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Abstract
Background  Parkinson’s disease (PD) is characterized by hypokinetic motor symptoms, tremor, and various non-motor symp-
toms with frequent fluctuations of symptoms in advanced disease stages. Invasive therapies, such as deep brain stimulation 
(DBS), ablative therapies, and continuous subcutaneous or intrajejunal delivery of dopaminergic drugs via pump therapies 
are available for the management of this complex motor symptomatology and may also impact non-motor symptoms. The 
recent update of the clinical guideline on PD by the German Neurological Society (Deutsche Gesellschaft für Neurologie 
e.V.; DGN) offers clear guidance on the indications and applications of these treatment options.
Methods  The guideline committee formulated diagnostic questions for invasive therapies and structured them according 
to the PICOS framework (Population–Intervention–Comparisons–Outcome–Studies). A systematic literature review was 
conducted. Questions were addressed using the findings from the literature review and consented by the guideline committee.
Results  Specific recommendations are given regarding (i) the optimal timing for starting invasive therapies, (ii) the applica-
tion of DBS, (iii) the use of pump therapies in advanced PD, (iv) the indications for ablative procedures, and (iv) selecting 
the most appropriate therapy according to individual patient characteristics.
Conclusion  This review is an adapted excerpt of the chapters on the use of invasive therapies in PD of the novel German 
guideline on PD. Clear recommendations on the use of treatment options for advanced PD are provided.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegen-
erative disorder characterized by both long-term clinical 
deterioration and short-term fluctuations in motor (motor 
fluctuations; MF) and non-motor symptoms (non-motor 
fluctuations; NMF) throughout day and night [1]. Tremor 
is also a common symptom of PD and may even be clini-
cally and functionally disabling. It may manifest as resting 
and postural tremor of the extremities but can affect any 
other body part. MF, both hypokinetic and hyperkinetic, 
relate to variable effectiveness of dopaminergic medication 
with unpredictable changes in symptom severity and overall 

unsatisfactory symptom control [2]. These fluctuations 
affect approximately 80% of patients after a decade [3]. 
The most common hypokinetic fluctuations in PD are early 
morning Off, where symptoms reappear due to insufficient 
nighttime dopamine replacement, and wearing Off, which 
involves re-emergence of motor and non-motor symptoms 
before the next medication dose. Hyperkinetic fluctuations 
are characterized by uncontrolled movements or muscle 
contractions, such as dyskinesia or dystonia, often linked to 
dopaminergic drug intake in the disease’s advanced phases 
[4]. MF substantially affect quality of life (QoL), activi-
ties of daily living, cognition, stigma and bodily discom-
fort which underscores the importance of their prevention, 
delaying of onset and clinical management [5, 6]. Beyond 
the core motor symptoms, NMF affect 60% to 97% of PD 
patients and can fluctuate similarly to MF [7] [8]. These 
symptoms encompass neuropsychiatric, dysautonomic, and 
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sensory manifestations, including pain, significantly impact-
ing patients’ QoL and sometimes surpassing the influence 
of MF [9–11].

MF, some non-MF, and tremor can be treated by several 
advanced invasive therapies once oral medication provides 
insufficient symptom control. Invasive therapies for PD 
include deep brain stimulation (DBS) of the subthalamic 
nucleus (STN), globus pallidus internus (GPi), and ventral 
intermediate nucleus (VIM) of the thalamus, continuous 
subcutaneous or intrajejunal delivery of dopaminergic drugs 
via pump therapies, radiofrequency thermocoagulation or 
MR-guided focused ultrasound (MRgFUS). The indica-
tions for these therapies vary depending on age, the clinical 
symptomatology, the severity of fluctuations, and further 
individual patient characteristics. DBS involves implanting 
electrodes in specific brain areas to modulate neural activity, 
typically recommended for patients with advanced PD expe-
riencing significant MFs or dyskinesias or tremor despite 
optimal medical therapy. Alternatively, pump therapies are 
suitable for patients who require continuous drug delivery 
to manage severe motor symptoms but may be less effec-
tive in controlling tremor. Ablative procedures, in particular 
unilateral MRgFUS, which target and destroy specific brain 
regions that are implicated in PD symptoms, may especially 
be considered in PD tremor with asymmetrical severity if 
DBS is not suitable.

This review is an English translation of the chapters on 
the use of invasive therapies in PD of the novel German 
guideline on Parkinson’s disease (PD) [12]. For reasons 
of clarity and readability, the original guideline text was 
adapted, bundled, or restructured for the current review if 
necessary. Moreover, some very recent topics on invasive 
therapies were added due to the time gap between literature 
search for the German guidelines and this current article. 
The PICO questions and the summarizing recommendations 
including the degree of agreement from the experts’ con-
sensus conferences stated at the end of each chapter in this 
article were exactly translated from the German guideline. 
The authors of this article were the authors of the chapters 
on invasive therapies of the German guideline. Further infor-
mation and references can be found in the original document 
https://register.awmf.org/de/leitlinien/detail/030-010.

Methods

The recommendations and degree of consensus stated 
in the current German PD Guideline [12] adhere to the 
standard criteria for guidelines of level S2k of the Ger-
man Working Group of the Scientific Medical Societies 
(Arbeitsgemeinschaft der Wissenschaftlichen Medizinis-
chen Fachgesellschaften e.V., AWMS, https://​regis​ter.​
awmf.​org/​de/​start). The guideline was developed by the 

German Neurological Society (Deutsche Gesellschaft 
für Neurologie e.V., DGN), with G.H. and C.T. serving 
as the coordinating authors (steering group). The chap-
ter authors of the guideline were selected by the steer-
ing group based on their clinical and scientific expertise 
(expert group). The steering group formulated key ques-
tions derived from national and international guidelines 
for Parkinson’s disease, namely NICE (www.​nice.​org.​uk), 
AWMF (www.​awmf.​org), and the European Academy of 
Neurology (www.​ean.​org). The steering and expert groups 
supplemented the initial set of key questions if necessary 
to ensure full coverage of the topics. The following PICO 
criteria were used as a framework to formulate the litera-
ture search strategies to ensure comprehensive searches:

P (Population): e.g., adults (> 18 years) with (suspected) 
PD and/or (if applicable) atypical/secondary Parkinsonian 
disorders and/or (if applicable) essential tremor.

I (Intervention): e.g., deep brain stimulation.
C (Comparison): e.g., clinical diagnosis of PD established 

by movement disorder specialists based on international con-
sensus criteria (established/confirmed at follow-up visits).

O (Outcomes): e.g., improvement of PD motor symptoms.
S (Studies): e.g., original articles (including observational 

studies, randomized control trials), systematic reviews, 
meta-analyses, and case series.

A literature search was conducted in the PubMed data-
base (https://​pubmed.​ncbi.​nlm.​nih.​gov/) from January 2016 
to December 2021 and included publications in German or 
English. The restriction to this database was decided by the 
paucity and insignificance of references obtained from other 
databases during the previous guideline’s literature search. 
Literature published prior to 2016 was retrieved from the 
former guideline version [15]. The literature was made avail-
able to the expert group to prepare the guideline chapters, 
namely background texts and summarizing recommenda-
tions according to the respective key questions. Lead authors 
of all chapters and invited representatives of participating 
specialist societies then voted in a Delphi process on these 
summarizing recommendations. The recommendations 
could already be adopted if more than 95% of the votes were 
Yes. The steering group reviewed these votes and comments 
forwarding them to the respective chapter authors who then 
prepared revisions of the recommendations where needed. 
The revised recommendations were presented, discussed, 
and adopted if necessary in a series of five online consensus 
conferences again with the lead authors of all chapters and 
the invited representatives of participating specialist socie-
ties. Following the National Institute of Health (NIH) guide-
lines and AWMF specifications, the degree of recommen-
dations were expressed as should, might, or can. A strong 
consensus was noted with > 95% of agreement, a consensus 
with > 75–95%, a majority agreement with > 50–75%, and 
no majority agreement with < 50% of those eligible to vote.

https://register.awmf.org/de/start
https://register.awmf.org/de/start
http://www.nice.org.uk
http://www.awmf.org
http://www.ean.org
https://pubmed.ncbi.nlm.nih.gov/
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Results

Appropriate time points for invasive therapies

Rationale: In the early stages of PD, symptoms are often 
manageable with oral treatments. However, as the dis-
ease progresses to later stages, additional and sometimes 
invasive treatment options are required. This chapter aims 
to explore the clinical scenarios that should prompt the 
evaluation of device-assisted therapies (DATs).

Background: Principal treatment options encompass 
a spectrum of pharmacological and interventional strate-
gies. Initial steps typically involve optimizing oral medi-
cations such as levodopa, with adjustments in dosage, 
frequency, and soluble formulation to manage unpredict-
able MFs throughout the day. Long-acting dopamine ago-
nists, on-demand subcutaneous apomorphine injections, 
and enzyme inhibitors to delay levodopa degradation are 
among further options to treat MF in advanced PD. When 
conventional treatments fail to provide sufficient control, 
invasive approaches should be considered. Tools like 
MANAGE-PD, MAF/D, and CEDEPA are screening and 
decision-making instruments designed to assist healthcare 
providers in managing PD symptoms. These tools may 
help to identify PD patients not adequately controlled with 
oral medication. These tools assess various symptoms, 
including motor fluctuations and functional impairments, 
to determine whether a patient could benefit from DAT, 
such as pump therapies or DBS [13–15].

Evidence base: The recommendation is based on two 
consensus papers and a cohort study where treatment cri-
teria were retrospectively evaluated in clinical practice 
[16–18].

Results: Invasive therapies should be considered 
when medication adjustments prove insufficient. Patients 
should be informed about these options early in the disease 
course, once MFs or tremor become clinically significant. 
Expert recommendations from programs like NAVIGATE 
PD suggest specific criteria for discussing invasive thera-
pies, emphasizing impaired QoL despite optimized medi-
cal treatment. Patients should be considered candidates 
for invasive therapies and referred to a specialist for these 
procedures when levodopa is required more than five times 
a day (with intake intervals of less than 3 h) or patients 
experience more than 2 h of Off phases or more than 1 h 
of (troublesome) dyskinesia during the day despite opti-
mized oral, sublingual, inhalative or transdermal treat-
ment. Indicators such as painful dystonia, Off freezing, 
and levodopa-dependent NMFs should also be considered. 
Invasive therapeutic interventions should also be consid-
ered in cases where a clinically and functionally relevant 
tremor is present. Symptom severity and impact on QoL 

should as well guide decision-making, prompting referral 
to movement disorders specialists regardless of disease 
duration [16, 17].

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline

 Patients with PD should be informed about invasive treatments 
once first MFs occur

 In patients with PD fulfilling at least one of the following criteria, 
the indication for an invasive procedure should be discussed:

≥ 5 intake times of levodopa /day (corresponding to intake intervals 
of < 3 h)

≥ 2 h Off symptoms/day
≥ 1 h troublesome dyskinesia/day
 Activities of daily living (ADL) and QoL (as measured by e.g., the 

PDQ-39) scores should regularly be included in the decision for 
or against an invasive therapy

 Adequate treatment episodes with levodopa in combination with a 
dopamine agonist, MAO-B and COMT inhibitor should have been 
ineffective prior to indicating for invasive therapies

 These criteria are neither necessary nor sufficient for the indication 
but may provide guidance

Consensus strength: 95.2%, strong consensus

Therapeutic options

Deep brain stimulation

Comparative effectiveness and safety of DBS (STN, GPi, 
VIM) vs. standard oral/transdermal therapy in PD man-
agement with MFs, with and without dyskinesias

Rationale: This section evaluates the safety and effec-
tiveness of DBS (STN, GPi, VIM) compared to standard 
therapies, focusing on outcomes in patients with and without 
dyskinesias, to guide treatment decisions in advanced PD.

Evidence base: Large randomized and controlled stud-
ies exist only for the comparison of STN-DBS with oral/
transdermal dopaminergic substitution therapy, with seven 
such studies identified [19–25]. One of these studies [21] 
investigated both STN and GPi targets without separating 
them in the data analysis; hence, this study is not considered 
for further evaluation. Similarly, another study [22] mixed 
GPi and STN, with 4 out of 178 patients receiving GPi-DBS. 
For GPi as a target, there are only comparative studies with 
STN [26, 27]. No studies were identified that tested VIM as 
a target against medication therapy in PD.

Results:
General outcome: Comparative studies between STN-

DBS and oral/transdermal replacement therapy showed sig-
nificant improvements in ADL and QoL in favor of STN-
DBS. These findings were accompanied by improvements 
in MFs well as an increased daily On time and decreased 
daily Off time while daily levodopa dosage was markedly 
reduced [19].
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Specific predictors of treatment success: Generally, DBS 
effectively alleviates levodopa-responsive symptoms of PD, 
whereas symptoms unresponsive to levodopa are typically 
not improved by DBS, except for PD tremor, which often 
responds better to DBS than medication alone [19]. Lev-
odopa-unresponsive symptoms in PD include motor and 
non-motor issues that improve less well with dopaminergic 
therapies, presumably due to non-dopaminergic pathways or 
advanced neurodegeneration. Motor symptoms include pos-
tural instability, gait disorders, speech and swallowing dif-
ficulties, and dystonia. Certain symptoms, such as freezing 
of gait (FOG), can exhibit different responses to levodopa 
treatment. For example, FOG may be levodopa-responsive 
(“Off freezing”) or levodopa-unresponsive (“On freezing”). 
Distinguishing between these subtypes is essential for eval-
uating their potential improvement with DBS. Non-motor 
symptoms encompass cognitive decline, autonomic dys-
function (e.g., orthostatic hypotension, constipation), sleep 
disturbances, sensory issues like pain, and neuropsychiatric 
symptoms such as apathy and depression. Since levodopa 
responsiveness is a strong predictor of symptom improve-
ment with DBS, the inclusion criteria for STN-DBS include 
insufficiently controlled MFs and significant improvement 
in motor symptoms, demonstrated by a standardized lev-
odopa challenge with at least a 33% improvement on the 
UPDRS-III [19]. Based on these results, further studies 
explored whether younger patients (i.e., < 60 years) with at 
least 4 years disease duration, MFs of less than 3 years and 
at least 50% motor improvement in a standardized levodopa 
challenge may also benefit from STN-DBS [20, 24]. These 
patients showed similar effect sizes as compared to the for-
mer studies [28]. Poorer preoperative scores on QoL scales 
in PD patients with shorter disease duration predicted bet-
ter postoperative outcomes [28], as did a better preopera-
tive response to levodopa [29]. Cognitive and apathy scales 
remained unaffected, with a potential positive impact on 
depression [29]. Patients > 70 years of age were typically 
excluded from the studies. Although the absolute age did not 
definitively impact postoperative outcomes, it is to suggest 
that the biological age should guide therapy decisions [28]. 
Exclusion criteria such as dementia (Mattis score > 130), 
uncontrolled psychosis/hallucinations or depression, sui-
cidal ideations, and neurosurgical contraindications must 
be carefully considered [30, 31]. High incidence of sui-
cidal thoughts or acts were reported, but rates did not dif-
fer between treatment groups, suggesting these may not be 
treatment-related effects. Procedural adverse events were 
nominally higher in the DBS group (~ 25%) compared to 
standard therapy groups [30, 31].

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 STN-DBS should be offered to patients with PD experiencing MFs 
with and without dyskinesia that cannot be adequately treated 
with conservative medication, provided there is at least a 33% 
improvement in motor symptoms using a standardized levodopa 
challenge

 STN-DBS should also be offered to PD patients younger than 
60 years and MFs of less than 3 years with at least 4 years disease 
duration and at least 50% motor improvement in a standardized 
levodopa challenge

 DBS is associated with a surgical procedure, and therefore entails 
special risks, which must be individually weighed against the 
benefits of the therapy

Consensus strength: 96.2%, strong consensus

Sustainability of clinical symptom control in PD man-
agement with MFs, with and without dyskinesias with DBS 
(STN, GPi, VIM) compared to oral/transdermal standard 
therapy in PD treatment

Rationale: Initially, DBS often results in a profound 
improvement of PD symptoms. This section explores the 
sustainability of symptom control with DBS (STN, GPi, 
VIM) compared to oral and transdermal therapies, evaluat-
ing sustained outcomes in patients with MFs.

Evidence base: The available randomized controlled 
studies on the effectiveness of STN-DBS compared to con-
servative medical therapy cover observation periods ranging 
from 3 to 24 months [19–25]. Several long-term open-label 
follow-up studies are summarized in various meta-analyses 
of STN-DBS [32, 33]. In addition, there is a follow-up study 
of 51 patients [63]. These open-label follow-ups mainly 
compare the effects of STN-DBS to the preoperative status 
in medication resp. motor Off rather than to a solely medi-
cally treated control group observed during the study period. 
For GPi-DBS, two long-term open-label follow-up studies 
have been identified, documenting outcomes over 5–6 years 
postoperatively [34, 35]. Regarding the randomized con-
trolled comparison studies of STN-DBS versus GPi-DBS 
[26, 27], open-label follow-ups extend to 3 years each [36, 
37]. Regarding VIM-DBS, a long-term uncontrolled open-
label follow-up study involving 38 patients has been identi-
fied, comparing motor functions and activities of daily living 
(UPDRS II and Schwab and England Scale) preoperatively 
to 6 years postoperatively [38].

Results: The mentioned meta-analyses encompassed 8 
studies over 5 years involving 273 patients and 3 studies 
spanning 8–10 years with 52 patients. Throughout these 
studies, there was a consistent improvement in UPDRS II 
(ADL) and III (motor function including tremor), although 
parameters like rigidity, bradykinesia, gait, and dopamin-
ergic medication worsened over time compared to preop-
erative baseline conditions. Despite the decline in certain 
motor symptoms, dyskinesias were minimally progressive, 
and rest tremor remained adequately controlled even after 
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8–10 years of follow-up. However, axial symptoms dete-
riorated compared to the preoperative medication Off state, 
with speech functions showing decline as early as 5 years 
post-surgery. Another recent meta-analysis [32] expanded 
on these findings, adding 7 additional studies involving a 
total of 551 patients over 5 years, with 93 patients followed 
for 8–11 years. Out of an initial 923 patients, 372 were 
unavailable for follow-up due to various reasons, including 
mortality unrelated to DBS. Despite these challenges, the 
meta-analysis concluded that STN-DBS can sustain motor 
function improvements for at least 10 years, with notable 
improvements in dyskinesias and MFs. Moreover, predic-
tors of favorable long-term outcomes with STN-DBS were 
identified, including accurate electrode placement within the 
sensorimotor region of the STN, younger age (< 65 years) at 
the time of surgery, higher baseline UPDRS scores in the Off 
state, severe MFs and significant gait disturbances during the 
Off medication period. Conversely, older age (> 65 years), 
particularly impacting axial motor functions, and longer dis-
ease duration were associated with poorer long-term prog-
nosis in terms of ADL. Regarding GPi-DBS, the available 
long-term data remain limited due to small sample sizes. 
Nonetheless, initial findings suggest sustained reductions 
in UPDRS III scores (motor function) post-surgery com-
pared to preoperative Off medication states, with continued 
improvements noted in dyskinesia control even after 5 years. 
However, several patients initially receiving GPi-DBS later 
underwent STN-DBS due to inadequate symptom control, 
highlighting variability in response.

Significance of GBA mutations: Evidence regarding 
the effects of DBS in patients with genetic mutations, such 
as Glucocerebrosidase A (GBA) is evolving, with studies 
highlighting both benefits and challenges. Pal et al. ana-
lyzed cognitive trajectories in GBA mutation carriers with 
and without STN-DBS [39]. Their findings suggest that 
the combination of GBA mutations and STN-DBS may 
accelerate cognitive decline. GBA+DBS+ patients exhib-
ited greater cognitive decline compared to both non-GBA 
carriers and GBA carriers without DBS, emphasizing the 
interaction between genetic predisposition and DBS on 
cognition. Avenali et al. examined long-term outcomes in 
a large Italian cohort, showing that GBA mutation carri-
ers (GBA-PD) experience significant motor improvement 
and reduced motor fluctuations, dyskinesias, and impulsive-
compulsive disorders post-DBS. However, cognitive decline 
became apparent after 3 years, with dementia rates at 5 years 
higher in GBA-PD (25%) than non-GBA-PD (11%) [40]. 
These studies highlight the potential of DBS as an effective 
treatment for motor symptoms of GBA-PD, but also empha-
size the need for careful cognitive monitoring. They open 
the discussion for pre-surgical genetic screening to provide 
patients with more individualized counseling regarding their 
expected clinical outcome with DBS therapy.

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 Current data indicate that STN-DBS is effective in reducing 
dyskinesia, MFs, rigidity, and tremor, as well as in decreasing 
dopaminergic substitution for at least 10 years. However, there 
is no evidence of delaying symptoms attributed to progressive 
neurodegeneration (e.g., dementia, axial symptoms, segmental 
akinesia)

 Comparable long-term data are not available for GPi-DBS
 VIM-DBS should not be used in the treatment of PD with MFs and 

dyskinesia
Consensus strength: 100%, strong consensus

Comparative effectiveness and safety of DBS (STN, GPi, 
VIM) vs. oral/transdermal standard therapy in treating PD 
with pharmacoresistant tremor

Rationale: Tremor in PD often shows a limited response 
to oral medications. This section assesses the effectiveness 
and safety of DBS (STN, GPi, VIM) compared to oral and 
transdermal therapies.

Background: PD tremor includes any pathological tremor 
in PD patients, with resting tremor occurring in about 75% 
of patients and many also experiencing action tremors.

Evidence base: Randomized, controlled studies com-
paring DBS with best medical treatment (BMT) are only 
available for STN-DBS. Six large RCTs and one smaller 
pilot RCT have been identified [19–25]. Only two RCTs [20, 
22] provide data specifically on the efficacy concerning PD 
tremor. Studies on the efficacy of GPi-DBS compared to 
BMT for pharmacoresistant PD tremor do not exist. The 
efficacy of VIM-DBS for pharmacoresistant PD tremor has 
only been investigated in uncontrolled studies.

Results: Specific efficacy data on PD tremor are detailed 
in only two RCTs [20, 22]. The PD-SURG study [22] 
found a significant improvement in PDQ-39 scores with 
STN-DBS plus BMT compared to BMT alone, particularly 
among patients primarily treated for tremor. In a pilot RCT 
[20], STN-DBS demonstrated marked tremor improve-
ment over 6 to 18 months compared to BMT. VIM-DBS for 
pharmacoresistant PD tremor has been explored primarily 
through uncontrolled studies [41–45], indicating substan-
tial tremor reduction and sustained benefits up to 21 years 
postoperatively.

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 STN-DBS should be offered to patients with PD who have severe 
tremor that cannot be adequately treated with conservative medi-
cation. Bilateral placement is preferable

 Unilateral or bilateral VIM-DBS and GPi-DBS are effective for PD 
tremor that cannot be controlled with medication and should be 
considered when STN-DBS is contraindicated

 The therapy involves a surgical procedure, and therefore carries 
specific risks that must be carefully balanced against its potential 
benefits

Consensus strength: 92.3%, consensus
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Sustainable clinical symptom control of DBS (STN, 
GPi, VIM) vs. oral/transdermal standard therapy in PD 
with pharmacoresistant tremor

Rationale: Achieving long-term control of pharmacore-
sistant tremor in PD is a critical challenge. This section 
examines the durability of clinical benefits with DBS (STN, 
GPi, VIM) compared to oral and transdermal therapies, pro-
viding insights into sustained management outcomes.

Background: DBS in the STN, GPi, and VIM target 
areas is effective for treating medication-resistant tremors in 
PD; this section aims to clarify how sustainable this clinical 
symptom control is compared to medication therapy.

Evidence base: There are no randomized controlled 
long-term data available on this issue. Regarding the sus-
tainability of DBS in the STN, GPi, and VIM targets, only 
uncontrolled follow-up observations exist, which do not 
compare against standard medication therapy but rather 
against preoperative symptom severity in the medication Off 
state (STN: [35, 46, 47]; GPi: [34, 35]), as well as comparing 
GPi-DBS versus STN-DBS [36, 37], and for VIM compar-
ing DBS On versus DBS Off, or against preoperative clinical 
status [38, 48–50].

Results:
STN: In two summaries of identical studies on open 

long-term data evaluating the efficacy of STN-DBS [46, 
47], 8 studies with a 5-year follow-up (273 patients) and 
3 studies with an 8–10-year follow-up (52 patients) are 
reported. Tremor control remained stable over the observa-
tion period, with an average reduction of approximately 80% 
compared to the preoperative state. In another recent meta-
analysis [32], 5 additional studies were identified, totaling 
477 patients with a 5-year follow-up, where tremor severity 
was separately assessed. Of these, 93 patients were clini-
cally followed for 8–11 years, showing an average reduc-
tion in tremor severity of 73% after 5 years and 74% after 
8–11 years, relative to the preoperative medication Off state. 
GPi: For the efficacy of GPi-DBS, long-term data are limited 
with very small sample sizes: 6 patients (initial cohort 11 
patients) [34] and 16 patients [35]. One study did not show 
significant tremor reduction after 3 years (nine patients) 
or 5 years (six patients) compared to DBS Off assessment 
points. In another study, tremor in the medication Off/DBS 
On state remained significantly reduced after 5–6 years 
(65.5% improvement) compared to the preoperative medi-
cation Off state. Comparative studies between STN-DBS and 
GPi-DBS [36, 37] only separated out tremor control in one 
study [36]. It showed no difference between STN and GPi 
in tremor control after 6 months in the medication Off/DBS 
On state, which remained stable over 36 months (blinded for 
STN vs. GPi, not for DBS Off vs. On).

VIM: For VIM-DBS, four studies were identified with 
open follow-ups ranging from 12  months to 21  years 
[38, 48–50]. Significant tremor suppression effects were 

consistently described: unilateral—67% improvement 
after 1 year, 85% after 5 years, 58% after 11–15 years, and 
63% after 16–21 years; bilateral—73% after 1 year, 64% 
after 6–7  years, 69% after 11–15  years, and 60% after 
16–21 years. Short-term improvements in daily activities 
were noted for only about 1-year postoperatively. Stimula-
tion-related side effects were attributed to electrode posi-
tioning in the target area (up to 45% paresthesia, up to 41% 
pain, up to 75% dysarthria, and up to 93% gait and balance 
disturbances), often reversible with DBS parameter adjust-
ments. Balanced stimulation programming in the tremor-
sensitive regions of VIM and the posterior subthalamic area 
(cZI; PSA) is typically required for achieving optimal tremor 
suppression without directly related adverse effects (ataxia, 
dysarthria, paresthesia).

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 STN-DBS remains effective in the long term, with relevance for at 
least 10 years in treating pharmacoresistant PD tremor. It should 
be offered to patients with pharmacoresistant PD tremor, consid-
ering contraindications, and preferably performed bilaterally

 GPi-DBS provides sustainable symptom control for PD tremor. The 
choice of target area in patients with PD and medically uncontrol-
lable tremor should consider their individual symptom profile

 Uni- or bilateral VIM-DBS is effective in the long term for medi-
cally uncontrollable Parkinson’s tremor and may be considered in 
cases where STN-DBS or GPi-DBS are contraindicated

Consensus strength: 100%, strong consensus

Comparative effectiveness of DBS targets (STN, 
GPi, VIM) in treating PD with MFs, with and without 
dyskinesias

Rationale: This section compares the effectiveness of 
DBS targeting the STN, GPi, and VIM in managing MFs in 
PD in patients with and without dyskinesias to determine the 
most effective approach for symptom control.

Background: Electrodes can be implanted in the STN, 
GPi, or VIM. The choice of target is individualized based 
on the primary symptoms and any specific contraindications.

Evidence base: Randomized and controlled studies 
allowing for a comparison of effectiveness between these 
targets are only identified for STN-DBS versus GPi-DBS 
[26, 27].

Results: In two RCTs [26, 27], patients were evenly 
assigned between target points: 299 and 125 patients 
were followed up for 2 years and 1 year, respectively. The 
NSTAPS study [27], conducted in the Netherlands, focused 
on primary endpoints including ADL and a composite 
score for cognition, mood, and behavior, showing no sig-
nificant differences between groups after 12 months. How-
ever, secondary outcomes suggested potential superiority 
of STN-DBS over GPi-DBS in reducing motor symptoms 
and improving ADL during medication Off states. GPi-
DBS demonstrated better control of dyskinesias during 
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medication On states, with no disparities noted in secondary 
measures like daily on-time without disabling dyskinesias. 
In the CSP486 study [26], the primary endpoint was the 
change in motor function (UPDRS III) due to DBS without 
medication after 24 months, which did not differ between 
STN-DBS and GPi-DBS groups. Secondary outcomes such 
as self-assessment of daily functions, QoL, cognitive func-
tions, and side effects also showed no differences. However, 
the improvement in motor symptoms with STN-DBS was 
modest at around 26%, contrasting with approximately 
50% improvements seen in other studies. Possible reasons 
include lower preoperative motor symptom improvement 
with dopaminergic medication or target blinding during 
postoperative care. STN-DBS achieved higher stimulation 
effectiveness along with reduced dopaminergic medica-
tion, reflected in a 43% reduction (NSTAPS study) or 31% 
reduction (CSP486 study), respectively. Complication rates 
from surgery or therapy did not differ significantly between 
targets. VIM-DBS for PD with MFs and dyskinesias lacks 
evidence from controlled studies, relying only on findings 
from uncontrolled investigations [41–45], where improve-
ments in symptoms like akinesia, rigidity, and dyskinesias 
have not been demonstrated.

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 STN-DBS should be preferred over GPi-DBS in the differential 
therapeutic considerations for PD with MFs with and without 
dyskinesias

 VIM-DBS should not be used in the treatment of PD with MFs 
with and without dyskinesias

 DBS involves a surgical procedure and associated risks that must 
be weighed individually against the potential benefits of the 
therapy

Consensus strength: 100%, strong consensus

Comparative effectiveness of DBS (STN, GPi, VIM) in 
treating PD with pharmacoresistant tremor

Rationale: Selecting the appropriate surgical target is 
crucial for optimizing therapy outcomes. This section exam-
ines the effectiveness of DBS targeting the STN, GPi, and 
VIM in treating pharmacoresistant tremor in PD, comparing 
outcomes across these different DBS targets.

Evidence base: A systematic review with meta-analysis 
[51] compared the efficacy of STN-DBS and GPi-DBS in 
the treatment of PD tremor, incorporating five RCTs [27, 
36, 52–54]. Randomized controlled studies comparing the 
efficacy of STN-DBS versus VIM-DBS do not exist.

Results: In a meta-analysis [51], the efficacy of STN-
DBS (N = 263) and GPi-DBS (N = 226) for Parkinson’s 
tremor was analyzed over a period of up to 60 months across 
489 patients from 5 randomized studies [27, 36, 52–54]. 
Additional unpublished data were obtained from two RCTs 
[27, 52] via the principal investigators and included in the 

analysis. The five RCTs underwent a random-effects model 
meta-analysis. A moderator variable analysis was conducted 
to assess differences in treatment effects between STN-DBS 
and GPi-DBS. In the overall comparison of DBS On ver-
sus DBS Off, a significant standardized mean difference of 
0.36 indicated that DBS reduces PD tremor with a mod-
erate effect size. The moderator variable analysis compar-
ing STN-DBS versus GPi-DBS revealed two significant 
standardized effect sizes: 0.38 for STN-DBS and 0.35 for 
GPi-DBS, which were not significantly different. However, 
across all five studies, STN-DBS tended to show a slightly 
stronger tremor-suppressing effect compared to GPi-DBS. 
Thus, the results of the meta-analysis indicate that there are 
no statistically significant differences between STN-DBS 
and GPi-DBS in the long-term improvement of Parkinson’s 
tremor. Randomized controlled studies comparing the effi-
cacy of STN-DBS versus VIM-DBS do not exist. The effi-
cacy of VIM-DBS for pharmacoresistant tremor has only 
been examined in uncontrolled studies (see above).

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 STN-DBS and GPi-DBS are equally effective in treating medica-
tion-resistant PD tremor. Therefore, the choice of target area for 
patients with PD and medication-resistant tremor should be made 
based on their overall individual symptom profile

 Unilateral or bilateral VIM-DBS is effective for medication-resist-
ant PD tremor in both, short- and long-term, and can be consid-
ered if there are contraindications for STN-DBS or GPi-DBS

Consensus strength: 96.2%, strong consensus

Effectiveness of DBS (STN, GPi) in treating non-motor 
symptoms and their fluctuations (sleep, pain, autonomic 
symptoms (excessive sweating, dysuria, gastrointestinal 
symptoms, orthostatic hypotension), neuropsychiatric 
symptoms (apathy, depression, anxiety, impulse control 
disorders, punding, dopamine dysregulation syndrome) 
compared to oral/transdermal standard therapy in PD

Rationale: This section examines the effectiveness of 
DBS (STN, GPi) in managing non-motor symptoms and 
their fluctuations, including sleep disturbances, pain, auto-
nomic dysfunction, and neuropsychiatric symptoms, com-
pared to oral and transdermal therapies in PD.

Background: Neuropsychiatric fluctuations, which affect 
autonomic and sensory functions alongside motor and cogni-
tive abilities, are common in PD but often overlooked due 
to limited assessment tools. Nevertheless, DBS, particularly 
STN-DBS, is widely used for motor complications and has 
shown some effects on mood, pain perception, and auto-
nomic functions.

Evidence base and results
Depression: RCTs comparing DBS with medication sug-

gest DBS does not significantly alter depression outcomes 
compared to medication alone [19–25]. Initial reports 
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indicated higher suicide risks among DBS patients, but sub-
sequent studies found no significant differences in suicidal 
tendencies compared to the general PD population [30, 31].

Apathy: Meta-analyses indicate a potential worsening of 
apathy under DBS compared to pre-surgical and medical 
therapy conditions [55]. Drapier et al. reported worsening 
of apathy under STN-DBS compared to a control group 
[56], while Valldeoriola et al. found no difference in apathy 
between STN-DBS and patient receiving levodopa/carbi-
dopa intestinal gel (LCIG) [57].

Neuropsychiatric fluctuations: DBS shows promise in 
reducing neuropsychiatric fluctuations, benefiting patients 
with early motor complications [58, 59].

Impulse control disorders (ICD): DBS may alleviate 
hyperdopaminergic behaviors and some forms of impulse 
control disorders [58–60], possibly because of reducing 
dopaminergic drug dosing. However, studies focusing solely 
on severe ICD cases are lacking [61].

Sleep: DBS improves overall sleep quality and reduces 
daytime fatigue compared to baseline and medical therapy 
controls [62–66].

Autonomic symptoms: DBS shows potential in improving 
certain autonomic symptoms like dysuria and thermoregu-
lation [62, 67, 68]. Clinical significance and differentiation 
from primary urological causes remain uncertain.

Pain: Studies suggest DBS provide moderate relief from 
PD-associated pain, especially Off dystonia [69–71].

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 Non-motor symptoms are currently not established indications for 
STN-DBS or GPi-DBS

 However, the presence of NMFs, impulse control disorders, and/or 
sleep disorders may support the consideration of STN-DBS in PD

Consensus strength: 100%, strong consensus

Continuous subcutaneous or intrajejunal delivery 
of dopaminergic drugs via pump therapies

Apomorphine

Effectiveness and safety of subcutaneous apomorphine 
pump therapy compared to oral/transdermal standard 
therapy in treating MFs and dyskinesias in PD

Rationale: This section assesses the effectiveness and 
safety of subcutaneous apomorphine pump therapy.

Background: Apomorphine is a mixed D1 and D2 ago-
nist, most potent among all dopamine agonists, with only 
4% oral bioavailability necessitating subcutaneous admin-
istration for full effect. Without requiring active transport 
mechanisms to reach the CNS, its motor effect, compared 
to levodopa, begins significantly faster (within 4–12 min) 

and lasts 45–60 min on average. Continuous subcutaneous 
infusion via a pump worn externally is used to smooth MFs, 
typically delivering apomorphine over 12–16 (occasionally 
up to 24) h into the abdominal or thigh subcutaneous tissue.

Evidence base: Although apomorphine has been used 
for over 30 years, this literature review identified only one 
randomized controlled trial and eight longitudinal cohort 
studies, with one exception having N < 50.

Results:
Effectiveness: The only randomized controlled trial, the 

TOLEDO study, examined the efficacy and safety of con-
tinuous apomorphine infusion compared to placebo in 106 
patients over 12 weeks [69]. The primary endpoint was the 
absolute reduction in daily Off time. Concomitant medica-
tion was reduced if dopaminergic adverse effects (e.g., dys-
kinesias) occurred. Up to 300 mg oral levodopa was allowed 
if needed. Apomorphine infusion (mean 4.68 [± 1.50] 
mg/h) reduced Off time by 37% compared to baseline and 
significantly by 1.89 [3.2–0.6] h/day compared to placebo 
(28% more than placebo). Among the secondary endpoints, 
apomorphine was significantly superior to placebo in the 
following categories: number of patients with > 2 h reduc-
tion in off time/day: − 33.4%; patient global impression of 
change: − 1.20; on-time without troublesome dyskinesias: 
− 1.97 h/day; reduction in levodopa equivalent daily dose: 
− 328.5 mg. Apomorphine was not superior in reducing 
oral levodopa dose/day, UPDRS III in on state, and QoL. In 
other uncontrolled, partially multicenter and partly prospec-
tive observational studies lasting up to 2 years, reductions in 
daily Off time ranging from 40 to 80% compared to baseline 
were observed among patients who continued therapy. Dys-
kinesias were reported in only some of the studies. Many 
patients reported overall improvement, and there were indi-
cations of a relationship between reduction in oral medica-
tion and the extent of dyskinesia improvement [70–75].

Safety: In terms of drug safety, the TOLEDO study found 
significantly more adverse events in the apomorphine group 
compared to placebo. The most common adverse events 
included subcutaneous nodules (44%), nausea and somno-
lence (each 22%), erythema at the infusion site (17%), dyski-
nesias (15%), headache (13%), and insomnia (11%). Adverse 
events led to study discontinuation within the 12-week 
observation period in 11% and to dose adjustment in 48% 
of patients [69]. During the open-label 52-week phase, the 
incidence of subcutaneous nodules increased (54%), while 
the frequency of other adverse events remained unchanged. 
The discontinuation rate due to adverse events was 16.7% 
[71]. In former uncontrolled cohort studies, adverse events 
were only inconsistently described. The most common were 
subcutaneous nodules (8–100%), nausea (7–27%), psycho-
sis (8–40%), hypomania/impulse control disorders (3–9%), 
somnolence (5–67%), symptomatic orthostatic hypoten-
sion (16–25%), and hemolytic anemia (1.2–1.5%). In the 
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open-label extension study of the TOLEDO trial over an 
additional 52 weeks, which included 84 out of the original 
106 patients and was completed by 59 patients, Off time was 
reduced by 53% compared to baseline (− 3.66 h/day) [71].

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 Apomorphine pump therapy should be used for the treatment of 
MFs to reduce Off phases and dyskinesia and prolong On time

 Due to the complex handling of this procedure and the frequency 
of complications, close patient monitoring is recommended, and it 
should only be started and supervised by physicians experienced 
in this therapeutic procedure

Consensus strength: 100%, strong consensus

Effectiveness and safety of subcutaneous apomorphine 
pump therapy compared to oral/transdermal standard 
therapy in treating non-motor PD symptoms and their 
fluctuations (sleep, pain, autonomic symptoms (excessive 
sweating, dysuria, gastrointestinal symptoms, orthostatic 
hypotension), neuropsychiatric symptoms (apathy, fatigue, 
depression, anxiety, impulse control disorders, punding, 
dopamine dysregulation syndrome)

Rationale: This section evaluates the effectiveness and 
safety of subcutaneous apomorphine pump therapy in treat-
ing non-motor symptoms such as sleep disturbances, pain, 
autonomic, and neuropsychiatric symptoms, highlighting its 
role in advanced PD care.

Background: Apomorphine, despite being the strong-
est and fastest-acting dopamine agonist with a short half-
life, may exacerbate complications, particularly in patients 
with orthostatic hypotension, impulse control disorders, or 
a history of psychosis. However, it can also be beneficial, 
especially in managing affective disorders associated with 
advanced PD.

Evidence base: There are no randomized controlled trials 
or large cohort studies addressing this question. Three longi-
tudinal observational studies and one review examined the 
effects of subcutaneous apomorphine infusion on the Non-
Motor Symptom Scale (NMSS) compared to LCIG or DBS.

Results: NMSS data from the TOLEDO study [69] have 
not yet been published. Several open observational and case-
based studies involving a total of 93 patients have shown 
that subcutaneous apomorphine infusion can have favora-
ble effects on both the NMSS total score and specific non-
motor subdomains [64, 72, 73]. In summary, over a treat-
ment period of 6–12 months, the NMSS total score improved 
across all domains, with particular emphasis on the domains 
of sleep/fatigue, mood/apathy, attention/cognition, percep-
tion/hallucinations, attention/memory, and other symptoms. 
The least effects were observed in the cardiovascular and 
sexual function domains. Notably, LCIG showed relatively 
larger effects in almost all domains in the EuroInf studies 
[64, 72, 73]. Although apomorphine, as a potent D1 and D2 

receptor agonist, inherently carries a greater risk of halluci-
nations compared to levodopa, favorable effects in reducing 
mild visual hallucinations have been reported with apomor-
phine infusion. Possible reasons for this include reduction in 
concomitant medication, including polypharmacy, younger 
patient age, and shorter disease duration (62.2 years and 
13.5 years, respectively). In addition, a potential favorable 
psychotropic effect of apomorphine, based on its structural 
similarity to piperidine, has been postulated [76].

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 Continuous subcutaneous apomorphine infusion can alleviate non-
motor symptoms measured in the NMSS (sleep/fatigue and mood/
apathy, attention/cognition as well as perception/hallucinations 
and attention/memory and other symptoms)

 These effects can be used as possible determinants in the selection 
of patients for apomorphine infusion therapy

Consensus strength: 95.3%, strong consensus

Sustainability of clinical symptom control: subcutane-
ous apomorphine pump therapy vs. standard oral/transder-
mal therapy in PD with MFs, including dyskinesia

Rationale: This section examines the long-term sustain-
ability of symptom control with subcutaneous apomorphine 
pump therapy compared to standard oral and transdermal 
therapies in managing MFs, including dyskinesias, in 
advanced PD.

Background: The transition to an invasive therapy rep-
resents a significant change from previous oral medication 
for the patient, aiming for sustainability, with subsequent 
evaluation focusing on its long-term effectiveness and safety.

Evidence base: One randomized controlled study with 
an observation period of 18 months was found, along with 
eigth longitudinal cohort studies.

Results: In the open-label phase of the TOLEDO study, 
which included an observation period of 18 months, the 
mean reduction in Off time was − 3.66 h (− 45%), with 
moderate reduction in bothersome dyskinesias. The oral 
levodopa dose was reduced by approximately 25%, and levo-
dopa equivalent dose by about one third. 30% of participants 
did not complete the study, with 17% discontinuing due to 
adverse events such as skin reactions, fatigue, autoimmune 
hemolysis, delirium, dementia, attention deficit, lymphoma, 
nausea, panic attacks, and somnolence [77]. Larger long-
term studies are lacking. Prospective open-label studies 
mostly involved small patient numbers (< 50 patients) with 
observation periods ranging from at least 1.5 years (average 
40 months) [64, 71, 73, 76, 78, 79]. They describe a stable 
motor effect with Off time reduction of 25–50% compared 
to baseline, but dropout rates ranged from 20 to 83%. An 
open-label study involving 114 patients treated with sub-
cutaneous apomorphine infusions for at least 6 months 
examined reasons for treatment discontinuation [80]. The 
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mean duration until discontinuation was 2.42 ± 2.23 years 
(0.5–9.2). Severe dyskinesias recurring in 38% were the pri-
mary reason for discontinuation; about 16% (mostly elderly 
patients) stopped due to cognitive difficulties, approximately 
14% due to skin reactions, about 12% due to postural insta-
bility, and 11% each due to hallucinations or depression/
anxiety. The longest prospective study over a 5-year period 
included 12 patients (average age at study start 58 years, dis-
ease duration 9 years): Only 2 of 12 patients (17%) were still 
receiving apomorphine after 5 years. The mean treatment 
duration was 30 months. Three patients had died between 
years 2–5 (not related to treatment), 5 discontinued treat-
ments between years 3–5 due to recurrence of severe fluctua-
tions (severe dyskinesias and Off periods) and subsequently 
received DBS or LCIG, 2 discontinued in the second year 
due to skin nodules, and 1 was lost to follow-up. Among 
those who continued treatment, Off periods remained con-
trolled, but the duration and disability due to dyskinesias did 
not significantly improve [81].

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 The efficacy of subcutaneous apomorphine pump therapy for the 
treatment of MFs has been proven for a period of 18 months, in 
individual cases up to 5 years

 The risk of treatment discontinuation increases with increasing 
treatment duration (on average after 2.5 years)

Consensus strength: 95%, consensus

Levodopa–carbidopa intestinal gel

Effectiveness and safety of levodopa–carbidopa intestinal 
gel pump therapy compared to oral/transdermal standard 
therapy in treating MFs and dyskinesias in PD

Rationale: This chapter examines the clinical utility, effi-
cacy, and safety profile of levodopa–carbidopa intestinal gel 
(LCIG) therapy for PD, highlighting its ability to provide 
continuous dopaminergic stimulation and reduce motor fluc-
tuations, while addressing the potential complications and 
adverse events associated with its use.

Background: LCIG is a highly concentrated formula-
tion of levodopa and the decarboxylase inhibitor carbi-
dopa (20/5 mg/ml) infused directly into the jejunum via a 
pump system, achieving steady plasma levels for continu-
ous stimulation of striatal dopamine receptors. The system 
includes a portable pump, a cassette containing 100 ml of 
LCIG (equivalent to 2000/500 mg levodopa/carbidopa), 
and a percutaneous endoscopic gastrostomy with jejunal 
extension (PEG-J). In some preparations, the catechol-O-
methyltransferase inhibitor entacapone is included, and this 
preparation is referred to as LECIG. Treatment initiation 
typically necessitates a hospital stay, often starting with a 

naso-jejunal tube phase to assess efficacy before proceeding 
to PEG-J placement.

Evidence base: In total, 2 randomized controlled trials 
and 18 longitudinal larger cohort studies were identified.

Results:
Effectiveness: Two randomized controlled trials exam-

ining the motor effect of LCIG were identified [82, 83]. 
A Swedish multicenter randomized controlled crossover 
study involving 21 patients over 3 weeks showed a signifi-
cant reduction in severe Off periods with LCIG compared 
to oral therapy. There was no difference in the occurrence 
of dyskinesias. UPDRS part II and IV were significantly 
better in the LCIG group, while part III during motor On 
was unchanged [82, 83]. The highest quality study was a 
double-blind, double-dummy randomized controlled trial 
over 12 weeks with 37 patients in the LCIG group and 34 
patients on oral therapy. Off periods in the LCIG group 
were reduced from 6.3 to 2.3 h/day (64% reduction) and 
significantly better by −1.91 h/day compared to oral therapy. 
On time without troublesome dyskinesias was significantly 
greater than in the oral group. UPDRS part II was signifi-
cantly reduced in the LCIG group compared to orally treated 
patients, while UPDRS part III was unchanged in motor On 
[84]. Several open-label studies confirm efficacy in reducing 
On time without troublesome dyskinesias [73, 85–89, 97]. 
Improvement and stability are maintained in several studies 
over at least 12 months. Most open-label studies lacked a 
control group, and many were retrospective or did not recruit 
patients consecutively.

Safety: Regarding drug safety, in the placebo-controlled 
double-dummy study, adverse events occurred in 95% of the 
LCIG group and 100% of the comparator group; the major-
ity occurred within the first weeks, with nearly all (89%) 
associated with PEG-J insertion (abdominal pain, nausea, 
constipation, flatulence, erythema at the incision site). Three 
patients discontinued the study within the 12-week observa-
tion period due to adverse effects: one in the LCIG group 
(psychosis) and two in the comparator group (peritonitis/
pneumonia and wound secretion) [84]. The open-label GLO-
RIA registry, following 208 patients on a stable treatment 
regimen for 24 months, documented that 69% experienced 
at least one adverse event, 45% at least one serious event, 
and 10% discontinued treatment due to a serious event. Seri-
ous events leading to treatment discontinuation included 
PEG-J-associated problems (3%), neuropsychiatric compli-
cations (1%), and polyneuropathies (0.5%). Other adverse 
events were disease-related (aspiration, pneumonia, disease 
progression) or attributable to other conditions (intracra-
nial bleeding, bile duct carcinoma). PEG-J complications 
such as dislocations, occlusions, pump malfunctions, stoma 
infections occurred in 21%, neuropsychiatric complications 
(delirium, hallucinations, depression) in 10%, weight loss in 
6%, and polyneuropathies in 11.5% [98]. The cause of newly 
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occurring polyneuropathies under LCIG, with an incidence 
exceeding 10% in other series, is not conclusively clarified. 
Several studies have observed a decline in vitamin B6, B12, 
and folate levels during LCIG, which are substrates in levo-
dopa metabolism [99–102]. Particularly, vitamin B6 rapidly 
declines with high doses of LCIG [102].

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 LCIG can significantly increase On time without troublesome dys-
kinesias and significantly reduce Off time; thus; it should be used 
to treat MFs inadequately controlled orally

 LCIG treatment is relatively safe, with the most common compli-
cations being associated to PEG-J

 Prior to treatment initiation, electrophysiological neuropathy 
screening and assessment of vitamins B6, B12, and folate levels, 
as well as body weight, should be conducted and monitored dur-
ing treatment, and substituted if necessary

 Due to the complexity of this procedure and the frequency of 
complications, close patient monitoring is recommended, and ini-
tiation and management should only be undertaken by physicians 
experienced in this therapy

Consensus strength: 100%, strong consensus

Effectiveness of levodopa–carbidopa intestinal gel pump 
therapy compared to oral/transdermal standard therapy in 
treating non-motor symptoms and their fluctuations in PD

Rationale: This section assesses the effectiveness of 
LCIG pump therapy compared to oral and transdermal thera-
pies in managing non-motor symptoms and their fluctuations 
in advanced PD.

Background: The frequency and severity of non-motor 
symptoms increase throughout the course of PD, signifi-
cantly impacting QoL. LCIG therapy may affect these non-
motor symptoms associated with PD.

Evidence base: In total, 12 longitudinal larger cohort 
studies and 2 review articles were identified.

Results: Until 2015, eight open-label studies confirmed 
that LCIG reduces the total score of NMSS over treatment 
periods ranging from 6 to 25 months, with specific posi-
tive effects on sleep and autonomic dysfunction, particularly 
gastrointestinal symptoms [73, 87, 90, 93, 96, 97, 103, 104]. 
Recent review articles have also confirmed LCIG’s generally 
positive effect on non-motor symptoms [105, 106]. Stud-
ies included in these reviews were the GLORIA registry 
which demonstrated beneficial effects of LCIG on sleep dis-
turbance, apathy, and gastrointestinal dysfunction in NMSS 
after 24 months of treatment [85], and the interim analysis 
of the DUOGLOBE study showing overall improvement 
in NMSS total score after 6 months [18]. Other open-label 
studies with a 6-month observation period found improve-
ments in the overall NMSS score, with specific effects in 
domains such as cardiovascular symptoms, attention/mem-
ory, urological symptoms [73, 93]. According to data from 
the GLORIA registry, the baseline NMSS score can predict 

the non-motor response to LCIG treatment after 2 years 
of treatment [107]. LCIG demonstrated greater effects in 
almost every domain compared to a non-randomized cohort 
receiving apomorphine infusions in the EuroInf studies [64, 
73].

Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 LCIG can improve non-motor symptoms such as sleep distur-
bances, apathy, gastrointestinal dysfunction, cardiovascular symp-
toms, attention/memory, urological symptoms in PD patients with 
orally uncontrollable MFs

 These effects can be considered as potential determinants when 
selecting patients for LCIG treatment

Consensus strength: 100%, strong consensus

Long-term clinical symptom control of levodopa–car-
bidopa intestinal gel pump therapy compared to oral/
transdermal standard therapy in PD with MFs including 
dyskinesias

Rationale: This chapter reviews the long-term efficacy 
and safety of invasive therapies for PD, and discusses chal-
lenges such as treatment discontinuation due to device-
related issues, cognitive decline, or lack of efficacy in axial 
symptoms.

Background: Invasive therapies represent a significant 
change for patients from their previous oral medication and 
should ideally be sustainable, so that the studies on long-
term efficacy and safety are summarized here.

Evidence base: In total, 15 longitudinal larger cohort 
studies were identified.

Results: Randomized controlled long-term studies do not 
exist. Open studies involving cumulatively > 600 patients 
over at least 12–24 months report a stable effect in reducing 
Off time and On time with disabling dyskinesias without 
significant increase in MFs over this period [18, 85, 87, 88, 
91, 92, 95, 96, 98, 103, 108]. The most common reasons 
for discontinuation of treatment are recurrent PEG-J dis-
locations [109, 110], primarily occurring in delirious or 
demented patients [111]. Approximately 35–50% of treat-
ment discontinuations occur within the first year. In an Ital-
ian study of 905 patients with a mean treatment duration of 
6 years, an overall discontinuation rate of 25.7% was found, 
with 9.5% discontinuing within the first year. Reasons for 
discontinuation within the first year were predominantly 
lack of effectiveness on axial symptoms (gait disturbance 
and falls) [112]; additional factors for early discontinuation 
included socio-medical factors (living alone) [111]. The 
most common reasons for late treatment discontinuation 
were PEG-J-related issues (stoma infections/tube disloca-
tions), difficulties operating the system by elderly patients/
family members, and cognitive decline associated with PD 
[112].
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Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 LCIG is effective in the long-term reduction of motor fluctuations 
and should be used as a permanent treatment

 The average duration of treatment in large long-term trials is 
6 years

 Before starting treatment, patients should be given detailed 
information about the expected effects of treatment, particularly 
with regard to non-dopa-responsive symptoms such as postural 
instability, falls, and ON freezing

Consensus strength: 94.5%, consensus

Ablative therapies

Efficacy and safety of ablative procedures (thermal coag-
ulation, Gamma/CyberKnife, focused ultrasound) versus 
oral/transdermal standard therapy in treating PD motor 
symptoms

Rationale: This chapter provides a comprehensive over-
view of ablative procedures for PD, highlighting their evo-
lution, evidence base, and limitations, and comparing them 
to DBS, which remains the preferred treatment due to its 
established efficacy, safety, and adjustability, while empha-
sizing MRgFUS as a promising but still emerging therapy 
option for select cases.

Background: Ablative procedures have in common that 
they induce localized lesions in specific brain structures such 
as the VIM, STN, or GPi. Historically used extensively for 
advanced PD, popularity of these procedures declined with 
the advent of DBS [113]. Radiofrequency-induced heat-
ing and stereotactic gamma radiation were initial methods, 
with MRgFUS now emerging as a less invasive alternative. 
MRgFUS allows precise targeting and real-time temperature 
monitoring, minimizing side effects compared to previous 
methods like radiofrequency and radiation [114–116].

Evidence base: In contrast to DBS, which has been 
extensively studied with comparative trials [29, 36, 117], 
randomized trials directly comparing drug therapy with 
ablative procedures are scarce. Randomized, controlled 
trials for radio frequency thermolesion pallidotomy exist, 
involving 36 and 37 patients, respectively [118, 119]. How-
ever, there are no randomized studies for thalamotomy or 
subthalamotomy using radiofrequency ablation. MRgFUS 
thalamotomy has been investigated in both controlled stud-
ies [120] and case series [121, 122], focusing on tremor-
dominant PD. Recently, separate randomized, double-blind 
controlled trials have explored MRgFUS-guided unilateral 
STN lesion and unilateral pallidotomy in unilateral dominant 
PD [123, 124]. Direct comparisons between DBS and abla-
tive procedures are limited. For instance, Schuurman et al. 
demonstrated that both DBS of the VIM and thalamotomy 
are similarly effective in controlling medication-resistant 

tremors, with DBS showing fewer side effects and greater 
functional improvement. However, data regarding pallidot-
omy and subthalamotomy are insufficient to determine their 
comparative effectiveness and safety against DBS. There is 
also no evidence suggesting a preference for ablative proce-
dures for specific patient groups. Due to better controllability 
and a clearer understanding of its effects and side effects [29, 
36, 117], DBS remains the preferred choice over ablative 
procedures (such as radiofrequency lesion and radiosurgery) 
for treating PD. A definitive comparison with MRgFUS is 
currently hindered by insufficient data. A recent meta-anal-
ysis suggests that all targeted procedures have comparable 
tremor-suppressive effects [125]. Controlled, randomized 
studies exist for MRgFUS ablation of both the STN and GPi 
[123, 124].

Results: Unlike DBS, which has been extensively com-
pared in studies [29, 36, 117], ablative procedures lack 
robust randomized comparisons with drug therapies. Pal-
lidotomy, thalamotomy, and MRgFUS thalamotomy have 
shown efficacy in controlling PD symptoms, especially 
tremor, with some studies indicating improvements in qual-
ity of life and activities of daily living [123, 124]. Long-
term data for pallidotomy suggest sustained benefits in 
treating PD motor symptoms but with higher rates of side 
effects compared to DBS [126–129]. Studies directly com-
paring DBS with ablative procedures are sparse. Evidence 
suggests VIM-DBS and thalamotomy are comparable for 
tremor suppression, with VIM-DBS associated with fewer 
side effects and greater functional improvement [130]. How-
ever, the overall safety and efficacy of MRgFUS compared 
to DBS remain unclear due to limited data [29, 36, 117]. 
DBS offers advantages in adjustability and long-term man-
agement compared to ablative procedures, whereas the lat-
ter provide irreversible structural changes. While MRgFUS 
shows promise especially in tremor reduction, particularly 
for patients unsuitable for DBS, current evidence does not 
support a clear preference for ablative procedures over DBS 
[29, 36, 117]. Thus, DBS remains the preferred choice due 
to its established efficacy and safety profile in PD treatment. 
MRgFUS in VIM can currently be recommended to a lim-
ited extent for unilateral PD with tremor dominance. How-
ever, the indication for VIM ablation in PD tremor should be 
made with caution, as good tremor suppression can also be 
achieved with DBS or lesion of the STN. Moreover, initially 
tremor-dominant PD syndromes may change to an equiva-
lent type over the course of the disease which bradykinetic 
symptoms or MFs will not therapeutically respond to VIM 
ablation. It is currently unclear whether MRgFUS of the 
STN improves PD-associated tremor sufficiently and sustain-
ably compared to DBS.
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Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline

 In contrast to DBS, for which high-quality comparative studies 
are available, there are few or no randomized studies on ablative 
procedures for PD. Except in the case of contraindications, DBS 
should currently be recommended as the first option

 Thalamotomy and subthalamotomy using radiofrequency ablation 
are no longer recommended for PD. Treatment using radiosurgical 
procedures (Gamma-Knife, CyberKnife) is not recommended due 
to the lack of studies and the potentially high risk of complica-
tions

 Pallidotomy may be considered in advanced PD if there are drug 
fluctuations that are difficult to control and treatment with DBS or 
pump therapy is not an option

 For the treatment of PD tremor with unilateral MRgFUS, there is 
already approval in Europe for all targets (VIM, STN, GPi) but 
this procedure should still only be carried out in the context of 
studies or registries

 The indication for MRgFUS VIM ablation in PD tremor should 
be made with caution, as good tremor suppression can also be 
achieved with DBS or lesion of the STN. Moreover, initially 
tremor-dominant PD syndromes may change to an equivalent type 
over the course of the disease which bradykinetic symptoms or 
MFs will not therapeutically respond to VIM ablation

 All ablative procedures recommended in this guideline should only 
be used unilaterally

Consensus strength: 95.8% to 100%, strong consensus

Differential indication

Differential indications and contraindications of invasive 
therapies in the treatment of PD

Rationale: Invasive therapies, such as DBS and pump thera-
pies, offer significant benefits for advanced PD patients who 
do not respond to oral treatments. However, these therapies 
are not suitable for all patients. Differential indications and 
contraindications are crucial for identifying which individu-
als may relevantly benefit from invasive treatments and who 
may face increased risks. This section explores the factors 
that guide the decision-making process, ensuring that inva-
sive therapies are used appropriately based on individual 
patient characteristics, disease progression, and overall 
health.

Background: All the procedures described above, par-
ticularly DBS and pump therapies, are suitable for managing 
MFs inadequately controlled with oral medication. Tremor 
is more effectively controlled with DBS compared to pump 
therapies. NMS may vary widely in advanced PD with MFs 
and some of them may even preclude certain invasive pro-
cedures. This chapter will present the evidence regarding 
differential indications, contraindications, and exclusion 
criteria for the various invasive therapies.

Evidence base: For the evaluation of DBS, there are 
several controlled, randomized studies against standard 
(medication-based) treatment [29, 36, 117]. Regarding the 

assessment of the effectiveness of LCIG therapy, there are 
two randomized, controlled studies against standard treat-
ment (best medical treatment, BMT), with one study (DYS-
COVER) published only on Clinical Trials [84]. There is an 
observational study for LECIG therapy [131]. For CSFLI 
therapy, there is a controlled, randomized study against 
BMT [132], showing an improvement in motor fluctuations/
dyskinesias comparable to DBS. There are only open-label 
studies available for direct comparison among pump thera-
pies and between pump therapies and DBS [64, 70, 81, 94, 
133–135]. For the comparison of LCIG and DBS [57, 94, 
133, 136], only open-label studies are available: there are 
non-randomized prospective observational studies compar-
ing LCIG with CSAI [73] and comparing LCIG, LECIG, 
CSAI, and DBS [64]. In addition, there is a randomized, 
open-label, crossover study comparing LCIG and CSAI 
[137]. The evidence for the combination of therapies relies 
on five mostly retrospective case series that exclusively 
address combinations of DBS with pump therapies. There 
are no prospective or controlled studies available.

Results: General or procedure-specific aspects must be 
considered individually to determine the most effective and 
well-tolerated procedure. Infusion therapies, for instance, 
are effective only during administration periods, typically 
halted at night, whereas DBS and ablative procedures main-
tain effectiveness throughout day and night. Patient prefer-
ence is also pivotal. A fundamental consideration in treat-
ment selection is whether dopamine overdose significantly 
contributes to the patient’s symptom profile (e.g., psychiatric 
side effects of dopaminergic therapy). Among invasive ther-
apies, only STN-DBS allows for reduction of dopaminergic 
therapy, potentially favoring DBS in such cases. Conversely, 
hallucinations, often linked to reduced frontal brain func-
tion, can negatively predict long-term DBS outcomes [138]. 
CSAI and LCIG are equivalent to the effectiveness of DBS 
in the treatment of motor symptoms, with the exception of 
tremor with possibly better results from DBS [64, 70, 81, 
94, 133–135]. Currently, DBS has the most comprehensive 
evidence base, including long-term data [139]. The assess-
ment of non-motor symptoms is equally important, as each 
procedure can affect these symptoms differently [64, 140] 
(Table 1).

Motor symptoms: DBS has proven to be superior to other 
methods in the treatment of levodopa-refractory tremor, with 
STN- and GPi-DBS being similarly effective in suppressing 
tremors [36]. There are no controlled, randomized studies 
which compare DBS with pump therapies or comparing dif-
ferent pump therapies with each other [57, 64, 70, 73, 81, 
94, 133, 134, 136, 137]. Overall, all assessed procedures 
notably improve MFs/dyskinesia, with LCIG and DBS 
demonstrating slightly stronger effects on Off-time duration 
compared to CSAI when considering weighted open-label 
studies [141].
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Table 1   The influence of different interventions on important cross-dimensional outcome parameters and on motor symptoms

NMS reflect the categories of the Non-Motor Symptom Scale (NMSS), which is commonly used to assess non-motor symptoms in studies [187]
− No efficacy or deterioration in open or controlled; studies
? No studies or no positive expert consensus
+ improved according to expert opinion or open studies
++ improved according to controlled studies
CSAI continuous subcutaneous apomorphine infusion, LCIG levodopa–carbidopa intestinal gel, LECIG levodopa–entacapone–carbidopa intesti-
nal gel, CSFLI continuous subcutaneous foslevodopa/foscarbidopa infusion, DBS deep brain stimulation, MRgFUS magnetic resonance-guided 
focused ultrasound, MS motor symptoms, NMS non-motor symptoms, PDQ-39 Parkinson’s Disease Questionnaire-39, PDQ-8 Parkinson’s Dis-
ease Questionnaire-8

Item Domain CSAI LCIG LECIG CSFLI DBS MRgFUS (unilateral)

Quality of life (PDQ-39; PDQ-
8)

QOL −
[72, 171]

 + 
[141]

? ? ++
[19, 24]

++
[120, 172, 173]

Activities of daily living (ADL; 
UPDRS II)

ADL  + 
[174]

 + 
[98]

? ++
[132]

++
[175–179]

++
[123]
(STN)
n.s
[124]
(GPi)

Motor function in Off; Med Off; 
(UPDRS III); Off time

MS ++
[69]
 + 
[77]

++
[84]

 + 
[131]

++
[132]

++
[175–179]

++
[123]
(STN)
[124]
(Gpi)
[120]
(VIM)

Dyskinesia and fluctuations 
(UPDRS IV)

MS ++
[69]
 + 
[77]

++
[84]

 + 
[131]

++
[132]

++
[175–179]

++
[124]
(Gpi)

Cardiovascular (incl falls/
orthostasis)

NMS3 +/−
[72, 73]

 + 
[180]

? ? − ?

Sleep/fatigue NMS ++
[145]
 + 
[64, 72, 73]

+/−
[64, 73, 85, 93, 

96, 150–152]

? ?  + 
[64, 181–183]

?

Mood/cognition NMS  + 
[64, 72, 73]

+/−
[64, 73, 93, 96]

? ? ++
[64]

?

Perception problems/hallucina-
tions

NMS  + 
[64, 72, 73, 184]

+/−
[64, 73, 93, 96]

? ?  + 
[64, 182]

?

Attention/memory NMS  + 
[64, 72, 73, 184]

+/−
[64, 73, 93, 96]

? ?  + 
[29, 36, 117]

?

Gastrointestinal functions NMS  + 
[72, 73]

+/−
[64]

? ?  + 
[182, 185]
[29, 36, 117, 182, 185]

?

Urogenital functions NMS  + 
[72, 73, 76, 186]

+/−
[73, 93, 96]

? ?  + 
[29, 36, 117, 182, 185]
[182, 185]

?

Sexual functions NMS −
[72, 73]

+/−
[73, 93, 96]

? ?  + 
[29, 36, 117, 182, 185]
[182, 185]

?

Miscellaneous NMS  + 
[64, 72]

+/−
[64]

? ?  + 
[29, 36, 117, 182, 185]
[182, 185]

?
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More recently and formally after the appearance of the 
German guidelines, continuous subcutaneous foslevodopa/
foscarbidopa infusion (CSFLI) therapy has been approved 
2023 in Europe and initial assessments of its efficacy are 
available by now. CSFLI is a novel formulation of levodopa 
(LD) and carbidopa prodrugs, delivered via a continuous 
subcutaneous infusion. A phase 1 open-label, randomized, 
2-period crossover study comparing the pharmacokinetics 
(PK) of CSFLI to LCIG demonstrated stable plasma concen-
trations with CSFLI [142]. The safety and efficacy of CSFLI 
were assessed in two key clinical trials. The first, a 12-week 
phase 3, randomized, double-blind trial, compared CSFLI 
with oral immediate-release levodopa–carbidopa (LD/CD) 
[132]. The results showed that CSFLI significantly increased 
“On” time without troublesome dyskinesia (mean difference 
1.75 h) and reduced “Off” time (mean difference −1.79 h) 
compared to oral LD/CD. The CSFLI group also had higher 
rates of infusion-site adverse events (erythema, pain, celluli-
tis), but these were mostly non-serious and mild to moderate 
in severity. Despite a higher discontinuation rate (22% vs. 
1% for oral LD/CD), the overall benefit–risk profile favored 
CSFLI. A second, 52-week open-label trial further evalu-
ated the long-term safety and efficacy of CSFLI in patients 
with advanced PD [143]. Over 52 weeks, patients receiv-
ing CSFLI showed significant improvements in normalized 
“On” time without troublesome dyskinesia (mean change 
3.8 h) and “Off” time (mean change −3.5 h). In addition, 
the percentage of patients experiencing morning akinesia 
decreased from 77.7% at baseline to 27.8% at week 52. 
Improvements in sleep quality and quality of life were also 
observed. Although infusion-site reactions remained the 
most common adverse event, the treatment was generally 
well-tolerated. Future studies will need to assess its long-
term efficacy and comparative effectiveness with other 
advanced therapies.

Non-motor symptoms: All procedures improve non-
motor symptoms in general, though prospective non-rand-
omized follow-up studies suggest minor differences among 
these symptoms. In the EuroInf 2 study, direct comparisons 
of LCIG, CSAI, and DBS showed significant improvements 
in various non-motor symptom domains. DBS effects on 
non-motor symptoms depend on electrode placement and 
stimulation parameters [144]. High-quality data also sup-
port procedure-specific effects on non-motor symptoms. For 
example, CSAI has been shown to improve motor symptoms, 
quality of life, sleep, mood, gastrointestinal, and urogenital 
symptoms, with notable improvements in sleep and quality 
of life [72, 145–149]. LCIG studies suggest efficacy in treat-
ing sleep disorders [85, 93, 150–152].

Symptom constellations that may argue against an inter-
vention (absolute/relative contraindications) guide decision-
making, as some conditions may preclude intracerebral or 
intra-abdominal procedures. These may include severe brain 

atrophy (DBS) or severe diabetes with frequent infections 
(LCIG, LECIG). Interdisciplinary consensus is crucial in such 
cases, facilitated by interdisciplinary indication conferences.

Age: Previously defined age limits for invasive therapies, 
particularly DBS, are no longer appropriate and should be sup-
planted by individual considerations of operability, therapy 
need, and expected outcomes.

Cognition: Cognitive assessment is essential due to the 
common occurrence of cognitive disorders in PD patients. 
While certain neuropsychological instruments have been pro-
posed, they lack robust data support. In principle, the prospects 
for motor improvement are not generally worse with cognitive 
impairment. Therapeutic decisions depend on the severity of 
the symptoms and the intervention [153]. Long-term data on 
DBS’s cognitive impact are mixed, with concerns over specific 
domains [154–156]. However, some studies report neutral or 
positive cognitive effects [22, 157, 158]. Overall, DBS should 
be avoided in patients with clear dementia according to rec-
ognized clinical criteria.

Psychiatric diseases: Severe psychiatric disorders like 
depression or psychosis may exclude DBS candidacy [159]. 
In the case of hallucinations, it should be considered whether 
these are levodopa-induced or independent symptoms. Limited 
evidence suggests DBS may alleviate impulse control disor-
ders (ICD) [58, 59, 160]. LCIG and CSAI also show promise 
in managing ICD [73, 161–163].

Gait and balance disorders: The clinical efficacy of DBS 
hinges on levodopa responsiveness. Levodopa-independent 
gait and balance disorders cannot be treated with DBS or pump 
therapies [164, 165].

Combination of invasive therapies in the treatment of PD

In some cases, combining procedures may be necessary to 
treat recurring fluctuations or dyskinesia. Studies have dem-
onstrated potential benefits, though cognitive decline and indi-
vidual challenges necessitate careful consideration [166–170]. 
Data on specific combinations like LCIG and apomorphine 
or ablative procedures with DBS are sparse. A recent study 
(PMID: 37914414) suggests that in patients with PD, modi-
fying or combining advanced treatments can improve motor 
function and subjective symptom reporting. This finding sup-
ports the potential benefits of combining treatment options, 
though further research is needed to confirm and refine this 
approach.
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Based on the available evidence, the following recommendations 
were agreed upon in the German PD Guideline:

 In principle, invasive procedures should particularly be considered 
if there are impairing levodopa-dependent fluctuations that cannot 
be sufficiently improved by optimizing oral/transdermal therapy

 The decision in favor of a particular procedure should consider not 
only the effectiveness on motor symptoms, but also non-motor 
symptoms and patient characteristics as well as the patient’s indi-
vidual preference (Table 1), whereby factors should be weighted 
on a case-by-case basis and discussed in an interdisciplinary case 
conference together with the patient

 In the event of MF recurrence following an invasive procedure, the 
primary objective is to identify the underlying cause. In selected 
cases, a combination with a second invasive procedure may be 
considered

 The choice of follow-up procedure must be based on the individual 
patient profile at the time of the decision for a second procedure

Consensus strength: 100%, strong consensus
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