23 Whether the combination of clinical 
parameters with routine diagnostic MRI and CSF measures can 
help in identifying individuals at risk of early PIRA is another 
question that currently remains unanswered.

In this retrospective study of 417 people recently diagnosed 
with relapsing MS (RMS), we investigated the prognostic value 
of several (para)clinical measures at baseline regarding confirmed 
disability accumulation (CDA) and PIRA over a 5-year period. 
To ensure the potential for clinical translation, we restricted our 
analyses to predictors available in diagnostic routine.

METHODS
Participants
Inclusion criteria of this retrospective, single-centre study were 
(1) diagnosis of RMS or clinically isolated syndrome with conver-
sion to RMS on follow-up; (2) age between 18 and 60 years; (3) 
disease duration (defined as the interval between the first demy-
elinating event and completion of initial diagnostics) of less than 
1 year; (4) brain MRI, spinal cord MRI (with full cervical and 
thoracic coverage), CSF data (including white cell count (WCC) 

and Ig synthesis/indices) and non-relapse Expanded Disability 
Status Scale (EDSS) score, all within a year of one another, and 
(5) clinical follow-up of at least 5 years for individuals who did 
not experience CDA earlier. External spinal cord imaging (ie, 
MRI not performed at our clinic) was considered for inclusion 
if it fulfilled our predefined criteria and was of sufficient quality. 
Data were assessed for eligibility from 2009 to 2023 (for the 
latest possible completion of follow-up).

Definition of disability accumulation and subtypes
CDA was defined as an EDSS increase of 1.5 for baseline EDSS 
scores of 0, an increase of 1 for baseline EDSS scores between 1.0 
and 5.0 and an increase of 0.5 for baseline EDSS scores of 5.5 or 
higher; the increase had to be confirmed on clinical follow-up 
over at least 6 months. In order for a CDA event to be classified 
as PIRA, both the initial EDSS increase and the respective confir-
mation visit could not take place within 30 days before and 90 
days after the onset of a relapse event. Otherwise, CDA was clas-
sified as relapse-associated worsening (RAW).24

MRI acquisition and processing
Spinal cord MRI was performed on three different 3 Tesla 
scanners (Philips Achieva dStream, Philips Ingenia, Siemens 
Magnetom Verio). All scans included 2D T2-weighted turbo spin 
echo sequences in sagittal and axial orientation with full cervical 
and thoracic coverage. The number of spinal cord lesions was 
taken from the respective neuroradiology report and visually 
checked for every scan by an experienced neurologist (ML). In 

Figure 1  Participant flow chart. CDA, confirmed disability accumulation; CSF, cerebrospinal fluid; PIRA, progression independent of relapse activity; RAW, 
relapse-associated worsening; RMS, relapsing multiple sclerosis.
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case of conflicting results, manual recounts were given prece-
dence. 34 participants who had external spinal cord imaging of 
sufficient quality were included in the analyses.

Brain MRI was performed on two different 3 Tesla scan-
ners (Philips Achieva dStream, Philips Ingenia). Standardised 
brain MRI comprised a 3D spoiled gradient echo T1-weighted 
sequence and a turbo-spin echo T2-weighted FLAIR sequence. 
Brain lesions were segmented from FLAIR and T1-weighted 
images using lesion segmentation toolbox (LST)-AI, the deep 
learning-based extension of the LST.25

CSF parameters
CSF and serum concentrations for albumin as well as IgG, IgM 
and IgA were measured in parallel by standard nephelometric 
assays, and the respective CSF-to-serum quotients (QIgG, QIgM, 
QIgA and Qalb) were calculated. Ig indices were defined as QIgX/
Qalb. Following the formulae proposed by Reiber,26 intrathecal 
Ig synthesis was considered present in samples with QIgX greater 
than QLim(IgX), the latter defined as:

	
‍
QLim

(
IgG

)
= 0.93×

√
Q2alb + 6× 10

−6 − 1.7× 10−3
‍�

	

‍
QLim

(
IgM

)
= 0.67×

√
Q2alb + 120× 10

−6 − 7.1× 10−3
‍�

	
‍
QLim

(
IgA

)
= 0.77×

√
Q2alb + 23× 10

−6 − 3.1× 10−3
‍�

Detection of OCB was performed using isoelectric focusing 
followed by immunoblotting or immunofixation. OCB were 
considered positive if patterns 2 or 3, according to the 2005 
consensus statement, were present.27

Model predictors
Predictor variables were chosen with three criteria in mind: (1) plau-
sibility of prognostic value based on a survey of the literature (as 
mentioned in the introduction); (2) potential inclusion in a diag-
nostic workup of MS and (3) avoidance of problematic collinearity. 
The following were included: patient characteristics—sex, age at 
symptom onset; clinical parameters—EDSS score, monosymptom-
atic versus polysymptomatic manifestation of the demyelinating 
event leading to diagnosis; paraclinical measures—number of T2 
lesions on brain (including infratentorial lesions) and spinal cord 
MRI, CSF WCC, intrathecal synthesis of IgG, IgM and IgA (defined 
dichotomously). The presence of OCB was not added to the models 
to avoid potential collinearity with Ig syntheses. Finally, two variables 

Table 1  Characteristics of study participants

Total (n=417) No CDA (n=304) CDA (n=113) P value

Age (years), median (IQR) 34.0 (26.6–41.2) 32.7 (26.6–39.4) 37.0 (26.6–45.1) 0.018

Sex (female), n (%) 270 (64.7) 188 (61.8) 82 (72.6) 0.050

EDSS, median (IQR) 1.0 (0–1.5) 1.0 (0–1.5) 1.0 (1.0–2.0) 0.073

Disease duration (days), median (IQR) 52.0 (29.0–80.0) 52.5 (30.0–76.3) 51.0 (25.0–87.0) 0.897

Imaging parameters

 � Number of spinal lesions, median (IQR) 1.0 (0–3.0) 1.0 (0–2.0) 2.0 (1.0–5.0) <0.001

  �  Cervical lesion number, median (IQR) 1.0 (0–2.0) 0 (0–1.0) 1.0 (0–3.0) <0.001

  �  Thoracic lesion number, median (IQR) 0 (0–1.0) 0 (0–1.0) 1.0 (0–3.0) <0.001

 � Number of brain lesions, median (IQR) 20.0 (10.0–44.0) 18.0 (9.0–37.0) 28.0 (14.0–61.0) <0.001

CSF parameters

 � WCC (x10ˆ6/L), median (IQR) 6.0 (3.0–12.0) 5.0 (3.0–11.0) 7.0 (4.0–16.0) 0.004

 � Intrathecal IgG synthesis, n (%) 213 (51.1) 133 (43.8) 80 (70.8) <0.001

 � Intrathecal IgM synthesis, n (%) 75 (18.0) 52 (17.1) 23 (20.4) 0.474

 � Intrathecal IgA synthesis, n (%) 28 (6.7) 21 (6.9) 7 (6.2) 1.000

 � IgG index, median (IQR) 0.72 (0.55–1.0) 0.65 (0.53–0.92) 0.87 (0.66–1.4) <0.001

 � IgM index, median (IQR) 0.074 (0.049–0.15) 0.071 (0.047–0.14) 0.083 (0.058–0.17) 0.015

 � IgA index, median (IQR) 0.27 (0.24–0.32) 0.27 (0.23–0.32) 0.28 (0.24–0.32) 0.397

 � OCB, n (%) 371 (89.0) 261 (85.9) 110 (97.3) <0.001

Functional systems affected by first demyelinating event

 � Pyramidal, n (%) 82 (19.7) 47 (15.5) 35 (31.0) <0.001

 � Cerebellar, n (%) 55 (13.2) 34 (11.2) 21 (18.6) 0.052

 � Brainstem, n (%) 99 (23.7) 69 (22.7) 30 (26.5) 0.438

 � Sensory, n (%) 198 (47.5) 135 (44.4) 63 (55.8) 0.047

 � Bowel/bladder, n (%) 18 (4.3) 10 (3.3) 8 (7.1) 0.105

 � Visual, n (%) 148 (35.5) 110 (36.2) 38 (33.6) 0.647

 � Polysymptomatic, n (%) 149 (35.7) 92 (30.3) 57 (50.4) <0.001

Longitudinal parameters

 � EDSS visits per year, median (IQR) 1.6 (1.2–2.4) 1.6 (1.2–2.0) 2.4 (1.7–4.4) <0.001

 � Time on DMT (% of follow-up), median (IQR) 92.9 (64.3–98.4) 94.5 (66.7–98.5) 91.5 (58.3–97.9) 0.264

 � HET during follow-up, n (%) 104 (24.9) 71 (23.7) 32 (28.3) 0.373

 � No DMT during follow-up, n (%) 53 (12.7) 40 (13.2) 13 (11.5) 0.742

 � Time to CDA (years), median (IQR) n.a. n.a. 1.9 (1.1–3.3) n.a.

Significant (p<0.05) differences between groups are given in bold.
CDA, confirmed disability accumulation; CSF, cerebrospinal fluid; DMT, disease-modifying therapy; EDSS, Expanded Disability Status Scale; HET, high-efficacy therapy; n.a., not 
applicable; OCB, oligoclonal bands; WCC, white cell count.
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concerning DMT were added. They were longitudinal in nature and 
would not initially be available to the diagnosing clinician, so their 
inclusion was made primarily with model adjustment in mind. The 
following were chosen for this purpose: proportion of follow-up on 
high-efficacy therapy (HET) (alemtuzumab, cladribine, fingolimod, 
natalizumab, ocrelizumab, ofatumumab, ozanimod, rituximab and 
siponimod) and proportion of follow-up on other DMT (dimethyl 
fumarate, glatiramer acetate, interferon and teriflunomide).

Statistical analyses
Since none of the variables of interest were normally distributed (as 
determined by the Shapiro-Wilk test), non-parametric tests were 
chosen. Values are given as median with IQR, accordingly. For 
group comparisons of dichotomous variables, Fisher’s exact test 
was used. For group comparisons of continuous variables, two-
sided, independent Wilcoxon-Mann-Whitney tests were performed. 
Spearman’s rank correlation coefficient (rs) was used for simple 
correlations. Individual variance inflation factors (VIFs) were calcu-
lated to assess potential collinearity. Predictors with a VIF<2 were 

considered unproblematic for model inclusion to ensure a conserva-
tive estimate.28

Our selection of N=12 variables of interest resulted in a theoretical 
total of 212=4096 possible statistical models. To mitigate the pitfalls 
of model selection bias inherent in the significance-driven inclusion 
or exclusion of parameters,29 we applied all-subsets multivariable 
logistic regression. This method determines the best model following 
two steps: (1) For each set of predictors of size n (where n=1…, N), 
find the subset with the smallest residual sum of squares (RSS). (2) 
Identify the model with the best fit among these subsets according to 
some predefined criterion. Two common metrics for the latter are 
the Akaike information criterion and the Bayesian information crite-
rion (BIC). The conceptual differences between the two are beyond 
the scope of this work and have been extensively discussed else-
where.30 We chose the BIC for our analyses as, generally speaking, it 
tends to favour smaller/simpler models by more severely penalising 
the addition of further predictors: ‍BIC = k ln

(
n
)
− 2 ln L̂‍, where k 

is the number of estimated parameters in the model, n is the sample 

Table 2  Best subset for each set of predictors of size n identified by 
all-subsets multivariable logistic regression with confirmed disability 
accumulation as an outcome

Set size n Best subset of predictor variables BIC

1 Number of spinal cord lesions 489.85

2 … + Intrathecal IgG synthesis 480.30

3 … + Age 477.88

4 Number of spinal cord lesions 
(β*=0.47)+intrathecal IgG synthesis (β*=0.52)+age 
(β*=0.39)+polysymptomatic demyelinating event 
(β*=0.34)

475.79

5 … + Sex 476.09

6 … + Number of brain lesions 481.44

7 … + Intrathecal IgM synthesis 487.16

8 … + Proportion of follow-up on HET+proportion of follow-
up on other DMT–intrathecal IgM synthesis

492.52

9 … + Intrathecal IgM synthesis 498.20

10 … + Intrathecal IgA synthesis 503.75

11 … + CSF WCC 509.56

12 … + EDSS at baseline 515.45

The best subset for each n was determined by the lowest residual sum of squares 
(RSS). + indicates the addition of a predictor to the previous model while – denotes 
the removal of a previously included predictor. The respective values of the BIC 
are given, and the best overall model (lowest RSS and BIC) is emphasised in bold. 
Standardised (β*) coefficients are given for this model.
BIC, Bayesian information criterion; CSF, cerebrospinal fluid; DMT, disease-modifying 
therapy; EDSS, Expanded Disability Status Scale; HET, high-efficacy therapy; WCC, 
white cell count.

Table 3  Performance parameters for different prediction models with confirmed disability accumulation as an outcome

Predictor AUC (95% CI) Threshold Accuracy Sensitivity Specificity PPV NPV

Full model 0.76 (0.71 to 0.81) n.a. 0.73 0.68 0.75 0.50 0.86

Reduced model 0.75 (0.70 to 0.80) n.a. 0.65 0.81 0.60 0.43 0.89

Spinal cord lesions 0.69 (0.64 to 0.75) 1 0.66 0.65 0.67 0.42 0.84

Intrathecal IgG synthesis 0.64 (0.58 to 0.69) n.a. 0.60 0.71 0.56 0.37 0.84

Age 0.58 (0.51 to 0.64) 38 0.65 0.49 0.71 0.39 0.79

Polysymptomatic 0.60 (0.55 to 0.65) n.a. 0.48 0.50 0.70 0.30 0.80

Full model: including all 12 potential predictors; reduced model: including only significant baseline predictors identified by all-subsets regression (number of spinal cord lesions, 
intrathecal IgG synthesis, age, polysymptomatic manifestation). Thresholds were calculated using Youden’s method.33

AUC, area under the curve; n.a., not applicable; NPV, negative predictive value; PPV, positive predictive value.

Figure 2  Receiver operating characteristic curves for different prediction 
models with confirmed disability accumulation as an outcome. Full 
model: including all 12 potential predictors; reduced model: including 
only significant predictors identified by all-subsets regression (number 
of spinal cord lesions, intrathecal IgG synthesis, age, polysymptomatic 
manifestation). A curve for IgG index as a surrogate for intrathecal IgG 
synthesis was added since the latter’s dichotomous nature prevents it from 
being displayed this way. AUC, area under the curve; n, number.
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size and L̂ is the maximum value of the likelihood function for the 
model.31 Smaller BIC values are indicative of better fits. The inter-
cept was retained in all models, and standardised beta coefficients 
(β*) were calculated for the best model variables.

A number of sensitivity analyses were conducted: one in a 
subgroup of participants with at least one spinal cord lesion to 
rule out biases through a non-negligible amount of zero values; 
another one in a subgroup of participants with positive OCB 
to investigate a potential influence of this variable otherwise 
not tested for model inclusion. To gain a relative estimate of 
model performance, three further analyses were implemented: 
(continuous) Ig indices were chosen as variables instead of 
(dichotomous) intrathecal synthesis parameters. The number 
of spinal cord lesions was substituted with either cervical cord 
lesion number or thoracic cord lesion number, and the resulting 
models were compared. Additionally, each of the predictors 
identified for model inclusion was substituted with a conceptu-
ally related parameter (one at a time) and the resulting models’ 
performances were evaluated. Any of the DMT variables iden-
tified as significant by regression analysis were excluded when 
assessing model performance (except for the full variable model) 
as they would not be available at the time of diagnosis. Statistical 
comparison of the area under the curve (AUC) for two receiver 
operating characteristic (ROC) curves was performed according 
to DeLong’s method for paired data.32 Optimal thresholds in 
ROC analysis were identified using Youden’s index.33

All statistical and graphical analyses were done in R (V.4.4.0) 
and its packages lmSubsets, pROC, survminer and tidyverse. P 
values <0.05 were considered statistically significant.

RESULTS
Sample characteristics
A flow chart for data selection and outcomes is given in figure 1. 
417 persons were included in the final analyses, 113 (27.1%) of 
whom experienced CDA during the 5-year follow-up (60 PIRA, 53 

RAW). The median time from the beginning of clinical follow-up 
to disability accumulation in the CDA group was 1.9 years (IQR: 
1.1–3.3). As summarised in table 1, people who experienced CDA 
tended to be older and female.

They had significantly more T2 lesions on both brain and spinal 
cord MRI. Additionally, their CSF WCC as well as IgG and IgM 
indices were higher, and intrathecal IgG synthesis and OCB were 
more frequent. More demyelinating events leading to the first diag-
nosis were polysymptomatic in the CDA group, and the latter had 
more annual EDSS visits on average. There were no differences 
regarding the time spent on DMT and the proportion of partici-
pants on HET between the groups. However, a higher proportion 
of follow-up spent on HET was significantly associated with higher 
EDSS scores at baseline (rs=0.21) as well as more brain (rs=0.31) and 
spinal cord lesions (rs=0.25, p<0.001 in each case). Correlations 
among (para)clinical parameters did not raise concerns regarding 
collinearity (each VIF<2).

Predictors of disability accumulation
Among all possible variable permutations, a four-predictor 
model yielded the best model fit. This model contained intra-
thecal IgG synthesis, the number of spinal cord lesions, age and 
polysymptomatic manifestation (table 2).

Intrathecal IgG synthesis (β*=0.52) and spinal cord lesion 
number (β*=0.47) were the most statistically relevant variables 
(both p<0.001), followed by age (β*=0.39, p<0.01) and poly-
symptomatic manifestation (β*=0.34, p<0.01).

Model performance and individual risk of disability 
accumulation
Including all 12 initial variables in the prediction model resulted 
in an AUC of 0.76 (95% CI 0.71 to 0.81) with a positive 

Figure 3  Survival curves based on optimal thresholds for the three main predictors of CDA. (A) Survival curves of four subgroups based on the number 
of threshold values exceeded. RRs were calculated in reference to the group without any predictor above threshold. (B) Survival curves of the one and two 
thresholds groups further stratified by the specific predictors exceeding their respective threshold. + and − denote whether individuals in a group exceed 
the respective threshold for a variable or not (or are positive for an attribute or not in the case of intrathecal IgG synthesis). The y-axis has been cropped 
for better discrimination of the curves. Threshold values were calculated using Youden’s method33: SC lesion number >1, age >38 years. CDA, confirmed 
disability accumulation; ref., reference; RR, relative risk; SC, spinal cord.
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predictive value of 0.50, and a negative predictive value of 0.86 
at the optimal threshold (table 3).

When reducing the model parameters to only the four classi-
fied for inclusion by all-subsets regression, the AUC was calcu-
lated at 0.75 (95% CI 0.70 to 0.80). At the optimal threshold, 
this reduced model yielded a positive predictive value of 0.43 
(against a CDA prevalence of 27%) and a negative predictive 
value of 0.89. No significant difference in performance was 
found between the full 12-variable model and the reduced model 
(p=0.35). ROC curves for the two models and each individual 
continuous predictor are shown in figure 2. Optimal threshold 
values were then calculated for the continuous predictors 
(number of spinal cord lesions >1, age >38 years) and individual 
performance was assessed based on these thresholds (table 3). A 
comparison between the best single predictor model (number of 
spinal cord lesions) and the reduced model showed a significant 
difference in performance, favouring the latter (p<0.05).

Based on the optimal thresholds previously calculated, four 
subgroups were formed according to how many threshold values 
an individual exceeded. Only the three most statistically relevant 
predictors (intrathecal IgG synthesis, spinal cord lesion number, 
age) were included in this analysis to avoid an excess of subdivi-
sions. Absolute risks of experiencing CDA on follow-up ranged 
from 61.8% for participants exceeding the thresholds of all three 
predictors (n=34) to 4.5% for individuals that were below all 
three threshold values (n=88) (figure  3A). Absolute risks for 
the groups with one (n=160) and two (n=135) predictor values 
above threshold lay between those extremes (18.8% and 43.0%, 
respectively). Taking the lowest risk group as reference, relative 
risks were 4.1, 9.5 and 13.6 for the one, two and three thresh-
olds groups, respectively. Further stratification of the groups 
according to which specific predictors exceeded the threshold 
values yielded largely similar trajectories (figure  3B; online 
supplemental figure 1 shows survival curves for each of the four 
main predictors of CDA).

Sensitivity analyses
As a first sensitivity analysis, all-subsets regression was performed 
in a subgroup of 274 participants with at least one spinal cord 
lesion to investigate a potential effect of excess zero values on 
model selection. The four predictors from the whole cohort 
were confirmed, although their relative statistical weights were 
slightly different (intrathecal IgG synthesis, age, polysymptom-
atic manifestation: p<0.01; spinal cord lesion number: p<0.05; 
online supplemental table 1). For a second sensitivity analysis, we 
repeated our calculations in a subgroup of 371 participants with 
positive OCB. Again, the same four predictors were identified 
for model inclusion in this subgroup (spinal cord lesion number: 
p<0.001; intrathecal IgG synthesis, age, polysymptomatic mani-
festation: p<0.01; online supplemental table 2). Substituting the 
three Ig indices for the respective synthesis variables did not have 
any appreciable effect on the overall performance of either the 
full 12-variable model (p=0.87) or the reduced model (p=0.76; 
online supplemental table 3). An ROC curve for IgG index as 
predictor is shown in figure 2. Similarly, substituting either the 
number of cervical cord lesions or the number of thoracic cord 
lesions for the number of total spinal cord lesions did not change 
the composition nor the performance of the model (p=0.42 and 
p=0.11, respectively; online supplemental table 3). To better 
assess the relative contribution of each predictor to the reduced 
model, each of the four main predictors was substituted with a 
conceptually related parameter. This led to a significant wors-
ening in performance when substituting the number of brain 

lesions for spinal cord lesions (p<0.05) or CSF WCC for IgG 
synthesis (p<0.05; online supplemental table 3).

Progression independent of relapse activity
Participants experiencing PIRA on follow-up tended to be older 
and have more spinal cord lesions than those with RAW (online 
supplemental table 4). They also spent proportionally more 
time on DMT and had longer follow-up intervals until the CDA 
event. Participants with RAW were significantly more likely to 
not take any DMT during the entire follow-up than participants 
with PIRA. A three-variable model including the number of 
spinal cord lesions (β*=0.54, p<0.05) as well as the proportion 
of follow-up spent on both HET (β*=0.77, p<0.01) and other 
DMT (β*=0.90, p<0.01) best differentiated PIRA from RAW 
on follow-up (online supplemental table 5).

The full 12-variable model yielded an AUC of 0.81 (95% 
CI 0.72 to 0.89) for differentiating between PIRA and RAW 
among CDA events (online supplemental table 6). This model 
significantly outperformed a model containing the only base-
line predictor suggested for inclusion by regression analysis, the 
number of spinal cord lesions (AUC=0.64, 95% CI 0.54 to 0.74; 
difference between model performance: p<0.01). ROC curves 
for the models (including the one with both DMT parameters) 
are shown in online supplemental figure 2.

DISCUSSION
In this retrospective study including 417 people with RMS, we 
identified predictors of early disability accumulation from a set 
of routine parameters accessible at the time of first diagnosis. 
Specifically, intrathecal IgG synthesis, spinal cord lesions, age 
and polysymptomatic manifestation of the initial demyelinating 
event were associated with a sustained EDSS increase within a 
follow-up period of 5 years. When investigating the same base-
line parameters in the context of differentiating between PIRA 
and RAW, only a higher number of spinal cord lesions remained 
as a significant predictor of PIRA.

The median baseline age of our cohort was 34 years, which 
matches the average age at first diagnosis reported in a large 
Italian study.34 The rate of CDA we observed (27.1%) was 
rather low compared with similarly designed studies (32.1% 
in Monreal et al35; 33% in Rocca et al8; 37.1% in Tur et al23; 
45.4% in Portaccio et al22). This seems plausible, given the short 
disease durations in our data (52 days on average) as well as the 
longer follow-up intervals in some of these studies. Interestingly, 
as previously noted by others,22 PIRA constituted the majority 
of disability accumulation events, even in our newly diagnosed 
cohort.

The predictors of CDA identified in our analyses are consis-
tent with previous findings regarding associations between 
disability accumulation and the number of spinal cord lesions,6–8 
age,1 8 12 18 19 21 22 polysymptomatic manifestation1 18–21 and intra-
thecal IgG synthesis.17 Furthermore, they confirm observations 
previously made by our own group regarding the prognostic 
relevance of spinal cord lesions9 and intrathecal IgG synthesis,16 
although there is a partial overlap between our present cohort and 
the ones used in those studies (37.9% in Lauerer et al9; 29.3% in 
Gasperi et al16). In accordance with other groups, we also found 
significantly higher IgM indices15 and CSF WCC10 among indi-
viduals experiencing disability accumulation, although neither 
variable emerged as a significant predictor in our multivariable 
model. Similar observations were made for the number of brain 
lesions. There was a notable association between the presence 
of (IgG)OCB and CDA in our data. As expected from other 
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reports,12 14 however, the overall prevalence of OCB was quite 
high (89.0% versus an event rate of 27.1%), so a potential prog-
nostic application would go along with a low positive predictive 
value. The lack of difference between the CDA and non-CDA 
groups in respect to DMT might seem surprising at first glance. 
However, the apparent discrepancy is most likely explained by 
the fact that higher baseline EDSS scores and lesion loads often 
prompted early initiation of HET in our cohort, thereby diluting 
any quantifiable DMT effects.

Identifying age as a significant predictor of CDA raises some 
practical concerns: If one goal of early disability prognosis is the 
timely initiation of DMT, how should age factor into this deci-
sion? On the one hand, the increased risk of CDA with age could 
be seen as an argument for HET. On the other hand, the well-
established decrease in relapse-activity,36 the waning efficacy of 
DMT,37 and the relative predominance of PIRA in older persons 
with MS22 38 might all be seen as evidence to the contrary. 
Further complicating the picture is the fact that the time of MS 
diagnosis does not necessarily coincide with the biological onset 
of the disease.

A higher number of spinal cord lesions was the only significant 
baseline predictor differentiating PIRA from RAW in our anal-
ysis. This association has been observed by others39 as well as 
in our previous study.9 The relatively limited prognostic perfor-
mance of this one-variable model (AUC=0.64) stems from the 
fact that the nature of a CDA event is closely associated with 
DMT dynamics on follow-up. On the whole, RAW took place 
earlier during follow-up than PIRA (1.1 years versus 2.8 years 
on average) and consequently was more likely to happen shortly 
after or even before initiation of DMT. Participants experiencing 
PIRA, on the other hand, were on medication during most of 
their follow-up and only rarely were without any DMT (5.0%). 
This supports the conception of PIRA as ‘silent progression’ that 
continues to affect people whose inflammatory activity may be 
well controlled under DMT.

By restricting our group of predictors to measures available 
to diagnosing clinicians early on, we sought to ensure the trans-
latability of our findings into everyday practice. This aim was 
further emphasised by choosing strict inclusion criteria for our 
well-characterised and reasonably large cohort. We consider 
this a major asset of our analysis. Another strength of our study 
was the choice of all-subsets regression as a method for model 
selection. Finding the best prognostic model among a number 
of potential predictors poses the problem of which combina-
tions of variables should be statistically tested in the first place. 
Established methods like hierarchical, forced entry or stepwise 
regression all carry the risk of introducing biases that can distort 
the outcome.29 By evaluating all potential variable permutations 
and ranking them according to some predefined criteria (RSS 
and BIC, in our case), all-subsets regression seeks to minimise 
these pitfalls.

Our study has some limitations. The inclusion of different 
diagnostic modalities (brain MRI, spinal cord MRI and lumbar 
puncture) entails a number of time intervals between diagnostic 
procedures that vary from individual to individual. Although 
we tried to limit this heterogeneity by defining strict inclusion 
criteria, some influence on our results cannot be ruled out. Simi-
larly, the choice of a minimum follow-up of 5 years with varying 
numbers of follow-up visits during this time may introduce a 
form of selection bias. As in a previous study,9 we confined our 
outcome measure to the first CDA event on follow-up and did 
not account for further events. Consequently, individuals could 
either experience PIRA or RAW, not both. This decision was 
made to avoid a loss of statistical power by further fragmentation 

into clinical subgroups. Finally, although our sensitivity analyses 
indicated a robust data foundation, external validation of our 
findings would be desirable, preferably in a prospective setting.

In conclusion, our observations suggest that intrathecal 
IgG synthesis, a higher number of spinal cord lesions, age and 
polysymptomatic manifestation at the time of diagnosis inde-
pendently increase the risk of experiencing early disability 
accumulation in RMS. This risk increases with each additional 
predictor exceeding its respective threshold. Among the same 
group of baseline predictors, the number of spinal cord lesions 
was the only one to differentiate PIRA from RAW on follow-up.

Acknowledgements  We are grateful for the invaluable contributions of the study 
participants as well as the assistance of the support staff at our clinic.

Contributors  ML, TW and MM contributed to the conception and design of 
the study as well as data analysis. CB, CE, KG, SL, VP, AB, CG, JSK, CZ and BH 
participated in the acquisition of data. ML and MM drafted the text and figures. As 
the guarantor of this study, ML accepts full responsibility for the work, had access to 
the data and controlled the decision to publish.

Funding  ML received funding through the ’Kommission für klinische Forschung’ 
(KKF) of the School of Medicine and Health, Technical University of Munich (TUM). 
MM and JSK were supported by the Bavarian State Ministry for Science and Art 
(Collaborative Bilateral Research Program Bavaria – Quebec: AI in medicine, grant 
F.4-V0134.K5.1/86/34). MM was supported by research grant 428223038 of the 
German Research Foundation, DFG Priority Programme 2177, Radiomics: Next 
Generation of Biomedical Imaging.

Competing interests  None of the authors have reported conflicts of interest 
directly related to this study. KG has received reimbursement for traveling expenses 
from UCB and Viatris. AB has received consulting and/or speaker fees from Alexion, 
Biogen, Celgene, Horizon, Novartis, Roche and Sandoz/Hexal. His institution has 
received compensation for clinical trials from Alexion, Biogen, Merck, Novartis, 
Roche and Sanofi Genzyme. JSK has received speaker fees for Novartis. He is a 
shareholder of Bonescreen. BH has served on scientific advisory boards for Novartis; 
he has served as DMSC member for AllergyCare, Sandoz, Polpharma, Biocon and TG 
therapeutics; his institution received research grants from Roche for multiple sclerosis 
research. He has received honoraria for counselling (Gerson Lehrmann Group). He 
holds part of two patents; one for the detection of antibodies against KIR4.1 in a 
subpopulation of patients with multiple sclerosis and one for genetic determinants of 
neutralising antibodies to interferon.

Patient consent for publication  Not applicable.

Ethics approval  This study involves human participants and was approved by 
the internal review board of the Technical University of Munich (reference number: 
5848/13). Participants gave informed consent to participate in the study before 
taking part.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available on reasonable request. The 
anonymised data that supported the findings of this study as well as the code 
underlying the analyses are available on reasonable request to any qualified 
investigator.

Supplemental material  This content has been supplied by the author(s). 
It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not 
have been peer-reviewed. Any opinions or recommendations discussed are 
solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all 
liability and responsibility arising from any reliance placed on the content. 
Where the content includes any translated material, BMJ does not warrant the 
accuracy and reliability of the translations (including but not limited to local 
regulations, clinical guidelines, terminology, drug names and drug dosages), and 
is not responsible for any error and/or omissions arising from translation and 
adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Markus Lauerer http://orcid.org/0000-0002-5711-0054
Jan S Kirschke http://orcid.org/0000-0002-7557-0003
Bernhard Hemmer http://orcid.org/0000-0001-5985-6784
Mark Mühlau http://orcid.org/0000-0002-9545-2709

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

b
y g

u
est

 
o

n
 S

ep
tem

b
er 25, 2025

 
h

ttp
://jn

n
p

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
17 F

eb
ru

ary 2025. 
10.1136/jn

n
p

-2024-335037 o
n

 
J N

eu
ro

l N
eu

ro
su

rg
 P

sych
iatry: first p

u
b

lish
ed

 as 

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0002-5711-0054
http://orcid.org/0000-0002-7557-0003
http://orcid.org/0000-0001-5985-6784
http://orcid.org/0000-0002-9545-2709
http://jnnp.bmj.com/


907Lauerer M, et al. J Neurol Neurosurg Psychiatry 2025;96:900–907. doi:10.1136/jnnp-2024-335037

Multiple sclerosis

REFERENCES
	 1	 Weinshenker BG, Rice GP, Noseworthy JH, et al. The natural history of multiple 

sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors 
and models of outcome. Brain (Bacau) 1991;114 (Pt 2):1045–56. 

	 2	 Reeve K, On BI, Havla J, et al. Prognostic models for predicting clinical disease 
progression, worsening and activity in people with multiple sclerosis. Cochrane 
Database Syst Rev 2023;9:CD013606. 

	 3	 Uher T, Vaneckova M, Sobisek L, et al. Combining clinical and magnetic resonance 
imaging markers enhances prediction of 12-year disability in multiple sclerosis. Mult 
Scler 2017;23:51–61. 

	 4	 Chung KK, Altmann D, Barkhof F, et al. A 30-Year Clinical and Magnetic Resonance 
Imaging Observational Study of Multiple Sclerosis and Clinically Isolated Syndromes. 
Ann Neurol 2020;87:63–74. 

	 5	 Pisani AI, Scalfari A, Crescenzo F, et al. A novel prognostic score to assess the 
risk of progression in relapsing-remitting multiple sclerosis patients. Eur J Neurol 
2021;28:2503–12. 

	 6	 Arrambide G, Rovira A, Sastre-Garriga J, et al. Spinal cord lesions: A modest 
contributor to diagnosis in clinically isolated syndromes but a relevant prognostic 
factor. Mult Scler 2018;24:301–12. 

	 7	 Brownlee WJ, Altmann DR, Prados F, et al. Early imaging predictors of long-term 
outcomes in relapse-onset multiple sclerosis. Brain (Bacau) 2019;142:2276–87. 

	 8	 Rocca MA, Valsasina P, Meani A, et al. Spinal cord lesions and brain grey matter 
atrophy independently predict clinical worsening in definite multiple sclerosis: a 5-
year, multicentre study. J Neurol Neurosurg Psychiatry 2023;94:10–8. 

	 9	 Lauerer M, McGinnis J, Bussas M, et al. Prognostic value of spinal cord lesion 
measures in early relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 
2023;95:37–43. 

	10	 Lotan I, Benninger F, Mendel R, et al. Does CSF pleocytosis have a predictive value for 
disease course in MS? Neurol Neuroimmunol Neuroinflamm 2019;6:e584. 

	11	 Villar LM, Masjuan J, González-Porqué P, et al. Intrathecal IgM synthesis is a 
prognostic factor in multiple sclerosis. Ann Neurol 2003;53:222–6. 

	12	 Mandrioli J, Sola P, Bedin R, et al. A multifactorial prognostic index in multiple 
sclerosis. Cerebrospinal fluid IgM oligoclonal bands and clinical features to predict the 
evolution of the disease. J Neurol 2008;255:1023–31. 

	13	 Capuano R, Zubizarreta I, Alba-Arbalat S, et al. Oligoclonal IgM bands in the 
cerebrospinal fluid of patients with relapsing MS to inform long-term MS disability. 
Mult Scler 2021;27:1706–16. 

	14	 Monreal E, Sainz de la Maza S, Costa-Frossard L, et al. Predicting Aggressive Multiple 
Sclerosis With Intrathecal IgM Synthesis Among Patients With a Clinically Isolated 
Syndrome. Neurol Neuroimmunol Neuroinflamm 2021;8:e1047. 

	15	 Perini P, Ranzato F, Calabrese M, et al. Intrathecal IgM production at clinical onset 
correlates with a more severe disease course in multiple sclerosis. J Neurol Neurosurg 
Psychiatry 2006;77:953–5. 

	16	 Gasperi C, Salmen A, Antony G, et al. Association of Intrathecal Immunoglobulin 
G Synthesis With Disability Worsening in Multiple Sclerosis. JAMA Neurol 
2019;76:841–9. 

	17	 Akaishi T, Takahashi T, Fujihara K, et al. Impact of intrathecal IgG synthesis on 
neurological disability in patients with multiple sclerosis. Mult Scler Relat Disord 
2020;45:102382. 

	18	 Runmarker B, Andersen O. Prognostic factors in a multiple sclerosis incidence cohort 
with twenty-five years of follow-up. Brain (Bacau) 1993;116 (Pt 1):117–34. 

	19	 Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression 
of irreversible disability in multiple sclerosis: an amnesic process. Brain (Bacau) 
2003;126:770–82. 

	20	 Bergamaschi R, Quaglini S, Trojano M, et al. Early prediction of the long term 
evolution of multiple sclerosis: the Bayesian Risk Estimate for Multiple Sclerosis 
(BREMS) score. J Neurol Neurosurg Psychiatry 2007;78:757–9. 

	21	 Malpas CB, Manouchehrinia A, Sharmin S, et al. Early clinical markers of aggressive 
multiple sclerosis. Brain (Bacau) 2020;143:1400–13. 

	22	 Portaccio E, Bellinvia A, Fonderico M, et al. Progression is independent of 
relapse activity in early multiple sclerosis: a real-life cohort study. Brain (Bacau) 
2022;145:2796–805. 

	23	 Tur C, Carbonell-Mirabent P, Cobo-Calvo Á, et al. Association of Early Progression 
Independent of Relapse Activity With Long-term Disability After a First Demyelinating 
Event in Multiple Sclerosis. JAMA Neurol 2023;80:151–60. 

	24	 Müller J, Cagol A, Lorscheider J, et al. Harmonizing Definitions for Progression 
Independent of Relapse Activity in Multiple Sclerosis: A Systematic Review. JAMA 
Neurol 2023;80:1232–45. 

	25	 Wiltgen T, McGinnis J, Schlaeger S, et al. LST-AI: A deep learning ensemble for 
accurate MS lesion segmentation. Neuroimage Clin 2024;42:103611. 

	26	 Reiber H. Cerebrospinal fluid--physiology, analysis and interpretation of protein 
patterns for diagnosis of neurological diseases. Mult Scler 1998;4:99–107. 

	27	 Freedman MS, Thompson EJ, Deisenhammer F, et al. Recommended standard of 
cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus 
statement. Arch Neurol 2005;62:865–70. 

	28	 O’brien RM. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual 
Quant 2007;41:673–90. 

	29	 Freedman DA Professor, Freedman DA Professor. A Note on Screening Regression 
Equations. Am Stat 1983;37:152–5. 

	30	 Vrieze SI. Model selection and psychological theory: a discussion of the differences 
between the Akaike information criterion (AIC) and the Bayesian information criterion 
(BIC). Psychol Methods 2012;17:228–43. 

	31	 Schwarz G. Estimating the Dimension of a Model. Ann Statist 1978;6:4. 
	32	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or 

more correlated receiver operating characteristic curves: a nonparametric approach. 
Biometrics 1988;44:837–45.

	33	 YOUDEN WJ. Index for rating diagnostic tests. Cancer 1950;3:32–5. 
	34	 Prosperini L, Lucchini M, Ruggieri S, et al. Shift of multiple sclerosis onset towards 

older age. J Neurol Neurosurg Psychiatry 2022;93:1137–9. 
	35	 Monreal E, Fernández-Velasco JI, Álvarez-Lafuente R, et al. Serum biomarkers 

at disease onset for personalized therapy in multiple sclerosis. Brain (Bacau) 
2024;147:4084–93. 

	36	 Schwehr NA, Kuntz KM, Butler M, et al. Age-related decreases in relapses among 
adults with relapsing-onset multiple sclerosis. Mult Scler 2020;26:1510–8. 

	37	 Weideman AM, Tapia-Maltos MA, Johnson K, et al. Meta-analysis of the Age-
Dependent Efficacy of Multiple Sclerosis Treatments. Front Neurol 2017;8:577. 

	38	 Cagol A, Schaedelin S, Barakovic M, et al. Association of Brain Atrophy With Disease 
Progression Independent of Relapse Activity in Patients With Relapsing Multiple 
Sclerosis. JAMA Neurol 2022;79:e221025:682–92:. 

	39	 Prosperini L, Ruggieri S, Haggiag S, et al. Prognostic Accuracy of NEDA-3 in 
Long-term Outcomes of Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm 
2021;8:e1059. 

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

b
y g

u
est

 
o

n
 S

ep
tem

b
er 25, 2025

 
h

ttp
://jn

n
p

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
17 F

eb
ru

ary 2025. 
10.1136/jn

n
p

-2024-335037 o
n

 
J N

eu
ro

l N
eu

ro
su

rg
 P

sych
iatry: first p

u
b

lish
ed

 as 

http://dx.doi.org/10.1093/brain/114.2.1045
http://dx.doi.org/10.1002/14651858.CD013606.pub2
http://dx.doi.org/10.1002/14651858.CD013606.pub2
http://dx.doi.org/10.1177/1352458516642314
http://dx.doi.org/10.1177/1352458516642314
http://dx.doi.org/10.1002/ana.25637
http://dx.doi.org/10.1111/ene.14859
http://dx.doi.org/10.1177/1352458517697830
http://dx.doi.org/10.1093/brain/awz156
http://dx.doi.org/10.1136/jnnp-2022-329854
http://dx.doi.org/10.1136/jnnp-2023-331799
http://dx.doi.org/10.1212/NXI.0000000000000584
http://dx.doi.org/10.1002/ana.10441
http://dx.doi.org/10.1007/s00415-008-0827-5
http://dx.doi.org/10.1177/1352458520981910
http://dx.doi.org/10.1212/NXI.0000000000001047
http://dx.doi.org/10.1136/jnnp.2005.086116
http://dx.doi.org/10.1136/jnnp.2005.086116
http://dx.doi.org/10.1001/jamaneurol.2019.0905
http://dx.doi.org/10.1016/j.msard.2020.102382
http://dx.doi.org/10.1093/brain/116.1.117
http://dx.doi.org/10.1093/brain/awg081
http://dx.doi.org/10.1136/jnnp.2006.107052
http://dx.doi.org/10.1093/brain/awaa081
http://dx.doi.org/10.1093/brain/awac111
http://dx.doi.org/10.1001/jamaneurol.2022.4655
http://dx.doi.org/10.1001/jamaneurol.2023.3331
http://dx.doi.org/10.1001/jamaneurol.2023.3331
http://dx.doi.org/10.1016/j.nicl.2024.103611
http://dx.doi.org/10.1177/135245859800400302
http://dx.doi.org/10.1001/archneur.62.6.865
http://dx.doi.org/10.1007/s11135-006-9018-6
http://dx.doi.org/10.1007/s11135-006-9018-6
http://dx.doi.org/10.1080/00031305.1983.10482729
http://dx.doi.org/10.1037/a0027127
http://dx.doi.org/10.1214/aos/1176344136
https://pubmed.ncbi.nlm.nih.gov/3203132
http://dx.doi.org/10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3
http://dx.doi.org/10.1136/jnnp-2022-329049
http://dx.doi.org/10.1093/brain/awae260
http://dx.doi.org/10.1177/1352458519866613
http://dx.doi.org/10.3389/fneur.2017.00577
http://dx.doi.org/10.1001/jamaneurol.2022.1025
http://dx.doi.org/10.1212/NXI.0000000000001059
http://jnnp.bmj.com/

	Predictors of early disability accumulation in newly diagnosed multiple sclerosis: clinical, imaging and cerebrospinal fluid measures
	Abstract
	Introduction﻿﻿
	Methods
	Participants
	Definition of disability accumulation and subtypes
	MRI acquisition and processing
	CSF parameters
	Model predictors
	Statistical analyses

	Results
	Sample characteristics
	Predictors of disability accumulation
	Model performance and individual risk of disability accumulation
	Sensitivity analyses
	Progression independent of relapse activity

	Discussion
	References


