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Background: Advances in precision oncology led to approval of tumour-agnostic molecularly guided treatment options
(MGTOs). The minimum requirements for claiming tumour-agnostic potential remain elusive.
Methods: The European Society for Medical Oncology (ESMO) Precision Medicine Working Group (PMWG) coordinated
a project to optimise tumour-agnostic drug development. International experts examined and summarised the publicly
available data used for regulatory assessment of the tumour-agnostic indications approved by the US Food and Drug
Administration and/or the European Medicines Agency as of December 2023. Different scenarios of minimum objective
response rate (ORR), number of tumour types investigated, and number of evaluable patients per tumour type were
assessed for developing a screening tool for tumour-agnostic potential. This tool was tested using the tumour-agnostic
indications approved during the first half of 2024. A taxonomy for MGTOs and a framework for tumour-agnostic drug
development were conceptualised.
Results: Each tumour-agnostic indication had data establishing objective response in at least one out of five patients
(ORR � 20%) in two-thirds (�4) of the investigated tumour types, with at least five evaluable patients in each tumour
type. These minimum requirements were met by tested indications and may serve as a screening tool for tumour-
agnostic potential, requiring further validation. We propose a conceptual taxonomy classifying MGTOs based on the
therapeutic effect obtained by targeting a driver molecular aberration across tumours and its modulation by
tumour-specific biology: tumour-agnostic, tumour-modulated, or tumour-restricted. The presence of biology-
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Vo
informed mechanistic rationale, early regulatory advice, and adequate trial design demonstrating signs of biology-
driven tumour-agnostic activity, followed by confirmatory evidence, should be the principles for tumour-agnostic
drug development.
Conclusion: The ESMO Tumour-Agnostic Classifier (ETAC) focuses on the interplay of targeted driver molecular
aberration and tumour-specific biology modulating the therapeutic effect of MGTOs. We propose minimum
requirements to screen for tumour-agnostic potential (ETAC-S) as part of tumour-agnostic drug development.
Definition of ETAC cut-offs is warranted.
Key words: biomarkers, molecular targeted therapy, tumour-agnostic, classification, drug development
INTRODUCTION

Advances in understanding the molecular foundations of
cancer have been paralleled by technological advances in
the field of cancer diagnostics. This has led to the discovery
of molecular alterations as therapeutic targets. A variety of
biomarkers have been investigated across cancers moving
partly away from histology- or organ-driven treatment.
Despite various examples of therapies with activity across
different tumour types without targeting a specific
biomarker, the promise of precision medicine is that of
biology-informed activity. Effective molecularly guided
treatment options (MGTOs) targeting a shared driver mo-
lecular aberration may accelerate development of precision
therapeutics across tumour types and ultimately make
organ-based classification of limited use, replacing it with a
biology-based definition of tumours (Figure 1). These de-
velopments have not only led to the approval of the first
tumour-agnostic MGTOs but have also highlighted the need
to rethink drug development.1-4

Precision oncology aims to integrate the results of mo-
lecular profiling into the management of patients with
cancer. Most tumour-agnostic therapeutic targets are rare,5

and their actionability may be modulated by the tumour-
specific biological ecosystem resulting in varying efficacy
across different cancers. Consequently, generating evidence
ure 1. Schematic representation of the concepts of organ, histopathology, and t
topathology, and most importantly biology, the latter integrating a targetable dri
RK, neurotrophic tropomyosin receptor kinase genes; RET, rearranged during tran
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within clinical trials is particularly challenging requiring
optimal implementation of tumour-agnostic and tumour-
specific concepts in trial design based on robustly
developed clinical and biological rationales. Furthermore,
enrolment of patients into confirmatory clinical trials after
conditional approval remains difficult.6,7 It is crucial to learn
from negative molecularly guided clinical trials,8-11 and
focus on learnings from successful cases for optimising
tumour-agnostic drug development and consequently
regulatory and health technology assessment (HTA)
frameworks to facilitate accelerated access to innovative
tumour-agnostic MGTOs.12-15

In this context, we aim to outline the evidence support-
ing the approved tumour-agnostic indications as of
December 2023 (Figure 2) and to propose a set of minimum
eligibility requirements for screening tumour-agnostic po-
tential. Subject to further validation, we tested this
screening tool using the data supporting the two most
recent tumour-agnostic indications approved during the
first half of 2024 (Figure 2). We also propose a conceptual
taxonomy for therapeutic effect of MGTOs. Our vision is
that these tools will contribute to standardising a proposed
framework for the development of tumour-agnostic MGTOs
through a rethinking of the evidence generation paths
implemented so far.
umour. The term ‘tumour’ captures the combination of factors related to organ,
ver molecular aberration modulated by the own tumour-specific biology.
sfection genes.
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Figure 2. Landscape of the tumour-agnostic authorised indications by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) as of
31 December 2023, and during the first half of 2024. Dates in blue: FDA-accelerated (light) and full (dark) approvals with the respective clinical trials which provided
the supportive evidence for the decision; dates in green: EMA conditional approvals.
dMMR, mismatch repair deficiency; IHC, immunohistochemistry; HER2, human epidermal growth factor receptor 2; MSI-H, microsatellite instability-high; NTRK,
neurotrophic tropomyosin receptor kinase genes; RET, rearranged during transfection genes; TMB-H, tumour mutational burden-high.
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METHODOLOGY

The US Food and Drug Administration (FDA) Prescribing
Information Report, and the European Public Assessment
Report were used as primary data sources for assessing the
publicly available clinical data used to support the seven
tumour-agnostic indications of six MGTOs, targeting six
different molecular alterations, approved as of 31
December 2023. We evaluated these data per tumour-
agnostic targeted driver molecular aberration and a group
of expert statisticians and clinicians reviewed and sum-
marised the challenges and opportunities in clinical trial
design in this setting. To investigate the minimum re-
quirements shared between all the included approved
tumour-agnostic MGTOs, we used the data packages of
these seven FDA-approved indications and explored
different scenarios that would enable identification of a
combination of three critical componentsdobjective
response rate (ORR), number of tumour types investigated,
and number of evaluable patients per tumour type. Based
on this approach, we propose minimum eligibility re-
quirements needed for claiming tumour-agnostic potential,
subject to further confirmatory evidence, which we tested
using the data provided for the two most recent tumour-
agnostic indications approved during the first half
of 2024. This screening tool was developed with the aim of
being used and tested in the future development of
tumour-agnostic MGTOs, consolidating a proposed con-
ceptual taxonomy for classifying the therapeutic effect of
MGTOs, for which we suggest further methodological work
to identify robust classification cut-offs of relevant efficacy
metrics. Finally, we present a framework for optimising
and accelerating tumour-agnostic drug development. This
project was coordinated by the European Society for
Medical Oncology (ESMO) Precision Medicine Working
Group (PMWG) and details on methodology, semantics, and
definitions considered are covered in the Supplementary
938 https://doi.org/10.1016/j.annonc.2024.07.730
Material Section 1, Supplementary Tables S1 and S2,
available at https://doi.org/10.1016/j.annonc.2024.07.730.
CLINICAL DATA SUPPORTING TUMOUR-AGNOSTIC
APPROVALS (AS OF 31 DECEMBER 2023)

Mismatch repair deficiency/microsatellite instability-high

Mismatch repair is a biological pathway that recognises and
repairs DNA damage, maintaining genomic stability.
Mismatch repair deficiency (dMMR) in cancer results in
microsatellite instability-high (MSI-H), accumulation of
genomic mutations, and the production of neoantigens
recognisable by the immune system.16

In May 2017, pembrolizumab received accelerated FDA
approval for adult and paediatric patients with unresectable
or metastatic, dMMR, or MSI-H solid tumours that have
progressed following prior treatment, as the first ever
tumour-agnostic MGTO.13 The supportive evidence was
based on data from 149 patients with dMMR or MSI-H
cancers enrolled across five uncontrolled, open-label,
multi-cohort, multicentre, single-arm clinical trials
(Figure 2 and Table 1).17-22 Ninety patients had colorectal
cancer (CRC, ORR 36%) with the remaining 59 patients
having one of 14 other tumour types. Among non-CRC
tumours, endometrial (n ¼ 14, ORR 36%), biliary (n ¼ 11,
ORR 27%), gastric or gastro-oesophageal junction (n ¼ 9,
ORR 56%), small intestine (n ¼ 8, ORR 38%), and pancreatic
(n ¼ 6, ORR 83%) cancers were most frequent. In March
2023, the FDA converted the accelerated approval to full
approval based on the data from three multicentre, non-
randomised phase II clinical trials (Figure 2).19,20,23 A
pooled analysis of dMMR/MSI-H tumours (N ¼ 504)
demonstrated an ORR of 33% [95% confidence interval (CI)
29% to 38%], 34% (95% CI 26% to 43%) in CRC, and 33%
(95% CI 28% to 38%) in non-CRC.24
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Table 1. Summary of the tumour-agnostic indications approved by FDA as of 31 December 2023 for the treatment of patients with unresectable/metastatic tumours previously treated and refractory to one or more
systemic treatment lines or with no satisfactory standard treatment

MGTO
Target

Variable

Pembrolizumab
dMMR/MSI-Ha

Larotrectinib
NTRK fusionsb

Entrectinib
NTRK fusionsc

Pembrolizumab
TMB-Hd,e

Dostarlimab
dMMR/MSI-Hf

Dabrafenib/trametinib
BRAFV600E mutation

Selpercatinib
RET fusions

Summary statements
regarding the seven
approved indications

With anchor
tumoursg

Other solid
tumoursh

With anchor
tumoursi

Other solid
tumoursj

Total patients, N 149 55 54 102 209 823 131 527 41 The number of total and
evaluable patients was
>200 in 3/7 (43%)

Evaluable patients, n 147 54 54 102 209 823 131 522 36

Prior systemic
treatment lines, n, %

0: 0, 0%
�1: 149, 100%
(�2: 107, 72%)

0: 10, 18%
�1: 45, 82%
(�3: 19, 35%)

0: 20, 37%
�1: 34, 63%
(�3: 9, 17%)

0: 1, 1%
�1: 101, 99%
(�3: 14, 14%)

0: 0, 0%
�1: 209, 100%
(�3: 44, 21%)

0: 624, 76%
�1: 199, 24%

0: 13, 10%
�1: 118, 90%

0: 169, 32%
�1: 358, 68%

0: 4, 10%
�1: 37, 90%

First-line patients not
represented in 3/7
(43%)

Paediatric patients,
yes/no (ORR, 95% CI)

No Yes (100%, 74-100)k Nol No No Yes (25%, 14-40)m Yes (NA)n No Efficacy demonstrated
in paediatric patients
in 3/7 (43%)

ORR, % (95% CI) 40% (32-48) 75% (61-85) 57% (43-71) 29% (21-39) 42% (35-49) 64% (61-68) 41% (33-50) 67% (63-71) 44% (29-60) ORR was ‡40% in 6/7
(86%)

ORR in evaluable
patients, % (95% CI)

40% (32-49) 76% (62-87) 57% (43-71) 29% (21-39) 42% (35-49) 64% (61-68) 41% (34-50) 67% (63-71) 50% (33-67) No clinically relevant
differences by
restricting ORR to
evaluable patients

ORR in treatment-
naïve patients, %
(95% CI)

Not included NA 65% (41-85) NA Not included 63% (59-67)o NA 79% (72-85)p NA When ORR is
available by prior
systemic treatment
exposure (3/7), ORR is
slightly lower in
previously treated
patients (D 2%-12%)

ORR in previously
treated patients, %
(95% CI)

40% (32-48) NA 53% (35-70) NA 42% (35-49) 61% (48-74) NA 72% (67-77)p NA

Lowest tumour-
specific ORR, %
(95% CI)q

27% (6-61) 25% (1-81) 20% (1-72) 7% (0-34) 0% (0-60) 0% (0-71) 0% (0-71) 20% (3-56) 20% (3-56) The lowest tumour-
specific ORR was
<20% in 3/7 (43%)

Highest tumour-
specific ORR, %
(95% CI)q

83% (36-100) 100% (59-100) 86% (42-100) 47% (21-73) 45% (35-55) 80% (28-100) 80% (28-100) 85% (66-96) 55% (23-83) The highest tumour-
specific ORR was
<80% in 2/7 (29%)

Tumour types, n
evaluable/total

13/15 12/12 10/10 9/9 15/15 16/16 13/13 13/17 10/14 Tumour types ranged
from 9 to 17, and
were �10 in 6/7
(86%)
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Table 1. Continued

MGTO
Target

Variable

Pembrolizumab
dMMR/MSI-Ha

Larotrectinib
NTRK fusionsb

Entrectinib
NTRK fusionsc

Pembrolizumab
TMB-Hd,e

Dostarlimab
dMMR/MSI-Hf

Dabrafenib/trametinib
BRAFV600E mutation

Selpercatinib
RET fusions

Summary statements
regarding the seven
approved indications

With anchor
tumoursg

Other solid
tumoursh

With anchor
tumoursi

Other solid
tumoursj

SCENARIO 1: considering tumour types with ‡5 patients
Tumour types, n (%) 6 (6/15, 40%) 4 (4/12, 33%) 5 (5/10, 50%) 6 (6/9, 67%) 4 (4/15, 27%) 7 (7/16, 44%) 5 (5/17, 29%) �33% tumour types

had �5 patients in
5/7 (71%)

Tumour types with
ORR � 30%, n

5 (5/6, 83%) 4 (4/4, 100%) 4 (4/5, 80%) 3 (3/6, 50%) 4 (4/4, 100%) 7 (7/7, 100%) 4 (4/5, 80%) ORR �30% in �67% (or
�4) tumour types with
�5 patients in 6/7
(86%)

Tumour types with
ORR ‡ 20%, n

6 (6/6, 100%) 4 (4/4, 100%) 5 (5/5, 100%) 4 (4/6, 67%) 4 (4/4, 100%) 7 (7/7, 100%) 5 (5/5, 100%) ORR ‡20% in ‡67% (or
‡4) tumour types with
‡5 patients in 7/7 (100%)

SCENARIO 2: considering tumour types with ‡4 patients
Tumour types, n 6 (6/15, 40%) 7 (7/12, 58%) 6 (6/10, 60%) 6 (6/9, 67%) 5 (5/15, 33%) 8 (8/16, 50%) 6 (6/17, 35%) �33% tumour types had

�4 patients in 7/7 (100%)
Tumour types with
ORR � 30%, n

5 (5/6, 83%) 6 (6/7, 86%) 4 (4/6, 67%) 3 (3/6, 50%) 4 (4/5, 80%) 8 (8/8, 100%) 5 (5/6, 83%) ORR �30% in �67% (or
�4) tumour types with
�4 patients in 6/7 (86%)

Tumour types with
ORR � 20%, n

6 (6/6, 100%) 7 (7/7, 100%) 6 (6/6, 100%) 4 (4/6, 67%) 4 (4/5, 80%) 8 (8/8, 100%) 6 (6/6, 100%) ORR �20% in �67% (or
�4) tumour types with
�4 patients in 7/7 (100%)

Additional criteria

Non-responder
tumour types,
N/total, %

2/15, 13%
(all with <2 patients,
renal cancer, and
sarcoma)

4/12, 33%
(all with <3 patients,
cholangio carcinoma,
breast, appendix, and
pancreatic cancer)

None 1/9, 11%
(<2 patients,
mesothelioma)

3/15, 20%
(pancreatic
4 patients,
<2 patients:
renal and
oesophageal
cancer)

5/16, 31%
(all with <4 patients,
GIST, pancreatic, anal,
neuroendocrine colon
cancer, and mixed
ductal/
adenoneuroendocrine
carcinoma)

None Responses were
observed in all tumour
types in 2/7 (29%), and
in �67% tumour types
in 7/7 (100%)

mDoR, months
(range) and
% �6 months of DoR
% �12 months of
DoR

NR (1.6þ-22.7þ)

�6 months: 78%
�12 months: NA

NR (1.6þ-33.2þ)

�6 months: 73%
�12 months: 39%

NR (2.8-26.0þ)

�6 months: 68%
�12 months: 45%

NR (2.2þ-34.8þ)

�6 months: NA
�12 months: 57%

34.7 (2.6-35.8þ)

�6 months: 95.4%
�12 months: NA

NA

�6 months: 68% (ATC),
77.8% (paediatric patients)
�12 months: 53% (ATC)

r24.5 (9.2-NR)

�6 months: 67%
�12 months: NA

DoR ‡6 months in
‡67% of responders
in 6/6 (100%)
DoR ‡12 months
in ‡33% of responders
in 4/4 (100%)

Data source: FDA Prescribing Information Reports of accelerated approvals to reflect the available data when FDA granted accelerated approval.
Data were mostly generated from multicentre non-randomised, open-label, phase I-II trials, recruiting patients with unresectable or metastatic tumours previously treated with one or more systemic treatment lines or with no satisfactory
standard treatment, ranging from 41 to 209 patients per data package. Primary endpoint was ORR (range 29%-75%) and in most cases follow-up is not mature for estimating mDoR or survival endpoints. The heterogeneity of response per tumour
typedlowest tumour-specific ORR (7%) to highest tumour-specific ORR (100%)dillustrates a spectrum of tumour-agnostic therapeutic effects, with a remaining level of uncertainty as to their efficacy across all tumour types, and no effect seen in
some underrepresented cancers. Detailed information in Supplementary Material Section 2, Table S3, available at https://doi.org/10.1016/j.annonc.2024.07.730.
ATC, anaplastic thyroid cancer; CRC, colorectal cancer; dMMR, mismatch repair deficiency; DoR, duration of response; FDA, US Food and Drug Administration; GIST, gastrointestinal stromal tumour; mDoR, median duration of response; MGTO,
molecularly guided treatment option; MSI-H, microsatellite instability-high; NA, not available; NR, not reached; NSCLC, non-small-cell lung cancer; NTRK, neurotrophic tropomyosin receptor kinase gene; ORR, objective response rate; RET,
rearranged during transfection genes; TMB-H, tumour mutational burden-high.
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retrospective analysis of 102 patients with previously
treated unresectable or metastatic solid tumours deemed
TMB-H (�10 somatic mutations per megabase of genomic
sequence, 10 mut/Mb) enrolled in the multicentre, non-
randomised, open-label, phase II trial KEYNOTE-158.41

ORR was 29% (95% CI 21% to 39%) across nine distinct
tumour types. The most frequent malignancies were small-
cell lung cancer (n ¼ 34, ORR 29%), and cervical (n ¼ 16,
ORR 31%), endometrial (n ¼ 15, ORR 47%), anal (n ¼ 14,
ORR 7%), vulvar (n ¼ 15, ORR 17%), and neuroendocrine
(n ¼ 5, ORR 40%) cancers.42

BRAFV600E mutation

Activating BRAFV600E mutation occurs across tumour types,
with the highest incidence in melanoma and thyroid
cancer.5,43,44

In June 2022, the combination of dabrafenib and tra-
metinib was granted accelerated FDA approval for patients
6 years or older with BRAFV600E-mutated unresectable or
metastatic solid tumours who have progressed following
prior treatment, excluding CRC.15 This followed several
disease-specific approvals for BRAFV600E-mutated mela-
noma, NSCLC, and anaplastic thyroid cancer.45 The tumour-
agnostic approval was based on two multi-cohort,
multicentre, non-randomised, open-label clinical trials and
one phase I/IIa trial with paediatric patients (Figure 2 and
Table 1).46,47 Among the 131 adult patients with 13
different tumour types, the ORR was 41% (95% CI 33% to
50%). The most frequent tumour types were biliary tract
cancer (n ¼ 48, ORR 46%), high-grade glioma (n ¼ 48, ORR
33%), low-grade glioma (n ¼ 14, ORR 50%), and low-grade
serous ovarian carcinoma (n ¼ 5, ORR 80%).45 For the 36
paediatric patients, the ORR was 25% (95% CI 12% to
40%).48-50 Supporting studies included COMBI-d (N ¼ 211,
ORR 68%) and COMBI-v (N ¼ 352, ORR 64%) in melanoma,
and BRF113928 in previously treated (n ¼ 57, ORR 61%)
and treatment-naïve NSCLC (n ¼ 36, ORR 61%).51,52

Rearranged during transfection gene fusions

Rearranged during transfection (RET) gene fusions leading
to constitutive activation of the RET kinase activity are
strong oncogenic drivers across a spectrum of cancers.53-55

In September 2022, the FDA provided accelerated
approval to selpercatinib for the treatment of adult patients
diagnosed with advanced or metastatic solid tumours car-
rying a RET gene fusion that have progressed on or
following prior systemic treatment, based on results from
the multicentre open-label, multi-cohort phase I/II clinical
trial LIBRETTO-001 (Figure 2 and Table 1).56-58 The data
package included 41 individuals across 14 types of RET
fusion-positive solid tumours with an ORR of 44% (95% CI
29% to 60%). In this trial, the most frequent malignancies
were pancreatic adenocarcinoma (n ¼ 11, ORR 55%) and
CRC (n ¼ 10, ORR 20%). This approval was further sup-
ported by outcomes of patients with NSCLC (n ¼ 316,
previously treated with platinum, n ¼ 247 and ORR 61%, or
treatment-naïve, n ¼ 69 and ORR 84%), medullary thyroid
942 https://doi.org/10.1016/j.annonc.2024.07.730
cancer (n ¼ 143, previously treated with cabozantinib/
vandetanib, n ¼ 55 and ORR 69%, or cabozantinib/vande-
tanib-naïve, n ¼ 88 and ORR 73%), and thyroid cancer
(n ¼ 27, previously treated, n ¼ 19 and ORR 79%, or
treatment-naïve, n ¼ 8 and ORR 100%) with RET gene fu-
sions in the LIBRETTO-001 trial, which had previously led to
tumour-specific approvals.59-61 In March 2024, the EMA
authorised the conditional approval to the same indication,
supported by an update including 52 patients, reporting an
ORR of 44% (95% CI 31% to 59%),62 followed by the
extension of the accelerated FDA approval for paediatric
patients 2 years of age and older in May 2024, based on
data from the clinical trial LIBRETTO-121.63

CLINICAL TRIAL DESIGN AND MINIMUM ELIGIBILITY
REQUIREMENTS FOR TUMOUR-AGNOSTIC POTENTIAL:
A PROPOSED TAXONOMY FOR MOLECULARLY GUIDED
TREATMENT OPTIONS

Basket and platform trials

Early phase clinical trials offer an opportunity to assess the
therapy’s safety and optimal dosing, and explore early signals
of activity across various tumour types. In recent years,
standard phase I, II, and III trials have been evolving, giving
way to novel trial designs, including basket, umbrella, plat-
form, and seamless trials served by master protocols,65-68

ultimately leading to accelerated drug evaluation processes
and approvals of MGTOs. In essence, the concept of tumour-
agnostic drug development is inspired by the classic phase I
dose-escalation design, which enrolled patients with
advanced, refractory disease irrespective of tumour type to
establish a recommended dose for the subsequent tumour-
specific expansion cohorts or phase II trial.69 Recently, opti-
mised recommendations for novel phase I endpoints and
methodologies have been published.70-72

Basket trials investigate MGTOs, such as a drug or a drug
combination, targeting a specific molecular aberration
across tumour types.73,74 The study may include multiple
cohorts by histopathology and/or organ of origin or pool
several cancers in a single cohort, based on clinical, bio-
logical, and prevalence-based considerations. This design
facilitates investigation of the efficacy of therapies in pa-
tients with rare molecular alterations75 and allows pooling
data from subgroups.76 Basket trials have been instrumental
in the assessment of efficacy in both tumour-specific and
tumour-agnostic contexts60,77-79 and may enable experi-
mental biomarker-driven repurposing of therapies with
market authorisation.80,81

Platform trials feature flexible designs that allow the
addition or removal of new treatment arms or patient sub-
groups within a single master trial protocol and can be per-
petual, according to a priori defined criteria.4,6,82-84 They may
also take a form of basket trials in which tumour type cohorts
can be added or stopped dynamically.6 Platform trials
enhance operational efficiency, reduce white space between
set-up of independent trials, and reduce cost and efforts.85,86

The increased use of these designs with comparator arms
highlights the importance of making a distinction between
Volume 35 - Issue 11 - 2024
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exploratory and confirmatory basket trials. In an exploratory
basket trial, the hypothesis investigated (though not
formally confirmed or rejected) is that the targeted driver
molecular aberration determines treatment response,
though it also acknowledges the possibility of heteroge-
neous results. Thus, these trials aim to evaluate the po-
tential benefit of a single MGTO across different cancer
types sharing a specific molecular aberration. On the other
hand, confirmatory basket trials formally test the efficacy of
a targeted therapy in biomarker-defined populations based
on a priori defined criteria and may employ randomisation
against standard of care.87 Regarding confirmatory basket
trials, the sharing of data across subpopulations/cohorts
may require a preplanned biological/clinical rationale and
special statistical methods. Also, the assessment of the
benefit/risk profile in pooled target populations can be
complicated.6 Combining components of basket and plat-
form trials may offer a flexible framework (platform) that
will accommodate both exploratory and confirmatory
studies, but this will need to be tested in real-life oncology
trials.
Statistical and methodological considerations: challenges
and opportunities

Because of their unique design, basket and platform trials
present several statistical and methodological challenges
distinct from the classical clinical trial designs
(Supplementary Material Section 2, Table S4, available at
https://doi.org/10.1016/j.annonc.2024.07.730).

Number and type of study cohorts. The challenging balance
between limited statistical power in multiple small tumour-
specific cohorts and optimal scientific inference of tumour
type heterogeneity in a pan-tumour cohort warrants the
definition of a minimal number of tumour types and pa-
tients per tumour type. A basket trial analysis can be carried
out in a frequentist or in a Bayesian framework,88 and the
cohort may be treated independently, or information can be
shared across (all or some) cohorts.89-91 Bayesian adaptive
hierarchical modelling and the multisource exchangeability
model may offer valuable approaches to determine the
operating characteristics of basket designs with such infor-
mation sharing.92,93 They can accommodate for early
stopping for futile treatments.

Sample size and type I error. The statistical design of a trial
should be guided by its primary scientific question. For
exploratory trials, the sample size can be determined based
on the desired level of precision required to achieve a
meaningful estimate of the effect of the treatment (e.g.
based on the width of the CI). Several exploratory basket
trials have been designed utilising the Simon two-stage
approach.94 For complex basket trial design, simulations
may be required to determine sample sizes and power.95 In
confirmatory basket trials where the primary purpose is to
test a single MGTO across several tumour types, there is a
risk of two types of false-positive conclusions. The first is the
marginal type I error rate, related to each treatment in a
Volume 35 - Issue 11 - 2024
subpopulation/cohort, while the second is the family-wise
type I error.96 The concept of family-wise error rate in a
basket trial aims at providing control of an MGTO being
deemed efficacious in at least one of the subpopulations/
cohorts when there is no treatment effect in any. In a
confirmatory platform basket trial intended for successive
regulatory submissions, regulators may require the control
of the master protocol family-wise error rate, in a similar
vein as subgroup analyses, and multiplicity adjustment may
be needed when the data are pooled from different sub-
studies. However, if these sub-studies can be considered
independent for supporting separate regulatory claims, no
multiplicity adjustment would be necessary for each
benefit/risk assessment.6 Interestingly, the concept of false
discovery rate has been proposed in this setting which can
be defined as the expected proportion of false positives
among the rejected basket-specific null hypotheses.97 Bas-
ket trials often incorporate interim monitoring and stopping
rules to assess treatment efficacy and safety throughout the
trial’s duration. Bayesian monitoring techniques, group
sequential methods, and adaptive sample size re-estimation
approaches enable efficient decision making based on
accumulating data while controlling error rates.98

Comparator. Exploratory basket trials are mostly designed as
single-arm trials. Although confirmatory trials are typically
randomised, single-arm trials may be considered as well. This
is particularly relevant for treating patients with rare tumours
and/or rare molecular aberrations, where the natural history
of the disease is well understood, and there is a robust clinical
endpoint demonstrating large treatment effect. In these cir-
cumstances the use of external controls based on real-world
data (RWD) is increasing, particularly when randomisation is
considered unethical or not feasible.99,100 The accelerated
use of RWD to produce evidence in oncology101 and its
increased use to support regulatory decisions102 highlights
the need for proper guidance for reporting RWD studies,103 as
well as effective tools to assess data quality. Methodological
challenges, such as prospective standardised primary data
collection to minimise missing data, robust description of
baseline characteristics to reduce selection bias and to allow
matched comparisons, and rigorous endpoint assessments to
mitigate outcome measurement biases, need to be
addressed for the optimal use of RWD external compara-
tors.104 Alternatively, intrapatient comparisons of efficacy,
using each patient as its own control, might provide addi-
tional insight into drug efficacy as compared to previous
standard therapies.105 Whenever possible and applicable,
clinical trialists should seek the design of basket/platform
trials that allow for randomisation to produce the highest
level of evidence.

Owing to the heterogeneity of patient’s and disease’s
characteristics across different tumour types, a pan-tumour
randomised controlled trial (RCT) poses considerable sta-
tistical and methodological challenges. Quotas for tumour
types may be set up in the protocol to avoid over-
representation of most frequent and no >20% of the
randomised patients allowed to be enrolled for a given
https://doi.org/10.1016/j.annonc.2024.07.730 943
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tumour type.8,106 While randomisation may guarantee that
the two groups of patients have comparable characteristics
and the same overall prognosis, heterogeneity may still
dilute the expected benefit. Stratification of the random-
isation by prognosis could help to overcome this issue. In
the setting of modern therapies, cross-over between arms
and comparison of progression-free survival between
standard of care and experimental treatment could also be
applied to generate data on the efficacy of the intervention
tested.

Endpoints. Early phase trials conducted in patients with
previously treated refractory advanced disease typically
employ endpoints that reflect the experimental treatment
activity such as tumour shrinkage, which can be measured
within a reasonable time frame. ORR is most often the
primary endpoint, complemented by duration of response,
despite not being validated as a surrogate endpoint of
overall survival. Single-arm trials with response rates poorly
control for the ‘true’ false-positive and false-negative rates
if the null response rate is incorrectly specified.107 This
limitation can significantly influence the conclusions drawn
from the trial. Nonetheless, in this setting, spontaneous
tumour size regression is not expected, so proper statistical
assumptions using ORR may be sufficient for exploratory
evidence of activity. Other surrogates of activity should be
investigated and validated to assess activity in cancers
where radiological objective response is hard to measure
(e.g. ovarian cancer), such as proliferative index, early
metabolic response, or clearance of circulating tumour DNA.
Digital technologies can help efficiently capture important
patient-reported outcomes pertaining to both health-
related quality of life and safety/tolerability.108,109 While
exploratory endpoints may provide clues and hypotheses
for biomarker development, it is unlikely they can
contribute to regulatory decision making.

The need for minimum eligibility requirements for tumour-
agnostic potential: the ESMO Tumour-Agnostic Classifier
and Screener (ETAC-S)

Minimum eligibility requirements for tumour-agnostic
potential. The increased uptake of precision oncology and
accelerated targeted drug development underscore the
need to standardise the way we screen and claim tumour-
agnostic potential of investigational therapies. Therefore,
establishing a list of minimum requirements that may not
be sufficient, but are necessary to assign tumour-agnostic
potential, would be instrumental to support drug develop-
ment and further evidence generation for regulatory
assessment. Based on robust preclinical and mechanistic
rationales, the approved tumour-agnostic indications as of
31 December 2023 originated from analyses of up to five
non-randomised, open-label, single-arm phase I-II trials,
mostly with multiple tumour-specific cohorts, or alterna-
tively with cohorts enrolling different tumour types
(Figure 2). By analysing the data of these seven indications,
we explored different scenarios to identify a robust
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combination of three critical components for claiming
tumour-agnostic activityda minimum expected ORR in
different tumour types with a given minimum number of
evaluable patients. In the setting of refractory disease, we
found that each of the seven indications presented data
establishing an objective response in at least one out of five
patients (ORR � 20%) in two-thirds of the investigated
tumour types (and in at least four tumour types) with at
least five evaluable patients per tumour type (Table 1 and
Figure 3). Thus, the expert panel agreed that these three
components could serve as the proposed, pragmatic
screening tool (ETAC-S).

Testing of ETAC-S in tumour-agnostic approved indications
during the first half of 2024. After establishing these min-
imum requirements to claim tumour-agnostic potential, we
tested this screening tool using the data from the two most
recent tumour-agnostic indications approved during the
first half of 2024 (Figure 2). In April 2024, the antibody-drug
conjugate trastuzumab deruxtecan was granted accelerated
FDA approval for patients with unresectable or metastatic
human epidermal growth factor receptor 2 (HER2)-positive
(immunohistochemistry 3þ) solid tumours, based on the
analysis of data from 192 adult patients enrolled in three
multicentre clinical trials (Figure 2) with an ORR of 50%
(95% CI 43% to 57%).110-114 Among the 16 tumour types
included, the objective response was �20% in eight out of
nine (89%) tumour types with at least five evaluable pa-
tients per tumour type (Supplementary Material Section 2,
Table S5, available at https://doi.org/10.1016/j.annonc.
2024.07.730). In June 2024, the FDA granted accelerated
approval to repotrectinib as the third kinase inhibitor for
the treatment of adult patients with locally advanced or
metastatic solid tumours with the presence of an NTRK
gene fusion.115 The supportive evidence was based on data
from 88 adult patients with solid tumours harbouring NTRK
gene fusions enrolled in one multicentre single-arm open-
label multi-cohort phase I/II clinical trial (Figure 2) with an
ORR of 53% (95% CI 42% to 64%).116,117 Out of the 15
tumour types included, 4 were represented by at least five
evaluable patients and all these 4 tumour types obtained an
ORR � 20% (Supplementary Material Section 2, Table S5,
available at https://doi.org/10.1016/j.annonc.2024.07.730).
We meticulously applied our screening tool to scrutinise
these approvals for tumour-agnostic potential and the data
used for these approvals met the minimum requirements of
ETAC-S (Supplementary Material Section 2, Table S5, avail-
able at https://doi.org/10.1016/j.annonc.2024.07.730).
Based on the data analysed, we believe that ETAC-S is easily
applicable in the early phase of drug development for
identifying MGTOs with potential tumour-agnostic activity.
Such tumour-agnostic potential should be further validated
in properly designed clinical trials for graduation or rejec-
tion and further regulatory assessment.

Taxonomy for therapeutic effect of molecularly guided
treatment options. In contrast to therapies that ultimately
demonstrate confirmatory evidence of tumour-agnostic
Volume 35 - Issue 11 - 2024
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Figure 3. ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): minimum eligibility requirements for tumour-agnostic potential. Robust preclinical evidence
associated with prospective clinical evidence from phase I-II trials demonstrating an objective response in at least one out of five patients (ORR � 20%) in two-thirds
of the investigated tumour types (and in at least four tumour types) with at least five evaluable patients per tumour type, in the setting of refractory disease.
ORR, objective response rate.
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activity, certain MGTOs have their therapeutic effect on
the targeted driver molecular aberration substantially
modulated by tumour-specific biology (e.g. PARP inhibitors
in tumours harbouring BRCA1/2 mutation/homologous
recombination deficiency) or established activity only in a
tumour-specific biology context (e.g. PI3K inhibitors in
PIK3CA-mutated breast cancer). Although the therapeutic
effect is driven by targeting of a key molecular aberration, it
Figure 4. Proposed ESMO Tumour-Agnostic Classifier (ETAC) taxonomy: tumour-ag
modulated (e.g. PARP inhibitors in tumours harbouring BRCA1/2 mutation/homo
PIK3CA-mutated breast cancer).
BRCA, breast cancer gene; DMA, targeted driver molecular aberration; NTRK, neuro
PI3K, phosphatidylinositol 3-kinases; PIK3CA, phosphatidylinositol-4,5-bisphosphate
myosin receptor kinase.
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could be substantially modulated by the tumour-specific
biology. The actionability of a driver molecular aberration
might be affected by alternative activated pathways
responsible for mechanisms of resistance to novel targeted
therapies, or other complex factors of the complete bio-
logical context of the tumour (Figures 1 and 4). Therefore,
we propose the interplay of targeted ‘driver molecular ab-
erration’ with ‘tumour-specific biology’ as a pragmatic
nostic (e.g. TRK inhibitors in tumours harbouring NTRK gene fusions), tumour-
logous recombination deficiency), or tumour-restricted (e.g. PI3K inhibitors in

trophic tropomyosin receptor kinase gene; PARP, poly (ADP-ribose) polymerase;
3-kinase, catalytic subunit alpha gene; TB, tumour-specific biology; TRK, tropo-
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conceptual basis for a taxonomy for therapeutic effect of
MGTOs based on three categories (Figure 4):
1. tumour-agnostic, when targeting a driver molecular

aberration predominantly defines the therapeutic effect,
irrespective of tumour-specific biology (e.g. TRK inhibi-
tors in tumours harbouring NTRK gene fusions);

2. tumour-modulated, when the therapeutic effect on a
targeted driver molecular aberration is modulated
by the tumour-specific biology (e.g. PARP inhibitors
in tumours harbouring BRCA1/2 mutation/homologous
recombination deficiency);

3. tumour-restricted, when the therapeutic effect on a tar-
geted driver molecular aberration is only present in a
tumour-specific biology context (e.g. PI3K inhibitors in
PIK3CA-mutated breast cancer).

Categorising cancer therapies according to their mole-
cular/tumour determinants of effect based on a robust
taxonomy would profoundly change the way we treat can-
cer and potentially develop novel ontologies with groups of
patients being better classified by a driver molecular abe-
rration than by a cancer type.118,119 Although we need
further work for defining robust cut-offs that enable cla-
ssification of MGTOs in the three categories of this taxon-
omy (e.g. by systematic investigation of unsuccessful trials
of tumour-agnostic drug development), such classification
has the potential to optimise drug development and
expedite access to effective therapies in refractory condi-
tions with scarce alternative treatment options.119 Better
categorisation of this currently perceived spectrum of
different therapeutic effect across tumour types would
benefit regulators by proposing a standardised drug
development framework and by streamlining independent
scientific advice and benefit/risk assessment.
PRINCIPLES OF A TUMOUR-AGNOSTIC DRUG
DEVELOPMENT FRAMEWORK

Preclinical proof of concept

Preclinical studies play a pivotal role before embarking on
early phase clinical trials, as they facilitate drug discovery,
test novel hypotheses, study mechanisms of resistance, and
investigate various combination strategies (Drug develop-
mentdStep 1, Figure 5). Ideally, preclinical investigations
will provide a strong scientific rationale to generate
hypothesis-driven clinical trials across different tumour
types. Key areas of focus in the preclinical setting include a
robust understanding of tumour biology across various
tumour types, as well as the structure/function of the
molecular alterations, their interconnection to and modu-
lation by the multidimensional molecular pathophysiology
of the cancer, the mechanism of action, and mechanism of
resistance to the therapeutic compound. There is a pressing
need to optimise accurate biomarker co-development,
whether diagnostic, prognostic, predictive, and/or surro-
gate, which could accelerate basic science and drug dis-
covery, informing early drug development, dose selection,
and trial design.4,120 Therefore, it is critical to concurrently
946 https://doi.org/10.1016/j.annonc.2024.07.730
demonstrate robust analytical validation of companion di-
agnostics in a tumour-agnostic context.7 Given the rapidly
evolving artificial intelligence methodologies, it is timely to
consider their full potential to enhance all phases of drug
development moving forward.121
Early phase clinical trial setting

Novel trial designs, including basket trials with tumour-
specific and/or pan-tumour cohorts, platform trials, and
seamless trials served by master protocols, are ideal to test
preclinical proof of concepts (Drug developmentdStep 2,
Figure 5). In addition to the need for robust preclinical data,
necessary to inform trial design, we recommend the
involvement of expert statisticians and pharmacologists
throughout the trial design process to optimise drug
development and screening for tumour-agnostic activity. If
possible, the clinical trial protocol should be adaptive and
flexible, to allow for modifications. The balance between
tumour-specific and pan-tumour cohorts/baskets, informed
by preclinical, biological, epidemiological, and statistical
parameters, are key for examining and validating efficacy
hypotheses. Incorporating analytically validated companion
diagnostic assays is crucial to test their tumour-agnostic
clinical validity at this stage. Translational objectives may
provide insights and hypotheses for biomarker develop-
ment and allow for the study of mechanisms of resistance,
which can loop back to preclinical drug development (Drug
developmentdStep 1-2, Figure 5). Early and regular
involvement of regulatory bodies is critical to tumour-
agnostic development as it can allow for conditional/
accelerated drug approval if positive signals are seen across
tumours on study (Regulatory process, Figure 5).7,122-124

In our framework, we propose that establishing minimum
eligibility requirements for tumour-agnostic potential plays
an important role in early screening of an MGTO (ETAC-S,
Figure 5). When the therapeutic is a screen failure for
tumour-agnostic potential, but shows a signal for tumour-
restricted activity (ETAC tumour-restricted), we suggest
that this should be further developed in the setting of
traditional tumour-specific RCT or supported by the best
available innovative study design using RWD when ran-
domisation is not possible. Moreover, incentives should be
provided for the study of mechanisms of resistance that
could potentially explain the failure of the early clinical
tumour-agnostic proof of concept (Drug developmentd
Step 1-2, Figure 5). Investigating combination strategies
could shed light on potential approaches to overcome
resistance, particularly when there is a rationale for alter-
native signalling pathway activation driving cancer pro-
gression.75,125-127 Conversely, if the therapeutic
demonstrates a response in at least one out of five patients
(ORR � 20%) in two-thirds of the investigated tumour types
(and in at least four tumour types) with at least five
evaluable patients per tumour type in the setting of re-
fractory disease, it would screen positive by ETAC-S for
tumour-agnostic potential. This may warrant generation of
further confirmatory clinical trial evidence (Drug
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Figure 5. Proposed tumour-agnostic drug development framework considering the deployment of efficient modern trial designs and streamlined regulatory
processes which can exploit targeted driver molecular aberrations across tumour types. Note: Traditional RCT for MGTOs with tumour-restricted may be replaced by
supportive best available innovative study design using RWD when randomisation is not possible.
ETAC-S, ESMO Tumour-Agnostic Classifier and Screener; MGTOs, molecularly guided treatment options; RCT, randomised controlled trial; RWD, real-world data; SoC,
standard of care.
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DevelopmentdStep 3, Figure 5). Alternatively, in the pre-
sence of remarkable therapeutic effects in settings of unmet
needs, conditional/accelerated regulatory tumour-agnostic
approval may precede further confirmation (Regulatory
process, Figure 5). The ETAC-S may be used to support the
regulatory decision; however, the choice of any of these two
strategies will be guided by disease context, unmet need,
effect size, and totality of the data and should be evaluated
on a case-by-case basis as per regulatory bodies’ frame-
works. Early and ongoing involvement of regulators with
scientific advice can streamline a rolling, continuous lifecycle
drug registration process.124 In case of a granted conditional
approval of a tumour-agnostic therapeutic, authorities
should require the marketing authorisation holder to
commit with generation of post-authorisation confirmatory
evidence leading to regular approval or, in the absence of it,
to withdrawal of the conditional/accelerated approval.128
Volume 35 - Issue 11 - 2024
Confirmatory evidence

Ideally, confirmatory evidence should be generated using
RCTs, which is the gold-standard design for estimating un-
biased treatment effects for tangible benefit to patients
(Drug developmentdStep 3, Figure 5). Drugs demon-
strating robust tumour-agnostic performance in early phase
I-II trials can proceed to testing in a pan-tumour RCT. If the
MGTO seems to demonstrate a tumour-modulated effect,
an RCT, which could be phase II or phase III, with several
cohorts of different tumour types may be considered. At
this stage, the randomisation should be undertaken against
the last available efficacious standard of care, and not
versus placebo, or an ineffective control in the refractory
setting. If randomisation is not feasible or not ethical, the
best available innovative study design may be utilised,
including confirmatory basket trial designs with efficient
trial expansion, pragmatic clinical trials, data sharing from
https://doi.org/10.1016/j.annonc.2024.07.730 947
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similar basket trials, hybrid/augmented control arm trials,
trials within cohorts, synthetic/external control arms using
RWD, or even methodologically robust trial emulation using
RWD generated after conditional approval.100,129,130 Pref-
erence should be given to solid survival endpoints, esti-
mated on comparative effectiveness designs to facilitate
HTA evaluation.131,132

CONCLUSION

The ETAC-S is an easily applicable set of minimum re-
quirements designed to identify MGTOs eligible for
tumour-agnostic potential. This involves robust preclinical,
mechanistic evidence associated with prospective clinical
evidence from phase I-II trials demonstrating an objective
response in at least one out of five patients (ORR � 20%)
in two-thirds of the investigated tumour types (and in at
least four tumour types) with at least five evaluable pa-
tients per tumour type in the setting of refractory disease.
ETAC-S is conceived as a tool with high sensitivity, though
not specificity, for tumour-agnostic potential. Further
methodological work to define robust classification cut-
offs of relevant efficacy metrics will allow our proposed
ETAC taxonomy to categorise precision therapeutics to
tumour-agnostic, tumour-modulated, or tumour-restricted,
based on the interplay of targeted ‘driver molecular ab-
erration’ with modulating ‘tumour-specific biology’. ETAC
holds promise for optimising tumour-agnostic drug devel-
opment and for accelerating patient access to effective
therapies.
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