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A B S T R A C T

Objectives: To improve reporting and comparability as well as to reduce bias in dental computer vision studies, we 
aimed to develop a Core Outcome Measures Set (COMS) for this field. The COMS was derived consensus based as 
part of the WHO/ITU/WIPO Global Initiative AI for Health (WHO/ITU/WIPO AI4H).
Methods: We first assessed existing guidance documents of diagnostic accuracy studies and conducted interviews 
with experts in the field. The resulting list of outcome measures was mapped against computer vision modeling 
tasks, clinical fields and reporting levels. The resulting systematization focused on providing relevant outcome 
measures whilst retaining details for meta-research and technical replication, displaying recommendations to
wards (1) levels of reporting for different clinical fields and tasks, and (2) outcome measures. The COMS was 
consented using a 2-staged e-Delphi, with 26 participants from various IADR groups, the WHO/ITU/WIPO AI4H, 
ADEA and AAOMFR.
Results: We assigned agreed levels of reporting to different computer vision tasks. We agreed that human expert 
assessment and diagnostic accuracy considerations are the only feasible method to achieve clinically meaningful 
evaluation levels. Studies should at least report on eight core outcome measures: confusion matrix, accuracy, 
sensitivity, specificity, precision, F-1 score, area-under-the-receiver-operating-characteristic-curve, and area- 
under-the-precision-recall-curve.
Conclusion: Dental researchers should aim to report computer vision studies along the outlined COMS. Reviewers 
and editors may consider the defined COMS when assessing studies, and authors are recommended to justify 
when not employing the COMS.
Clinical significance: Comparing and synthesizing dental computer vision studies is hampered by the variety of 
reported outcome measures. Adherence to the defined COMS is expected to increase comparability across studies, 
enable synthesis, and reduce selective reporting.

1. Introduction

Currently, the choice of diagnostic accuracy measures in studies on 
artificial intelligence (AI) is non-systematic and driven by the AI task, 
but also by researchers’ preferences. A recent systematic review iden
tified a total of 42 different diagnostic accuracy measures being used in 
dental AI studies [1], some of which are summarized in Table 1. This, in 

parts, is grounded in the wide range of modeling tasks, as particularly 
evident in computer vision, i.e. image and video analysis using AI 
(Fig. 1):

• Classification refers to a modeling problem where a class label is 
assigned to a given example of an image or video.
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• Detection tasks aim to identify and locate objects within an image or 
video, usually using outlining rectangles (bounding boxes).

• Segmentation tasks outline an object in an image or video, with se
mantic segmentation classifying each pixel into a particular class (all 
instances of the same object are classified identically), and instance 
segmentation providing a unique label to every instance of a 
particular object in the image.

In addition to this complexity, dental outcomes can be measured on 
various levels, e.g. on pixel level, site or surface level, tooth level or 
patient level, resulting in differences in interpretation, and requiring 
complex statistical considerations given the potential clustering and 
interdependence of statistical units [2]. Consequently, the results of 
different dental computer vision studies are not comparable, oftentimes 
incomplete, with a high risk of reporting bias, low usefulness of indi
vidual studies and limited options to synthesize data quantitatively [1].

The problem of variability in outcomes, i.e., what is recorded, also 
termed domains, and outcome measures, i.e., how is it recorded, also 
termed instruments, is not restricted to diagnostic accuracy studies, like 
those around computer vision, and has been discussed intensively in 
intervention studies [3-9]. Starting within rheumatology, a movement 
has formed to define agreed collections of outcomes and outcome 
measures, so called Core Outcomes Sets (COS) and Core Outcome 
Measures Sets (COMS) for interventions in specific clinical domains. 
Using COS/COMS is not mandatory, and researchers can employ 
different outcomes and outcome measures, but this should be trans
parently and appropriately justified [10]. COS/COMS are supposed to 
increase reporting consistency and comprehensiveness as well as the 

usefulness and applicability of interventional research and to reduce 
reporting bias [9].

We present a COMS for dental computer vision studies to improve 
reporting completeness, comparability, and reduce bias. The COMS was 
derived in a consensus based fashion as part of the WHO/ITU/WIPO 
Global Initiative AI for Health (GIAI4H).

2. Methods

2.1. Scoping and derivation of items

To identify potential COMS, two authors (MB, FS) assessed existing 
guidance documents of accuracy studies, including CLAIM 2020 [11], 
TRIPOD [12], STARD [13] as well as a checklist on reporting dental AI 
studies [2] and the so-far most comprehensive systematic review on this 
topic [1]. Pilot interviews with experts in the field, e.g., members of the 
WHO/ITU/WIPO GIAI4H, specifically the Topic Group Dentistry (TG 
Dental), were also conducted. The resulting list of outcome measures 
was mapped against modeling tasks, clinical fields, and reporting levels. 
The resulting systematization focused on providing the most relevant 
outcome measures for clinicians whilst retaining the most detail for 
further research (meta-research) and technical replication, laying out 
statements towards the level of reporting for different clinical fields and 
tasks, and statements on outcome measures. Two authors (MB, FS) then 
drafted an accompanying document for the COMS to explain the back
ground and framework for applying the COMS.

The COMS statements and the accompanying document were dis
cussed and revised after being distributed among the members of TG 

Table 1 
Summary of important metrics used to assess machine learning tasks in medicine.

Metric Calculation Explanation

Confusion matrix TP TN
FP FN

Summary of true and false predictions

Sensitivity/ true positive rate/ recall TP
TP + FN

Proportion of lesions that were recognized as such

Specificity/ true negative rate TN
FP + TN

Proportion of healthy that were recognized as such

Precision, positive predictive value Depending on prevalence: 
SEN × PRE

SEN × PRE + (1 − SPE) × (1 − PRE)

Independent of the prevalence: 
TP

TP + FP

Predictive power: Number classified as positive which are actually positive

Accuracy TP + TN
TP + FP + TN + FN

Proportion of the total quantity being recognized correctly

F1-Score 2 ×
P × SEN
P + SEN

Combination of accuracy and sensitivity (harmonically weighted mean)

Fig. 1. Visualization of the most common computer vision tasks using deep learning for the example of identifying fillings on a bitewing radiograph.
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Dental. The COMS was then consented using an e-Delphi, as laid out 
below.

2.2. Delphi process

The following groups were contacted and invited to participate in an 
online Delphi process: WHO/ITU/WIPO TG Dental, IADR Diagnostic 
Sciences Group, IADR e-Oral Health Network, IADR Oral Medicine and 
Pathology group, American Dental Education Association (ADEA), Asian 
Association of Maxillofacial Radiology (AAOMFR). Participants could 
anonymously vote on each statement (see below) and suggest revisions, 
additions, or deletions. Members were further asked to support snow
balling sampling, inviting further interested parties or individuals. The 
first round was conducted over four weeks in January 2024. The second 
round was accessible for voting between 19 February and 15 May 2024. 
Overall, 26 individuals participated. The consensus group represented 
clinicians, researchers from the clinical and technical disciplines, 
methodologists, journal editors and reviewers, regulatory professionals, 
policymakers, industry representatives, and patients.

A two-staged e-Delphi survey was undertaken; its reporting follows 
the Guidance on conducting and reporting Delphi studies (CREDES) 
[14]. Further details are provided in the appendix. Given our sampling, 
the Delphi participants had a wide breadth of expertise and geographic 
range. Some experts were familiar to the organizers, and three came 
from the same institution. Before the Delphi, participants were given 
written information about the study. We did not inquire about further 
demographic details. There was the option not to answer single 

questions (opt-out) and to suggest additional or revised items at the end 
of the survey.

The Delphi asked for an agreement to each item on a scale of 1–10 
(do not at all agree to agree fully). A maximum of two Delphi stages, 
each lasting four weeks, were planned. Two reminders via email were 
planned for each round. The time distance between the rounds was 11 
weeks. The survey was conducted via Microsoft Forms; survey data was 
analyzed descriptively. Per definition, agreement was given if partici
pants voted seven or higher. A statement was counted as consensually 
accepted if 70 % or more of all participants agreed to it. An open meeting 
for discussion was held after the first round. Statements were adapted 
according to comments and discussions. Statements where no consensus 
was given were dropped after the second round.

In the following, we first outline the deliberations that determined 
the development of the COMS, then present the levels of reporting 
suggested for different clinical fields and tasks, and finally display the 
COMS.

3. Results

Each computer vision modeling task presents a distinct nature of 
evaluation. A key issue concerns the level of reporting, which pertains to 
how models evaluate images. Conclusions and problems for the nature 
level of reporting are illustrated in Fig. 2.

• For classification tasks, one output is provided for an image or video, 
which is not always clinically useful. Notably, however, 

Fig. 2. Different computer vision tasks require different considerations towards reporting, depending on level of reporting. Black boxes demonstrate conclusions or 
options, red boxes demonstrate problems and challenges.
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classification metrics (accuracy, sensitivity, specificity) for image 
classification are easy to compute, with the computation not being 
biased by image-level aspects (see next bullet points). To increase the 
usefulness, images could be cropped to regions of interest (e.g. 
smaller images showing a tooth), which would be clinically more 
useful. At the same time, additional input for cropping is needed. 
This could come from auxiliary models or humans cropping the 
images; both would need additional evaluation (Fig. 2).

• For segmentation tasks, each pixel is assigned to a specific class. 
Evaluating models at this level can introduce bias depending on 
whether the background class is included or excluded in the analysis. 
This is specifically relevant in dentistry, where, for most analyses, a 
major part of the image is considered as background. When the 
background class is included in the analysis, a correctly identified 
background improves accuracy – less importance is given to the 
actual task. However, if the background class is excluded, the eval
uation will focus on how well the algorithm identifies classes of in
terest, but it does not contain information about non-object areas, as 
true negatives (TN) are no longer defined. Hence, a combination of 
metrics is necessary to populate a confusion matrix and allow the 
calculation of metrics like sensitivity and specificity (Fig. 3). Often, 
pixel-wise classification is transformed into a class-wise evaluation 
(e.g., segmentation), where the intersection of the model’s output 
with the ground truth pixel field is compared. For the latter, a 
threshold for classification (e.g., minimum 50 % of pixels need to 
overlap) needs to be decided by the model developer, which may 
introduce bias. More importantly, pixel-wise classification is limit
edly useful for clinicians. To compute clinically relevant measures 
based on anatomical regions, such as at the tooth or surface level, the 

precise location of these regions within the image is required to map 
the model output to these regions (similar to the cropping described 
above). Once more, auxiliary models or human input would be 
needed to provide this information, requiring further validation and 
introducing an additional layer of bias. An alternative approach in
volves modifying the level of reporting within the outcome classes. 
Instead of generic classes (e.g., caries), the location could be spe
cifically defined involving the level of reporting (e.g., “caries on 
tooth 17 mesial”). This, however, would significantly increase the 
number of required classes and, consequently, the volume of data 
needed, which is impractical in specialized fields like dentistry, 
where an average training data set contains 450 images [1].

• For object detection, objects of interest are classified and described 
using bounding boxes. A detected object can be considered a true 
positive or false positive, while undetected objects are false negative. 
Importantly, as an image can contain any number of objects, their 
maximum is not defined, limiting the option to calculate TN and 
related metrics like specificity and area under the receiver operating 
curve (AUC). Hence, further input is required to define the maximum 
number of objects and thus TN (e.g., the number of teeth, when only 
one object per tooth can occur) (Fig. 3).

3.1. Computer vision tasks

Table 2 provides a comprehensive overview of the nature of different 
computer vision tasks, along with the implications and challenges for 
each evaluation. It concludes that human expert assessment is the only 
feasible method to achieve clinically meaningful evaluation levels.

Fig. 3. Problems of evaluating segmentation or object detection tasks. Black boxes demonstrate conclusions or options, red boxes demonstrate problems and 
challenges. Segmentation can be either treated as instance segmentation which introduces similar challenges as object detection or as pixelwise segmentation with 
challenges demonstrated in the left column.
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Table 2 
The nature of evaluation for different computer vision tasks and its implications, options and challenges.

Classification Semantic Segmentation Object Detection

Level of reporting Image level Pixel level Object level
Model output (One) label per image One label per pixel Label and coordinates (bounding box) for objects of interest
Implication Image defines level of reporting No linkage between pixels and anatomical region 

of interest
No linkage between object and anatomical region of interest

Metrical 
complications

- Background class introduces bias Absence of true negatives complicates metric calculation

Reporting option 1 Cropping images in regions of 
interest

Auxiliary models or human input needed Auxiliary models or human input and definition of min./max. 
possible objects needed

Limitations of option 
1

Limitedly useful for clinicians Auxiliary models or human input introduce own bias; validation needed.

Reporting option 2 Expanding number of classes (e.g., instead of label “caries”: “caries on tooth 45 mesial”)
Limitations of option 

2
Amount of training images increases dramatically.

Instance Segmentation is not represented separately as its characterizes are similar to semantic segmentation or object detection.

Table 3 
Task and level of reporting mapping. Results of the consensus process are represented with median, minimum (min) and maximum (max) of participants voting.

Statement Pathology/ Task Level of reporting Field of dentistry Agreement median (min, 
max)

1 Dental instruments recognition Object (instrument) level General 10 (6,10)
2 People identification, age and gender estimation Patient level General 10 (5,10)
3 Tooth localization, detection, and segmentation Tooth level General 10 (7,10)
4 Angio vascular conditions (e.g., atherosclerotic plaque) Image level Oral medicine 9 (2,10)
5 Conditions of oral mucosa (e.g., leukoplakia) Image and object (lesion) 

level
Oral medicine 10 (1,10)

6 Salivary gland conditions (e.g., Sjogren’s syndrome) Gland level Oral medicine 10 (1,10)
7 Sinuses conditions (e.g., sinusitis) Patient side level Oral medicine 9.5 (1,10)
8 Tongue conditions Image level Oral medicine 9 (1,10)
9 Tongue landmarks Object (landmark) level Oral medicine 10 (1,10)
10 Trabecular landmarks Object (landmark) level Oral medicine 9 (1,10)
11 Bone condition (e.g., osteoporosis) Image level Oral surgery and implantology 9 (5,10)
12 Implant identification and localization Object (implant) level Oral surgery and implantology 10 (6,10)
13 Root morphology classification Tooth level Oral surgery and implantology 10 (4,10)
14 Segmentation or detection of anatomic structures (bone, nerve canal, 

foramen mentale etc.)
Object level Oral surgery and implantology 10 (7,10)

15 Third molar development Tooth level Oral surgery and implantology 10 (7,10)
16 Tooth distance to nerve Tooth level Oral surgery and implantology 10 (5,10)
17 Tooth impaction Tooth level Oral surgery and implantology 10 (5,10)
18 Tumor, tumor-like diseases, and cysts Image and object (lesion) 

level
Oral surgery and implantology 10 (5,10)

19 Angle classification Image/ patient level Orthodontics 10 (2,10)
20 Dental cusps classification Cusps level Orthodontics 10 (6,10)
21 Facial attractiveness Image level Orthodontics 10 (1,10)
22 Need of extraction for orthodontic treatment Tooth level Orthodontics 10 (3,10)
23 Need of orthodontic surgery Patient level Orthodontics 9 (5,10)
24 Orthodontic landmark detection Object (landmark) level Orthodontics 10 (2,10)
25 Skeletal malocclusion Image level Orthodontics 10 (2,10)
26 Tooth rotation Tooth and surface level Orthodontics 10 (1,10)
27 Attachment loss Tooth and surface Level Periodontology 10 (6,10)
28 Dental plaque and biofilm quantification Patient side and tooth 

level
Periodontology 10 (5,10)

29 Gingival diseases tooth level Periodontology 10 (3,10)
30 Periodontal staging and grading Image/ patient level Periodontology 10 (2,10)
31 Teeth brushing quality Patient side level Periodontology 9 (1,10)
32 Tooth mobility Tooth level Periodontology 10 (5,10)
33 Dental arche condition of edentulous Jaw level Prosthodontics 9 (1,10)
34 Apical Lesions Tooth level Restorative dentistry and 

endodontics
10 (5,10)

35 Caries Tooth and surface level Restorative dentistry and 
endodontics

10 (6,10)

36 Debonding probability Object (restoration) level Restorative dentistry and 
endodontics

10 (5,10)

37 Identification of restorations Tooth and surface level Restorative dentistry and 
endodontics

10 (7,10)

38 Need of restoration Tooth and surface level Restorative dentistry and 
endodontics

10 (5,10)

39 Root fractures Tooth level Restorative dentistry and 
endodontics

10 (5,10)

40 Tooth defects (cracks, abrasion, erosion etc.) Tooth level Restorative dentistry and 
endodontics

10 (5,10)
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3.2. Level of reporting

A wide range of computer vision tasks were identified. The consensus 
group assessed which levels of outcomes should be reported (Table 3). 
Note that additional levels may be employed and reported, too, or 
that—depending on the task—another level may be chosen, but this 
choice should be made clear and justified.

3.3. Core outcome measures

Based on the consensus achieved, studies on computer vision tasks in 
dentistry should report on eight core outcome measures (Table 4).

4. Discussion

Computer vision has become a mainstream task in dentistry, while 
the reporting of studies remains highly heterogenous, impeding 
impairing studies and their synthesis. The development of this COMS 
will improve the comparability of studies and their clinical usefulness, 
facilitating the translation of research findings into clinical care and 
enabling more meaningful meta-analyses. The present study used a 
structured process to define and consent core outcome metrics for this 
emanating domain of dentistry. The outlined COMS will support re
searchers in defining outcome measures of interest, while the consented 
set of image levels for different dental computer vision tasks will 
hopefully enable considerate choices. Notably, researchers are not 
bound to any of the consented statements – it is better to provide an 
informed and judicious choice of individual metrics and levels of 
reporting than trying to fit research into standardized boxes. However, if 
doing so, transparent reporting and justification are needed to enable 
others to understand and appraise the made decisions. For example, 
researchers may choose to report the Dice Coefficient, which was not 
included in the COMS, because it will provide similar results (same in 
binary tasks) as the F1-score. Both metrics are mathematically similar 
but interpreted differently. The Dice Coefficient, a similarity metric 
evaluating the overlap of two area against the union, emerges from 
segmentation tasks, and comes with less clinical relevance given it being 

measured on pixel level, as elaborated above. Hence, the F1-score was 
proposed as core metric, as it provides a harmonic mean between pre
cision and sensitivity.

Our study has some limitations. First, we focused on computer vision 
– the most prolific, but not only field in dental AI research. Future work 
may consider natural language processing and predictive dentistry. 
Second, only a limited number of computer vision tasks, those mainly 
found in the literature, were considered. Emerging themes in computer 
vision may not be fully reflected by the present document, while re
searchers in those new domains are invited to adapt our recommenda
tions to their field of work accordingly. Third, only a limited (albeit 
diverse) number of experts participated in the Delphi, and it can be 
expected that further development under broader participation might be 
needed in the future, particularly given the dynamic nature of the field 
(in parts reflected by the CLAIM checklist, used by us as one document 
for our scoping task, has recently been updated) [15]. Fourth, age or 
gender cannot be evaluated given the consensus being conducted 
anonymously. Last, we focused on metrics that can be yielded by both 
diagnostic accuracy studies and clinical trials. Notably, the latter may 
also report on relevant aspects around the implementation of further 
impact of computer vision, e.g. costs or diagnostic process or patients’ 
attitudes. These outcomes are not at all reflected, as they are not 
necessarily to be expected in all studies in the field and hence can be 
regarded as supplementary. These tasks are of utmost importance to 
fully characterize AI’s impact on clinical care, and research focusing on 
such outcomes should be highly welcomed.

5. Conclusions

Dental researchers are recommended to report computer vision 
studies along the outlined COMS. Reviewers and editors may want to 
consider the defined COMS when assessing studies in the realm, and 
authors should actively justify when outcome measures were omitted or 
added. Adherence to the defined COMS is expected to increase compa
rability across studies, enable synthesis, and reduce selective reporting 
bias.
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Table 4 
Outcome measures. Results of the consensus process are represented with me
dian, minimum (min) and maximum (max) of participants voting.

Outcome measure Agreement, median 
(min, max)

Confusion Matrix. A visual and numerical representation 
that clearly outlines the algorithm’s true and false 
predictions in all categories can provide a 
comprehensive understanding of its performance. 
Researchers should present a comprehensive confusion 
matrix for each task, delineating true positives, true 
negatives, false positives, and false negatives.

10 (2,10)

Accuracy. To quantify the proportion of total predictions 
that the algorithm correctly identified.

10 (2,10)

Sensitivity. The algorithm’s proficiency in correctly 
identifying cases with a specific condition

10 (2,10)

Specificity. The algorithm’s ability to correctly identify 
true negatives

10 (2,10)

Precision. Indicative of the exactness of its positive 
predictions, as it is important in scenarios where false 
positives bear significant consequences, such as invasive 
or costly interventions.

10 (1,10)

F-1 score. Representing the harmonic mean of precision 
and sensitivity, should be provided to convey a balanced 
view of the algorithm’s performance, especially in the 
presence of uneven class distributions.

9 (1,10)

Area under the receiver operating characteristic curve. 
Area under the sensitivity and (1-specificity) curve. 
Evaluates the diagnostic capability compared to random 
guesses

8 (2,10)

Area under the precision recall curve 8 (1,10)
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Appendix

Rationale for the choice of the Delphi technique
1. Justification: We employed an online Delphi, allowing for a 

transparent, anonymous voting. The technique is accepted by the com
munity. By combining the open-ended initial conception and discussion 
of the items with a Delphi, a systematic and comprehensive consensus 
process was possible.

Planning and design
2. Planning and process. The consensus rules (see below) were set by 

the authors and communicated via e-mail before starting the Delphi 
process. The Delphi asked for an agreement to each item on a scale of 
1–10 (do not at all agree to agree fully). Maximum two stages of the 
Delphi were planned. Each round closed after a 2-week period. Two 
reminders via email were sent for each round. Panellists were allowed to 
comment on each item. The survey was conducted via a customized 
online platform; and survey data was analysed descriptively.

3. Definition of consensus. The following consensus rules applied. (1) 
Agreement to an item was defined by marking grades 7–10 on a scale 
from 1 to 10. (2) Minimum 70 % of all participants needed to agree to an 
item for this to be consensually accepted. Items which did not meet these 
criteria after the planned 2 rounds were to be dropped.

Study conduct
4. Informational input: The material provided to the panel is 

described in the main text. Its attainment has been described above.
5. Prevention of bias: A systematic and comprehensive approach 

under participation of a wide range of experts and two acknowledged 
international bodies was chosen.

6. Interpretation and processing of results: There was, as discussed, 
stable agreement to all items after the first round.

7. External validation: Some external validation was sought as the 
authors have utilized the checklist in recent publications.

Reporting
8. Purpose and rationale: These have been provided.
9. Expert panel: Several acknowledged international bodies invited a 

comprehensive sample of experts; participation was further open to 
other interested parties and individuals.

10. Description of the methods: Preparatory steps, conception and 
authoring of the document, iteration of the checklist, survey rounds 
have been described.

11. Procedure: The Delphi steps have been described.
12. Definition and attainment of consensus: The following consensus 

rules applied. (1) Agreement to an item was defined by marking grades 
7–10 on a scale from 1 to 10. (2) Minimum 70 % of all participants 
needed to agree to an item for this to be consensually accepted.

13. Results: The results are reported in the main text.
14. Discussion of limitations: A limited group of people have been 

invited and came to this consensus, which is a limitation.
15. Adequacy of conclusions: The conclusions reflect the outcomes of 

the Delphi.
16. Publication and dissemination: The checklist is published in an 

international journal for dissemination.
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