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Claus P. Heussel1,2,3, Hans-Ulrich Kauczor1,2,3, Mark O. Wielpütz1,2,3,7 and Jürgen Biederer1,2,8,9 on behalf of the
COSYCONET study group

Abstract

Objectives We hypothesized that semiquantitative visual scoring of lung MRI is suitable for GOLD-grade specific
characterization of parenchymal and airway disease in COPD and that MRI scores correlate with quantitative CT (QCT)
and pulmonary function test (PFT) parameters.

Methods Five hundred ninety-eight subjects from the COSYCONET study (median age= 67 (60–72)) at risk for COPD
or with GOLD1-4 underwent PFT, same-day paired inspiratory/expiratory CT, and structural and contrast-enhanced
MRI. QCT assessed total lung volume (TLV), emphysema, and air trapping by parametric response mapping (PRMEmph,
PRMfSAD) and airway disease by wall percentage (WP). MRI was analyzed using a semiquantitative visual scoring system
for parenchymal defects, perfusion defects, and airway abnormalities. Descriptive statistics, Spearman correlations, and
ANOVA analyses were performed.

Results TLV, PRMEmph, and MRI scores for parenchymal and perfusion defects were all higher with each GOLD grade,
reflecting the extension of emphysema (all p < 0.001). Airway analysis showed the same trends with higher WP and
higher MRI large airway disease scores in GOLD3 and lower WP and MRI scores in GOLD4 (p= 0.236 and p < 0.001).
Regional heterogeneity was less evident on MRI, while PRMEmph and MRI perfusion defect scores were higher in the
upper lobes, and WP and MRI large airway disease scores were higher in the lower lobes. MRI parenchymal and
perfusion scores correlated moderately with PRMEmph (r= 0.61 and r= 0.60) and moderately with FEV1/FVC
(r=−0.56).

Conclusion Multi-center semiquantitative MRI assessments of parenchymal and airway disease in COPD matched
GOLD grade-specific imaging features on QCT and detected regional disease heterogeneity. MRI parenchymal disease
scores were correlated with QCT and lung function parameters.
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Key Points
Question Do MRI-based scores correlate with QCT and PFT parameters for GOLD-grade specific disease characterization of
COPD?
Findings MRI can visualize the parenchymal and airway disease features of COPD.
Clinical relevance Lung MRI is suitable for GOLD-grade specific disease characterization of COPD and may serve as a
radiation-free imaging modality in scientific and clinical settings, given careful consideration of its potential and limitations.

Keywords Magnetic resonance imaging, Computed tomography, Chronic obstructive pulmonary disease, Pulmonary
emphysema

Introduction
Chronic obstructive pulmonary disease (COPD) is a het-
erogeneous disease characterized by varying contributions
of emphysema and airway abnormalities to lung function
impairment. The diagnosis is based on symptoms and
spirometry, and airflow limitation is commonly categor-
ized according to the global initiative for obstructive lung
disease (GOLD) criteria [1].
Quantitative computed tomography (QCT) provides an

accurate assessment of the severity and distribution of
emphysema and airway disease, two imaging key features
of COPD [2–4]. Emphysema can be assessed by lung
density analysis using established indices such as the
emphysema index (EI) [5, 6]. Quantification of airway
disease is more challenging, as small airways (< 2 mm
inner diameter), which are the primary sites of airflow
restriction in COPD, lie below the resolution limit of
clinical CT scanners [7, 8]. For the indirect assessment of
small airway disease (SAD), “air trapping” can be identi-
fied on expiratory CT scans [9, 10]. However, the use of
fixed threshold measurements to quantify “air trapping”
may not discriminate between emphysema and SAD.
Therefore, parametric response mapping (PRM) has been
proposed, an integrated approach that uses ex- and
inspiratory CT scans to classify each voxel as normal lung,
emphysema, or functional SAD (fSAD) [9]. QCT has
already been used in several large-scale multi-center
studies such as ECLIPSE and COPDGene for COPD
monitoring and phenotyping [11, 12]. Nevertheless, CT is
associated with non-negligible radiation exposure, which
can add up considerably over repeated CT examinations
[13].
Magnetic resonance imaging (MRI) is an alternative,

radiation-free modality that avoids cumulative radiation
exposure and enables the evaluation of morphological and
functional changes in the lungs. Lung MRI is already been
established in patients with cystic fibrosis [14–17] and has
shown promising results in the assessment of COPD in
single-center studies [18, 19]. Recently, a COSYCONET
substudy showed considerable agreement between semi-
quantitative MRI and CT scores in the visual phenotyping
of COPD [20].

Therefore, we hypothesized (1) that semiquantitative
MRI may be suitable for GOLD grade-specific char-
acterization of emphysema and airway disease in COPD,
(2) that semiquantitative MRI scores correlate with QCT
parameters, and (3) that semiquantitative MRI scores
correlate with lung function parameters.

Materials and methods
Study design
The study was approved by the Institutional Review Boards
of all participating study centers and by the German Fed-
eral Office for Radiation Protection, and all subjects pro-
vided written informed consent prior to the study. The trial
(trial registration: German Clinical Trials Register
DRKS00005072) was embedded into the German “Impact
of Systemic Manifestations/Comorbidities on Clinical
State, Prognosis, Utilization of Health Care Resources in
Patients with COPD” study (COSYCONET, Clinical-
trials.gov identifier NCT01245933), substudy: “Image-
Based Structural and Functional Phenotyping of the
COSYCONET Cohort Using MRI and CT” (MR-COPD,
NCT02629432). COSYCONET is a prospective multi-
center study that has enrolled more than 2700 subjects [21].
The present substudy was designed to evaluate the suit-

ability of MRI for GOLD grade-specific characterization of
emphysema and airway disease in COPD and to assess the
agreement of semiquantitative MRI scores with QCT and
pulmonary function test (PFT) parameters. Therefore,
598 subjects from the COSYCONET cohort were enrolled at
15 COSYCONET study centers over a period of 3 years, and
detailed inclusion and exclusion criteria can be found in the
literature [21]. Additional exclusion criteria for the imaging
substudy are provided in the recruitment flowchart (Fig. 1).
All subjects were diagnosed with COPD grade 1–4

according to the GOLD consortium, based on a ratio of
forced expiratory pressure in 1 s to forced vital capacity
(FEV1/FVC) < 0.7 [1]. In addition, smokers and ex-
smokers without an assigned GOLD category, specifi-
cally those in the former “GOLD0 category” were inclu-
ded and subsumed as “risk COPD”. This group included
individuals with FEV1/FVC ≥ 0.7, but with a physician-
based diagnosis of COPD.
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Lung function assessments
All subjects underwent whole-body plethysmography,
spirometry, and the assessment of lung diffusing capa-
city within 63 ± 146 days of image acquisition, per-
formed and analyzed according to the American
Thoracic Society and European Respiratory Society
recommendations [22]. In this study, we focused on the
ratio of FEV1/FVC (Table 1).

CT and MRI image acquisition
MRI and CT examinations were performed on the same
day. CT examinations were performed on clinical CT
scanners of different manufacturers with at least 40-row
detector arrays. The standardized non-enhanced CT
protocol employed inspiratory and end-expiratory spiral
acquisitions of the total lung in thin collimation

(Supplemental Table 1). MRI examinations were per-
formed using clinical 1.5-T or 3.0-T MRI scanners
according to a standardized chest MRI protocol (Sup-
plemental Table 2).

Quantitative post-processing of CT images
The validated scientific software (YACTA v2.8.2.3) seg-
mented the lungs and the individual lobes fully auto-
matically on the inspiratory and expiratory images as
previously described [23–27].
Emphysema was assessed by the total lung volume

(TLV), EI, and mean lung density (MLD). PRM was per-
formed after deformable CT volume registration, which
allows the combination of inspiratory and expiratory CT
lung scans to classify individual lung parenchyma voxels
as normal (PRMNormal), voxels with functional small

Fig. 1 Patient recruitment flowchart
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airways disease (PRMfSAD) and emphysema (PRMEmph) by
assuming that lung voxels with inspiratory CT attenuation
less than −950 Hounsfield units (HU) represent emphy-
sema, while voxels with values greater than −950 HU on
inspiration but less than −856 HU on expiration repre-
sent fSAD [9, 28]. All variables were computed for the
total lung and all lobes separately (i.e., right upper (RUL),
middle (RML), and lower (RLL) lobe, as well as left upper
lobe (LUL), lingula (LLi) and left lower lobe (LLL) and for
the combined upper lung regions (ULR= RUL+ RML+
LUL+ LLi) and lower lung regions (LLR= RLL+ LLL)
lung regions.
The bronchiectasis index (BE) was calculated for the

total lung. The other airway parameters were analyzed
using an airway generation- and lobe-based approach.
Wall thickness (WT), total diameter (TD), lumen area
(LA), and wall percentage (WP) were calculated for each
generation (generation 1–10) and the results were com-
bined for central (airway generation 1–2 (G1–2)), large=
lobar and segmental (airway generation 3–5 (G3–5)), and
subsegmental (airway generation (G6–10)) airways. The
lobe-based approach calculated the BE and WP for all
individual lobes, and the results for the combined upper
lung region (ULR) and LLR were pooled. Further details
on the quantitative post-processing can be found in the
online supplementary material.

Semiquantitative MRI assessment
MR images were visually evaluated using OsiriX software
on a dedicated workstation with two 21” certified medical
image monitors. Two radiologists with 3 years of experi-
ence in lung imaging analyzed the images independently.
Both studies from each patient were read separately by
each reader, who was blinded to the images and results
from the other modality. A minimum of 2 weeks was
allowed between readings of MRI and CT to minimize
recall bias. Finally, the records of the two first readers
were reviewed by a third reader with more than 20 years
of experience in pulmonary MRI as an adjudicator to
reach a consensus.
Semiquantitative visual scoring of COPD-related

pathologies was performed, using a previously estab-
lished MRI scoring system in cystic fibrosis and COPD
[14, 29]. Lung parenchymal defects as an indicator of
emphysema and lung perfusion defects as an indicator of
functional disease (small airways disease and emphysema)
were scored on a 3-point scale for all six lobes (0= absent,
1= ≤ 50%, 2= > 50% of lobe affected). Multiple MRI
features of central, large, and SAD were rated binary
(0= not present, 1= present) or using a 3-point-scale for
each lobe (0= absent, 1= ≤ 50%, 2= > 50% of the airways
affected) (Fig. 2). Central airway disease (wall thickening/
expiratory collapse) was scored binary in the trachea and

Table 1 Patient demographics and body plethysmography parameters

All GOLD grades Risk COPD GOLD1 GOLD2 GOLD3 GOLD4 p

Demographics

n 598 93 58 234 167 46 <−

Age [y] 67 (60–72) 67 (59–72) 68 (61–75) 67 (61–72) 66 (59–71) 63 (55–69) > 0.006

Sex [f/m] 233/365 41/52 19/39 142/92 65/102 30/16 <−

BMI [kg/m²] 26 (23–30) 29 (26–32) 27 (23–30) 27 (24–30) 26 (23–29) 23 (21–26) < 0.001

PYs [y] 37 (16–62) 34 (10–58) 44 (24–63) 40 (19–64) 35 (14–58) 37 (19–65) > 0.105

Lung function parameters

TLC [L] 7.2 (6.1–8.2) 5.9 (5.2–7.3) 7.6 (6.4–8.3)* 7.3 (6.2–8.2) 7.3 (6.3–8.3) 8.2 (7.0–9.0) < 0.001

VC [L] 3.3 (2.6–4.1) 3.3 (2.5–4.1) 4.1 (3.6–4.9)* 3.6 (2.9–4.2)* 3.0 (2.4-3.6)* 2.3 (1.9-2.8)* < 0.001

FVC [L] 3.1 (2.4–3.8) 3.1 (2.3–3.8) 4.1 (3.6–4.9)* 3.4 (2.7–3.9)* 2.8 (2.2–3.3)* 2.0 (1.8–2.4)* < 0.001

RV [L] 3.6 (2.9–4.4) 2.7 (2.2–3.2) 3.0 (2.6–3.6) 3.5 (3.0–4.2)* 4.2 (3.5–5.0)* 5.4 (4.4–6.3)* < 0.001

FRC [L] 4.6 (3.7–5.5) 3.2 (2.9–3.8) 4.0 (3.7–4.9)* 4.6 (3.9–5.3) 5.2 (4.4–6.0)* 6.5 (5.4–7.2)* < 0.001

FEV1 [L] 1.7 (1.2–2.2) 2.3 (1.8–3.0) 2.6 (2.3–2.9) 1.8 (1.5–2.1)* 1.2 (1.0–1.4)* 0.8 (0.7–0.9)* < 0.001

FEV1/FVC [%] 55 (45–65) 76 (72–80) 63 (60–66)* 56 (49–62)* 45 (38–51)* 36 (33–43)* < 0.001

TLCO
# 4.8 (3.6–6.3) 5.9 (4.9–7.5) 6.2 (4.7–7.0) 5.0 (3.9–6.6) 4.0 (3.0–4.9)* 2.8 (1.9–3.9) < 0.001

Lung function parameters predicted

FVCpp [%] 91 (61–89) 91 (78–104) 114 (106–122)* 96 (86–106)* 78 (68–92)* 55 (49–68)* < 0.001

FEV1pp [%] 57 (44–75) 82 (73–92) 86 (83–91) 62 (55–69)* 42 (37–46)* 25 (21–29)* < 0.001

Patient demographics (age, sex, pack-years (PYs) and BMI and lung function parameters comprising total lung capacity (TLC), vital capacity (VC), FVC, RV, functional
residual capacity (FRC), FEV1, ratio of FEV1/FVC, FVC in percent predicted (FVCpp), FEV1 in percent predicted (FEV1pp), and transfer factor of the lung for carbon
monoxide (TLCO)). Results are shown for all patients and the different GOLD grades (risk COPD, GOLD1, GOLD2, GOLD3, and GOLD4). All data are given as median with
interquartile range (Q1–Q3)
* p < 0.001 vs previous GOLD grade
# mmol/min/kPa
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right and left main bronchi. Large airway disease
(bronchiectasis/wall thickening) was scored on a 3-point
scale per lobe and expiratory collapse of the lobar bronchi
was scored binary. SAD (tree-in-bud appearance and
peripheral bronchiectasis (PBE)) were scored on a 3-point
scale per lobe. Finally, an airway score (central+ large+
small airways score) and a global disease score (functional
disease+ airway score) were calculated for the total lung
(Supplemental Table 3). Additional information and
inter-reader agreements for MRI subscores are available
in the online supplement (Supplemental Table 4). In
addition, a detailed discussion of the MRI subscores can
be found in a previously published article [20].

Statistical analyses
Statistical analyses were performed using R (R4.3.1, Foun-
dation for Statistical Computing) and SigmaPlot14.0 (Systat
Software GmbH). Demographics, PFT parameters, quanti-
tative CT parameters, and semiquantitative MRI scores are
reported as median with interquartile range (Q1–Q3). Data
with assumed skewed distributions were analyzed using the
Mann–Whitney test to compare two unmatched groups
(lung region comparison) or the Kruskal–Wallis test to
compare three or more unmatched groups (GOLD grade
comparison). Dunn’s test was used for multiple pairwise
comparisons. A p-value < 0.05 was considered statistically
significant. Spearman rank correlation was calculated
between semiquantitative MRI, QCT, and PFT and inter-
preted as follows: 0.00–0.10= negligible, 0.10–0.39=
weak, 0.40–0.69=moderate, 0.70–0.89= strong, and
0.90–1.00= very strong [30]. Inter-reader variability for MRI

scores was assessed using Fleiss kappa, with agreement
levels of 0–0.20= poor, 0.21–0.40= fair, 0.41–0.60=
moderate, 0.61–0.80= substantial, and 0.81–1.00= almost
perfect [31].

Results
Patient population
As part of the COSYCONET study, in total 598 patients (297
women, 301 men, aged 65.6 ± 8.3 years) at risk for COPD or
with GOLD grades 1–4 were recruited (Fig. 1 and Table 1).

GOLD grade-specific quantitative CT
TLV and EI were higher, while the MLD was lower with
increasing GOLD grade, indicating increasing emphysema
with hyperinflation. Accordingly, PRMNormal showed sig-
nificantly lower, while PRMfSAD, PRMEmph, and PRMAbnormal

showed significantly higher values with increasing GOLD
grades (all p < 0.001). The BE increased from GOLD1 to
GOLD4 (p= 0.052). In the central airways (generation 1–2),
WT1–2, TD1–2, LA1–2, and WP1–2 showed no significant dif-
ferences between the GOLD grades (p= 0.498, p= 0.673,
p= 0.530, and p= 0.128). In the combined lobar and seg-
mental airways (generations 3–5) and subsegmental airways
(generations 6–10), LA3–5 was significantly lower in GOLD4,
while no other significant differences were observed between
GOLD grades. WT and WP tended to be higher from
GOLD1 to GOLD3 and lower again in GOLD4, probably
indicating airway inflammation and the transition to end-
stage airway wall degeneration (Figs. 3 and 4, and Table 2).
Further details on the generation-based results can be found
in the online supplementary material (Supplemental Table 5).

Fig. 2 MIR airway pathologies. A, B Transversal and coronal post-contrast VIBE images showing airway wall thickening of the right lower lobe bronchi
(white arrows). C, D Transversal and coronal post-contrast VIBE images showing a tree-in-bud sign in the right upper lobe (white arrows). E, F Transversal
and coronal T2 HASTE images showing bronchiectasis and associated wall thickening in both lower lobes (white arrows). G, H Coronal post-contrast VIBE
images during inspiration (G) and expiration (H) with the expiratory collapse of the left main bronchus (white arrows)
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GOLD grade-specific semiquantitative MRI scoring
The MRI parenchymal score increased with each GOLD
grade from GOLD2 to GOLD4 (p < 0.001), while the
perfusion defect score was higher overall and increased with
each GOLD grade fromGOLD1 to GOLD4 (p < 0.001). The
MRI total central airway disease score and the subscores for
tracheal pathologies and main stem pathologies had a
median of 0.0 (0.0–0.0) in all GOLD grades. The MRI total
large airway disease score and the subscore for large airway
disease (bronchiectasis, wall thickening) increased from
GOLD1 to 3 and was lower in GOLD4 (p < 0.001). TheMRI
subscore for expiratory airway collapse in large airway and
SAD had a median score of 0.0 (0.0–0.0) in all GOLD
grades. The MRI airway score including all airway sub-
scores, was lower in risk COPD and GOLD1, higher in

GOLD2 and 3, and again lower in GOLD4 (p= 0.010). The
MRI global score increased with higher GOLD grades
(p < 0.001) (Figs. 3 and 4, and Table 3).

GOLD-grade specific characterization of disease
heterogeneity
QCT and semiquantitative MRI showed regional differ-
ences between upper and LLR in the lung parenchyma
and airways. In QCT, PRMfSAD and PRMEmph showed a
significant upper lung region predominance in all GOLD
grades, except PRMfSAD in GOLD4 (p= 0.103), and
PRMEmph in GOLD3 and GOLD4 (p= 0.176, p= 0.474).
BE was significantly higher, while WP tended to be higher
in the LLR in all GOLD grades. Semiquantitative MRI
scoring showed no clear regional predominance of

Fig. 3 Box plots for quantitative CT parameters. Box plots of the parenchymal disease parameters TLV, PRM (PRMfSAD, PRMEmph, and PRMAbnormal), MRI
parenchymal and perfusion defect scores, and the airway disease parameters WP (WP1–2, WP3–5, and WP6–10) and MRI central, large and SAD scores for
the COPD stages risk COPD–GOLD1–4. Boxes indicate the 25–75th percentile, whiskers indicate the 5th and 95th percentile, and individual outliers are
indicated by white-filled circles
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parenchymal and perfusion defects, whereas large airway
wall thickening/bronchiectasis was significantly higher in
the LLR in all GOLD grades.

Correlation between semiquantitative MRI and QCT and
lung function parameters
The MRI scores for parenchymal and perfusion defects
correlated weakly with PRMfSAD (r= 0.24, r= 0.39),
moderately with PRMEmph (r= 0.61, r= 0.60), and FEV1/
FVC (r= 0.45, r= 0.56). Spearman correlations were
calculated for different airway sizes. MRI central airway
disease score and QCT WP pooled for central airway

generations (WP1–2) correlated negligibly (r= 0.06), MRI
large airway disease score and WP pooled for large airway
generations (WP3–5) correlated weakly (r= 0.31), and
MRI SAD score and WP pooled for subsegmental airway
generations (WP6–10) correlated negligibly (r= 0.06). The
correlations between MRI airway disease scores and
FEV1/FVC were all negligible (r= 0.10, r= 0.10, and
r= 0.06) (Fig. 5 and Supplemental Table 6).

Discussion
The results demonstrate the feasibility of lung MRI for
GOLD grade-specific characterization of parenchymal

Fig. 4 GOLD stage-specific imaging characteristics in QCT and MRI. A1–A5 Quantitative CT images with parametric response imaging (PRM) with
normal lung (green= PRMNormal), functional SAD (yellow= PRMfSAD), and emphysema (red= PRMEmph). Note: air trapping and emphysema increase
with the GOLD stage. B1–B5 Perfusion MRI images showing homogeneous lung signal in GOLD1 and extensive perfusion defects (white cross) in
GOLD4. Note: MRI perfusion defects correspond to CT emphysema. C1–C5 Segmented airway tree on CT (blue= low WP and red= high WP). D1–D5
Axial images of lobe bronchi on CT with segmented airway walls with the highest WP in GOLD3. E1–E5 Transverse T1 VIBE images of lobe bronchi on
MRI. Note: assessment of the airway with MRI is much more challenging than with CT
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and airway disease in a heterogeneous COPD population.
Parenchymal disease scores on MRI were consistent with
QCT, as PRMfSAD, PRMEmph, and MRI parenchymal and
perfusion scores were higher in each GOLD grade. MRI
subscore for large airway disease indicated airway
inflammation in GOLD3 with the transition to airway wall
degeneration in GOLD4. Moderate correlations were
achieved between MRI parenchymal and perfusion defects
vs PRMEmph and FEV1/FVC. MRI large airway disease
scores correlated weakly with WP3–5 and negligibly with
FEV1/FVC.
The quantitative CT parameters TLV, EI, PRMfSAD,

PRMEmph, and PRMAbnormal increased and MLD decreased
with higher GOLD grades, which is consistent with the pro-
gression of emphysema and hyperinflation [32, 33] (Table 2).
Accordingly, the MRI parenchymal and perfusion defect
scores were also higher with the increasing GOLD grade,
demonstrating that MRI can visualize parenchymal disease
progression in COPD (Table 3). However, MRI perfusion
defect scores were higher than MRI parenchymal defect
scores in all GOLD grades, which can be explained by the
different underlying pathophysiological processes represent-
ing perfusion and parenchymal defects. Parenchymal defects
represent emphysematous destruction and hyperinflation and
are reflected by PRMEmph on QCT. Perfusion defects are due
to impaired ventilation and hypoxic pulmonary vasocon-
striction due to SAD or direct emphysematous destruction of

the alveolar capillaries, being a mixture of emphysema and
SAD (air-trapping) on QCT (PRMEmph+ PRMfSAD=
PRMAbnormal). Therefore, MRI perfusion defects should affect
a larger proportion of the lung thanMRI parenchymal defects.
QCT results support this observation, as air trapping is the
leading pathology in the lower GOLD grades, explaining the
significantly higherMRI perfusion defect scores at risk COPD,
GOLD1, and GOLD2. Furthermore, technical factors must be
considered. Parenchymal defects were recorded as signal
voids on contrast-enhanced 3D transversal gradient-echo
images, but lung tissue consists mainly of air-filled alveolar
space with low hydrogen content and multiple air-tissue
surfaces, resulting in low signal intensity and poor signal-to-
noise ratio [34]. Therefore, even lower signal intensities in
emphysematous areas are difficult to detect visually, sug-
gesting that a dynamic MRI sequence for perfusion defect
detection may be necessary to achieve satisfactory sensitivity
for subtle emphysema and air trapping, especially in lower
GOLD grades. Another finding was a faster increase in MRI
parenchymal and perfusion defects between higher GOLD
grades, suggesting an accelerated progression of emphysema
in advanced COPD, possibly due to the effect that the locally
highly altered alveolar micromechanics within a damaged
lung could itself become an “independent trigger for the
progression of lung damage [35].
QCT airway parameters showed no significant differ-

ences between GOLD grades, but WP for central, large,

Table 3 Semiquantitative MRI results for the total lung

Semiquantitative MRI All GOLD grades Risk COPD GOLD1 GOLD2 GOLD3 GOLD4 p

Parenchymal disease

Parenchymal defects 0.0 (0.0–2.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–2.0) 2.0* (0.0–4.0) 3.0 (0.0–5.0) < 0.001

Functional disease

Perfusion defects 9.0 (6.0–11.0) 6.0 (5.3–6.8) 6.0 (6.0–8.0) 9.0* (6.0–11.0) 10.0* (8.0–11.0) 11.0* (10.0–12.0) < 0.001

Central airways disease

Trachea 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.694

Main stems 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.151

Total central airway disease 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.191

Large airways disease

Wall thickening/bronchiectasis 5.0 (2.0–6.0) 4.0 (2.0–6.0) 4.0 (2.0–6.0) 5.0 (2.0–6.0) 6.0 (4.0–6.0) 5.0 (3.0–6.0) < 0.001

Expiratory airway collapse 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) > 0.809

Total large airway disease 5.0 (2.0–6.0) 4.0 (2.0–6.0) 4.0 (2.0–6.0) 5.0 (2.0–6.0) 6.0 (3.0–6.0) 4.5 (2.0–6.0) 0.005

SAD

CLN and PBE 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.011

Scores

Airway score 6.00 (3.00–6.0) 4.0 (2.00–6.0) 4.0 (2.00–6.0) 6.0 (3.00–6.0) 6.0 (4.00–6.0) 5.0 (3.00–6.0) 0.010

Global score 14.0 (10.0–16.0) 10.0 (6.75–13.0) 10.0 (8.0–13.0) 14.0 (10.25–18.0) 16.0 (12.0–19.0) 19.0 (14.0–22.0) < 0.001

MRI semiquantitative scores for parenchymal- and perfusion defects, central airway disease (trachea wall thickening/expiratory collapse, main stem wall thickening/
expiratory airway collapse), large airway disease (wall thickening/bronchiectasis and expiratory airway collapse) and small airways disease (CLN and PBE), airway score,
and the global scores (perfusion defects+ airways score) are shown for all GOLD grades (risk COPD, GOLD1, GOLD2, GOLD3, and GOLD4). All data are given as median
with interquartile range (Q1–Q3)
CLN centrilobular nodules
* p < 0.05 vs previous GOLD grade
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and small airways tended to be higher in GOLD2 and
GOLD3 and lower in GOLD4, which is consistent with
other work from our group, including a comparable
subpopulation from the COSYCONET trial [36–38]
(Table 2). However, the literature does not yet provide a
consistent picture of the chronological development of
airway disease in the different GOLD grades. SAD is

considered a central feature of COPD, with chronic
inflammation leading to progressive narrowing and
destruction of the small airways [39–41]. Koo et al
demonstrated a significant loss of terminal and transi-
tional bronchioles in GOLD1 and GOLD2, as the
remaining small airways showed thickened walls and
narrowed lumens which were also present in regions

Fig. 5 Spearman rank order correlation coefficients. Spearman rank order correlation coefficients were calculated between semiquantitative MRI scores
for parenchymal disease (parenchymal and perfusion defect scores), QCT PRM (PRMfSAD, PRMEmph), and the ratio of FEV1/FVC. In addition,
semiquantitative MRI scores for central, large, and SAD were correlated with QCT WP pooled for central (WP1–2), large (WP3–5), subsegmental (WP6–10)
airways, and FEV1/FVC. Spearman’s r correlation coefficients are given in each panel. Solid lines indicate the linear regression
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without emphysema [42]; other studies have found sig-
nificantly reduced airway WT in most areas of the central
tracheobronchial tree in COPD patients, with possible
mechanisms including regression of airway smooth
muscle, apoptosis or replacement fibrosis, and reduced
bronchial vascular volume [43–45]. Therefore, we inter-
preted the changes in airway dimensions observed as a
possible transition from reversible airway inflammation in
GOLD2 to GOLD3 to irreversible airway damage with
degradation of the airway walls in GOLD4. This study
compared semiquantitative MRI and quantitative CT for
airway disease in different GOLD grades. We tried to
achieve better comparability by combining the QCT air-
way parameters for central (generation 1–2), large= lobar
and segmental (generation 3–5), and subsegmental (gen-
eration 6–10) airways, as the MRI scoring system used an
analogous categorization by distinguishing between cen-
tral, large and SAD. The medians of the MRI subscores
for central and SAD were zero for all GOLD grades, so a
comparison with the corresponding QCT parameters was
not possible (Table 3). At least, the MRI subscore for large
airway disease showed a comparable trend to the WP3–5,
with the highest scores in GOLD3, and again lower scores
in GOLD4, possibly reflecting also airway inflammation
and the transition to airway degeneration. Our results
showed the limitations of MRI in the assessment of airway
pathologies, in particular, central and peripheral airways
were difficult to assess, mainly due to the higher vulner-
ability to respiratory and cardiac motion and the lower
spatial resolution of MRI [20, 46]. Therefore, the best
results are obtained for large airways (lobar and segmental
bronchi), as they are better visualized on MRI images.
In conclusion, semiquantitative lung MRI can provide

GOLD grade-specific characterization of parenchymal
and airway disease. Parenchymal disease increased with
higher GOLD grades as air trapping and emphysema
increased. MRI perfusion defect scores were higher than
MRI parenchymal defect scores in all GOLD grades, as
perfusion defects represent a mixture of air trapping and
emphysema. Furthermore, air trapping is the leading
parenchymal pathology in lower GOLD grades, which
explains the significantly higher MRI perfusion defect
scores at risk COPD, GOLD1, and GOLD2. MRI assess-
ment of airway pathology was limited for the central and
peripheral airways due to susceptibility to respiratory and
cardiac motion and low spatial resolution. However, MRI
large airway disease had the highest scores in GOLD3 and
again lower scores in GOLD4, possibly reflecting airway
inflammation and the transition to airway degeneration.
COPD is a heterogeneous disease characterized by

varying regional distribution of parenchymal and airway
pathologies. Our regional analysis compared upper and
LLR, showing an upper lobe predominance for PRMfSAD

and PRMEmph in all GOLD grades, which is consistent
with the literature [47]. Accordingly, MRI parenchymal
defects and MRI perfusion defects tended to be higher in
the upper lobes, but the differences were less pronounced
(Table 4). Overall, regional differences in airway involve-
ment are less well studied. In smokers, Tho et al showed
significantly lower Pi10 values in the right upper lobe
compared to the lower lobes [48]. We also found greater
airway involvement in the LLR as the QCT parameter BE
was significantly higher and WP tended to be higher in
the lower lobes in almost all GOLD grades. Similarly, the
MRI score for large airway wall thickening/bronchiectasis
showed a significant predominance in the lower lobes in
all GOLD grades (Table 4). In conclusion, semi-
quantitative MRI seems to capture the regional hetero-
geneity of COPD. The ability to detect regional
heterogeneity, i.e., upper or lower lobe predominance, is
clinically relevant as it is associated with disease pro-
gression and has clinical implications for disease man-
agement [49–51]. The more uniform distribution of MRI
perfusion defects may be due to it being a precursor to
structural changes detectable with CT and is consistent
with the literature, as is the spatial distribution of venti-
lation defects [52]. Gravitational effects due to the supine
position of the patient in the scanner were not evaluated,
as this is not possible with the lobe-based MRI scoring
system used [53]. It is known that the supine position
introduces a ventral to dorsal lung attenuation gradient
and influences the perfusion blood flow strength [54, 55].
As both the CT and MRI scans were performed in the
supine position, this should play a minor role in the
comparison between the MRI and CT methods.
Correlations between MRI scores and QCT were higher

for MRI parenchymal and perfusion defects scores than for
MRI airway disease subscores. The MRI scores for par-
enchymal and perfusion defects correlated weakly with
PRMfSAD, but moderately with PRMEmph (r= 0.61) (Fig. 5).
We believe these results are satisfying as we have shown
only slightly higher correlations (r= 0.75) between
PRMEmph and MRI perfusion defects in percent (QDP), the
latter calculated by using a computer-assisted quantifica-
tion method in a single-center substudy [56]. The corre-
lations between PRMfSAD and MRI perfusion defects were
weak, suggesting that visual detection of air trapping on
MRI may be difficult and lead to underscoring, mainly at
lower GOLD grades. We correlated QCT and MRI airway
disease by pooling the QCT data for WP for central (gen-
erations 1–2), large (generations 3–5), and subsegmental
airways (generations 6–10) and matching them with the
corresponding MRI subscores. As expected, the correla-
tions between MRI scores for central airway disease and
WP1–2 and between MRI SAD and WP6–10 were negligible
due to respiratory and cardiac motion and low spatial
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resolution. Only MRI large airway disease score and
(WP3–5) showed a weak correlation (Fig. 5). It seems pos-
sible that the weak correlation is partly due to the MRI
scoring system, as most airway pathologies were scored on
a 3-point scale or for presence or absence on less than or
more than 50% of a lung lobe, which provided a description
of presence rather than detailed quantitative information,
which probably resulted in lower coefficients when corre-
lated with numerical QCT values.
Lung function parameters showed the expected impair-

ment associated with GOLD grades, with TLC and RV
significantly higher in GOLD4 than in GOLD1, and FVCpp
and FEV1 percent predicted (FEV1pp) lower from GOLD1
to GOLD4. However, FVCpp and FEV1pp were lower in
“risk COPD” than in GOLD1. The same observation was
made by Karch et al who analyzed the total COSYCONET
study population (n= 2741) [21]. They concluded that the
administration of high-dose bronchodilators (used to
standardize the patient’s condition prior to the functional
assessments) may have improved FEV1/FVC above the
thresholds of ≥ 0.7 in some GOLD1 patients, leading to
their classification as “risk COPD”, possibly influencing the
median FEV1pp in the latter group. MRI scores for par-
enchymal and perfusion defects correlated moderately with
FEV1/FVC (r=−0.45 and r=−0.56), which is slightly
lower than the correlation between PRMEmph and FEV1/
FVC (r=−0.72) in a comparable study [37]. However, the
results indicate a relationship between parenchymal disease
and airflow limitation. The best correlations (moderate)
were obtained between perfusion defects and FEV1/FVC,
as a reduction in FEV1/FVC is mainly due to small airway
obstruction, and perfusion defects represent emphysema
and SAD [57, 58]. The correlation between FEV1%pred and
MRI parenchymal and perfusion defect was also moderate
[59]. The correlations between MRI airway disease scores
and FEV1/FVC were all negligible (r= 0.10, r= 0.10, and
r= 0.06) (Fig. 5 and Supplemental Table 6).
The study had the following limitations. (1) Parenchymal

and perfusion defects on MRI may be influenced by lung
mass, pulmonary embolism, pneumonia, and other comor-
bidities such as interstitial lung disease or cystic fibrosis.
Major exclusion criteria for the imaging substudy were pre-
vious lung surgery (e.g., lung volume reduction or lung
transplantation) and moderate or severe exacerbations
requiring antibiotic treatment within the previous four
weeks. In addition, interstitial lung disease, fibrosis, or cystic
fibrosis were not reported as comorbidities in the COSYC-
ONET baseline report, suggesting at least a low prevalence in
the imaging subcohort [21]. Pulmonary masses (> 3 cm),
central or peripheral pulmonary emboli, or other opacities
were not part of the MRI scoring system but were not
observed by visual assessment of the MRI images. However,
pulmonary nodules were a common finding. A single

pulmonary nodule was reported in 227 patients (mean size
7mm), two pulmonary nodules were reported in 105
patients (mean size 6mm), and three pulmonary nodules
were reported in 52 patients (mean size 5mm) [60]. Overall,
we believe that the pulmonary nodules had little effect on the
parenchymal and perfusion defect scores due to their small
volume. (2) MRI airway disease scores for central and small
airways showed zero medians for all GOLD grades. This was
unsatisfying as it was not possible to compare the results with
the QCT parameters. In addition to the fact that central and
small airways are more difficult to score visually on MRI due
to technical limitations, the sample size may have been
underpowered. COSYCONET was originally powered at 90%
to detect risk factors (especially comorbidities) that increased
the odds ratio of relevant BODE worsening by more than 1.5.
The final sample size (n= 2741 at visit 1, n= 2000–2200
expected at visit 3) was smaller than the originally planned
sample size (n= 3000 at visit 3), but still provides 70–80%
power to detect odds ratios greater than 1.5 [21]. In this
context, it was not possible to calculate the power required
for our imaging substudy, as the effect sizes of the MRI
findings were unknown. In addition, the number of patients
in the imaging substudy (n= 625) was set, as it was the
maximum within the available resources. However, it is
possible that the MRI findings of the central and small air-
ways would have been more informative with a larger sample
size. (3) The MRI score as presented has limitations, parti-
cularly in some subscores that seem difficult to objectify,
resulting in poor inter-reader agreement (Supplemental
Table 4). In this context, it would have been useful to per-
form an intra-reader reproducibility study, but this was not
possible due to the high personnel requirements. However,
the results could have led to more targeted training of
readers, which would ultimately have reduced inter-reader
variability. We attempted to overcome this drawback by
using two first readers who were reviewed by a third reader
with more than 20 years of experience in lung MRI as an
adjudicator to reach a consensus. In the future, adding
computer-assisted quantitative parameters for MRI could
improve the consistency and objectivity of the scores. How-
ever, a reliable quantitative MRI assessment is under devel-
opment, but not yet available for the multicenter
COSYCONET study, mainly because of the high require-
ments on a potential software with regard to variations in
data quality. (4) QCT and MRI imaging in large networks or
cohort studies often face the problem of heterogeneous
equipment. In most cases, the true extent and underlying
causes of inter-center imaging biomarker variability can only
be estimated. In the present multi-center study, all current
recommendations were followed to ensure the highest pos-
sible degree of standardization. However, despite all efforts, a
possible imaging center-induced bias cannot be completely
excluded.
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In conclusion, semiquantitative lung MRI can provide
GOLD grade-specific characterization of parenchymal
and airway disease, although the sensitivity of MRI in
detecting subtle parenchymal changes and airway dis-
ease is lower than that of QCT. The correlation between
MRI scores and QCT and lung function parameters was
moderate for MRI parenchymal disease and weak for
MIR airway disease, limiting the usefulness of MRI in
assessing airway disease. In addition, the semi-
quantitative scoring system may lead to subjectivity and
consistency issues, as some MRI scores showed poor
inter-reader agreement, which may affect the reliability
of the results. In the future, the addition of computer-
assisted quantitative parameters for MRI may improve
the consistency and objectivity of MRI imaging features.
Therefore, MRI can be used as a radiation-free imaging
modality in scientific and clinical settings, provided that
its capabilities and limitations are carefully considered.
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