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The Rasch model is the most prominent member of the class of latent trait models that are in common use.
The main reason is that it can be considered as a measurement model that allows to separate person and item
parameters, a feature that is referred to as invariance of comparisons or specific objectivity. It is shown that
the property is not an exclusive trait of Rasch type models but is also found in alternative latent trait models.

It is distinguished between separability in the theoretical measurement model and empirical separability with
empirical separability meaning that parameters can be estimated without reference to the other group of
parameters. A new type of pairwise estimator with this property is proposed that can be used also in alternative
models. Separability is considered in binary models as well as in polytomous models.

1. Introduction

The binary Rasch model (Rasch, 1961) is one of the cornerstones of
modern item response theory and has been extended to a whole family
of models, see for example, Andrich (2016), von Davier (2016), von
Davier and Carstensen (2007), Fischer and Molenaar (2012), Masters
(1982), Rasch (1960). The main advantage of the Rasch model is
that it allows measurement of latent traits to be independent of the
measurement instrument, which is considered an advantage over other
models as, for example, the normal-ogive model considered by Lord
(1952).

With reference to stimuli rather than items Rasch (1961) formulated
the requirements for comparing individuals and comparing stimuli by
stating:

The comparison between two stimuli should be independent of
which particular individuals were instrumental for the comparison;
and it should also be independent of which other stimuli within the
considered class were or might also have been compared.

Symmetrically, a comparison between two individuals should be
independent of which particular stimuli within the class consid-
ered were instrumental for the comparison; and it should also be
independent of which other individuals were also compared, on the
same or on some other occasion (Rasch, 1961), p.331.

The strength of the Rasch model is that it allows for compar-
isons of item difficulties (person abilities) that are independent of the
selection of persons (items). Rasch used the term specific objectivity
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for measurements that allow for the comparison of subjects or objects
without reference to the instrument (within a given well-defined frame
of reference), and considered it as general scientific principle to obtain
generalizable measurements. The property has also be referred to as
parameter separability or invariance of comparisons.

Although there are stringent mathematical arguments why the
Rasch model, which uses logistic item characteristic curves, allows for
the separation of parameters it is hardly convincing that the normal-
ogive model, which in applications typically shows very similar results
and fits, should not allow for invariant comparisons. It is demonstrated
that parameter separability is possible in a much wider class of para-
metric models, although not by means of conditional likelihood as in
the Rasch model. When investigating separability it is distinguished
between separability as a property of the probabilistic measurement
model and empirical separability as an estimation problem. While the
former is easily seen to hold for more general models than the Rasch
model separate estimation of parameters is less straightforward.

In Section 2 invariance in the Rasch model is briefly considered.
In Section 3 invariance is investigated for the wider class of monotone
homogeneity models and an estimator is derived that separates param-
eters. In Section 3.5 further properties of the estimator are considered
and a motivation as a smoothing method is given. It is also investigated
what independence of parameter estimates means, which is often mis-
understood. Section 4 it devoted to polytomous models, in particular
separability in the graded response model, which is not a member of
the Rasch family, is considered.
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2. Invariance of comparisons in the binary Rasch model

Let Y, € {0, 1} denote the response of person p on item i. The binary
Rasch model can be given by

exp(6, — 6;)

P(Y, =116,6)= — L "
i = 116,.3:) T +exp(0, -5,

=1,....,I,p=1,..., P,

where 6, is the ability of person p, and §; is the difficulty of item i.
A key property concerning parameter separability can be derived by
considering odds. The odds of a response Y,; = 1 are given by

P(Y, = 110,,5,)

= Py, =006,,5)

= exp(0, — 5;).

Then the odds ratio for two persons p;, p, is given by

Ypyi _ exp(eﬁl) _ 9;1

Vpyi exp(eﬂz) - 9;2 |

@

where 07 = exp(6)). That means comparison of persons can be car-
ried out independently of the items involved, person parameters can
be separated from item parameters. Rasch (1961) preferred the pa-
rameterization ¢, which yields the ratio 0, /n9;2 when comparing
odds of two items. Here, we will mostly use the parameterization 6,,
which is linked to differences of parameters rather than the ratio since
exp(6),)/ exp(6,,) = exp(8, —0,,)

Since the model is symmetric in the parameters one obtains a similar

result for the comparison of two items i, j,

Toi _ exp(=5) &

— ==, (2)
Vpj CXP(—5j) o '/

where 67 = exp(-¢;), which does not depend on the person. Thus,
comparisons of items can be carried out independent of the persons
involved.

Egs. (1) and (2) show that parameters can be separated by using
odds, however odds that are not directly observed. In general, in
probabilistic models inference tools are needed that approximate unob-
servable terms. In Rasch models a possible path to empirical separation
of parameters is based on exploiting that the total scores are sufficient
statistics. Let S, = Y,, = Zi’=1 ypi denote the number of items solved by
person p, that is, the total score of person p. Then one can derive that

I
P(Yy =Yy Yy =y,,,|sp=s)=ﬂ, ®3)
75(8)
where the functions y(8) = Za,-E(O.ll,Zi a=s € Ziai% are the so-called
symmetric functions of order s, depending on 8" = (§,,...,8;) only.

Since the conditional probability given in (3) is a function of item pa-
rameters only it can be used to estimate item parameters irrespective of
the persons involved by maximizing the conditional likelihood L.(6) =
[, PO, = ypises Ypr = vyl 2;1:1 Y, = y,). For the asymptotic
distribution and necessary and sufficient conditions for the existence of
estimates see Andersen (1977), Pfanzagl (1994) and Fischer (1981). For
the loss of information in conditional maximum likelihood, see Eggen
(2000), Eggen and Verhelst (2006).

3. Comparisons in binary latent trait models

Let us consider the more general class of monotone homogeneity
models (MH models), which comprises models of the form

7,0, 8) = P(Y,; = 110,,5,) = F(6, — 5 @

where F(.) is a strictly monotone distribution function also called
response function. The models contain one parameter per person, 0,
and one parameter per item, ;. They are homogeneous since the item
characteristic functions all have the same form. They are monotone
since the probability of success increases monotonically with increasing
person parameter. The binary Rasch model is contained as the special
case where F(.) is the logistic function F(y) = exp(n)/(1 + exp(n)).
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For a MH model one obtains a form of separability of parameters
when considering two items i, j. From (4) one can immediately derive

FNm,(0,.8)) — F~(z,;(6,.6,)) = 6, — ;. (5)

which is independent of §,. Thus a transformation of the involved
probabilities yields a function that does not contain person parameters,
and which can be used to compare item parameters. Since the function
F~!() is the quantile function differences of item parameters reflect
the differences of quantiles of the distribution function F(.), which do
not depend on the person parameters. In a similar way persons can be
compared without reference to item parameters.

3.1. Invariance in terms of the model

The separability property (5) can be formulated in a more general
way. For a uni-dimensional latent trait model with response prob-
abilities z,, = P(Y, 1) for person p and item i separability of
item parameters from person parameters (invariance of comparison of item
parameters, specific objectivity for the comparison of items) holds if a
parameterization (8,,6;) and a transformation function Cj, called item
comparator exist such that Cy(z,;, z,;) is equal to the difference of item
parameters for all items i, j. For the parameterization that is assumed
to exist one has

Cie(71(8,.6,).7,(8,.6,)) = &, — 6. 6)

The definition of separability only assumes that a parameterization
exists in order to make the definition independent of the specific param-
eterization that is used in the formulation of the model. For example,
in the Rasch model the parameterization 6,, §; provides such a parame-
terization but the parameterization 9;, 57 does not. Fischer (1995) used
a similar equation when investigating invariance in the Rasch model.
He assumed for a fixed parameterization C(ppi(0,,6,), p,;(0,,8)) =
V(8,,6,;), where V() is an additional function and p, a “reaction
parameter”. The definition used here considers the response probability
as reaction parameter, which seems quite natural since it definitely
determines the response. A general function V(.) seems not necessary
if one does not consider a specific parameterization but assumes the
existence of a parameterization. In addition, an unspecified function
V(.) could be very difficult while differences are easy to handle and
suffice for the models considered here. Although a similar definition
can be given concerning the invariance of comparison of person pa-
rameters in the following we focus on the invariance of comparison of
item parameters.

It follows from (5) that in any monotone homogeneity model the
comparison of item parameters is invariant and does not depend on
the person parameter. The Rasch model is just a special case but by far
not the only model. It is to be emphasized that the invariance property
considered here is a property of the probabilistic measurement model
but is not directly observable. However, it can be considered as the
essential property that is needed to also obtain empirical invariance,
that is, invariance referring to estimation.

3.2. Empirical invariance

In the Rasch model empirical separation of parameters is usually
obtained by exploiting that the total scores are sufficient statistics. This
works only since the item response curves are logistic, for any other
response function total scores are not sufficient statistics. The deeper
reason is that binary responses are members of the exponential family
and logits are linked to the natural parameter in exponential families,
see, for example, McCullagh and Nelder (1989).

Conditional maximum likelihood estimation with the conditioning
on sufficient statistics is not an option if the response function is not
the logistic function. Although in monotone homogeneity models the
function F~'(x,(6,.5,)) — F~'(x,(6,.5;)) does not depend on person
parameters it is not obvious how this property can be exploited in
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estimation since replacing (9, 5;) by observations, that is, by 0 or
1, yields —oo and oo when bu1ld1ng F7H(Y,).

In the following an estimation method is proposed that uses pseudo
observations. Let us consider the pseudo observations

where 0 < y < 0.5 is a fixed value. For small values of y the
pseudo observations approximate the original values, and in the ex-
treme case are identical, lim,_, Yo=Y, Replacing probabilities by
pseudo observations yields

_ Flp) =ty Y, =0
'l =2)+ =9 ! ’
F(1-y=trn Y,=1L

Although lim,_, F~(y) = —o0, lim,_, F~'(1 - y) = oo, for values y > 0

one obtains finite values for y, and y,. The empirical analogue to (5)

when replacing probabilities by pseudo observations is

8;(p) = 8i(p) = F(
0 Y, =Y,

Y, (1=2p)+y) = F'(Y,,(1 =2 +7y) =

pi = Lpj
=317 =1’ij_0
Yo~ "1 =0, ij
It is an empirical approximation of F~ (np,(b?p, i F‘](npi(el,,éj)),
which is the theoretical difference for person p. Frorn this representa-
tion an estimate of the difference §;; := §; — §; is derived by summing

over the contributions of all persons,

8 =8, =8 = =)y + o = romg "} In(¥y # Y,
=7 O(n(u) (”>)/n( pj)

) is the number of persons with response Y, =
1Y, =0, n(” ) is the number of persons with response Y,, = 0,Y,; = 1,
and n(Y, #Y,) = "(110] ) f)'l’ ). The values correspond to the entries of

the contingency table

where yg =y — vy, 1

0 1

(M) (M) (i.J)
0 | my o1 Mo

(M) (M) (tJ)
L TS m my

(i) ()]

+0 n p

An alternative representation of the estimator which uses only the
sums of persons that solved specific items is given by

P
8ji =110 Qo = Y)Yy # Y, = 110(Yay = Yy ) /(Y # Y,

p=1
where Y,; = ¥ Y,; are the number of persons that solved item i. If F()
is a symmetric function, for example the normal distribution, one has
Yo = =71, and the estimator simplifies to §; — §; = 2y,(Y,; = Y,;,)/n(Y,; #
ij )

Since parameters are only defined up to an additive constant one
can set §, = 0. That yields a simple estimator of §, by using 51.“) =
710(Ys; = Y31)/n(Y,; # Y,p). A disadvantage is that it uses only the item
pairs (1,2),(1,3), ..., (1, I). An estimator that uses all the differences and
is called the pairwise separation estimator is given by

I
5=y =8/,
j=1

where §,; := 0. It is an average across all estimators that use the
estimated differences to a fixed item with the constraint §; = 0. This can
be seen by considering a fixed anchor item ;. Then §; ; is an estimator
of 6; — ;. It aims at estimating the differences between item i and item
J. If one sets §; = §;; for all i implicitly the parameter §; is set to zero.
In order to set §; = 0 one has to subtract §, ;.
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The estimate contains the scaling factor y,, but ratios §;/; do not
depend on the scaling, which means that the estimates change by a
factor if different scaling factors are used. The scaling factor is linked
to the unit of measurement that is used. In the general measurement
model P(Y, = 110,65, @) = F(a(d, — 5;)) parameters are identifiable
if one chooses a specific value for a, for example « = 1, and fixes the
location, for example by choosing §; = 0 or }’; 6; = 0. The former choice
corresponds to the (arbitrary) choice of a measurement unit, the latter
to the choice of the origin of the measurement, which is on an interval
scale. More precisely, the scales for person and item measurement are
interval scales with the same unit of measurement and with possibly
different zero points, see also Fischer (1995). The choice of the scaling
factor y,, corresponds to the choice of the measurement unit but not
on the scale of the parameters 6,,6;. In order to link it to the choice of
the unit on the (6, 5,)-scale we use a data-based approach. It selects the
parameter y;, that yields the best fit of the data when the measurement
unit has been fixed. We use a« = 1, which is a common choice. The
advantage is that the resulting estimates can be compared to estimates
obtained by alternative methods that use a = 1. The y,, obtained in this
way is not an estimator of the measurement unit, which can be chosen
arbitrarily, it is just an adaptation of the estimator to common choice
of units.

The data-based approach to selecting the scale parameter is the fol-
lowing. For fixed y,, and the resulting item parameter estimates &;(y;,)
person parameters can be estimated by maximizing the log-likelihood
function

I
Ly ©Op) = Z Y,
i=1

yielding ép(ylo). Maximization is simple since it is a one-dimensional
maximization problem. In a second step the goodness-of-fit of the
resulting estimate ”pi(ép(yl())’ 8,(y10)) is investigated by considering loss
functions that reflect the differences between observations and esti-
mated probabilities, L(Y,;,7,(8,(r10.5;(r19))). Candidates are the
quadratic loss Ly(Y,,), #,) = 2(Y,; — #,)? and the Kullback-Leibler loss
Ly (Y, ) = —=(¥); log(#,) — (1 = Y,) log(1 — 7)), where minimization
of the latter corresponds to maximum likelihood estimation. The final
estimator is obtained by using that scaling parameter that minimizes

1 10g(7,i(6,,6,(r10)) + (1 = V) log(1 = 7,,(6,, 5,(r10)),

Loss(y10) = 2 2 LYy, 7,0, (110 6,(r10)))
i=1 p=1
with respect to y.

For illustration we consider the estimates obtained for the normal-
ogive model, in which F(.) is the normal distribution function. The
item parameters for I = 6 items were 0,—1.5,—1,0.5,1.2,1.5. Person
parameters were drawn from a standardized normal distribution. Fig. 1
shows the box plots of estimates (200 repetitions) and the kernel
density estimate of item parameter 5 for P = 100 (first row) and

= 300 (second row), the latter is obtained by using the function
density from R. It is seen that the estimates approximate the true values
rather well. It demonstrates that item parameters can be estimated
separately also for the normal-ogive model, for which no sufficient
statistics exist. Fig. 2 shows the quadratic and the Kullback-Leibler loss
functions used to select the scale parameter for the last of the simulated
data sets. It is seen that the both loss functions select very similar scale
parameters. Although the values of the functions differ the minima for
both functions are close to 0.18. In the simulations the Kullback-Leibler
loss has been used.

3.3. Separation of parameters in the binary Rasch model

Let us again consider the binary Rasch model. As already mentioned
in Section 2 it is special among monotone homogeneity models since
it allows for estimation of item parameters by using sufficient statistics
for person parameters. The existence of sufficient statistics can be used
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Fig. 2. Loss functions for the estimation of the scaling factor y,, for one simulated data set.

to maximize the conditional log-likelihood yielding the conditional esti-
mates. It also allows to construct further estimates of item parameters
that do not depend on the selected persons.

An alternative estimation method that is strongly linked to the
separability seen in Eq. (2) is conditional likelihood estimation for pairs
of items. Under the condition Y,; +Y,; = 1 solving the conditional
likelihood for observations on items i, j only yields the estimator

e~ 0 _N;
N )
e N;

where N; denotes the number of persons that solved item i and exactly
one of the two items i, j. It can be seen as an empirical version of Eq. (2)
and is referred to as pairwise conditional estimation. Item parameters are
estimated without reference to the persons involved. A corresponding
property holds for the comparison of persons but is not explicitly given.
For more on pairwise estimates, see Zwinderman (1995), von Davier
(2016).

Both methods conditional estimation and pairwise conditional es-
timation exploit the existence of sufficient statistics given the total
scores, in the latter case under the condition that only two items
are considered. In Fig. 3 the estimators are compared to the pairwise
separation estimator with the same item parameters as in Fig. 1 and the
assumption that the Rasch model holds. It is seen that the conditional
estimates have smaller variance than the other two estimators. The
pairwise conditional estimator and the pairwise separation estimator
show almost the same performance. This is also supported by comput-
ing the average absolute deviations of estimates from the true values,

which was 0.231 for the conditional estimator, 0.268 for the pairwise
separation estimator, and 0.252 for the pairwise conditional estimator.
Similar pictures are obtained if the number of persons is larger (see
appendix).

3.4. Non-symmetric response models

The strength of the pairwise separation estimator is that it pro-
vides estimates also when the response function is not the logistic
function. That includes response functions that are not symmetric. Non-
symmetric skewed response functions are not so often used since item
parameter estimates are not so easily obtained as in the Rasch model
although there is no compelling reason why item response functions
should be symmetric. Advantages of skewed response functions have
been outlined by Samejima (2000), Bazan et al. (2006) and, more
recently, by Bolt and Liao (2022).

As examples of skewed response functions we consider the maxi-
mum value distribution function (Gumbel distribution function) F(y) =
exp(— exp(—n)) and the minimum value distribution (Gompertz distribu-
tion function) F(n) = 1 — exp(— exp(n)). Figs. 4 and 5 show the boxplots
of estimates when using the pairwise separation estimator (parameters
are the same as in Fig. 1). Fig. 4 shows the estimates for the maximum
value model (P = 100) and the density of estimates of item 4 (last
simulation). Fig. 5 shows the estimates for the minimum value model
with P = 100 on the left and P = 50 on the right hand side. It is seen
that the estimator approximates the true parameters rather well.
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3.5. Further issues

Independence of estimates

In Rasch models item parameters are often considered to not depend
on persons when maximizing the conditional likelihood given person
sums since the conditional likelihood does not contain person param-
eters. However, this is a misinterpretation. Although the formulae do
not contain the person parameters it does not mean that the choice of
persons has no impact on the estimates, in particular on their accuracy.
It matters, for example, if persons are drawn from a population covering
a wide range of abilities or from a population that contains only persons
with high (or low) abilities (to be demonstrated in the following).

Also the separation estimator is constructed by using equations that
do not contain the person parameters. Nevertheless, at some point per-
son parameter estimates are used, however only to obtain the scaling

parameter since only proportions 4,/ ; are scale free. To obtain the
scaling parameter 7, it is not necessary to use all persons, almost the
same estimates are found if only a subset of persons is used to find the
scaling parameter. But, as in conditional estimators the selection of the
sub population has an impact on the accuracy of estimates.

Table 1 illustrates the effect of the choice of the person population.
Person parameters have been drawn from several distributions, the
standard normal distribution (8, ~ N(0, 1)), which covers a wide range
of person parameters, the y2-distribution with one degree of freedom
6,= 55 with 6, ~ N(0, 1)), which means that all person parameters are
positive, the non-central y2-distribution with non-centrality parameter
100, = 55 with 6, ~ N(1,1)), and the non-central y>-distribution with
non-centrality parameter 1.5 (6, = 5}2, with 6, ~ N(1.5,1)). In particular
the latter scenarios mean that only rather large person parameters are
in the sample. The item parameters are the same as in Fig. 1. As
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Table 1
Deviations of estimates of item parameters from true values for several estimation
methods.

pairwise conditional ~ pairwise
separation conditional
P =280 standard normal 0.298 0.257 0.290
chi-squared 0.300 0.258 0.289
nonc chi-squared, N(1,1)* 0.315 0.303 0.346
nonc chi-squared, N(1.5,1)>  0.368 0.369 0.452
P =100 standard normal 0.268 0.231 0.252
chi-squared 0.276 0.240 0.265
nonc chi-squared, N(1,1)? 0.277 0.253 0.291
nonc chi-squared, N(1.5,1)>  0.316 0.311 0.365
P =200 standard normal, 0.196 0.154 0.170
chi-squared 0.201 0.166 0.180
nonc chi-squared, N(1,1)* 0.203 0.182 0.200
nonc chi-squared, N(1.5,1)>  0.224 0.213 0.231

measure of accuracy we use the absolute deviation |6, — §;| averaged
across all items. Results are given for several sample sizes. It is seen that
all estimates perform poorer when the mean of the distribution of the
person parameters gets larger. This includes the estimators that use the
conditional likelihood approach. In particular the pairwise conditional
estimator suffers strongly if the available persons are from distributions
with larger means. The separation estimator is relatively stable and per-
forms well also in these cases although for Rasch models as simulated
here the conditional estimator shows the best performance. The results
demonstrate that also conditional estimators of item parameters cannot
be considered as being independent of the choice of persons although
person parameters are not involved in the estimation equations.

Smoothing and the separation estimator

The separation estimator can be seen as an estimator based on
smoothing techniques. Methods as smooth kernel estimators for den-
sities and distribution functions have a long tradition, see, for exam-
ple, Wand and Jones (1995), Simonoff (1996).

Let us first consider the general case of a random variable Y. For
a fixed observation y, of the random variable the contribution to the
density estimate is the kernel function g((y — y,)/h), where g(.) is a
fixed density function and 4 is the window width. The contribution
to the estimated distribution function is G((y — y;)/h), where G(.) is
the distribution function corresponding to g(.). Alternatively one can
consider estimates of the survivor function S(y) = P(Y > y), which are
used in the representation of the binary response models considered
here.

An un-smoothed step function estimate of P(Y > y) when y, has
been observed is the function S(y) = 1 — H(y — y,), where H(.) is the
Heaviside function H(x) = 1 if x > 0 and H(x) = 0 otherwise. To
obtain a smooth estimator one can replace the Heaviside function by
a smooth approximation. Any distribution function that is very steep
at zero could be used. The choice corresponds to the choice of the
kernel in density estimation. For simplicity we choose the function
F,(n) = 1 — F(—an), where F(.) is the response function of the item
response model (centred at zero such that F(0) = .5) and « > 0 is a
large constant. Since the function is centred at zero for increasing «
the function F,(.) becomes the Heaviside function for all values unequal
zero. Smooth estimates result if

P(Y > y) is estimated by F(—a(y — y,)) and
F~Y(P(Y > y)) is estimated by F~'(F(=a(y — y,))) = —a(y — yo).

When applied to the responses Y, one obtains
FY P, 2y) - F (P, 2y) =
= F ' (F(—a(y - y,)) — F'(F(=a(y — y,))) =
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Fig. 6. Box plots of bootstrap estimators of standard errors, dots denote the “true”
standard errors (estimated from 300 drawings).

0 vy =y
=a(yy —yp) =3¢  y;=1y,,=0
—a Y, =0y, =1

This is equivalent to the estimate Sj — &, for one person with the
smoothing parameter « corresponding to 7.

Standard errors

A way to obtain estimates of standard errors is bootstrapping (Davi-
son & Hinkley, 1997; Efron & Tibshirani, 1994). For a given data set
consisting of Px I observations, the estimation procedure is carried out
repeatedly for data that are obtained by drawing persons from the data
set with replacement. The variation of the estimates is used to compute
realistic standard errors of parameters.

For illustration we consider the approximation of the true standard
errors in the scenario given in Fig. 1. Estimates of the true standard
errors are computed from 300 repetitions. To obtain bootstrap standard
errors, we used 50 repetitions of bootstrap estimates. Each bootstrap
estimate is based on ny,, = 200 drawings with replacement. Fig. 6
shows the box plots of bootstrap repetitions. It is seen that bootstrap
standard errors approximate the true errors rather well.

4. Polytomous models

Separability of parameters can also be investigated in models with
more than two response categories. Let polytomously scored items have
values Y,; € {0.1,....k}, p = 1,....P, i = 1,....1, with {0,1,....k}
representing the coding of categories.

Several polytomous latent trait models have been considered in
the literature, in particular ordinal models as the graded response
model (Samejima, 1995, 2016) and the partial credit model (Masters,
1982; Masters & Wright, 1984) are widely used. Separability of param-
eters is especially interesting for the graded response model since, in
contrast to the partial credit model, no sufficient statistics exist that
could be used to construct conditional log-likelihood estimators.

4.1. Invariance in terms of the model

Polytomous models specify the response probabilities

(8, 8) = P(Y,; =1l6,.8,), r=0,....k,

as functions of person parameters §, and a vector of item parameters
6, (for simplicity the number of response categories is the same for all
items). The latter usually has the form 5[T = (6;,..-,6;). The total
vector of response probabilities for person p and item i is denoted
by ,,(0,.8)" = (7,10(0,.8), ..., 7,1(0,.8,)). A widely used polytomous
model is the graded response model (Samejima, 1995, 2016), which

specifies the cumulative probabilities
7,(r) = P(Y,; 2 710,,8) = F0, - 68,). r=1,...k

yielding the probabilities r,,.(6,, ;) = 7,;(r) — m,,(r + 1).
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modified.

When considering invariance it is useful to distinguish between
person and item parameters since the former are uni-dimensional while
the latter are multi-dimensional.

For a polytomous latent trait model invariance of comparison of
person parameters (specific objectivity for the comparison of persons) holds
if a parameterization and at least one transformation function called
comparator Cper, exist such that for all persons p;, p, and all items

Coers(7p,i(0)y,:8)), 7,1(6,,.6,)) = 6, =0,
If the cumulative model is the data generating model for each r > 1
-1 -1 -
F=(zp i(r) = F~ (7p,(r) =0, — 6, )

holds. Since the cumulative probabilities are simple functions of the
vector of probabilities it is obvious that several comparator functions
Cpers exist. Eq. (7) shows that k functions can be used to compare
person parameters.

For a polytomous latent trait model invariance of comparison of item
parameters (specific objectivity for the comparison of items) holds if a
parameterization and a set of transformation functions (comparators)
C;,; exist such that for two items i, j the differences of item parameters
are uniquely determined in the form

Citi(71(0,.8,). 7,;(6)

8)) =6y~ 6y

where i € Comp. In contrast to the comparison of person parameters it
is not sufficient to postulate the existence of just one comparator func-
tion. Since each item has several parameters more than one comparator

function is needed to determine all differences uniquely. Typically

,815) = ((0.01.01.52.02.5)), other items are shifted versions, right:second item

different sets of comparator functions can be found that determine
all differences. One could also consider minimal sets of comparator
functions but they would only be of theoretical interest.

If the cumulative model is the data generating model for any r, ¢ > 1

F~ () - F_l(ﬂp,-(q)) =6;,— 0 (8)
holds, which defines the comparator functions. With the constraint
61, = 0 the set of functions

F () = F 'y (1) = 8y = 6y, > 1

F @y (D) = F ' (@) = 85 = 611, i> Lg=1,...,k, ©)
forms a sufficiently large (and minimal) set of comparator functions

such that all differences and therefore item parameters are uniquely
determined.

4.2. Empirical invariance

For the investigation of empirical invariance it is helpful to consider
split variables, which are defined by

1 Y, >r
Y. (r) = pi =
(") { 0 Y, <r

The split variables are binary variables that partition the categories
into the subsets {0,...,r — 1} and {r,...,k}. With response categories
{0,1,...,k} one has k split variables Y,(1),...,Y,(k). Split variables
are the empirical analogues to the cumulative probabilities, Y, (r) is
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an observation of the binary model P(Y,(r) = 1) = P(Y, > r). If
the cumulative model holds the probability is given by P(Y, > r) =
F(6, — 6;,), which yields the binary models

P(Ypi(r) =1)= F(0p—5,-,),r: 1,...,k. (10)

The link between split variables and the cumulative model is even
stronger since the cumulative model holds if models (10) hold simulta-
neously for r =1, ..., k, see also Tutz (2020).

For the cumulative model the theoretical invariance of items is
formulated in Eq. (8). The empirical analogue is obtained by replacing
the cumulative probabilities by their observational counterparts. How-
ever, as for binary models instead of using the observations themselves
one uses pseudo observations, which are slightly distorted original
observations. Thus, instead of Y, (r) the pseudo observation Yp,-(r)* =
Y, (N1 —=2y) +v is used yielding

0 Y, (r) = Y,,(q)
F Y, = F (V@M =37 -1 Yu() =1Y,,(q) =0
Yo—11 Yu(r)=0.Y,(q) =1,

where v, = F71(y),7; = F~!(1 —y). It is an estimator of §;, — §,.. From
this one can construct the estimator
qu - b =
(1 = ro)n(Y,(r) = 1,Y,;(q) = 0) + (yg — y)n(Y,(r) = 0,Y,;(q) = 1)
n(Y,(r) # Y,;(q))
_ (1 —ron(Y,; () = 1,Y,,(9) =0) = n(Y,;(r) =0,Y,;(9) = 1) an
n(Y,(r) #Y,,(q),
where n(Y,(r) = r,Y,;(9) = s) is the number of observations with
Y, (r) = r,Y,;(g) = s. Using the reduced set of differences given in Eq.
(9), which means setting i =r =1 and §;; =0, yields
i = (r1 —ron(¥, (1) = 1,Y,(q9) =0) —n(¥, (1) =0,Y,(g) = 1) 12
" n(Y, (1) #Y,;(q) '
The choice of the scaling parameter y,, = y, — y, is again based
on minimization of a loss function. The quadratic loss has the form
Lopis 76, 8)) = X, 0pir = 71,8, 8))%, where yT. = (0, -+ Vs
Ypir = Lif Yy = 1, vy, = 0 otherwise, and #), = (7, ... i)y Ty =
P(Y,; = r). The Kullback-Leibler loss is given by L (¥, 7,(6,,9,)) =
z Ypir IOg(ypir/ﬂpir(ép’ 31))'

The estimator (12) does not use the available information efficiently
since it uses only separator functions that refer to item 1 as anchor
item (by choosing i = r = 1 in Eq. (11)). More efficient estimates
are obtained by using all items as anchor items one at a time. Thus
the final estimator is constructed as an average over these estimates.
It can be computed in an easy way by swapping items. For each pairs
of items (1,/) one computes the estimator for “new” observations Ypi,
where Y,, =Y, ¥, =Y,, and ¥,; = Y,; for j # 1,j # i. This yields I
sets of estimated item parameters that are averaged.

For illustration Fig. 7 shows the resulting estimates for the lo-
gistic cumulative model with k = 5, I = 4, P = 100 (only first
two items shown). The item parameters are given by (§;;,...,6;5) =
((0,1,1.5,2,2.5)). The other items are shifted versions (-2 for item 2,
—1.5 for item 3, —3 for item 4). In the right picture item 2 is modified
by (651,....655) = 1.5(8y;,...,68;5). The first row shows the resulting
box plots for the averaged estimator, in the second row only item 1 is
considered as anchor item. It is seen that in particular for the averaged
estimator the true parameters (dots) are approximated rather well.
The corresponding results when fitting the model with the minimum
value distribution as response function (averaged estimator) are given
in Fig. 8.

5. Concluding remarks

It has been demonstrated that parameters are separable in a wider
class of models. It holds for binary as well as polytomous latent trait
models. To this end an estimator is derived that uses pseudo observa-
tions and can be derived as a smoothing estimator. We do not claim that
this is the only possible or best estimator. There might be much better
ones that estimate parameters without reference to the other group of
parameters.

The basis for success in deriving such an estimator is that separabil-
ity as a property of the theoretical measurement model holds. If it holds
it should be possible to derive a corresponding estimator. The main
reason why only Rasch models are considered to allow for separability
is that (conditional) maximum likelihood estimation has been consid-
ered the only option to generate estimators that separate parameters.
However, there is no general reason why maximum likelihood estima-
tion has to be used. Restriction to maximum likelihood estimation as
a principle to obtain empirical separability is an unnecessarily limited
view.
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Fig. 10. Parameter estimates for conditional, pairwise conditional and separation estimators for three items, scenario as in Fig. 3.

Separability in the measurement model is based on the existence of
comparator functions of the form C(x,;, x,;) with two probability vec-
tors as arguments. More general functions with more arguments could
be used to separate parameters. For example, Irtel (1995) proposed a
function that uses four arguments to compare three subjects in a model
with slopes. His function could be seen as a comparator function in the
sense used here. However, he considered theoretical comparability only
and did not propose an estimator of parameters.

It should be mentioned that it has been shown before that specific
objectivity is not an exclusive trait of Rasch type models but is also
found in alternative latent trait models. The isotonic ordinal proba-
bilistic (ISOP) model proposed by Scheiblechner (1995) and extended
in Scheiblechner (2007) has the property of ordinal specific objectivity,
which is a generalization of Rasch’s concept of specific objectivity. The
ISOP model depends on order relations only and in the case of binary
data it is equivalent to Mokken’s doubly monotone model (Mokken,
1971). The main difference to the concepts considered here is that
ISOP type models are nonparametric models in which relevant relations
are ordinal including the property of ordinal specific objectivity. The
models considered here are parametric monotone homogeneity models,
for which a stronger form of specific objectivity that does not only refer
to ordering holds.

For the separation estimator software will be made available on
Github. Conditional likelihood estimators in binary Rasch models have
been obtained by using the eRm package (Mair et al., 2009).
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Appendix

Some more simulation results are given that demonstrate the ef-
ficiency of the separation estimator. Fig. 9 shows the box plots of
estimates for the scenario considered in Fig. 3 but with larger number
of person parameters.

Fig. 10 shows the estimates of item parameters for three items in
a pairwise comparison. The scenario is the same as in Fig. 3, only the
estimates for the first 40 simulations are shown. It is seen that estimates
hardly differ for items in the middle of the item range (6, = 0.5).
Deviations are found for items with small or large item parameters
(6, = —1.5,6; = 1.2). In some simulations the pairwise conditional
estimator yields extreme values.

Fig. 11 shows the box plots of estimates for the binary Rasch model
with I = 18 items, P = 100 persons drawn from N (0, 1). Estimates are
rather similar with stronger variability seen for the pairwise conditional
estimator.

Fig. 12 compares the performance of the estimators when persons
are drawn from a y-squared distribution (binary Rasch model, persons
drawn from ;(12, P 100, I 18). It is seen that in particular the
conditional pairwise estimator sometimes yields estimates far from the
true values.
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