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Integration of multiple machine learning
approaches develops a gene mutation-
based classifier for accurate
immunotherapy outcomes

Check for updates

Run Shi1,9, Jing Sun2,3,9, Zhaokai Zhou4,9, Meiqi Shi5, Xin Wang5, Zhaojia Gao6, Tianyu Zhao7, Minglun Li8 &
Yongqian Shu 1

In addition to traditional biomarkers like PD-(L)1 expression and tumor mutation burden (TMB), more
reliable methods for predicting immune checkpoint blockade (ICB) response in cancer patients are
urgently needed. This study utilized multiple machine learning approaches on nonsynonymous
mutations to identify key mutations that are most significantly correlated to ICB response. We
proposed a classifier, Gene mutation-based Predictive Signature (GPS), to categorize patients based
on their predicted response and clinical outcomes post-ICB therapy. GPSoutperformed conventional
predictors when validated in independent cohorts. Multi-omics analysis and multiplex
immunohistochemistry (mIHC) revealed insights into tumor immunogenicity, immune responses, and
the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) across different GPS groups.
Finally, we validated distinct responses of different GPS samples to ICB in an ex-vivo tumor organoid-
PBMC co-culture model. Overall, our findings highlight a simple, robust classifier for accurate ICB
response prediction, which could reduce costs, shorten testing times, and facilitate clinical
implementation.

In recent years, the advent of immune checkpoint blockade (ICB) targeting
programmed death-1 (PD-1), programmed death ligand-1 (PD-L1), and
cytotoxic T lymphocyte-associated protein-4 (CTLA-4) has revolutionized
cancer therapy and offered tremendous clinical benefits for patients with
various types of cancer who had failed from first-line treatments1–3. How-
ever, only a small subset (~20–30%) of cancer patients respond to ICB
therapy, and the underlying causes of insensitivity to ICB remain elusive4,5.

In the present clinical practice, PD-(L)1 expression and tumor muta-
tion burden (TMB) serve as two major predictive biomarkers for ICB
therapy, but bothhave obvious shortcomings. PD-(L)1protein expression is
mainly evaluated using immunohistochemistry (IHC). However, the
staining result is susceptible to both spatial and temporal heterogeneity of

tumor samples and subjective judgment of pathologists, which would
induce an inevitable bias of assessment6. Paradoxically, some cancer patients
with high PD-L1 expression unexpectedly show resistance to ICB, yet some
patients with negative PD-L1 still respond to ICB therapy7.

As for TMB, which reflects the somatic mutation burden including
synonymous and nonsynonymous variants of a tumor sample, has been
proposed as another promising biomarker for ICB therapy over recent
years8,9. For example, TMB has been shown as a favorable biomarker for
response to frontline treatment with nivolumab together with ipilimumab
in patients with advanced non-small cell lung cancer (NSCLC)7. However,
the assessment of TMB still stagnates at the level of “quantity ofmutations”,
that is to say, the total number of all detectedmutations10. Actually, different
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mutation variants contribute diversely to neoantigen generation and tumor
immunogenicity. Some variants, such as EGFR mutation and KEAP1-
driven co-mutations, even attenuate immune activation as well as ICB
response11,12, but suchmutations are still included in the calculation ofTMB.
Unsurprisingly, McGrail et al. reported that TMB fails to guide ICB treat-
ment across all cancer types, especially those cancers where neoantigen load
is not associated with CD8+ T cell infiltration13. Moreover, accumulating
evidence indicates that technical approaches and bioinformatic inter-
pretations vary across different sequencing platforms, which increases the
difficulty of TMB harmonization14.

Apart fromPD-(L)1 expression andTMB, recent studies have reported
that some specific variants such as EGFR mutation, KEAP1 mutation, and
POLE/POLD1 co-mutations can affect ICB response by regulating the
tumor immunemicroenvironment andwould serve as potential biomarkers
to predict outcomes of immunotherapy11,12,15,16. However, the discriminative
capacity of one single mutational index is limited, which is incapable of
identifying more eligible patients who may benefit from ICB or not. In a
word, an accurate selection of cancer patients for ICB therapy is vital but
limited to the current situation of unsatisfactory biomarkers and nonuni-
form testing standards.

In this study, we attempted to move beyond conventional biomarkers
such as PD-(L)1 and TMB, and further identify an optimum ensemble of
critical mutations that are determinant of ICB response. After balancing
potential confounders and removing ineligible mutations, an NSCLC-ICB
cohort sequencedwith theMSK-IMPACTpanelwas trained usingmultiple
machine learning approaches, and a Gene mutation-based Predictive Sig-
nature (GPS) was proposed to classify overall patients into three levels with
distinct treatment responses and clinical outcomes. Subsequently, GPS was
validated in external independent cohorts undergoing ICB therapy, and the
predictive capacity of GPS was compared with conventional predictors.
Based on analyses of multi-omics data and mIHC, we comprehensively
investigated the intrinsic tumor immunogenicity, extrinsic immune
response, and characteristics of tumor microenvironment (TME) in lung
adenocarcinoma (LUAD) across differentGPS groups. Finally, we validated
distinct responses of different GPS samples to ICB in an ex-vivo tumor
organoid-PBMC co-culture model.

Results
A gene mutation-based predictive signature was developed to
predict ICB response
The thematic design of this study is shown in Fig. 1a. Firstly, a total of 179
LUAD-ICB patients with MSK-IMPACT sequencing data and clin-
icopathological features were extracted from the Rizvi cohort, and the
propensity score matching (PSM) algorithm was implemented to balance
potential confounders including sex, age, smoking, lines of Tx, IRB, gene
panel, and treatment type between responders and non-responders. After
removing the synonymous and low-frequency mutations, a nonsynon-
ymousmutationmatrix of 165 sampleswith 47geneswas generated for data
training using multiple machine learning approaches (NB, RF, SVM, LDA,
and XGBoost). Finally, candidate genes that overlap in the outputs of these
machine learning approaches were considered most important to ICB
response. In detail, after the PSM algorithm, 55DCB and 110NDB patients
were matched, and 14 unmatched NDB patients were excluded (Fig. 1b).
Based on a feature selection method of RFE and a training framework of
LOOCV, four machine learning approaches including NB, RF, SVM and
LDA were combined to screen for the most effective candidate genes. The
optimal ensemble of candidates was determined when the predictive
accuracy of each model reached the maximum (Fig. 1c), and three genes
named STK11, FAT1, and ERBB4 overlapped in the intersection of outputs.
In addition, the XGBoost algorithm was performed to evaluate the
importance of each gene included for training, and we observed that the
three GPS-genes dominate the top positions (second, third, and fourth,
respectively) in the importance ranking (Fig. 1d). A funnel graphically
illustrates the screening process of the optimal candidates which compose
GPS (Fig. 1e). In order to explain the impact of each mutation on ICB

therapy, we further calculated the SHAP value for each candidate gene, and
STK11mutation exerts a negative influence on ICB (rankfirst among all the
mutations), while FAT1 and ERBB4 mutations exert positive influences
(Fig. 1f).

A mutational heatmap of the three GPS-genes was depicted to display
theirmutation frequencies and variant details in theNDB andDCBpatients
(Fig. 1g). Univariate logistic regression analysis was performed to calculate
the OR and 95% CI for each gene, and the forest plot demonstrates that
patients with STK11 mutation are prone to NDB while patients with FAT1
or ERBB4 tend to experience DCB (Fig. 1h), which accords with the dis-
tributionof SHAPvalues of the threeGPS-genes.According to the definition
of GPS mentioned above, all samples were classified into three levels: GPS-
pos (G1), GPS-zero (G2), and GPS-neg (G3), and the DCB rate was pro-
gressively and significantly decreased along with the descending GPS level
(p = 0.0005; Fig. 1i). Furthermore, the Kaplan-Meier curve demonstrated
that significant difference of PFSwas observed among different GPS groups,
with GPS-pos patients exhibiting the best prognosis (p = 0.0217; Fig. 1j).

The predictive capacity of GPS was compared with conventional
clinicopathological features. Fifty-nine LUAD samples with PD-L1 TPS
were extracted from the training cohort, and we observed that PD-L1 TPS
did not correlate with ICB efficacy with a borderline significance
(p = 0.0532). In contrast, GPS score significantly correlates with ICB effi-
cacy, showing a Fisher’s exact test p-value of 0.0266 (Fig. 1k). In the mul-
tivariate logistic regression analysis, GPS serves as the only significant
predictor for ICB outcome (OR= 2.627, 95% CI = 1.172–5.887, p = 0.019)
after adjusting with various clinicopathological variables including age, sex,
smoking, IRB, treatment type, EGFR state, TP53/KRAS co-mutation,
KEAP1 state, KEAP1/STK11 co-mutation, and TMB (Fig. 1l).

GPS was validated in an independent NSCLC-ICB cohort
The predictive capacity of GPS was subsequently tested in an independent
NSCLC-ICB cohort (the Hellmann cohort treated with PD-1 plus CTLA-4
blockade), which contains 59 non-squamous (non-SQ) and 16 squamous
(SQ) NSCLC patients with corresponding responses to ICB and survival
follow-up.Amutation landscape of STK11, FAT1, andERBB4was depicted
to illustrate their mutation frequencies and variant details, and we observed
that STK11 is more frequently mutated in NDB patients, while FAT1 and
ERBB4 are more frequently mutated in DCB patients (Fig. 2a). Likewise,
DCB rate progressively and significantly decreased from GPS-pos to GPS-
zero to GPS-neg in the testing cohort (Fig. 2b). After removing 7 NE
patients, a stacked plot illustrated the distribution of BORs among different
groups (Fig. 2c). Surprisingly, ORR of GPS-pos patients achieves 100%
(7/7), while ORR of GPS-neg patients is 0% (0/9) (Fig. 2d). These results
indicated that GPS retained an extremely accurate prediction for ICB
therapy in the testing cohort. Expectably, a significant difference in PFS was
observed among different groups (p = 0.0009; Fig. 2e).

Subsequently, a total of 70 NSCLC patients with PD-L1 TPS were
extracted from the testing cohort for comparative analysis (5 patients
were excluded because their PD-L1 staining scores are not recorded), and
Fisher’s exact test showed that PD-L1 TPS neither significantly correlates
with ICB response in all 70 NSCLC patients (p = 0.3728; upper panel of
Fig. 2f), nor in the EGFR-WT NSCLC subgroup (p = 0.2384; upper panel
of Fig. 2g), nor in the non-SQ NSCLC subgroup (p = 0.4528; upper panel
of Fig. 2h). In contrast, GPS score was significantly correlated with ICB
response in all the above-mentioned subsets: p-value of 0.0129 for all 70
NSCLC patients, 0.0167 for EGFR-WT NSCLC subgroup, and 0.0289 for
non-SQ NSCLC subgroup (lower panels of Fig. 2f–h). Furthermore,
multivariate logistic and Cox regression analyses were separately per-
formed on GPS along with various clinicopathological variables includ-
ing age, sex, smoking, histology, ECOG status, EGFR state, TP53/KRAS
co-mutation, KEAP1 state, KEAP1/STK11 co-mutation, and TMB.
Among all the included variables, GPS serves as not only a significant
predictor for ICB response (OR = 11.10, 95% CI = 1.115–110.6,
p = 0.040) but also an independent factor for PFS (HR = 0.386, 95%
CI = 0.161–0.926, p = 0.033) in the testing NSCLC-ICB cohort (Fig. 2i).
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Fig. 1 | A Gene mutation-based Predictive Signature (GPS) was developed to
predict ICB response. aThe thematic design of this study. bAfter the balance of PSM
algorithm, 55 DCB and 110 NDB patients were matched and 14 unmatched NDB
patients were excluded. c In four machine learning models (NB, RF, SVM, and LDA),
the most optimal candidates were determined when the predictive accuracy of each
model reaches the maximum. d The XGBoost algorithm confirmed that the three
GPS-genes dominate the top positions (second, third, and fourth) in the importance
ranking. e A funnel illustrates the screening process of the optimal candidates com-
posing GPS. f The SHAP value was calculated for each candidate gene respectively.
STK11 mutation exerts a negative influence on ICB, while FAT1 and ERBB4 muta-
tions exert positive influences. g A mutational heatmap of the three GPS-genes was
depicted todisplay theirmutation frequencies and variant details in theNDBandDCB

patients.hA forest plot of odds ratio demonstrates that patients with STK11mutation
are prone toNDBwhile patients with FAT1 or ERBB4 tend to experienceDCB, which
accords with the distribution of SHAP values of the three GPS-genes. i The DCB rate
progressively and significantly decreased along with the descending GPS level
(p = 0.0005). j The Kaplan-Meier curve demonstrated that a significant difference of
PFSwas observed among differentGPS groups, withG1 (GPS-pos) patients exhibiting
the best prognosis (p = 0.0217). k In the training cohort, PD-L1 TPS did not correlate
with ICB efficacy with a borderline significance (p = 0.0532). In contrast, GPS level
significantly correlates with ICB efficacy, showing a Fisher’s exact test p-value of
0.0266. lMultivariate logistic regression analysis demonstrated that GPS serves as the
only significant predictor for ICB outcome (OR = 2.627, 95% CI = 1.172–5.887,
p = 0.019) after adjusting with various clinicopathological variables. *p < 0.05.
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To further investigate whether GPS could accurately predict responses
to ICB in NSCLC subgroups, we merged the training and testing cohorts
and extracted eligible patients including high-TMBand combinational ICB,
respectively. We observed that GPS retained its prognostic capacity in both
subgroups: p = 0.0053 for patients with TMB> 10 muts/Mb (Fig. S1a);
p = 0.0002 for patients who received combinational ICB (Fig. S1b).

To exclude the possibility of randomness in the predictive ability of
GPS, we randomly selected 3 genes (excluding STK11, FAT1, and ERBB4)
from the remaining genes, repeated this process 100 times, and performed
univariate logistic regression analysis for these 100 models in the validation
set. As a result, 13 models showed significant p-values (p < 0.05). Subse-
quently, multivariate logistic regression analysis was conducted for the 13

https://doi.org/10.1038/s41698-025-00842-8 Article

npj Precision Oncology |            (2025) 9:54 4

www.nature.com/npjprecisiononcology


models respectively (adjusted with age, sex, histology, ECOG, EGFR, etc.),
and none of these models demonstrated significance (all p > 0.05). This
result further confirms the superiority of theGPS signature.More details are
in the Supplementary File.

Mutation landscapesofGPSgenesweredepictedandcompared
in different NSCLC cohorts
To comprehensively depict the mutational characteristics of the 3 GPS-
genes in NSCLC along with different clinicopathological features such as
sex, smoking status, ethnicity, and histology, data from four large-scale
NSCLC cohorts [OrigiMed-NSCLC (n = 1954), OncoSG-LUAD (n = 302),
MSK-NSCLC (n = 1423), TCGA-NSCLC (n = 1144)] were adopted for
further investigation. OncoPrints of putative driver genes including TP53,
EGFR, and KRAS, as well as 3-GPS genes were plotted to depict their
mutational characteristics and variant details, and we observed that the 3
GPS-genesweremutually exclusive in each cohort (Fig. 3a–d). The hotspots
of the three GPS-genes in LUAD and LUSC samples from TCGA were
shown in lollipop plots (Fig. S2). Furthermore, we performed multivariate
logistic regression analysis on the 3 GPS-genes in the meta-cohort
(n = 4208) merged from the four cohorts. The forest plot illustrated that
all the 3 GPS-genes are significantly mutated in smokers, and particularly,
STK11 is more frequently mutated in the Caucasian ethnicity. In the aspect
of the pathological subtype, STK11 is more frequently mutated in LUAD,
while the mutation of FAT1 is more visible in LUSC (Fig. 3e).

Then we compared TMB in LUAD among different GPS groups, and
some similar distributions were observed in each cohort: (i) Significant
difference of TMB level was observed among distinct GPS groups; (ii) GPS-
pos LUADs always display a high level of TMB, while GPS-zero LUADs
display the lowest TMB; (iii)GPS-neg LUADs,which tend tonot respond to
ICB therapy, always display significantly higher TMB than GPS-zero
samples in each cohort, even significantly higher than GPS-pos samples in
the OncoSG cohort (Fig. 3f). These findings indicated that TMB is just a
rough indicator for ICB therapy in the pan-LUAD assessment and cannot
accurately reflect the potential response to ICB in some specific subgroups.

Next, from the TCGA project, we extracted a total of 488 LUAD
patients with detailed information of age, sex, pathological stage (pstage),
TMB, GPS and survival follow-up (PFS and OS), and multivariate Cox
regression analysis demonstrated that pstage acts as the only one inde-
pendent risk factor for bothPFSandOS,whileGPS fails to exert a significant
influence on prognosis of LUAD patients who did not receive ICB therapy
(Fig. 3g, h).

GPS correlates with CD8+ T Cell infiltration and retains its pre-
dictive capacity in a pan-cancer ICB cohort
With the representative marker genes for each cancer type generated from
Wilcox rank-sum test, t-SNE dimensionality reductionwas applied to show
the distribution and dissimilarity of all the 32 solid malignancies (Fig. 4a).
Among the pan-cancer samples, the 3 GPS-genes display a similar dis-
tribution of nonsynonymous mutation with the “category I” cancer types
which are more responsive to ICB therapy (Fig. 4b). In detail, an integrated
mutational spectrum was plotted to intuitively display the mutation fre-
quencies and distributions of the 3 GPS-genes in pan-cancer with “cancer
categories (I or II)”, andwe observed that cancer types with highmutational
frequencies of the 3 GPS-genes were enriched in “category I” (Fig. 4c).

STK11, the only “ICB-resistant” gene in GPS, is specifically and most fre-
quently mutated in LUAD (arrow point) compared to other cancer types
(Fig. 4c). The Cibersort algorithm was applied to estimate the relative
proportions of 22 tumor-infiltrating immune cell types for each sample of
“category I” cancers, and a stacked barplot and a Sankey diagram were
combined to depict their immune cell distribution and classification
towards different GPS groups (Fig. 4d). In addition, four algorithms
including quanTIseq, TIMER, MCP-counter, and Cibersort were used to
estimate the absolute infiltration of CD8+ T cell for each sample, and we
found CD8+ T cell infiltration was progressively and significantly elevated
fromGPS-neg toGPS-zero toGPS-pos group among all “category I” cancer
samples (Fig. 4e). The ssGSEA enrichment scores of 18 immunotherapy-
predicted pathways and 23 steps involved in the cancer-immunity cycle
were quantified for all “category I” cancer samples, anda substantial number
of immunotherapy-predicted pathways and immunity-related processes
showed significant differences among different GPS groups (Fig. 4f).

In the Samstein cohort of 1661 patients with various cancer types who
received ICB therapy, significant differences of overall survivalwere observed
among different GPS groups, and GPS-pos patients showed the best prog-
nosis while GPS-neg patients the worst (Fig. 4g). However, the TMB level is
significantly higher in GPS-neg patients compared to GPS-zero ones (Fig.
4g). Furthermore, after removing 89 patientswith cancer of unknowprimary
(CUP) and one patient without age registration, multivariate Cox regression
analysis was performed on the remaining 1,571 patients with nine major
cancer types, and a forest plot illustrated thatGPS remains as an independent
risk factor forprognosiswith theadjustmentof variouspotential confounders
[GPS-zero vs GPS-pos: HR = 1.365 (1.089–1.711), p = 0.007; GPS-neg vs
GPS-pos: HR = 1.607 (1.113–2.320), p = 0.011; Fig. 4h].

Distinct patterns of genomic alterations and immunogenomic
features were observed among different GPS groups
Next, we attempted to decipher themutational patterns of LUAD and their
relationship with GPS. A lego plot illustrates that 6 major categories of
single-nucleotide variant (SNV) patterns were defined in the TCGA-LUAD
cohort with 96 trinucleotide permutations (Fig. S3a), and a pie chart shows
the overall mutational pattern was mainly dominated by C > T transition
and C >A transversion (Fig. S3b). An optimal k factorization of 4 was
selected (Fig. S3c), and four corresponding mutation signatures (smoking,
APOBEC, dMMR, and aging) were identified andmapped in the COSMIC
database (Fig. S3d). Using the hierarchical clustering, the TCGA-LUAD
cohort was classified into four signature groups (SGs) with the relative
abundance of above-mentioned mutational signatures (Fig. S3e). A com-
prehensive heatmap including mutation count, TiTv alteration, mutation
signature, SG, tumor purity, age, gender, pT, pN, pstage, smoking statuswas
plotted to display the distribution characteristics of these parameters among
different GPS groups (Fig. 5a). Specifically, GPS-neg LUAD samples
exhibited the highest tumor purity, while GPS-pos ones showed the highest
levels inMSI score, HRD score, TNB, TMB andmutation abundance of the
smoking signature (Fig. 5b). The cumulative proportion curves demon-
strated that both clonal and sub-clonal counts were significantly elevated in
the GPS-pos samples compared to GPS-neg (Fig. 5c), which indicates a
higher intratumor heterogeneity (ITH) in GPS-pos LUAD.

We also investigated the CNV profiles of GPS-neg and -pos samples,
and we found that 3q arm changes the most among all chromosome arms,

Fig. 2 | GPS was validated in an independent NSCLC-ICB cohort. a A mutation
landscape was depicted to illustrate the mutation frequencies and variant details of
STK11, FAT1, and ERBB4 in an independent NSCLC-ICB cohort. STK11 is more
frequently mutated in NDB patients, while FAT1 and ERBB4 are more frequently
mutated in DCB patients. b The DCB rate progressively and significantly decreased
from GPS-pos to GPS-zero to GPS-neg patients. c After removing 7 NE patients, a
stacked plot illustrated the distribution of BOR among different groups. d ORR of
GPS-pos patients achieves 100% (7/7), while ORR of GPS-neg patients is 0% (0/9).
e Significant difference of PFS was observed among different GPS groups
(p = 0.0009). f–h PD-L1 TPS neither significantly correlates with ICB response in all

70 NSCLC patients (p = 0.3728; upper of f), nor in the EGFR-WTNSCLC subgroup
(p = 0.2384; upper of g), nor in the non-SQ NSCLC subgroup (p = 0.4528; upper of
h). In contrast, GPS score was significantly correlated with ICB response in all the
above-mentioned subsets: p-value of 0.0129 for all 70 NSCLC patients, 0.0167 for
EGFR-WT NSCLC subgroup, and 0.0289 for non-SQ NSCLC subgroup (lower of
f–h). iMultivariate regression analyses demonstrated that GPS serves as not only a
significant predictor for ICB response (OR = 11.10, 95% CI = 1.115–110.6,
p = 0.040) but also an independent factor for PFS (HR = 0.386, 95%
CI = 0.161–0.926, p = 0.033). *p < 0.05.
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which may contribute to the genomic instability-induced resistance to ICB
therapy (Fig. S4a). CNV frequency with gain in red and loss in blue was
shown in Fig. S4b, and clear differences of chromosomal aberrations in
some specific regions were observed between the two groups. Furthermore,
we calculated the focal and arm-level CNV frequencies for each sample and
compared thembetween theGPS-neg and -pos groups, andweobserved the
burden of focal copy number gain is significantly elevated in the GPS-pos
group (Fig. S4c).

Higher GPS score indicates higher tumor immunogenicity
in LUAD
We further investigated the intrinsic tumor immunogenicity and extrinsic
immune response of LUADs across different GPS groups. The expression
patterns of five representative immune checkpoints (ICs) including CD274,

PDCD1, CTLA4, TIGIT, and LAG3 were compared among different GPS
groups, and we found GPS-pos LUADs always exhibited the highest
expression level of ICs while GPS-neg the lowest (Fig. S5a). Similarly, GPS-
neg LUADs showed the lowest ssGSEA scores of inhibitory ICs, stimulatory
ICs, antigenpresentation (AP), T cell-inflamedpattern and cytolytic activity
(CYT), while theGPS-pos samples generally exhibited high levels (Fig. S5b).
Relevant radar charts intuitively illustrated the average z-scores of ICs
expression patterns and immunogenic characteristics across different GPS
groups (Fig. 5d, e). Furthermore, the absolute infiltrations of four repre-
sentative lymphocytes (B, Treg, CD4+, and CD8+ T cells) and M1 macro-
phageswere estimated and compared among differentGPS groups, and one
result especially attracted attention: the infiltrating abundance of CD8+ T
cell is progressively and significantly elevated as GPS level increases (Fig.
S5c), indicating that GPS significantly correlates with adaptive immunity

Fig. 3 | Mutation landscapes of GPS genes were depicted and compared in dif-
ferent NSCLC cohorts.To comprehensively depict themutational characteristics of
the 3 GPS-genes in NSCLC along with different clinicopathological features such as
sex, smoking status, ethnicity, and histology, four large-scale NSCLC cohorts
[OrigiMed-NSCLC (n = 1954), OncoSG-LUAD (n = 302),MSK-NSCLC (n = 1423),
TCGA-NSCLC (n = 1144)] were enrolled for further investigation. a–d OncoPrint
of putative driver genes including TP53, EGFR, and KRAS and 3-GPS genes was
plotted to depict their mutational characteristics and variant details in each cohort.
eMultivariate logistic regression analysis was performed on the 3 GPS-genes in the
meta-cohort (n = 4208)merged from the four cohorts. The forest plot illustrated that
all the 3GPS-genes are significantlymutated in smokers. Particularly, STK11 ismore
frequently mutated in the Caucasian ethnicity. In the aspect of pathological subtype,
STK11 is more frequently mutated in LUAD, while FAT1 is more frequently

mutated in LUSC. f Similar distribution of TMB was observed in each cohort: (i)
Significant difference in TMB level was observed among distinct GPS groups; (ii)
GPS-pos LUADs always display a high level of TMB, while GPS-zero LUADs display
the lowest TMB; (iii) GPS-neg LUADs, which tend to be resistant to ICB therapy,
always display significantly higher TMB thanGPS-zero samples in each cohort, even
significantly higher than GPS-pos samples in the OncoSG cohort. g, hA total of 488
LUAD patients with detailed information of age, sex, pathological stage (pstage),
TMB, GPS, and survival follow-up (PFS and OS) were extracted from the TCGA
project, and multivariate Cox regression analysis demonstrated that pstage acts as
the only one independent risk factor for both PFS and OS. In comparison, GPS fails
to exert a significant influence on prognosis of LUAD patients who did not receive
ICB therapy. ***p < 0.001.
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especially CD8+ T activation and infiltration. Furthermore, a relevant radar
chart illustrated the infiltrating characteristics of the five immune cells
across different GPS groups (Fig. 5f).

Using the unsupervised hierarchical clustering, the TCGA-LUAD
cohort was divided into three distinct immune patterns labeled “Cold”,

“Mix”, and “Hot” based on the ssGSEA score matrix of 29 documented
immune signatures (Fig. 5g). A stacked plot illustrated that “Hot” tumors
occupy a proportion of 51.4% in theGPS-pos group,while the proportion of
“Hot” in theGPS-neg is only 25.8%as a comparison (Chi2 test p = 0.006; Fig.
5h). Subsequently, differentially expressed genes (DEGs) between GPS-neg

Fig. 4 | GPS correlates with CD8+ T cell infiltration and retains its predictive
capacity in a pan-cancer ICB cohort. a The t-SNE dimensionality reduction was
applied to show the distribution and dissimilarity of all the 32 solid malignancies.
b Among the pan-cancer samples, the 3 GPS-genes display a similar distribution of
nonsynonymous mutation with the “category I” cancer types which are more
responsive to ICB therapy. c An integrated mutational spectrum was plotted to
intuitively display the mutation frequencies and distributions of the 3 GPS-genes in
pan-cancer with “cancer categories (I or II)”. STK11, the only “ICB-resistant” gene in
GPS, is specifically and most frequently mutated in LUAD (arrow point) compared
to other cancer types. d A stacked barplot and a Sankey diagram were combined to
depict their immune cell distribution and classification towards different GPS
groups. e Four algorithms demonstrated CD8+ T cell infiltration was progressively

and significantly elevated from GPS-neg to GPS-zero to GPS-pos group among all
“category I” cancer samples. f A substantial number of immunotherapy-predicted
pathways and immunity-related processes showed significant differences among
different GPS groups. g In the Samstein cohort of 1,661 patients with various cancer
types who received ICB therapy, significant differences of overall survival were
observed among different GPS groups, and GPS-pos patients showed the best
prognosis while GPS-neg patients the worst. h A forest plot of adjusted HRs illu-
strated that GPS remains as an independent risk factor for prognosis with the
adjustment of various potential confounders [GPS-zero vs GPS-pos: HR = 1.365
(1.089–1.711), p = 0.007; GPS-neg vs GPS-pos: HR = 1.607 (1.113–2.320),
p = 0.011]. *p < 0.05; **p < 0.01; ***p < 0.001.
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and -pos groups were identified, and GOBP analysis demonstrated that
these DEGs are mainly enriched in “Immune effector process”, “Myeloid
leukocyte activation”, “Chemotaxis”, “Response to cytokine stimulus” and
“Inflammatory response” with inherent linkage and crosstalk (Fig. 5i).
Meanwhile, GSEA showed that top five hallmarks which change the most
between GPS-neg and -pos groups are annotated as “IFN-γ response”,

“EMT”, “IFN-α response”, “E2F targets” and “Inflammatory response”
(Fig. 5j).

Two subsets labeled “Tex-enriched” and “Tex-deficient” were defined
with the median expressions of TIM-3 (HAVCR2) and PD-1 (PDCD1) in
the TCGA-LUAD cohort (Fig. 5k), and GSEA was applied to ensure the
most significant difference between the two subsets is the enrichment of
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exhausted T cells (Fig. 5l). We found that the proportion of Tex-enriched
samples is progressively elevated asGPS level increases (Chi2 test p = 0.0006;
Fig. 5m). Particularly, T-bet (TBX21), which is considered as a marker for
the Tex intermediate (Texint) subset, shows a similar trend with Tex pro-
portion among different GPS groups (Fig. 5n). Furthermore, the SubMap
analysis revealed that theGPS-pos group showedahigh likelihoodof clinical
benefit from ICB therapy using a NSCLC-ICB cohort (GSE135222 treated
with anti-PD-1/PD-L1) as a reference (adjusted p = 0.005; Fig. 5o). The
above-mentionedfindings demonstrated that LUADpatientswith different
GPS levels may display different potential responses to ICB therapy due to
distinct tumor immunogenicity and immune responses such as T cell
activation, effector process and Tex proportion.

Glycolytic activity of malignant cells and evolution of CD8+ Tex
were jointly orchestratedbyGPS levels andEGFRstates inLUAD
Nine LUAD samples from GSE171145 were categorized into three sub-
groups according to their GPS level and EGFR state: “GPS-negative”
(negGPS, one specimen), “GPS-zero/EGFR-mutated” (zeroGPS/mEGFR,
five specimens) and “GPS-zero/EGFR-wild type” (zeroGPS/wEGFR, three
specimens), and their scRNA-seq data were analyzed to elucidate the
characteristics of tumor microenvironment (TME). A total of 21,121 cells
passed quality control and remained for further study. Firstly, UMAP
dimensionality reduction was used to delineate the distribution and dis-
similarity of 12 cell types within TME including B, CD4+ T, CD8+ T,
endothelial, epithelial, fibroblast, mast, myeloid, NK, Plasma, Tprolif, and
Treg cells according to their marker genes (the first panel of Fig. 6a; Fig.
S6a, b). Further, UMAP plot was used to delineate the distribution of the 12
cell types in different subgroups respectively (the rest three panels of Fig. 6a).
A Circos plot summarizes the subordination relationship between the
infiltrating abundance of the 12 cell types and the three GPS/EGFR sub-
groups (Fig. 6b). All the epithelial cells were included for CNV estimation
using CD8+ T cells as references, and we found all epithelial cells can be
consideredmalignant due to their high chromosome instability (Fig. 6c). As
shown in the left panel of Fig. 6D, the proportion ofmalignant cells, namely
tumor purity, is progressively decreased from “negGPS” to “zeroGPS/
mEGFR” to “zeroGPS/wEGFR” as the proportion of CD8+T cells gradually
increases. In addition, the proportion of CD8+ Tex cells is significantly
highest in the zeroGPS/wEGFR subgroup.Meanwhile, none of CD8+Tex is
observed in the negGPS subgroup (the right panel of Fig. 6d).A total of 2267
malignant epithelial cells were extracted for ssGSEA quantification of ten
cancer-hallmarks (glycolysis, EMT, inflammation, angiogenesis, stemness,
hypoxia, cell cycle process,DNArepair, apoptosis, and senescence) basedon
the UMI matrix and corresponding gene sets retrieved fromMSigDB, and
the XGBoost algorithm assessed their relative importance to different GPS/
EGFR subgroups. A lollipop chart illustrated that glycolysis acts as themost
variable hallmark among the three subgroups (Fig. 6e). Figure 6f illustrates
that GPS-negative LUAD malignant epithelial cells exhibited the highest
glycolytic activity, and the glycolysis ssGSEA scores and representative

marker genes were further visually depicted in Fig. 6g. In addition, inter-
cellular communications of CD8+T and epithelial cells with other cell types
in different GPS/EGFR subgroups were generated in Fig. 6h and j respec-
tively, and we found that the negGPS sample shows the lowest inferred
interactions of both CD8+ T and epithelial cells with other cell types (Fig. 6i
and k).

DEGs for malignant cells within different groups were identified with
thresholds of FDR q < 0.01 and |log2FC| > 1, and numbers of up-regulated
and down-regulated genes for each group were shown in Fig. 6l. Subse-
quently, DEGs of negGPS malignant cells were submitted to the CMap
algorithm to explore potentially applicable drugs for negGPS patients who
are more prone to non-responders, and a dot diagram displayed top 10
promising compoundswith thehighest predictive scores and corresponding
mode-of-actions (Fig. 6m).

A total of 3472 CD8+ T cells were extracted for further investigation of
sub-clustering analysis, and three sub-clusters were identified using UMAP
dimensionality reduction with a higher resolution (Fig. 6n). Sub-cluster 3
wasdefinedas a “CD8+Texcluster”due to the specifically high expressionof
acknowledged Tex markers such as HAVCR2, TOX, LAG3, etc. (left panel
of Fig. 6o), andwe observed thatHAVCR2, a representativemarker for Tex,
has a definitely high expression in the sub-cluster 3 (right panel of Fig. 6o).

Furthermore, we performed a pseudotime trajectory analysis to
simulate the evolution of all the CD8+ T cells (left panel of Fig. 6p), and the
arrow indicated the putative developmental direction from initial T to Tex
cells (right panel of Fig. 6p). In addition, a ridgeline plot and a pseudotime
heatmap were combined to depict a pseudotime-dependent transcriptional
pattern during the dynamic development from sub-cluster 1 to 2 to 3 (Fig.
6q). Subsequently, the developmental trajectory of CD8+ T cells was
depicted for eachGPS/EGFR subgroup respectively, and we found that Tex
is basically deficient in negGPS and zeroGPS/mEGFR samples, but mainly
enriched in the terminally differentiated branch of CD8+ T cells from the
zeroGPS/wEGFR group (Fig. 6r). Interestingly, the proportion of CD8+

Texint (T-bet+) is also progressively elevated from “negGPS” to “zeroGPS/
mEGFR” to “zeroGPS/wEGFR”, and this gradient corresponds with the
potential responses to ICB therapy of each GPS/EGFR subgroup (Fig. 6s).
Taken together, these findings demonstrated that glycolytic activity of
LUAD cells and CD8+ Tex proportion were jointly orchestrated by GPS
accompanying with different EGFR states and partly account for distinct
ICB responses.

Distinct anti-tumor immune responses were observed in differ-
ent GPS samples in an autologous ex-vivo organoid-PBMC co-
culture model
For an in-house validation, we retrospectively analyzed a total of 338
NSCLC patients (consisting of 236 LUAD and 102 LUSC) who received
comprehensive therapies in the First AffiliatedHospital of NanjingMedical
University and meanwhile performed a targeted-sequencing panel test
(sequenced by SimcereDx). An oncoplot depicts the mutations of STK11,

Fig. 5 | Distinct patterns of immunogenomic features were observed among
different GPS groups. aA comprehensive heatmap includingmutation count, TiTv
alteration, mutation signature, SG, tumor purity, age, gender, pT, pN, pstage,
smoking status was plotted to display the distribution characteristics of these
parameters among different GPS groups. b GPS-neg LUAD samples exhibited the
highest tumor purity, while GPS-pos ones showed the highest levels in MSI score,
HRD score, TNB, TMB and mutation abundance of the smoking signature. c The
cumulative proportion curves demonstrated that both clonal and sub-clonal counts
were significantly elevated in the GPS-pos samples compared to GPS-neg.
d–f Relevant radar charts illustrated the patterns of representative immune check-
points expression, immune features, and immune infiltrations across different GPS
groups. gThe TCGA-LUAD cohort was divided into three distinct immune patterns
labeled “Cold”, “Mix”, and “Hot”. h A stacked plot illustrated that “Hot” tumors
occupy a proportion of 51.4% in theGPS-pos group, while the proportion of “Hot” in
the GPS-neg is only 25.8% as a comparison (Chi2 test p = 0.006). i DEGs between
GPS-neg and -pos groups were identified, and GOBP analysis demonstrated that

these DEGs are mainly enriched in “Immune effector process”, “Myeloid leukocyte
activation”, “Chemotaxis”, “Response to cytokine stimulus” and “Inflammatory
response” with inherent linkage and crosstalk. j GSEA showed that top five hall-
marks which change the most between GPS-neg and -pos groups are annotated as
“IFN-γ response”, “EMT”, “IFN-α response”, “E2F targets” and “Inflammatory
response”. k Two subsets labeled “Tex-enriched” and “Tex-deficient” were defined
with the median expressions of TIM-3 (HAVCR2) and PD-1 (PDCD1) in the
TCGA-LUAD cohort, l and GSEA was applied to ensure the most significant dif-
ference between the two subsets is the enrichment of exhausted T cells. m The
proportion of Tex-enriched samples is progressively elevated as GPS level increases
(Chi2 test p = 0.0006). n T-bet (TBX21), which is considered as a marker for the Tex
intermediate (Texint) subset, shows a similar trend with Tex proportion among
different GPS groups. o SubMap analysis revealed that the GPS-pos group showed a
high likelihood of clinical benefit from ICB therapy using a NSCLC-ICB cohort as a
reference (adjusted p = 0.005). *p < 0.05; **p < 0.01; ***p < 0.001.
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FAT1, and ERBB4 in the NSCLC cohort (Fig. 7a), and barplots showed the
mutation frequencies of the three genes in the different histological subtypes
(Fig. 7b). Two recent representative LUAD samples (characterized with
single STK11mutation or single FAT1mutation) were processed formIHC
analysis, and autologous fresh tumor specimen and peripheral blood were
collected for tumor organoid culture and PBMC isolation. For mIHC
analysis, compared to single STK11 mutation, the sample with FAT1
mutation shows a significantly higher infiltration of CD8+ T and Tex cells
which are marked with CD8 and PD-1/TIM-3 respectively (Fig. 7c). As
shown in the flowchart (Fig. 7d), the patient-derived tumor organoids were
successfully established ex vivo (three repetitions for each patient).

Meanwhile, the PBMC was cultured with exposure to tumor antigen for
activation and expansion of theT cell population. Then, the prepared tumor
organoids were co-cultured with autologous PBMC in 96 well U-bottom
plate, and 400 μg/ml PD-1 antibody (Tislelizumab) was introduced into the
co-cultured system to induce the potential anti-tumor immune response.
Co-cultured for 72 h, cells were collected and stained with several cell or
subpopulation markers for multiplex immunophenotyping by flow cyto-
metry (FCM). Gating strategies for cells collected from co-culture models
derived from different patients were presented in Fig. 7e, f. As expected, we
observed that treatment of PD-1 antibody induced obvious anti-tumor
immunity in the posGPS sample-derived co-culture model, including a
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significant expansion of CD8+ cytotoxic T lymphocytes (CD3+/CD8+; Fig.
7g) and effector CD8+ T cells (CD3+/CD8+/CD45RA+/CCR7-; Fig. 7h). In
summary, these findings indicated that GPS-pos samples aremore sensitive
to PD-1 treatment and easier to induce anti-tumor immunity compared to
GPS-neg samples.

Discussion
Although immune checkpoint blockade (ICB) has revolutionized cancer
therapy, a durable response is still observed only in a minority of cancer
patients4,5. Therefore, the selection of eligible patients for ICB treatment is
vital, and there is an urgent need to identify reliable biomarkers to accurately
predict a sustainable response17. However, we have to admit that a single
index such as PD-L1 or TMB alone is insufficient to precisely identify
patients who can benefit from ICB therapy, and more reliable biomarkers
are urgently needed to guide personalized decision-making.

In this study, we identified three determinant mutations (STK11,
FAT1, and ERBB4) and developed a scoring classifier named GPS to
improve the predictive accuracy of ICB response. GPS outperforms con-
ventional parameters such as PD-L1, point mutations, co-mutations, and
TMB in the comparison of predictive accuracy. Furthermore, we compre-
hensively analyzed the mutational characteristics of the three GPS-genes
across four large-scale NSCLC cohorts (OrigiMed-NSCLC, OncoSG-
LUAD, MSK-NSCLC, TCGA-NSCLC), and we observed that all the three
GPS-genes tend to mutate in smokers. Using drug repositioning analysis in
scRNA-seq data, we identified lestaurtinib as themost promising candidate
drug for STK11-mutant LUAD. Lestaurtinib is an FLT3 inhibitor and has
beenwidely studied for its potential in treating acutemyeloid leukemiawith
FLT3mutations18. In addition, some recent studies revealed that lestaurtinib
has the potential to inhibit solid cancers19–21. Particularly, STK11 is more
frequently mutated in the Caucasian race. When it comes to histological
subtypes, STK11 is more frequently mutated in LUAD, and FAT1 is more
frequentlymutated inLUSC.Thisfindingwas also validated inour in-house
NSCLCcohort. Thesefindings indicated that the frequency anddistribution
of determinant mutations to ICB response at least vary in race, smoking
status, and pathological subtype, suggesting that in addition to mutations,
these potential influencing factors should be taken into consideration when
making therapeutic decisions.

STK11, alsoknownasLKB1, is a tumor suppressor gene inLUAD.Loss
of STK11 is linked to metabolic reprogramming and immune evasion in
lung cancer22,23. Specifically, STK11 mutation correlates with reduced
infiltration of cytotoxic CD8+ T cells and results in a non-inflamed “cold”
tumor microenvironment that is resistant to ICB therapy24,25. This aligns
with our findings that STK11-mutated samples are associated with unfa-
vorable responses to ICB. FAT1 is a protocadherin andplays a pivotal role in
cell adhesion and signal transduction. Deletion of FAT1 accelerates tumor
initiation and malignant progression and promotes an EMT phenotype26.

ERBB4, a member of the ErbB family of receptor tyrosine kinases, is
involved in cell proliferation and differentiation. Currently, there is limited
research on the relationship between ERBB4 mutation and tumor immu-
nity. Two recent studies have reportedapositive correlationbetweenERBB4
and improved anti-tumor outcomes27,28. In our study, FAT1 and ERBB4
mutations exhibit significantly higher responses to ICB, suggesting their
potential in promoting an immune-supportive TME and serving as favor-
able biomarkers for ICB responses.

Based on analyses of multi-omics data andmIHC, we found that both
intrinsic tumor immunogenicity and extrinsic immune response were
enhanced in GPS-positive LUAD. Meanwhile, the glycolytic activity of
malignant cells and CD8+ Tex proportion were jointly orchestrated by GPS
levels and EGFR states, which partially explains the immune evasion
observed in GPS-negative samples29,30. Finally, an ex-vivo tumor organoid-
PBMC co-culture model was established to validate distinct responses of
different GPS samples to ICB.

Our GPS classifier has several prominent advantages in practical
application. Firstly, GPS is superior to conventional biomarkers such as PD-
L1 and TMB in terms of predictive accuracy. Secondly, both PD-L1 and
TMB are continuous variables and hard to determine optimum thresholds
for a specific cancer type or patient subset, but in contrast, GPS score
originates from the mutation status of three genes and is much more con-
venient to detect with a customized sequencing panel or SNP microarray.
Undoubtedly, our strategy will avoid considerable costs and shorten the
testing period, which is critical for widespread implementation in a clinical
setting. In addition, assessment bias of PD-L1 and TMB is inevitable due to
various causes such as technical variations, batch effects, and nonuniform
standards. In comparison, the GPS score remains comparable across dif-
ferent testing platforms because the binary status of a specific gene, namely
wild type or mutation, is easy to accurately measure regardless of other
potential confounders such as some point mutations or co-mutations of
uncertain significance. In a word, the GPS classifier is original, inexpensive,
and easy-to-operate with accurate prediction, thereby maximizing immu-
notherapy efficacy and minimizing unnecessary treatments.

Some limitations of our study should be acknowledged. First, it is a
retrospective analysis mainly based on public data; therefore, a prospective
study is needed for further validation. Second, a certain degree of research
heterogeneity exists in our study. Different ICB strategies such as mono-
therapy of anti-PD-(L)1 or combination with anti-CTLA-4 were imple-
mented in different cohorts, hence, the predictive efficiency of GPS for each
drug in diverse cancer types needs further investigation. Third, given the
tumor heterogeneity across cancer types, the utility of GPS should be
explored in other cancers where ICB therapy is applied in the real world.

In conclusion, our study provides evidence for the utility of GPS as a
predictive tool for ICB therapy in NSCLC, highlighting its potential to
stratify patients and guide personalized ICB strategies. Further validation in

Fig. 6 | Glycolytic activity of LUAD cells and evolution of CD8+ Tex were jointly
orchestrated by GPS levels and EGFR states. a The UMAP dimensionality
reduction was used to delineate the distribution and dissimilarity of 12 cell types
within TME including B, CD4+ T, CD8+ T, endothelial, epithelial, fibroblast, mast,
myeloid, NK, Plasma, Tprolif, and Treg cells in different GPS/EGFR subgroups,
respectively. bACircos plot summarizes the subordination relationship between the
infiltrating abundance of the 12 cell types and the three GPS/EGFR subgroups. cAll
the epithelial cells were included for CNV estimation using CD8+ T cells as refer-
ences. d Tumor purity (proportion of malignant cells) is progressively decreased
from “negGPS” to “zeroGPS/mEGFR” to “zeroGPS/wEGFR” as the proportion of
CD8+ T cells gradually increases. Meanwhile, the proportion of CD8+ Tex cells is
significantly highest in the zeroGPS/wEGFR subgroup. Particularly, no CD8+ Tex
can be observed in the negGPS subgroup. e The XGBoost algorithm demonstrated
that glycolysis acts as themost variable cancer-hallmark amongmalignant cells from
different subgroups. f The malignant cells from the negGPS subgroup exhibited the
highest glycolytic activity. g Comparisons of glycolysis ssGSEA scores and repre-
sentative marker genes among different GPS groups. h, j Intercellular commu-
nications of CD8+ T and epithelial cells with other cell types in different GPS/EGFR

subgroups. i, k The negGPS sample shows the lowest inferred interactions of both
CD8+ T and epithelial cells with other cell types. l DEGs for malignant cells among
different groups were identified with thresholds of FDR q < 0.01 and |log2FC| > 1.
m CMap algorithm was applied to explore potentially applicable drugs for negGPS
patients, and a dot diagram displayed top 10 promising compounds with the highest
predictive scores and corresponding mode-of-actions. n A total of 3,472 CD8+

T cells were extracted for sub-clustering analysis, and three sub-clusters were
identified using UMAP dimensionality reduction. o Sub-cluster 3 was defined as
“CD8+ Tex cluster” due to the specifically high expressions of acknowledged Tex
markers such as HAVCR2, TOX, and LAG3. pA pseudotime trajectory analysis was
performed to simulate the evolution of all theCD8+T cells (left panel), and the arrow
indicated the putative developmental direction from initial T to Tex cells (right
panel). q A pseudotime-dependent transcriptional pattern was depicted during the
dynamic development of CD8+ T cells. r The developmental trajectory of CD8+

T cells was depicted for each GPS/EGFR subgroup respectively. s The proportion of
CD8+Texint (T-bet+) is progressively elevated from “negGPS” to “zeroGPS/mEGFR”
to “zeroGPS/wEGFR”, and this gradient corresponds with the potential responses to
ICB of each GPS/EGFR subgroup. ***p < 0.001.
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Fig. 7 | Distinct anti-tumor immune responses were evaluated in different GPS
samples from an in-house cohort. a An oncoplot depicts the mutations of STK11,
FAT1, and ERBB4 in an in-house NSCLC cohort consisting of 236 LUAD samples
and 102 LUSC samples. b Barplots showed the mutation frequencies of the three
genes in the different histological subtypes. c Two recent representative LUAD
samples (characterized with single STK11 mutation or single FAT1 mutation) were
processed for mIHC analysis. Compared to single STK11mutation, the sample with
FAT1 mutation shows a significantly higher infiltration of CD8+ T and Tex cells
which are marked with CD8 and PD-1/TIM-3 respectively. d A schematic diagram

depicts procedures of patient-derived tumor organoids establishment ex vivo, T cell
activation and expansion, tumor organoids co-culture with autologous PBMC,
treatment of PD-1 antibody (Tislelizumab), and final multiplex immunopheno-
typing by flow cytometry (FCM). e, f Gating strategies for cells collected from co-
culture models derived from patients with STK11 mutation or FAT1 mutation.
g, hTreatment of PD-1 antibody induced obvious anti-tumor immunity in the GPS-
pos sample-derived co-culture model, including significant expansion of CD8+

cytotoxic T lymphocytes and effector CD8+ T cells. **p < 0.01; ***p < 0.001.
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larger, independent cohorts is warranted to confirm its clinical applicability
and optimize its integration into routine practice.

Methods
Data collection and preprocessing
The Rizvi cohort was used as a training set31. This cohort encompasses 240
NSCLC patients who received anti-PD-(L)1 based ICB therapy, and sam-
ples were sequencedwith theMSK-IMPACT assay, which was designed for
targeted sequencing of acknowledged oncogenes, tumor-suppressor genes,
and members involved in oncogenic pathways considered actionable for
targeted therapies. Among these NSCLC patients, 179 LUAD samples with
explicit ICB responses [durable clinical benefit (DCB) or no durable benefit
(NDB)] were further included for data training andmodel construction. To
generate a high-quality and statistically unbiased input matrix, three
sequential steps were arranged: Step 1: PSM algorithmwas implemented to
balance potential confounders including sex (female or male), age (con-
tinuous), smoking (ever or never), lines of Tx (1-7), IRB (clinical trial or
commercial), gene panel (341, 410, 468), and treatment type (monotherapy
or combination) between responders and non-responders, and 14 unmat-
ched patients were excluded; Step 2: Only nonsynonymous mutations
(including “Frame_Shift_Del”, “Frame_Shift_Ins”, “In_Frame_Del”,
“In_Frame_Ins”, “Missense_Mutation”, “Nonsense_Mutation”, “Non-
stop_Mutation”, “Splice_Region”, “Splice_Site”, and “Translation_-
Start_Site”) were considered effective for the generation of immunogenic
neoantigens. That is to say, all synonymousmutation variants such as silent
mutations were filtered out; Step 3: Low-frequency mutations that did not
hold predictive significance were removed using the “nearZeroVar” func-
tion in the R software. After the above three steps, we ultimately generated a
sparse matrix of nonsynonymous mutations of 165 samples with 47 genes
for model training. Our established predictive model was validated in two
independent ICB therapy cohorts: the Hellmann cohort and the Samstein
cohort8,32. The Hellmann cohort contains 75 NSCLC patients (59 non-
squamous and 16 squamous carcinomas sequencedwithWES) treatedwith
PD-1 plus CTLA-4 blockade, and clinical response parameters such as best
overall response (BOR), DCB or NDB, and progression-free survival (PFS)
were recorded in detail. The Samstein cohort contains 1,661 patients with
various cancer types (samples were sequenced with the MSK-IMPACT
assay) who received anti-PD(L)1 or CTLA-4 blockade or combination
therapy, and their overall survival informationwas accordingly recorded. In
the Samstein cohort, a total of 1,572 samples were categorized into nine
main cancer types (head and neck, bladder, breast, colorectal, esophago-
gastric, glioma, melanoma, NSCLC, renal), while only one case was anno-
tated as non-melanoma skin cancer and the rest 88 caseswere labeled cancer
of unknown primary (CUP). Four NSCLC cohorts including OrigiMed-
NSCLC (n = 1954)33, OncoSG-LUAD (n = 302)34, MSK-NSCLC
(n = 1423)35, and TCGA-NSCLC (n = 1144)36 sequenced with different
platforms were used to display the mutational landscape of STK11, FAT1,
and ERBB4, and their co-occurrence and mutual exclusivity (COME)
patterns along with putative driver genes such as TP53, EGFR, and KRAS.
The distribution and frequency of mutation variants were depicted with
OncoPrint and all mutation variants were categorized into two main sub-
types: driver variants and variants of unknown significance (VUS). Tran-
scriptomeRNA-seq data, somaticmutation profiles, copy number data, and
clinical annotations of pan-cancer patients with 32 solid malignancies
(ACC, BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA, GBM, HNSC,
KICH,KIRC,KIRP,LGG,LIHC,LUAD,LUSC,MESO,OV,PAAD,PCPG,
PRAD, READ, SARC, SKCM, STAD, TGCT, THCA, THYM,UCEC,UCS,
UVM) were obtained from The Cancer Genome Atlas (TCGA, https://gdc.
cancer.gov/) using R package “TCGAbiolinks”. The RNA-seq raw data of
read count or FPKMwere converted to TPM and further log2-transformed
for impartial comparison across different batches or cancer types. R package
“GenVisR” was used to visualize the classification and distribution of
somatic mutations, and R package “sigminer” was used to decipher muta-
tional signatures based on the application of the Bayesian variant of non-
negative matrix factorization (NMF) algorithm in the 96 trinucleotide

contexts37. The optimal factorization k value is chosen when the magnitude
of the cophenetic correlation coefficient starts to fall significantly. The
extracted mutational signatures were annotated by computing cosine
similarity against single base substitution (SBS) mutational catalogs
retrieved in the database of Catalog of Somatic Mutations in Cancer
(COSMIC). GISTIC 2.0 was used to calculate gistic scores, arm- and focal-
level somatic copy number variations (SCNVs) in a tumor sample with a
segment file and a marker file.

Multiplemachine learning approaches formutation data training
Multiple machine learning (ML) approaches were used to identify efficient
and robust mutations for the prediction of ICB response. In brief, using the
R package “caret”, the Naive Bayes (NB), Random Forest (RF), Support
Vector Machine (SVM), and Linear Discriminant Analysis (LDA) algo-
rithms based on the feature selection of recursive feature elimination (RFE)
and a training framework of leave-one-out cross-validation (LOOCV)were
performedto train the inputmatrix respectively, and theoverlaps among the
optimal candidates from each algorithm were considered as the ultimate
signature, andwecall itGenemutation-basedPredictive Signature (GPS). In
addition, the eXtreme Gradient Boosting (XGBoost) algorithm was used to
quantify the importance of all candidate mutations included in the training
model. In order to intuitively exhibit the impact of each gene mutation on
ICB therapy, we further calculated the SHapley Additive exPlanations
(SHAP) values to explain how much a single mutation affects the ICB
response using the R package “SHAPforxgboost”. For example, STK11-
mutated LUADsampleswith lower SHAPvalues suggested that this specific
mutation tends to exert a negative influence on ICB therapy. The GPS score
was established to reflect the overall impact of the three genes (STK11,
FAT1, and ERBB4). We defined that the score of STK11 was assigned with
−1 if STK11 was non-silently mutated; the FAT1 or ERBB4 score was
individually assigned with+1 if FAT1 or ERBB4 was non-silently mutated;
otherwise, the score of each gene was 0. Ultimately, the GPS score was
calculated as the sum of the scores of the above-mentioned three genes, and
all sequenced sampleswere categorized into three levels:GPS-negative (GPS
score < 0), GPS-zero (GPS score = 0), and GPS-positive (GPS score > 0).

Immunogenomic analysis
For samples sequenced with WES, tumor mutation burden (TMB) was
defined as the total number of nonsynonymous somatic mutations divided
by the exome size of 38Mb as an estimation or obtained from the original
studies. Data of tumor neoantigen burden (TNB), clonal, and sub-clonal
fraction of TCGA-LUAD samples were obtained from The Cancer
Immunome Atlas (TCIA)38. Tumor purity was inferred using the ESTI-
MATEalgorithm39, and themicrosatellite instability (MSI) scores ofTCGA-
LUAD samples were obtained from a pan-cancer MSI landscape study40.
The homologous recombination deficiency (HRD) scores and immuno-
modulators for inhibitory immune checkpoints (ICs), stimulatory ICs, and
antigen presentation (AP) were obtained from a pan-cancer immune
landscape study conducted by Thorsson et al.41. A T cell-inflamed pattern
composed of 18 inflammatory genes was used to evaluate the potential
response to ICB therapy42. A single-sample gene set enrichment analysis
(ssGSEA) algorithmwas applied to calculate the enrichment scores for each
sample based on the transcriptome data and corresponding gene signatures
of immunogenomic features. The cytolytic activity score (CYT)was defined
as the geometric mean of GZMA and PRF1 expression43.

Estimation of immune infiltration and evaluation of immune
features
Four TME inferring algorithms named TIMER44, MCPcounter45,
Cibersort46, and quanTIseq47 were respectively applied to estimate the
absolute infiltration abundance of CD8+ T cells in “category I” cancers
definedpreviously,which includeBLCA,CESC,COAD,LUAD, SKCMand
UCEC, and these cancer types are more responsive to ICB therapy13. Fur-
thermore, the relative proportions of 22 tumor-infiltrating immune cell
types were estimated using the Cibersort method, which represents a
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benchmark for the quantification of immune cell infiltration in bulk sam-
ples. Using the unsupervised hierarchical clustering method, the TCGA-
LUAD cohort was divided into three distinct immune patterns labeled
“Cold”, “Mix”, and “Hot” based on the ssGSEA z-scores of 29 immune
signatures48. Differences in the ssGSEA enrichment scores of 18
immunotherapy-predicted pathways and 23 steps involved in the cancer-
immunity cycle were analyzed among different GPS groups49,50.

Identification andenrichment analysis of differentially expressed
genes (DEGs)
DEGs were identified between different groups with a threshold of the false
discovery rate (FDR) q < 0.01 basedon theRNA-seqdataof read counts and
R package “DESeq2”. Analyses of gene ontology biological process (GOBP)
andGSEAwereperformed to reveal the enrichmentpathways ofDEGswith
corresponding gene sets retrieved from the Molecular Signatures Database
(MSigDB)51.

Single-cell RNA-sequencing analysis
One single-cell RNA-sequencing (scRNA-seq) dataset (GSE171145)52 which
containsnineLUADsampleswithmutational annotationwasused for single-
cell transcriptome analysis with R package “Seurat”. Cells with the following
criteria were considered passing the quality control: (i) mitochondria UMI
rate of <40%; (ii) median gene number*0.5 < nFeature_RNA<median gene
number*2; (iii) nCount_RNA> 2000. Ultimately, a total of 21,121 eligible
cells remained for further study. Principal component analysis (PCA) was
performed based on the scaled data of the top 2000 highly variable genes
(HVGs) to reduce dimension, and the “Harmony” algorithm was applied to
eliminate the batch effect. The top 20 principals were extracted for UMAP
construction, and DEGs or marker genes were identified using the “Fin-
dAllMarkers” function with Wilcox rank-sum test. Using R package
“infercnv”, the SCNVs of epithelial cells were estimated using putative non-
malignant cells as reference. The “CellChat” package was applied to char-
acterize intercellular communicationsacrossdifferent cell types. Furthermore,
we performed a single-cell trajectory analysis usingMonocle2 algorithmwith
default parameters.Cellswere arranged intoadevelopmental trajectorywhich
was segmented with different branch fates to imitate their evolution.

Drug repositioning with connectivity map (CMap) analysis
CMap is a resource that uses transcriptional expression data to probe the
relationships between disease, cell physiology, and therapeutics53. DEGs of
GPS-negative malignant cells relative to the others were submitted to the
CMap algorithm to explore potential targets and applicable drugs for GPS-
negative patients who are not sensitive to ICB therapy. The top 10 com-
poundswith the highest predictive scores and their correspondingmode-of-
actions (MoAs) were shown in a dot diagram.

Analysis of T cell exhaustion (Tex)
TCGA-LUAD samples with high expressions of both PD-1 (PDCD1) and
TIM-3 (HAVCR2) are defined as Tex-enriched samples, otherwise Tex-
deficient. T-bet (TBX21) is considered a marker gene for the Tex inter-
mediate (Texint) subset, which re-engages some effector biology and
prompts individuals to respond to ICB therapy54. In scRNA-seq analysis, a
total of 3472 CD8+ T cells were identified and further included for pseu-
dotime analysis. A terminally differentiated cluster with especially high
expressions ofHAVCR2, TOX, LAG3,CTLA4, and ITGAEwas regarded as
the CD8+ Tex cluster. Furthermore, the CD8+/PD-1+/TIM-3+/T-bet+

T cells were defined as the CD8+ Texint subpopulation55.

Patient sample and multiplex immunohistochemistry (mIHC)
staining
All sampleswere collected following ethical standards and receivedapproval
from the ethics committees of the affiliated hospitals of Nanjing Medical
University (approval number: 2023-SRFA-450 in The First Affiliated
Hospital of Nanjing Medical University; [2023]KY024-06 in The Affiliated
Changzhou No. 2 People’s Hospital of Nanjing Medical University). All

procedures performed in this study involving human participants comply
with principles in the Declaration of Helsinki. Informed consent was
obtained fromall participants or their relatives, and all personal information
was kept confidential and used for research purposes only. The formalin-
fixed paraffin-embedded (FFPE) tissues (3–4 μm) were prepared from
resected tumors and baked for 1 h at 60 °C in an oven, then dewaxed with
xylene and rehydrated through graded concentrations of ethanol. Following
rehydration, the sectionswerefixed for 20min at room temperature (RT) in
10% neutral buffered formalin, placed in Tris-EDTA buffer (pH 9.0) and
microwaved for 1min at a high power followed by an additional 15min at a
lowpower for antigen retrieval. The slideswere then blocked after cooling at
RT and incubated with the primary antibody at RT for 10min. The slides
were washed thrice with TBST and then incubatedwithOpal PolymerHRP
Ms+Rb at RT for 10min. Before incubation with Opal Signal Generation,
the slides were washed with TBST thrice. Microwave treatment, blocking,
primary antibody incubation, introduction of Opal Polymer HRP, and
tyramide signal amplification (TSA) were repeated. The primary antibodies
(CD8, 1:500, ZA0508; PD-1, 1:500, 86163S; TIM-3, 1:1000, 45208S), HRP-
conjugated secondary antibodies (WAS1201100), and fluorophore-
conjugated TSA (TSA570, WAS1003050; TSA520, WAS1002050;
TSA650, WAS1005050) were repeated until all markers were labeled.
Finally, the slideswere addedwithDAPI in the dark for 5min atRT, and the
slides were cleaned with distilled water and TBST before being mounted.
The PannoramicMIDI II scanner was used to take images, whichwere then
processed using SlideViewer (version 2.6).

Ex vivo experiments
Fresh tumor specimens were collected and immediately placed on ice after
surgical removal. The samples were stored in sterile tubes containing pri-
mary sample stocking buffer and transported to the laboratory on ice. The
samples were transported to the lab within 24 h to ensure quality. Upon
arrival, the tumor tissues were washed with primary sample washing buffer
for 30min at room temperature on an orbital shaker. After that, the tumor
tissue was diced into small pieces and digested using enzymatic digestion
buffer in a shaker at 37 °C for 30–50min. Cell suspensions were vigorously
pipetted to ensure complete dissociation and passed through a 70 μm cell
strainer. Then the cell suspensions were resuspended in Matrixgel
(40183ES10, Ceturegel® Yeasen Biotechnology) and seeded in 6-well plates.
For the first 48 h, primary cells were cultured in lung cancer organoids
culture medium with ROCKi (10 µM, ROCK inhibitor, only for the first
24 h), and the freshmediumwithout ROCKiwas changed every 48 h.More
details on the preparation of tumor-reactive T cells and co-culture of tumor
organoids and PBMCs could be found in a previously published article56.

Flow cytometry analysis
For FACS staining, cells were washed and resuspended at the concentration
of 106 cells/ml in PBS for Fixable Viability Dye (FVD) staining (Thermo
Fisher, 65-0866-14, 65-0867-14, 65-0863-14 or L34957) at 15min in room
temperature. Subsequently, cells were pre-incubated with the blocking
buffer for 15minand subsequently stainedwithFACSantibodies for surface
staining at 4 °C 20min, then cells were fixed and permeabilized. After that
cells were intracellular stained at room temperature for 20min. Flow
cytometry analysis and cell sortingwereperformedonaFACSAria IIflowor
a FACSCelesta cytometer (BD Biosciences). Data were analyzed by FlowJo
(version 10.4; FlowJo LLC). Each assay was performed in triplicate.

Additional bioinformatic and statistical analyses
In addition to the response defined by RECIST (CR, PR, SD, and PD), ICB
efficacy was defined as DCB (CR/PR or SD that lasts >6 months) or NDB
(PD or SD that lasts ≤6 months), and objective response rate (ORR) was
defined as the proportion of patients with CR or PR. Patients who did not
progress and were censored before 6 months of follow-up were considered
not evaluable (NE). TheSubclassMapping (SubMap) algorithmwas applied
to evaluate the expression similarity between independent datasets, and the
significancewas evaluatedwith the Bonferroni correction57. Heatmapswere
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generated to depict the distribution of pathological parameters, mutation
frequencies, and feature ssGSEA scores using R package “complex-
heatmap”. The 95% confidence interval (CI) for the population rate was
assessed using the Clopper-Pearson method. Pearson correlation analysis
was performed to evaluate the correlation between two variables subject to
normal distribution. Student’s t-test or one-way analysis of variance
(ANOVA) was used to analyze differences among different groups with
variables subject to normal distribution, otherwiseMann-WhitneyU test or
Kruskal-Wallis test. Categorical variables among different groups were
compared using the chi-square test or Fisher’s exact test. The Kaplan-Meier
analysis was used to plot survival curves, and the log-rank test was per-
formed to evaluate survival differences. Univariate or multivariate logistic
regression analysis was used to evaluate the odds ratio (OR) and 95%CI for
each variable, and multivariate Cox regression analysis was performed to
evaluate the risk significance of each variable for survival. A two-sided p-
value or FDR q value less than 0.05 was considered statistically significant.
All analyses were performed in the GraphPad Prism 8.0 and R
4.2.1 software.

Data availability
All presented data and codes in this study can be available from the cor-
responding author upon reasonable request.
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