Logo Logo
Help
Contact
Switch Language to German

Maarouf, Abdurahman; Feuerriegel, Stefan ORCID logoORCID: https://orcid.org/0000-0001-7856-8729 und Pröllochs, Nicolas ORCID logoORCID: https://orcid.org/0000-0002-1835-7302 (2025): A fused large language model for predicting startup success. In: European Journal of Operational Research, Vol. 322, No. 1: pp. 198-214 [PDF, 1MB]

[thumbnail of 1-s2.0-S0377221724007136-main.pdf]
Preview
Creative Commons Attribution
Published Version

Abstract

Investors are continuously seeking profitable investment opportunities in startups and, hence, for effective decision-making, need to predict a startup’s probability of success. Nowadays, investors can use not only various fundamental information about a startup (e.g., the age of the startup, the number of founders, and the business sector) but also textual description of a startup’s innovation and business model, which is widely available through online venture capital (VC) platforms such as Crunchbase. To support the decision-making of investors, we develop a machine learning approach with the aim of locating successful startups on VC platforms. Specifically, we develop, train, and evaluate a tailored, fused large language model to predict startup success. Thereby, we assess to what extent self-descriptions on VC platforms are predictive of startup success. Using 20,172 online profiles from Crunchbase, we find that our fused large language model can predict startup success, with textual self-descriptions being responsible for a significant part of the predictive power. Our work provides a decision support tool for investors to find profitable investment opportunities.

Actions (login required)

View Item View Item