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A B S T R A C T

The Rasch model is the most prominent member of the class of latent trait models that are in common use.
The main reason is that it can be considered as a measurement model that allows to separate person and item
parameters, a feature that is referred to as invariance of comparisons or specific objectivity. It is shown that
the property is not an exclusive trait of Rasch type models but is also found in alternative latent trait models.
It is distinguished between separability in the theoretical measurement model and empirical separability with
empirical separability meaning that parameters can be estimated without reference to the other group of
parameters. A new type of pairwise estimator with this property is proposed that can be used also in alternative
models. Separability is considered in binary models as well as in polytomous models.
. Introduction

The binary Rasch model (Rasch, 1961) is one of the cornerstones of
odern item response theory and has been extended to a whole family

f models, see for example, Andrich (2016), von Davier (2016), von
avier and Carstensen (2007), Fischer and Molenaar (2012), Masters

1982), Rasch (1960). The main advantage of the Rasch model is
hat it allows measurement of latent traits to be independent of the
easurement instrument, which is considered an advantage over other
odels as, for example, the normal-ogive model considered by Lord

1952).
With reference to stimuli rather than items Rasch (1961) formulated

he requirements for comparing individuals and comparing stimuli by
tating:

The comparison between two stimuli should be independent of
which particular individuals were instrumental for the comparison;
and it should also be independent of which other stimuli within the
considered class were or might also have been compared.

Symmetrically, a comparison between two individuals should be
independent of which particular stimuli within the class consid-
ered were instrumental for the comparison; and it should also be
independent of which other individuals were also compared, on the
same or on some other occasion (Rasch, 1961), p.331.

The strength of the Rasch model is that it allows for compar-
sons of item difficulties (person abilities) that are independent of the
election of persons (items). Rasch used the term specific objectivity

E-mail address: tutz@stat.uni-muenchen.de.

for measurements that allow for the comparison of subjects or objects
without reference to the instrument (within a given well-defined frame
of reference), and considered it as general scientific principle to obtain
generalizable measurements. The property has also be referred to as
parameter separability or invariance of comparisons.

Although there are stringent mathematical arguments why the
Rasch model, which uses logistic item characteristic curves, allows for
the separation of parameters it is hardly convincing that the normal-
ogive model, which in applications typically shows very similar results
and fits, should not allow for invariant comparisons. It is demonstrated
that parameter separability is possible in a much wider class of para-
metric models, although not by means of conditional likelihood as in
the Rasch model. When investigating separability it is distinguished
between separability as a property of the probabilistic measurement
model and empirical separability as an estimation problem. While the
former is easily seen to hold for more general models than the Rasch
model separate estimation of parameters is less straightforward.

In Section 2 invariance in the Rasch model is briefly considered.
In Section 3 invariance is investigated for the wider class of monotone
homogeneity models and an estimator is derived that separates param-
eters. In Section 3.5 further properties of the estimator are considered
and a motivation as a smoothing method is given. It is also investigated
what independence of parameter estimates means, which is often mis-
understood. Section 4 it devoted to polytomous models, in particular
separability in the graded response model, which is not a member of
the Rasch family, is considered.
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2. Invariance of comparisons in the binary Rasch model

Let 𝑌𝑝𝑖 ∈ {0, 1} denote the response of person 𝑝 on item 𝑖. The binary
Rasch model can be given by

𝑃 (𝑌𝑝𝑖 = 1|𝜃𝑝, 𝛿𝑖) =
exp(𝜃𝑝 − 𝛿𝑖)

1 + exp(𝜃𝑝 − 𝛿𝑖)
, 𝑖 = 1,… , 𝐼, 𝑝 = 1,… , 𝑃 ,

where 𝜃𝑝 is the ability of person 𝑝, and 𝛿𝑖 is the difficulty of item 𝑖.
key property concerning parameter separability can be derived by

onsidering odds. The odds of a response 𝑌𝑝𝑖 = 1 are given by

𝑝𝑖 =
𝑃 (𝑌𝑝𝑖 = 1|𝜃𝑝, 𝛿𝑖)
𝑃 (𝑌𝑝𝑖 = 0|𝜃𝑝, 𝛿𝑖)

= exp(𝜃𝑝 − 𝛿𝑖).

Then the odds ratio for two persons 𝑝1, 𝑝2 is given by

𝛾𝑝1𝑖
𝛾𝑝2𝑖

=
exp(𝜃𝑝1 )
exp(𝜃𝑝2 )

=
𝜃∗𝑝1
𝜃∗𝑝2

, (1)

here 𝜃∗𝑝 = exp(𝜃𝑝). That means comparison of persons can be car-
ied out independently of the items involved, person parameters can
e separated from item parameters. Rasch (1961) preferred the pa-
ameterization 𝜃∗𝑝 , which yields the ratio 𝜃∗𝑝1∕𝜃

∗
𝑝2

when comparing
dds of two items. Here, we will mostly use the parameterization 𝜃𝑝,
hich is linked to differences of parameters rather than the ratio since
xp(𝜃𝑝1 )∕ exp(𝜃𝑝2 ) = exp(𝜃𝑝1 − 𝜃𝑝2 )

Since the model is symmetric in the parameters one obtains a similar
esult for the comparison of two items 𝑖, 𝑗,
𝛾𝑝𝑖
𝛾𝑝𝑗

=
exp(−𝛿𝑖)
exp(−𝛿𝑗 )

=
𝛿∗𝑖
𝛿∗𝑗

, (2)

here 𝛿∗𝑖 = exp(−𝛿𝑖), which does not depend on the person. Thus,
omparisons of items can be carried out independent of the persons
nvolved.

Eqs. (1) and (2) show that parameters can be separated by using
dds, however odds that are not directly observed. In general, in
robabilistic models inference tools are needed that approximate unob-
ervable terms. In Rasch models a possible path to empirical separation
f parameters is based on exploiting that the total scores are sufficient
tatistics. Let 𝑆𝑝 = 𝑌𝑝+ =

∑𝐼
𝑖=1 𝑦𝑝𝑖 denote the number of items solved by

erson 𝑝, that is, the total score of person 𝑝. Then one can derive that

(𝑌𝑝1 = 𝑦𝑝1,… , 𝑌𝑝𝐼 = 𝑦𝑝𝐼 |𝑆𝑝 = 𝑠) = 𝑒−
∑𝐼

𝑖=1 𝑦𝑝𝑖𝛿𝑖

𝛾𝑠(𝜹)
, (3)

where the functions 𝛾𝑠(𝜹) =
∑

𝑎𝑖∈{0,1},
∑

𝑖 𝑎𝑖=𝑠
𝑒−

∑

𝑖 𝑎𝑖𝛿𝑖 are the so-called
symmetric functions of order 𝑠, depending on 𝜹𝑇 = (𝛿1,… , 𝛿𝐼 ) only.
Since the conditional probability given in (3) is a function of item pa-
rameters only it can be used to estimate item parameters irrespective of
the persons involved by maximizing the conditional likelihood 𝐿𝑐 (𝜹) =
∏

𝑝 𝑃 (𝑌𝑝1 = 𝑦𝑝1,… , 𝑌𝑝𝐼 = 𝑦𝑝𝐼 |
∑𝐼

𝑖=1 𝑌𝑝𝑖 = 𝑦𝑝+). For the asymptotic
distribution and necessary and sufficient conditions for the existence of
estimates see Andersen (1977), Pfanzagl (1994) and Fischer (1981). For
the loss of information in conditional maximum likelihood, see Eggen
(2000), Eggen and Verhelst (2006).

3. Comparisons in binary latent trait models

Let us consider the more general class of monotone homogeneity
models (MH models), which comprises models of the form

𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑖) = 𝑃 (𝑌𝑝𝑖 = 1|𝜃𝑝, 𝛿𝑖) = 𝐹 (𝜃𝑝 − 𝛿𝑖), (4)

where 𝐹 (.) is a strictly monotone distribution function also called
response function. The models contain one parameter per person, 𝜃𝑝,
and one parameter per item, 𝛿𝑖. They are homogeneous since the item
haracteristic functions all have the same form. They are monotone
ince the probability of success increases monotonically with increasing
erson parameter. The binary Rasch model is contained as the special
ase where 𝐹 (.) is the logistic function 𝐹 (𝜂) = exp(𝜂)∕(1 + exp(𝜂)).
2 
For a MH model one obtains a form of separability of parameters
when considering two items 𝑖, 𝑗. From (4) one can immediately derive

𝐹−1(𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑖)) − 𝐹−1(𝜋𝑝𝑗 (𝜃𝑝, 𝛿𝑗 )) = 𝛿𝑗 − 𝛿𝑖, (5)

hich is independent of 𝜃𝑝. Thus a transformation of the involved
robabilities yields a function that does not contain person parameters,
nd which can be used to compare item parameters. Since the function
−1(.) is the quantile function differences of item parameters reflect

he differences of quantiles of the distribution function 𝐹 (.), which do
ot depend on the person parameters. In a similar way persons can be
ompared without reference to item parameters.

.1. Invariance in terms of the model

The separability property (5) can be formulated in a more general
ay. For a uni-dimensional latent trait model with response prob-
bilities 𝜋𝑝𝑖 = 𝑃 (𝑌𝑝𝑖 = 1) for person 𝑝 and item 𝑖 separability of
tem parameters from person parameters (invariance of comparison of item
arameters, specific objectivity for the comparison of items) holds if a
arameterization (𝜃𝑝, 𝛿𝑖) and a transformation function 𝐶it called item
omparator exist such that 𝐶it(𝜋𝑝𝑖, 𝜋𝑝𝑗 ) is equal to the difference of item
arameters for all items 𝑖, 𝑗. For the parameterization that is assumed
o exist one has

it(𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑖), 𝜋𝑝𝑗 (𝜃𝑝, 𝛿𝑗 )) = 𝛿𝑖 − 𝛿𝑗 . (6)

he definition of separability only assumes that a parameterization
xists in order to make the definition independent of the specific param-
terization that is used in the formulation of the model. For example,
n the Rasch model the parameterization 𝜃𝑝, 𝛿𝑖 provides such a parame-
erization but the parameterization 𝜃∗𝑝 , 𝛿

∗
𝑖 does not. Fischer (1995) used

similar equation when investigating invariance in the Rasch model.
e assumed for a fixed parameterization 𝐶(𝜌𝑝𝑖(𝜃𝑝, 𝛿𝑖), 𝜌𝑝𝑗 (𝜃𝑝, 𝛿𝑖)) =
(𝛿𝑝𝑖, 𝛿𝑝𝑗 ), where 𝑉 (.) is an additional function and 𝜌𝑝𝑖 a ‘‘reaction
arameter’’. The definition used here considers the response probability
s reaction parameter, which seems quite natural since it definitely
etermines the response. A general function 𝑉 (.) seems not necessary
f one does not consider a specific parameterization but assumes the
xistence of a parameterization. In addition, an unspecified function
(.) could be very difficult while differences are easy to handle and

uffice for the models considered here. Although a similar definition
an be given concerning the invariance of comparison of person pa-
ameters in the following we focus on the invariance of comparison of
tem parameters.

It follows from (5) that in any monotone homogeneity model the
omparison of item parameters is invariant and does not depend on
he person parameter. The Rasch model is just a special case but by far
ot the only model. It is to be emphasized that the invariance property
onsidered here is a property of the probabilistic measurement model
ut is not directly observable. However, it can be considered as the
ssential property that is needed to also obtain empirical invariance,
hat is, invariance referring to estimation.

.2. Empirical invariance

In the Rasch model empirical separation of parameters is usually
btained by exploiting that the total scores are sufficient statistics. This
orks only since the item response curves are logistic, for any other

esponse function total scores are not sufficient statistics. The deeper
eason is that binary responses are members of the exponential family
nd logits are linked to the natural parameter in exponential families,
ee, for example, McCullagh and Nelder (1989).

Conditional maximum likelihood estimation with the conditioning
n sufficient statistics is not an option if the response function is not
he logistic function. Although in monotone homogeneity models the
unction 𝐹−1(𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑖)) − 𝐹−1(𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑗 )) does not depend on person
arameters it is not obvious how this property can be exploited in
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estimation since replacing 𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑖) by observations, that is, by 0 or
1, yields −∞ and ∞ when building 𝐹−1(𝑌𝑝𝑖).

In the following an estimation method is proposed that uses pseudo
observations. Let us consider the pseudo observations

𝑌 ∗
𝑝𝑖 = 𝑌𝑝𝑖(1 − 2𝛾) + 𝛾 =

{

𝛾 𝑌𝑝𝑖 = 0
1 − 𝛾 𝑌𝑝𝑖 = 1,

where 0 < 𝛾 < 0.5 is a fixed value. For small values of 𝛾 the
pseudo observations approximate the original values, and in the ex-
treme case are identical, lim𝛾→0 𝑌 ∗

𝑝𝑖 = 𝑌𝑝𝑖. Replacing probabilities by
pseudo observations yields

𝐹−1(𝑌𝑝𝑖(1 − 2𝛾) + 𝛾) =

{

𝐹−1(𝛾) =∶ 𝛾0 𝑌𝑝𝑖 = 0
𝐹−1(1 − 𝛾) =∶ 𝛾1 𝑌𝑝𝑖 = 1.

Although lim𝛾→0 𝐹−1(𝛾) = −∞, lim𝛾→0 𝐹−1(1 − 𝛾) = ∞, for values 𝛾 > 0
one obtains finite values for 𝛾0 and 𝛾1. The empirical analogue to (5)
when replacing probabilities by pseudo observations is

𝛿𝑗 (𝑝) − 𝛿𝑖(𝑝) = 𝐹−1(𝑌𝑝𝑖(1 − 2𝛾) + 𝛾) − 𝐹−1(𝑌𝑝𝑗 (1 − 2𝛾) + 𝛾) =

=

⎧

⎪

⎨

⎪

⎩

0 𝑌𝑝𝑖 = 𝑌𝑝𝑗
𝛾1 − 𝛾0 𝑌𝑝𝑖 = 1, 𝑌𝑝𝑗 = 0
𝛾0 − 𝛾1 𝑌𝑝𝑖 = 0, 𝑌𝑝𝑗 = 1

It is an empirical approximation of 𝐹−1(𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑖)) − 𝐹−1(𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑗 )),
which is the theoretical difference for person 𝑝. From this representa-
tion an estimate of the difference 𝛿𝑗𝑖 ∶= 𝛿𝑗 − 𝛿𝑖 is derived by summing
over the contributions of all persons,

𝛿𝑗𝑖 = 𝛿𝑗 − 𝛿𝑖 = {(𝛾1 − 𝛾0)𝑛
(𝑖,𝑗)
10 + (𝛾0 − 𝛾1)𝑛

(𝑖,𝑗)
01 }∕𝑛(𝑌𝑝𝑖 ≠ 𝑌𝑝𝑗 )

= 𝛾10(𝑛
(𝑖,𝑗)
10 − 𝑛(𝑖,𝑗)01 )∕𝑛(𝑌𝑝𝑖 ≠ 𝑌𝑝𝑗 )

where 𝛾10 = 𝛾1 − 𝛾0, 𝑛
(𝑖,𝑗)
10 is the number of persons with response 𝑌𝑝𝑖 =

1, 𝑌𝑝𝑗 = 0, 𝑛(𝑖,𝑗)01 is the number of persons with response 𝑌𝑝𝑖 = 0, 𝑌𝑝𝑗 = 1,
and 𝑛(𝑌𝑝𝑖 ≠ 𝑌𝑝𝑗 ) = 𝑛(𝑖,𝑗)10 + 𝑛(𝑖,𝑗)01 . The values correspond to the entries of
the contingency table

0 1

0 𝑛(𝑖,𝑗)00 𝑛(𝑖,𝑗)01 𝑛(𝑖,𝑗)0+

1 𝑛(𝑖,𝑗)10 𝑛(𝑖,𝑗)11 𝑛(𝑖,𝑗)1+

𝑛(𝑖,𝑗)+0 𝑛(𝑖,𝑗)+1 𝑝

An alternative representation of the estimator which uses only the
sums of persons that solved specific items is given by

𝛿𝑗𝑖 = 𝛾10
𝑃
∑

𝑝=1
(𝑌𝑝𝑖 − 𝑌𝑝𝑗 )∕𝑛(𝑌𝑝𝑖 ≠ 𝑌𝑝𝑗 ) = 𝛾10(𝑌+𝑖 − 𝑌+𝑗 )∕𝑛(𝑌𝑝𝑖 ≠ 𝑌𝑝𝑗 ),

where 𝑌+𝑖 =
∑

𝑝 𝑌𝑝𝑖 are the number of persons that solved item 𝑖. If 𝐹 (.)
is a symmetric function, for example the normal distribution, one has
𝛾0 = −𝛾1, and the estimator simplifies to 𝛿𝑗 − 𝛿𝑖 = 2𝛾1(𝑌+𝑖 − 𝑌+𝑗 )∕𝑛(𝑌𝑝𝑖 ≠
𝑌𝑝𝑗 ).

Since parameters are only defined up to an additive constant one
can set 𝛿1 = 0. That yields a simple estimator of 𝛿𝑖 by using 𝛿(𝑠)𝑖 =
𝛾10(𝑌+𝑖 − 𝑌+1)∕𝑛(𝑌𝑝𝑖 ≠ 𝑌𝑝1). A disadvantage is that it uses only the item
pairs (1, 2), (1, 3),… , (1, 𝐼). An estimator that uses all the differences and
is called the pairwise separation estimator is given by

𝛿𝑖 =
𝐼
∑

𝑗=1
(𝛿𝑖𝑗 − 𝛿1𝑗 )∕𝐼,

where 𝛿11 ∶= 0. It is an average across all estimators that use the
estimated differences to a fixed item with the constraint 𝛿1 = 0. This can
be seen by considering a fixed anchor item 𝑗. Then 𝛿𝑖𝑗 is an estimator
of 𝛿𝑖 − 𝛿𝑗 . It aims at estimating the differences between item 𝑖 and item
𝑗. If one sets 𝛿𝑖 = 𝛿𝑖𝑗 for all 𝑖 implicitly the parameter 𝛿𝑗 is set to zero.

̂ ̂
In order to set 𝛿1 = 0 one has to subtract 𝛿1𝑗 .

3 
The estimate contains the scaling factor 𝛾10 but ratios 𝛿𝑖∕𝛿𝑗 do not
depend on the scaling, which means that the estimates change by a
factor if different scaling factors are used. The scaling factor is linked
to the unit of measurement that is used. In the general measurement
model 𝑃 (𝑌𝑝𝑖 = 1|𝜃𝑝, 𝛿𝑖, 𝛼) = 𝐹 (𝛼(𝜃𝑝 − 𝛿𝑖)) parameters are identifiable
if one chooses a specific value for 𝛼, for example 𝛼 = 1, and fixes the
ocation, for example by choosing 𝛿1 = 0 or ∑𝑖 𝛿𝑖 = 0. The former choice
orresponds to the (arbitrary) choice of a measurement unit, the latter
o the choice of the origin of the measurement, which is on an interval
cale. More precisely, the scales for person and item measurement are
nterval scales with the same unit of measurement and with possibly
ifferent zero points, see also Fischer (1995). The choice of the scaling
actor 𝛾10 corresponds to the choice of the measurement unit but not

on the scale of the parameters 𝜃𝑝, 𝛿𝑖. In order to link it to the choice of
the unit on the (𝜃𝑝, 𝛿𝑖)-scale we use a data-based approach. It selects the
arameter 𝛾10 that yields the best fit of the data when the measurement

unit has been fixed. We use 𝛼 = 1, which is a common choice. The
advantage is that the resulting estimates can be compared to estimates
obtained by alternative methods that use 𝛼 = 1. The 𝛾10 obtained in this
way is not an estimator of the measurement unit, which can be chosen
arbitrarily, it is just an adaptation of the estimator to common choice
of units.

The data-based approach to selecting the scale parameter is the fol-
lowing. For fixed 𝛾10 and the resulting item parameter estimates 𝛿𝑖(𝛾10)
person parameters can be estimated by maximizing the log-likelihood
function

𝑙𝛾10 (𝜃𝑝) =
𝐼
∑

𝑖=1
𝑌𝑝𝑖 log(𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑖(𝛾10))) + (1 − 𝑌𝑝𝑖) log(1 − 𝜋𝑝𝑖(𝜃𝑝, 𝛿𝑖(𝛾10))),

ielding 𝜃̂𝑝(𝛾10). Maximization is simple since it is a one-dimensional
aximization problem. In a second step the goodness-of-fit of the

esulting estimate 𝜋𝑝𝑖(𝜃̂𝑝(𝛾10), 𝛿𝑖(𝛾10)) is investigated by considering loss
unctions that reflect the differences between observations and esti-
ated probabilities, 𝐿(𝑌𝑝𝑖, 𝜋𝑝𝑖(𝜃̂𝑝(𝛾10, 𝛿𝑖(𝛾10))). Candidates are the

quadratic loss 𝐿𝑄(𝑌𝑝𝑖), 𝜋̂𝑝𝑖) = 2(𝑌𝑝𝑖 − 𝜋̂𝑝𝑖)2 and the Kullback–Leibler loss
𝐿𝐾𝐿(𝑌𝑝𝑖, 𝜋̂𝑝𝑖) = −(𝑌𝑝𝑖 log(𝜋̂𝑝𝑖) − (1 − 𝑌𝑝𝑖) log(1 − 𝜋̂𝑝𝑖)), where minimization
of the latter corresponds to maximum likelihood estimation. The final
estimator is obtained by using that scaling parameter that minimizes

Loss(𝛾10) =
𝐼
∑

𝑖=1

𝑃
∑

𝑝=1
𝐿(𝑌𝑝𝑖, 𝜋𝑝𝑖(𝜃̂𝑝(𝛾10, 𝛿𝑖(𝛾10))))

with respect to 𝛾10.
For illustration we consider the estimates obtained for the normal-

ogive model, in which 𝐹 (.) is the normal distribution function. The
item parameters for 𝐼 = 6 items were 0,−1.5,−1, 0.5, 1.2, 1.5. Person
parameters were drawn from a standardized normal distribution. Fig. 1
shows the box plots of estimates (200 repetitions) and the kernel
density estimate of item parameter 5 for 𝑃 = 100 (first row) and
𝑃 = 300 (second row), the latter is obtained by using the function
density from R. It is seen that the estimates approximate the true values
rather well. It demonstrates that item parameters can be estimated
separately also for the normal-ogive model, for which no sufficient
statistics exist. Fig. 2 shows the quadratic and the Kullback–Leibler loss
functions used to select the scale parameter for the last of the simulated
data sets. It is seen that the both loss functions select very similar scale
parameters. Although the values of the functions differ the minima for
both functions are close to 0.18. In the simulations the Kullback–Leibler
loss has been used.

3.3. Separation of parameters in the binary Rasch model

Let us again consider the binary Rasch model. As already mentioned
in Section 2 it is special among monotone homogeneity models since
it allows for estimation of item parameters by using sufficient statistics
for person parameters. The existence of sufficient statistics can be used
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Fig. 1. Left: Box plots for estimates for six items with dots indicating the true values assuming a normal-ogive model; right: density of estimates for item 5. First row: (P = 100),
econd row: 𝑃 = 300.
Fig. 2. Loss functions for the estimation of the scaling factor 𝛾10 for one simulated data set.
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to maximize the conditional log-likelihood yielding the conditional esti-
mates. It also allows to construct further estimates of item parameters
that do not depend on the selected persons.

An alternative estimation method that is strongly linked to the
separability seen in Eq. (2) is conditional likelihood estimation for pairs
of items. Under the condition 𝑌𝑝𝑖 + 𝑌𝑝𝑗 = 1 solving the conditional
likelihood for observations on items 𝑖, 𝑗 only yields the estimator

𝑒−𝛿𝑖

𝑒−𝛿𝑗
=

𝑁𝑖
𝑁𝑗

,

here 𝑁𝑖 denotes the number of persons that solved item 𝑖 and exactly
one of the two items 𝑖, 𝑗. It can be seen as an empirical version of Eq. (2)
nd is referred to as pairwise conditional estimation. Item parameters are

estimated without reference to the persons involved. A corresponding
property holds for the comparison of persons but is not explicitly given.
For more on pairwise estimates, see Zwinderman (1995), von Davier
(2016).

Both methods conditional estimation and pairwise conditional es-
timation exploit the existence of sufficient statistics given the total
scores, in the latter case under the condition that only two items
are considered. In Fig. 3 the estimators are compared to the pairwise
separation estimator with the same item parameters as in Fig. 1 and the
assumption that the Rasch model holds. It is seen that the conditional
estimates have smaller variance than the other two estimators. The
pairwise conditional estimator and the pairwise separation estimator
show almost the same performance. This is also supported by comput-
ing the average absolute deviations of estimates from the true values,
4 
which was 0.231 for the conditional estimator, 0.268 for the pairwise
separation estimator, and 0.252 for the pairwise conditional estimator.
Similar pictures are obtained if the number of persons is larger (see
appendix).

3.4. Non-symmetric response models

The strength of the pairwise separation estimator is that it pro-
vides estimates also when the response function is not the logistic
function. That includes response functions that are not symmetric. Non-
symmetric skewed response functions are not so often used since item
parameter estimates are not so easily obtained as in the Rasch model
although there is no compelling reason why item response functions
should be symmetric. Advantages of skewed response functions have
been outlined by Samejima (2000), Bazán et al. (2006) and, more
recently, by Bolt and Liao (2022).

As examples of skewed response functions we consider the maxi-
mum value distribution function (Gumbel distribution function) 𝐹 (𝜂) =
xp(− exp(−𝜂)) and the minimum value distribution (Gompertz distribu-
ion function) 𝐹 (𝜂) = 1 − exp(− exp(𝜂)). Figs. 4 and 5 show the boxplots
f estimates when using the pairwise separation estimator (parameters
re the same as in Fig. 1). Fig. 4 shows the estimates for the maximum
alue model (𝑃 = 100) and the density of estimates of item 4 (last
imulation). Fig. 5 shows the estimates for the minimum value model
ith 𝑃 = 100 on the left and P = 50 on the right hand side. It is seen

hat the estimator approximates the true parameters rather well.



G. Tutz Journal of Mathematical Psychology 122 (2024) 102876 
Fig. 3. Box plots of parameter estimates for conditional, pairwise conditional and separation estimators in the Rasch model with 𝑃 = 100.
Fig. 4. Left: Box plots for estimates for six items with dots indicating the true values assuming a maximum value model; right: density of estimates for item 4 𝑃 = 100.
Fig. 5. Box plots for estimates for six items with dots indicating the true values assuming a minimum value model 𝑃 = 100 (left), P = 50 (right).
3.5. Further issues

Independence of estimates
In Rasch models item parameters are often considered to not depend

on persons when maximizing the conditional likelihood given person
sums since the conditional likelihood does not contain person param-
eters. However, this is a misinterpretation. Although the formulae do
not contain the person parameters it does not mean that the choice of
persons has no impact on the estimates, in particular on their accuracy.
It matters, for example, if persons are drawn from a population covering
a wide range of abilities or from a population that contains only persons
with high (or low) abilities (to be demonstrated in the following).

Also the separation estimator is constructed by using equations that
do not contain the person parameters. Nevertheless, at some point per-
son parameter estimates are used, however only to obtain the scaling
5 
parameter since only proportions 𝛿𝑖∕𝛿𝑗 are scale free. To obtain the
scaling parameter 𝛾10 it is not necessary to use all persons, almost the
same estimates are found if only a subset of persons is used to find the
scaling parameter. But, as in conditional estimators the selection of the
sub population has an impact on the accuracy of estimates.

Table 1 illustrates the effect of the choice of the person population.
Person parameters have been drawn from several distributions, the
standard normal distribution (𝜃𝑝 ∼ N(0, 1)), which covers a wide range
of person parameters, the 𝜒2-distribution with one degree of freedom
(𝜃𝑝 = 𝜃2𝑝 with 𝜃𝑝 ∼ N(0, 1)), which means that all person parameters are
positive, the non-central 𝜒2-distribution with non-centrality parameter
1 (𝜃𝑝 = 𝜃2𝑝 with 𝜃𝑝 ∼ N(1, 1)), and the non-central 𝜒2-distribution with
non-centrality parameter 1.5 (𝜃𝑝 = 𝜃2𝑝 with 𝜃𝑝 ∼ N(1.5, 1)). In particular
the latter scenarios mean that only rather large person parameters are
in the sample. The item parameters are the same as in Fig. 1. As
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Table 1
Deviations of estimates of item parameters from true values for several estimation
methods.

pairwise conditional pairwise
separation conditional

P = 80 standard normal 0.298 0.257 0.290
chi-squared 0.300 0.258 0.289
nonc chi-squared, 𝑁(1, 1)2 0.315 0.303 0.346
nonc chi-squared, 𝑁(1.5, 1)2 0.368 0.369 0.452

P = 100 standard normal 0.268 0.231 0.252
chi-squared 0.276 0.240 0.265
nonc chi-squared, 𝑁(1, 1)2 0.277 0.253 0.291
nonc chi-squared, 𝑁(1.5, 1)2 0.316 0.311 0.365

P = 200 standard normal, 0.196 0.154 0.170
chi-squared 0.201 0.166 0.180
nonc chi-squared, 𝑁(1, 1)2 0.203 0.182 0.200
nonc chi-squared, 𝑁(1.5, 1)2 0.224 0.213 0.231

measure of accuracy we use the absolute deviation |𝛿𝑖 − 𝛿𝑖| averaged
cross all items. Results are given for several sample sizes. It is seen that
ll estimates perform poorer when the mean of the distribution of the
erson parameters gets larger. This includes the estimators that use the
onditional likelihood approach. In particular the pairwise conditional
stimator suffers strongly if the available persons are from distributions
ith larger means. The separation estimator is relatively stable and per-

orms well also in these cases although for Rasch models as simulated
ere the conditional estimator shows the best performance. The results
emonstrate that also conditional estimators of item parameters cannot
e considered as being independent of the choice of persons although
erson parameters are not involved in the estimation equations.

moothing and the separation estimator
The separation estimator can be seen as an estimator based on

moothing techniques. Methods as smooth kernel estimators for den-
ities and distribution functions have a long tradition, see, for exam-
le, Wand and Jones (1995), Simonoff (1996).

Let us first consider the general case of a random variable 𝑌 . For
fixed observation 𝑦0 of the random variable the contribution to the

ensity estimate is the kernel function 𝑔((𝑦 − 𝑦0)∕ℎ), where 𝑔(.) is a
ixed density function and ℎ is the window width. The contribution
o the estimated distribution function is 𝐺((𝑦 − 𝑦0)∕ℎ), where 𝐺(.) is

the distribution function corresponding to 𝑔(.). Alternatively one can
consider estimates of the survivor function 𝑆(𝑦) = 𝑃 (𝑌 ≥ 𝑦), which are
used in the representation of the binary response models considered
here.

An un-smoothed step function estimate of 𝑃 (𝑌 ≥ 𝑦) when 𝑦0 has
been observed is the function 𝑆(𝑦) = 1 − 𝐻(𝑦 − 𝑦0), where 𝐻(.) is the
Heaviside function 𝐻(𝑥) = 1 if 𝑥 ≥ 0 and 𝐻(𝑥) = 0 otherwise. To
obtain a smooth estimator one can replace the Heaviside function by
a smooth approximation. Any distribution function that is very steep
at zero could be used. The choice corresponds to the choice of the
kernel in density estimation. For simplicity we choose the function
𝐹𝛼(𝜂) = 1 − 𝐹 (−𝛼𝜂), where 𝐹 (.) is the response function of the item
response model (centred at zero such that 𝐹 (0) = .5) and 𝛼 > 0 is a
large constant. Since the function is centred at zero for increasing 𝛼
the function 𝐹𝛼(.) becomes the Heaviside function for all values unequal
zero. Smooth estimates result if

𝑃 (𝑌 ≥ 𝑦) is estimated by 𝐹 (−𝛼(𝑦 − 𝑦0)) and
𝐹−1(𝑃 (𝑌 ≥ 𝑦)) is estimated by 𝐹−1(𝐹 (−𝛼(𝑦 − 𝑦0))) = −𝛼(𝑦 − 𝑦0).

When applied to the responses 𝑌𝑝𝑖 one obtains

𝐹−1(𝑃 (𝑌𝑝𝑖 ≥ 𝑦)) − 𝐹−1(𝑃 (𝑌𝑝𝑖 ≥ 𝑦)) =
−1 −1
= 𝐹 (𝐹 (−𝛼(𝑦 − 𝑦𝑝𝑖))) − 𝐹 (𝐹 (−𝛼(𝑦 − 𝑦𝑝𝑗 ))) =

6 
Fig. 6. Box plots of bootstrap estimators of standard errors, dots denote the ‘‘true’’
standard errors (estimated from 300 drawings).

= 𝛼(𝑦𝑝𝑖 − 𝑦𝑝𝑗 ) =

⎧

⎪

⎨

⎪

⎩

0 𝑦𝑝𝑖 = 𝑦𝑝𝑗
𝛼 𝑦𝑝𝑖 = 1, 𝑦𝑝𝑗 = 0
−𝛼 𝑦𝑝𝑖 = 0, 𝑦𝑝𝑗 = 1

his is equivalent to the estimate 𝛿𝑗 − 𝛿𝑖 for one person with the
moothing parameter 𝛼 corresponding to 𝛾10.

tandard errors
A way to obtain estimates of standard errors is bootstrapping (Davi-

on & Hinkley, 1997; Efron & Tibshirani, 1994). For a given data set
onsisting of 𝑃 ×𝐼 observations, the estimation procedure is carried out
epeatedly for data that are obtained by drawing persons from the data
et with replacement. The variation of the estimates is used to compute
ealistic standard errors of parameters.

For illustration we consider the approximation of the true standard
rrors in the scenario given in Fig. 1. Estimates of the true standard
rrors are computed from 300 repetitions. To obtain bootstrap standard
rrors, we used 50 repetitions of bootstrap estimates. Each bootstrap
stimate is based on 𝑛boost = 200 drawings with replacement. Fig. 6
hows the box plots of bootstrap repetitions. It is seen that bootstrap
tandard errors approximate the true errors rather well.

. Polytomous models

Separability of parameters can also be investigated in models with
ore than two response categories. Let polytomously scored items have

alues 𝑌𝑝𝑖 ∈ {0, 1,… , 𝑘}, 𝑝 = 1,… , 𝑃 , 𝑖 = 1,… , 𝐼 , with {0, 1,… , 𝑘}
representing the coding of categories.

Several polytomous latent trait models have been considered in
the literature, in particular ordinal models as the graded response
model (Samejima, 1995, 2016) and the partial credit model (Masters,
1982; Masters & Wright, 1984) are widely used. Separability of param-
eters is especially interesting for the graded response model since, in
contrast to the partial credit model, no sufficient statistics exist that
could be used to construct conditional log-likelihood estimators.

4.1. Invariance in terms of the model

Polytomous models specify the response probabilities

𝜋𝑝𝑖𝑟(𝜃𝑝, 𝜹𝑖) = 𝑃 (𝑌𝑝𝑖 = 𝑟|𝜃𝑝, 𝜹𝑖), 𝑟 = 0,… , 𝑘,

as functions of person parameters 𝜃𝑝 and a vector of item parameters
𝜹𝑖 (for simplicity the number of response categories is the same for all
tems). The latter usually has the form 𝜹𝑇𝑖 = (𝜹𝑖1,… , 𝜹𝑖𝑘). The total
ector of response probabilities for person 𝑝 and item 𝑖 is denoted
y 𝝅𝑝𝑖(𝜃𝑝, 𝜹𝑖)𝑇 = (𝜋𝑝𝑖0(𝜃𝑝, 𝜹𝑖),… , 𝜋𝑝𝑖𝑘(𝜃𝑝, 𝜹𝑖)). A widely used polytomous
odel is the graded response model (Samejima, 1995, 2016), which

pecifies the cumulative probabilities

𝑝𝑖(𝑟) = 𝑃 (𝑌𝑝𝑖 ≥ 𝑟|𝜃𝑝, 𝜹𝑖) = 𝐹 (𝜃𝑝 − 𝛿𝑖𝑟), 𝑟 = 1,… , 𝑘,

ielding the probabilities 𝜋 (𝜃 , 𝜹 ) = 𝜋 (𝑟) − 𝜋 (𝑟 + 1).
𝑝𝑖𝑟 𝑝 𝑖 𝑝𝑖 𝑝𝑖
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Fig. 7. Cumulative logit model, 𝑃 = 100, 𝐼 = 4, 𝑘 = 5, only first two items, left: (𝛿11 ,… , 𝛿15) = ((0, 1, 1.5, 2, 2.5)), other items are shifted versions, right: second item modified, first
ow shows the averaged estimator, second row shows the estimator with anchor item 1.
Fig. 8. Cumulative minimum value model, 𝑃 = 100, 𝐼 = 4, 𝑘 = 5, only first two items, left: (𝛿11 ,… , 𝛿15) = ((0.01.01.52.02.5)), other items are shifted versions, right:second item
odified.
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When considering invariance it is useful to distinguish between
erson and item parameters since the former are uni-dimensional while
he latter are multi-dimensional.

For a polytomous latent trait model invariance of comparison of
erson parameters (specific objectivity for the comparison of persons) holds
f a parameterization and at least one transformation function called
omparator 𝐶pers exist such that for all persons 𝑝1, 𝑝2 and all items

pers(𝝅𝑝1𝑖(𝜃𝑝1 , 𝜹𝑖),𝝅𝑝2𝑖(𝜃𝑝2 , 𝜹𝑖)) = 𝜃𝑝1 − 𝜃𝑝2 .

If the cumulative model is the data generating model for each 𝑟 ≥ 1

−1(𝜋𝑝1𝑖(𝑟)) − 𝐹−1(𝜋𝑝2𝑖(𝑟)) = 𝜃𝑝1 − 𝜃𝑝2 (7)

olds. Since the cumulative probabilities are simple functions of the
ector of probabilities it is obvious that several comparator functions
pers exist. Eq. (7) shows that 𝑘 functions can be used to compare
erson parameters.

For a polytomous latent trait model invariance of comparison of item
arameters (specific objectivity for the comparison of items) holds if a
arameterization and a set of transformation functions (comparators)
it,𝑖 exist such that for two items 𝑖, 𝑗 the differences of item parameters
re uniquely determined in the form

it,𝑖(𝝅𝑝𝑖(𝜃𝑝, 𝜹𝑖),𝝅𝑝𝑗 (𝜃𝑝, 𝜹𝑗 )) = 𝛿𝑖𝑞 − 𝛿𝑗𝑟,

here 𝑖 ∈ Comp. In contrast to the comparison of person parameters it
s not sufficient to postulate the existence of just one comparator func-
ion. Since each item has several parameters more than one comparator
unction is needed to determine all differences uniquely. Typically
7 
ifferent sets of comparator functions can be found that determine
ll differences. One could also consider minimal sets of comparator
unctions but they would only be of theoretical interest.

If the cumulative model is the data generating model for any 𝑟, 𝑞 > 1

−1(𝜋𝑝𝑖(𝑟)) − 𝐹−1(𝜋𝑝𝑗 (𝑞)) = 𝛿𝑗𝑞 − 𝛿𝑖𝑟 (8)

olds, which defines the comparator functions. With the constraint
11 = 0 the set of functions
−1(𝜋𝑝1(𝑟)) − 𝐹−1(𝜋𝑝1(1)) = 𝛿11 − 𝛿1𝑟, 𝑟 > 1
−1(𝜋𝑝1(1)) − 𝐹−1(𝜋𝑝𝑖(𝑞)) = 𝛿𝑖𝑞 − 𝛿11, 𝑖 > 1, 𝑞 = 1,… , 𝑘, (9)

orms a sufficiently large (and minimal) set of comparator functions
uch that all differences and therefore item parameters are uniquely
etermined.

.2. Empirical invariance

For the investigation of empirical invariance it is helpful to consider
plit variables, which are defined by

𝑝𝑖(𝑟) =
{

1 𝑌𝑝𝑖 ≥ 𝑟
0 𝑌𝑝𝑖 < 𝑟.

he split variables are binary variables that partition the categories
nto the subsets {0,… , 𝑟 − 1} and {𝑟,… , 𝑘}. With response categories
0, 1,… , 𝑘} one has 𝑘 split variables 𝑌𝑝𝑖(1),… , 𝑌𝑝𝑖(𝑘). Split variables
re the empirical analogues to the cumulative probabilities, 𝑌 (𝑟) is
𝑝𝑖
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Fig. 9. Box plots of parameter estimates for conditional, pairwise conditional and separation estimators in the Rasch model with 𝑃 = 300.
s
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an observation of the binary model 𝑃 (𝑌𝑝𝑖(𝑟) = 1) = 𝑃 (𝑌𝑝𝑖 ≥ 𝑟). If
the cumulative model holds the probability is given by 𝑃 (𝑌𝑝𝑖 ≥ 𝑟) =
𝐹 (𝜃𝑝 − 𝛿𝑖𝑟), which yields the binary models

𝑃 (𝑌𝑝𝑖(𝑟) = 1) = 𝐹 (𝜃𝑝 − 𝛿𝑖𝑟), 𝑟 = 1,… , 𝑘. (10)

The link between split variables and the cumulative model is even
stronger since the cumulative model holds if models (10) hold simulta-
neously for 𝑟 = 1,… , 𝑘, see also Tutz (2020).

For the cumulative model the theoretical invariance of items is
formulated in Eq. (8). The empirical analogue is obtained by replacing
the cumulative probabilities by their observational counterparts. How-
ever, as for binary models instead of using the observations themselves
one uses pseudo observations, which are slightly distorted original
observations. Thus, instead of 𝑌𝑝𝑖(𝑟) the pseudo observation 𝑌𝑝𝑖(𝑟)

∗ =
𝑌𝑝𝑖(𝑟)(1 − 2𝛾) + 𝛾 is used yielding

𝐹−1(𝑌𝑝𝑖(𝑟)∗) − 𝐹−1(𝑌𝑝𝑗 (𝑞)∗) =

⎧

⎪

⎨

⎪

⎩

0 𝑌𝑝𝑖(𝑟) = 𝑌𝑝𝑗 (𝑞)
𝛾1 − 𝛾0 𝑌𝑝𝑖(𝑟) = 1, 𝑌𝑝𝑗 (𝑞) = 0
𝛾0 − 𝛾1 𝑌𝑝𝑖(𝑟) = 0, 𝑌𝑝𝑗 (𝑞) = 1,

where 𝛾0 = 𝐹−1(𝛾), 𝛾1 = 𝐹−1(1 − 𝛾). It is an estimator of 𝛿𝑗𝑞 − 𝛿𝑖𝑟. From
this one can construct the estimator

𝛿𝑗𝑞 − 𝛿𝑖𝑟 =

=
(𝛾1 − 𝛾0)𝑛(𝑌𝑝𝑖(𝑟) = 1, 𝑌𝑝𝑗 (𝑞) = 0) + (𝛾0 − 𝛾1)𝑛(𝑌𝑝𝑖(𝑟) = 0, 𝑌𝑝𝑗 (𝑞) = 1)

𝑛(𝑌𝑝𝑖(𝑟) ≠ 𝑌𝑝𝑗 (𝑞))

=
(𝛾1 − 𝛾0)𝑛(𝑌𝑝𝑖(𝑟) = 1, 𝑌𝑝𝑗 (𝑞) = 0) − 𝑛(𝑌𝑝𝑖(𝑟) = 0, 𝑌𝑝𝑗 (𝑞) = 1)

𝑛(𝑌𝑝𝑖(𝑟) ≠ 𝑌𝑝𝑗 (𝑞)),
(11)

where 𝑛(𝑌𝑝𝑖(𝑟) = 𝑟, 𝑌𝑝𝑗 (𝑞) = 𝑠) is the number of observations with
𝑌𝑝𝑖(𝑟) = 𝑟, 𝑌𝑝𝑗 (𝑞) = 𝑠. Using the reduced set of differences given in Eq.
(9), which means setting 𝑖 = 𝑟 = 1 and 𝛿11 = 0, yields

𝛿𝑖𝑞 =
(𝛾1 − 𝛾0)𝑛(𝑌𝑝1(1) = 1, 𝑌𝑝𝑖(𝑞) = 0) − 𝑛(𝑌𝑝1(1) = 0, 𝑌𝑝𝑖(𝑞) = 1)

𝑛(𝑌𝑝1(1) ≠ 𝑌𝑝𝑗 (𝑞))
. (12)

he choice of the scaling parameter 𝛾10 = 𝛾1 − 𝛾0 is again based
n minimization of a loss function. The quadratic loss has the form
𝑄(𝒚𝑝𝑖,𝝅𝑝𝑖(𝜃̂𝑝, 𝜹̂𝑖)) =

∑

𝑟(𝑦𝑝𝑖𝑟 − 𝝅𝑝𝑖𝑟(𝜃̂𝑝, 𝜹̂𝑖))2, where 𝒚𝑇𝑝𝑖 = (𝑦𝑝𝑖0,… , 𝑦𝑝𝑖𝑘),
𝑝𝑖𝑟 = 1 if 𝑌𝑝𝑖 = 𝑟, 𝑦𝑝𝑖𝑟 = 0 otherwise, and 𝝅𝑇

𝑝𝑖𝑟 = (𝜋𝑝𝑖0,… ,𝝅𝑝𝑖𝑘), 𝜋𝑝𝑖𝑟 =
(𝑌𝑝𝑖 = 𝑟). The Kullback–Leibler loss is given by 𝐿𝐾𝐿(𝒚𝑝𝑖,𝝅𝑝𝑖(𝜃̂𝑝, 𝜹̂𝑖)) =

̂ ̂

𝑟 𝑦𝑝𝑖𝑟 log(𝑦𝑝𝑖𝑟∕𝝅𝑝𝑖𝑟(𝜃𝑝, 𝜹𝑖)).
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The estimator (12) does not use the available information efficiently
ince it uses only separator functions that refer to item 1 as anchor
tem (by choosing 𝑖 = 𝑟 = 1 in Eq. (11)). More efficient estimates

are obtained by using all items as anchor items one at a time. Thus
the final estimator is constructed as an average over these estimates.
It can be computed in an easy way by swapping items. For each pairs
of items (1, 𝑖) one computes the estimator for ‘‘new’’ observations 𝑌𝑝𝑖,
where 𝑌𝑝1 = 𝑌𝑝𝑖, 𝑌𝑝𝑖 = 𝑌𝑝1, and 𝑌𝑝𝑗 = 𝑌𝑝𝑗 for 𝑗 ≠ 1, 𝑗 ≠ 𝑖. This yields 𝐼
sets of estimated item parameters that are averaged.

For illustration Fig. 7 shows the resulting estimates for the lo-
gistic cumulative model with 𝑘 = 5, 𝐼 = 4, 𝑃 = 100 (only first
two items shown). The item parameters are given by (𝛿11,… , 𝛿15) =
(0, 1, 1.5, 2, 2.5)). The other items are shifted versions (−2 for item 2,
1.5 for item 3, −3 for item 4). In the right picture item 2 is modified
y (𝛿21,… , 𝛿25) = 1.5(𝛿11,… , 𝛿15). The first row shows the resulting

box plots for the averaged estimator, in the second row only item 1 is
considered as anchor item. It is seen that in particular for the averaged
estimator the true parameters (dots) are approximated rather well.
The corresponding results when fitting the model with the minimum
value distribution as response function (averaged estimator) are given
in Fig. 8.

5. Concluding remarks

It has been demonstrated that parameters are separable in a wider
class of models. It holds for binary as well as polytomous latent trait
models. To this end an estimator is derived that uses pseudo observa-
tions and can be derived as a smoothing estimator. We do not claim that
this is the only possible or best estimator. There might be much better
ones that estimate parameters without reference to the other group of
parameters.

The basis for success in deriving such an estimator is that separabil-
ity as a property of the theoretical measurement model holds. If it holds
it should be possible to derive a corresponding estimator. The main
reason why only Rasch models are considered to allow for separability
is that (conditional) maximum likelihood estimation has been consid-
ered the only option to generate estimators that separate parameters.
However, there is no general reason why maximum likelihood estima-
tion has to be used. Restriction to maximum likelihood estimation as
a principle to obtain empirical separability is an unnecessarily limited
view.
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Fig. 10. Parameter estimates for conditional, pairwise conditional and separation estimators for three items, scenario as in Fig. 3.
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Separability in the measurement model is based on the existence of
omparator functions of the form 𝐶(𝝅𝑝𝑖,𝝅𝑞𝑗 ) with two probability vec-
ors as arguments. More general functions with more arguments could
e used to separate parameters. For example, Irtel (1995) proposed a
unction that uses four arguments to compare three subjects in a model
ith slopes. His function could be seen as a comparator function in the

ense used here. However, he considered theoretical comparability only
nd did not propose an estimator of parameters.

It should be mentioned that it has been shown before that specific
bjectivity is not an exclusive trait of Rasch type models but is also
ound in alternative latent trait models. The isotonic ordinal proba-
ilistic (ISOP) model proposed by Scheiblechner (1995) and extended
n Scheiblechner (2007) has the property of ordinal specific objectivity,
hich is a generalization of Rasch’s concept of specific objectivity. The

SOP model depends on order relations only and in the case of binary
ata it is equivalent to Mokken’s doubly monotone model (Mokken,
971). The main difference to the concepts considered here is that
SOP type models are nonparametric models in which relevant relations
re ordinal including the property of ordinal specific objectivity. The
odels considered here are parametric monotone homogeneity models,

or which a stronger form of specific objectivity that does not only refer
o ordering holds.

For the separation estimator software will be made available on
ithub. Conditional likelihood estimators in binary Rasch models have
een obtained by using the eRm package (Mair et al., 2009).
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Appendix

Some more simulation results are given that demonstrate the ef-
ficiency of the separation estimator. Fig. 9 shows the box plots of
estimates for the scenario considered in Fig. 3 but with larger number
of person parameters.

Fig. 10 shows the estimates of item parameters for three items in
a pairwise comparison. The scenario is the same as in Fig. 3, only the
estimates for the first 40 simulations are shown. It is seen that estimates
hardly differ for items in the middle of the item range (𝛿4 = 0.5).

eviations are found for items with small or large item parameters
𝛿2 = −1.5, 𝛿5 = 1.2). In some simulations the pairwise conditional
stimator yields extreme values.

Fig. 11 shows the box plots of estimates for the binary Rasch model
ith 𝐼 = 18 items, 𝑃 = 100 persons drawn from 𝑁(0, 1). Estimates are

rather similar with stronger variability seen for the pairwise conditional
estimator.

Fig. 12 compares the performance of the estimators when persons
are drawn from a 𝜒-squared distribution (binary Rasch model, persons
drawn from 𝜒2

1 , 𝑃 = 100, 𝐼 = 18). It is seen that in particular the
onditional pairwise estimator sometimes yields estimates far from the
rue values.
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Fig. 11. Box plots for estimators; generating model is the binary Rasch model, persons drawn from 𝑁(0, 1) (𝑃 = 100, 𝐼 = 18), dots indicate the true parameters.

Fig. 12. Box plots for estimators; generating model is the binary Rasch model, persons drawn from 𝜒2
1 (𝑃 = 100, 𝐼 = 18), dots indicate the true parameters. Conditional estimate

did not exist in any of the simulations.
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