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Investors are continuously seeking profitable investment opportunities in startups and, hence, for effective
decision-making, need to predict a startup’s probability of success. Nowadays, investors can use not only
various fundamental information about a startup (e.g., the age of the startup, the number of founders, and
the business sector) but also textual description of a startup’s innovation and business model, which is widely
available through online venture capital (VC) platforms such as Crunchbase. To support the decision-making
of investors, we develop a machine learning approach with the aim of locating successful startups on VC
platforms. Specifically, we develop, train, and evaluate a tailored, fused large language model to predict startup
success. Thereby, we assess to what extent self-descriptions on VC platforms are predictive of startup success.
Using 20,172 online profiles from Crunchbase, we find that our fused large language model can predict startup
success, with textual self-descriptions being responsible for a significant part of the predictive power. Our work

provides a decision support tool for investors to find profitable investment opportunities.

1. Introduction

Startups are ventures undertaken by entrepreneurs to seek, develop,
and validate a business model (Katila, Chen, & Piezunka, 2012). For
investors, startups represent investment opportunities with substantial
financial risks yet often also with the prospect of large returns. Return
on investment can easily exceed the initial investment by several orders
of magnitude. As an example, the early-stage investment of Peter Thiel
of 0.5 million USD into Facebook increased in value by more than 1
billion USD (CNN, 2020). However, successful investments into startups
are rare. Many startups cannot establish an economic business model
and eventually fail (Tduscher & Kietzmann, 2017). Given the high
failure rate among startups, investors are confronted with the non-
trivial decision-making task of identifying startups that will eventually
be successful (Huang & Pearce, 2015; Scott, Shu, & Lubynsky, 2020).

In order to find successful startups, investors can nowadays access
information about startups through online platforms for venture capital
(VC). A prominent example is Crunchbase, where startups can present
their venture to investors through a detailed online profile. The online
profiles can include both (i) fundamental variables, which provide
structured information on founders, funding, and the business sector,
and (ii) textual self-description. The latter is a free text that can be
used to describe the startup in verbal form. Startups can use such online
profiles to inform about the venture’s prospects and attract the interest
of venture capitalists and other potential investors (Connelly, Certo,
Ireland, & Reutzel, 2011; Parhankangas & Ehrlich, 2014).
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Prior literature has explored the potential of leveraging VC platform
data (e.g., from Crunchbase) to predict startup success due to their
comprehensive coverage (e.g., Alamsyah & Nugroho, 2018; Arroyo,
Corea, Jimenez-Diaz, & Recio-Garcia, 2019; Dellermann, Lipusch, Ebel,
Popp, & Leimeister, 2017; Sharchilev et al., 2018; Weibl & Hess,
2019). However, prior studies have primarily assessed the predictive
power of fundamental variables (e.g., Alamsyah & Nugroho, 2018;
Arroyo et al.,, 2019; Dellermann et al., 2017), while mostly ignor-
ing textual self-descriptions. Notable exceptions are Kaiser and Kuhn
(2020) and Sharchilev et al. (2018), who use textual self-descriptions
for prediction. However, these works rely on traditional methods with
manual feature engineering. We thus contribute to the existing litera-
ture stream with a novel, fused large language model to combine tex-
tual self-descriptions with fundamental variables for predicting startup
success.

In this paper, we aim to predict startup success from online profiles
of VC platforms. Thereby, we not only consider fundamental infor-
mation (e.g., on founders, funding, and the business sector) that are
captured in traditional scorecards but we also leverage the textual
self-descriptions in online profiles on VC platforms. Here, we develop
a machine learning approach to predict startup success from large-
scale VC platforms. Machine learning allows us to assess how well
startup success can be detected for new startups and thus support the
decision-making of investors regarding whether to select a startup for
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funding. Specifically, we develop a tailored, fused machine learning
approach for predicting startup success that considers both (structured)
fundamental variables and (unstructured) textual self-descriptions. For
this, we draw upon large language models as a recent innovation in
machine learning (Devlin, Chang, Lee, & Toutanova, 2018), which
we carefully adapt to our research objective. A key benefit of large
language models in practice is that they are pre-trained on a large
amount of public data, because of which relatively small datasets are
sufficient for fine-tuning and, thus, to generate accurate predictions.
We then assess the relative contribution of textual self-descriptions to
making predictions of startup success.

We evaluate our machine learning approach based on our fused
large language models for predicting startup success using 20,172
online profiles from Crunchbase. Crunchbase is one of the largest online
VC platforms hosting online profiles from startups. We find that only
fundamental variables can alone make predictions with a balanced
accuracy of 72.00%. When additionally incorporating textual self-
descriptions, the balanced accuracy increases to 74.33 %. The improve-
ment is statistically significant, implying that textual self-descriptions
are effective in predicting startup success. In addition, we estimate the
financial performance of our machine learning approach by translating
the performance improvement to investment portfolio improvement.
The investment portfolio improvement amounts to a 40.61 percentage
points increase in return on investment (ROI) when incorporating
textual self-descriptions, highlighting the practical implications of our
machine learning approach. We then evaluate the prediction perfor-
mance across various events indicating startup success (i.e., initial
public offering, acquisition, and external funding). We further provide
an extensive series of sensitivity analyses in which we compare the pre-
diction performance across business sectors, startup age, and additional
machine learning baselines, thereby confirming the robustness of our
findings.

Our work contributes to business analytics in several ways. First,
we provide empirical evidence on the operational value of online VC
platforms for better investment decision-making. Thereby, we extend
upon extensive research which has studied the benefits of online plat-
forms for users while we focus on investors. Second, we contribute
to a growing stream of machine learning in business analytics (e.g.,
Bastani, Zhang, & Zhang, 2022; Choi, Wallace, & Wang, 2018; Cohen,
2018; Misi¢ & Perakis, 2020). Here, we demonstrate an impactful
application of machine learning in VC decision-making. Third, we
show the operational value of large language models for research and
practice. However, as we detail later, a naive application of large
language models would miss significant predictive power. Instead, our
task requires a non-trivial adaptation through a fused large language
model to our decision problem in order to make combined predictions
from both fundamental information and texts. Fourth, we provide a
flexible tool for investors to automate their screening process in VC
decision-making.

The rest of this paper is structured as follows. Section 2 provides
a background on venture capital and analytics for decision-making.
In Section 3, we develop our machine learning approach in the form
of a tailored large language model. Section 4 presents our dataset
with online profiles from Crunchbase, based on which we study the
predictive power of textual self-descriptions (Section 5). We then dis-
cuss implications for both business analytics practice and research
(Section 6), while Section 7 concludes.

2. Related work
2.1. Venture capital
Startups are new entrepreneurial ventures founded to develop and

validate a business model (Katila et al., 2012). In practice, startups
typically take an innovative idea and then build a scalable business
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model around it, with the intention of turning the startup into a high-
growth, profitable company (Forbes, 2019). This process is largely
dependent on external funding in order to cover costs for technology
development, entering markets, or other upfront investments. Hence,
events in which startups receive funding are commonly used in the
literature to determine success (Arroyo et al., 2019; Hegde & Tumlin-
son, 2014; Nanda & Rhodes-Kropf, 2013). Examples of such events are
initial public offerings (e. g., Airbnb, which went public in December
2020), acquisitions (e.g., Slack and DeepMind, which were acquired
by Salesforce and Google, respectively), and external funding (e.g.,
SpaceX, which had several funding rounds after its series A funding
in 2002). To capture startup success, prior literature has often studied
either individual events such as initial public offerings (e.g. Chang,
2004; Mann & Sager, 2007) or a combination of events (e.g. Arroyo
et al., 2019; Hegde & Tumlinson, 2014; Nanda & Rhodes-Kropf, 2013).

Startups often represent lucrative investment opportunities with the
prospect of large returns. As of 2023, more than 180 startups have
turned into “unicorns”, that is, reached valuations of over USD 1 billion
in less than five years (Fleximize, 2023). Investing in such unicorns
in an early stage can create a return multiple times larger than the
initial investment. However, investments in startups are known to be
of high risk. Startups that eventually fail leave the investor with little
or no return. Hence, identifying successful startups at an early stage is
difficult (Aggarwal & Singh, 2013; Huang & Pearce, 2015; Scott et al.,
2020).

Predicting which startups will turn out to be successful is inherently
challenging, as startups represent new ventures for which little to no
information on past performance is available. Thus, many investors
make such predictions based on their gut feeling (Huang & Pearce,
2015). However, according to prior literature, there are several de-
terminants that characterize successful startups. These can be loosely
divided into characteristics regarding the business model, the founders,
and funding. (1) The business model explains — to some degree — the
survival of ventures (Bohm, Weking, Fortunat, Miiller, Welpe, & Krc-
mar, 2017; Weking, Bottcher, Hermes, & Hein, 2019). In this regard, the
business sector is also associated with startup success (van Gelderen,
Thurik, & Bosma, 2005; Holmes, Hunt, & Stone, 2010). (2) Founders
decide upon how a business is run and thus founder characteristics
are important success factors (e.g., Littunen & Niittykangas, 2010;
Lussier, 1995). For instance, startups are more likely to be on a path to-
wards growth when their founders have attended higher education (van
Gelderen et al., 2005). (3) Funding is often a prerequisite to stimulate
growth (e. g., Butler, Garg, & Stephens, 2020; Conti & Graham, 2020;
Lussier, 1995). Hence, startup success is also associated with previous
funding rounds (Baum & Silverman, 2004). In this regard, it is further
beneficial for startups to have backing from a known venture capital-
ist (Conti & Graham, 2020; Nahata, 2008). Hence, to avoid relying
on gut feeling or subjective bias when processing information about
startups, machine learning presents a scalable, data-driven approach to
predict startup success.

2.2. Predicting startup success

Prior works have developed data-driven approaches for predicting
startup success. For instance, predictions can be made based on data
from questionnaires, namely via so-called scorecards (Bohm et al.,
2017; Yankov, Ruskov, & Haralampiev, 2014). One study also draws
upon data that are extracted from business plan competitions (McKen-
zie & Sansone, 2017). Yet, both questionnaires and business plan
competitions involve data from manual reporting, which is often not
available in VC markets. These data sources also tend to have limited
coverage, and thus their usefulness in the daily decision-making of
investors is limited. A different stream of literature predicts acquisitions
as a specific event in startup lifecycles using proprietary databases
(e.g., COMPUSTAT Ragothaman, Naik, & Ramakrishnan, 2003, SDC
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Platinum Wei, Jiang, & Yang, 2008). However, such databases are typi-
cally restricted to specific events (i. e., acquisitions) and, on top of that,
have limited coverage as they provide only few variables (e.g., about
founders and funding) but not textual descriptions. In contrast to that,
textual descriptions about startups and their business model, inno-
vation, or market structure may provide significant predictive power
regarding which ventures will eventually be successful.

Recently, the possibility of using online data from VC platforms
to predict startup success was explored (Alamsyah & Nugroho, 2018;
Arroyo et al., 2019; Dellermann et al., 2017; Sharchilev et al., 2018).
Predicting startup success from VC platforms has a clear advantage
in practice: online platforms for VC typically exhibit comprehensive
coverage of startups and thus provide “big” data (Weibl & Hess, 2019).
This is beneficial, as large-scale datasets are generally a prerequisite for
making accurate inferences using machine learning. Studies predicting
startup success based on questionnaires have often relied on samples
with less than 200 observations (i.e., 200 different startups), because
of which the prediction models can not generalize well across startups
and thus lack predictive power (Bohm et al., 2017; Yankov et al., 2014).
In contrast, online platforms for VC, such as Crunchbase, provide online
profiles of more than 20,000 startups in the U.S alone.

Based on data from VC platforms, a variety of research questions
have been studied. Arroyo et al. (2019) evaluate the predictive ability
of fundamental information at Crunchbase, but textual self-reports as
predictors are ignored. In Dellermann et al. (2017), a hybrid machine
learning approach is designed in which both fundamental information
and judgment scores from crowds are combined, but again textual self-
reports as predictors are again ignored. Sharchilev et al. (2018) use
textual self-reports for prediction but rely on traditional, bag-of-words
representations and not large language models. Kaiser and Kuhn (2020)
also make predictions from self-reports but rely on a dictionary-based
approach that requires manual feature engineering. Hence, the ability
of large language models together with textual self-descriptions from
VC platforms has yet to be explored and presents our contribution.

2.3. Machine learning in business analytics

Machine learning can support managerial decision-making by pre-
dicting uncertain operational outcomes (Choi et al., 2018; Cohen, 2018;
Feuerriegel, Shrestha, von Krogh, & Zhang, 2022; Kraus, Feuerriegel, &
Oztekin, 2020). The adoption of machine learning in business analytics
has been greatly fueled by the increasing availability of data and
recent methodological advances (Bastani et al., 2022; Misi¢ & Perakis,
2020). Promising examples include credit scoring (Kriebel & Stitz,
2022; Lessmann, Baesens, Seow, & Thomas, 2015; Maldonado, Pérez,
& Bravo, 2017; Verbraken, Bravo, Weber, & Baesens, 2014), finan-
cial risk assessment (Kim et al., 2020; Kozodoi, Jacob, & Lessmann,
2022), business failure prediction (Borchert, Coussement, De Caigny, &
De Weerdt, 2023; De Bock, Coussement, & Lessmann, 2020; Naumzik,
Feuerriegel, & Weinmann, 2022; Stevenson, Mues, & Bravo, 2021),
throughput prediction (Senoner, Kratzwald, Kuzmanovic, Netland, &
Feuerriegel, 2023), customer analytics (De Caigny, Coussement, &
De Bock, 2018; Ozyurt, Hatt, Zhang, & Feuerriegel, 2022), recommen-
dation systems (Geuens, Coussement, & De Bock, 2018), and public
sector operations (Jakubik & Feuerriegel, 2022; Kadar, Maculan, &
Feuerriegel, 2019). However, the aforementioned works build upon
structured data and not text.

Business analytics has also increasingly embraced machine learning
that can make inferences from textual content (e.g., Borchert et al.,
2023; Cui, Gallino, Moreno, & Zhang, 2018; Feuerriegel & Gordon,
2019; Feuerriegel, Hartmann, Janiesch, & Zschech, 2024; Haupt, Ben-
der, Fabian, & Lessmann, 2018; Kraus & Feuerriegel, 2017; Kriebel &
Stitz, 2022; Lau, Zhang, & Xu, 2018; Stevenson et al., 2021; Toetzke,
Banholzer, & Feuerriegel, 2022). As such, business analytics can mine
user-generated content, e.g., from social media, in an automated and
scalable manner (Cui et al., 2018). For example, Cui et al. (2018)
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enrich historical sales data with social media as a measure of customer
perception towards products and evaluate how that combined data
source is better in predicting future sales. However, existing methods
in business analytics oftentimes build upon bag-of-words approaches
where an unordered set of words is used as input (e.g., Cui et al., 2018;
Feuerriegel & Gordon, 2019; Lau et al., 2018) and where, as a result,
the relationship, order, and hierarchical structure among words is lost.
Hence, existing methods merely operate on word frequencies and not
on semantic meaning. A potential remedy is given by large language
models that model the ordered sequence of words and thus capture
the semantics of running text; however, the operational value of large
language models has so far been largely unclear. Moreover, we are not
aware of previous work that uses large language models for startup
prediction to support investment decisions.

3. Empirical model

In this section, we first formulate our research question of whether
textual self-descriptions from VC platforms predict startup success. To
answer this, we then describe our machine learning approach based on
a tailored, fused large language model.

3.1. Research question

In this study, we build a machine learning approach where we
leverage information provided by startups on VC platforms in order
to predict startup success. Information on online VC platforms such as
Crunchbase can loosely be grouped into two categories (which may po-
tentially complement each other). (1) VC platforms provide structured
information on a startup’s fundamentals. Examples of such fundamental
variables are the age of the startup, the number of founders, or infor-
mation about past funding success. Fundamental variables are typically
entered on VC platforms in a structured format and thus with little
degree of customization. (2) Startups can additionally provide a textual
self-description. The textual self-description can be used to describe
the business model, a startup’s innovation, or the market structure.
Textual self-descriptions have become mandatory on VC platforms such
as Crunchbase but the actual content is at the startup’s discretion.

In this study, we examine whether large language models can be
successfully leveraged by investors to predict startup success from
textual self-descriptions on VC. There are several factors that lead us
to expect that textual self-descriptions are predictive. In particular,
startups can use the textual self-description on VC platforms to present
information on a startup’s business model, innovation, or market struc-
ture. An example is “BetterTrainers has a new type of business model
that protects all sessions booked through the site with premium in-
surance coverage” where a business model is explained, or “FaceTec’s
patented, industry-leading 3D Face Authentication software anchors
digital identity with 3D FaceMaps” where a startup details how to make
use of certain technologies. Besides the actual information captured in
the text, latent factors such as the tone of the text (e.g., a positive
sentiment) may also implicitly signal success.

As seen by the previous examples, traditional approaches from
machine learning for making predictions from online descriptions
(e.g., bag-of-words) will likely struggle with the complexity of the
underlying task since traditional approaches only rely upon word
frequencies and do not provide a principled approach to infer semantic
meanings. To this end, the previous examples motivate the use of large
language models in our study as a principled, data-driven approach to
capture semantic meanings in text and thus to predict startup success.
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Fig. 1. Our machine learning approach based on a tailored, fused large language model for predicting startup success.

3.2. Fused machine learning approach

In the following, we present our fused machine learning approach
in order to predict startup success. Let i = 1,...,n denote the star-
tups. Specifically, we develop a tailored, fused large language model
as shown in Fig. 1. In our machine learning approach, both sets of
variables - i.e., fundamental variables (FV) and textual self-descriptions
(TSD) - are taken into account but in different ways. (1) The fun-
damental variables come in a structured format va € R™V and are
thus directly passed on to the final machine learning classifier. (2) The
textual self-descriptions are first mapped onto document embeddings
xMSP e Rmsp and then passed on to the final ML classifier. Let us
denote the final ML classifier by ¢, : R™v*msp — {0,1} with some
parameters 6. Here, the output y; € {0, 1} indicates whether a startup
i = 1,...,n will be successful (y; 1) or not (y; = 0). Crucially, a
custom architecture for our large language model is necessary in order
to fuse both fundamental variables xf¥ and document embeddings xT°
to make predictions. For comparison, we later evaluate a naive large
language model without the “fused” structure which uses only x™P for
prediction.

In our machine learning approach, we take the textual
self-description of the startup and use a large language model (i.e.,
BERT; see Devlin et al.,, 2018) as an embedding generator to map
text onto a document embedding. The document embedding is then
concatenated with the fundamental variables and the resulting con-
catenated vector is then used as input to the classifier. Large language
models represent state-of-the-art techniques for modeling natural lan-
guage in machine learning (Jurafsky & Martin, 2020). A prominent
example is BERT, which has been found effective in capturing complex
dependencies such as semantics in textual content (Devlin et al., 2018).
In the following, we detail how we fuse data in our large language
model.

3.2.1. Large language model (BERT) as embedding generator

Large language models, often also called transformers, are large-
scale deep neural networks that are carefully designed to process run-
ning text (Jurafsky & Martin, 2020). The practical benefit of large lan-
guage models is that they leverage the strength of large-scale deep neu-
ral networks and are thus able to capture context, semantics, structure,
and meaning (Jurafsky & Martin, 2020).

A prominent large language model is BERT (Devlin et al., 2018).
BERT was developed by Google AI and stands for bidirectional en-
coder representations from transformer. BERT has been successful in
solving various machine learning tasks for natural language. In par-
ticular, BERT has been shown to be superior to alternative document
representations such as bag-of-words. Methodologically,

Language models such as BERT map running text onto a new repre-
sentation called embedding (Devlin et al., 2018). Formally, each textual
input is first transformed into a sequence of tokens [[CLS],w;,ws, ...]
based on the predefined vocabulary of BERT, with [CLS] being used at
the beginning of each sequence. Hence, for each textual input, BERT
receives a sequence of individual tokens as input where the tokens are
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represented by vectors [CLS], w;, w,, ... € R¥. The vectors are not “one-
hot-encoded” as traditionally done in simpler models. Instead, BERT
uses an embedding layer to convert the sequence of tokens into dense
vector representations ejcrg), ey, e, ... € R¢ that are lower-dimensional
(i.e., the dimensionality e is much smaller than the dimensionality of
a typical one-hot encoding, which is computationally more desirable).
Next, the token embeddings are fed into a transformer encoder. A trans-
former encoder is a neural network designed for sequential data that
processes the entire input sequence [e[cis), e, e;, ---] simultaneously,
rather than sequentially. It relies on two key mechanisms: (a) positional
encodings, which add information about the position of each token
to retain the order; and (b) an attention mechanism, which allows
the model to weigh the importance of different tokens dynamically.
Thereby, a transformer encoder employs a complex, non-linear pro-
cess to determine how tokens influence one another. The output of
the transformer encoder consists of transformed vectors (embeddings)
[orcLs)» 015 02, ---1, which can then be used for various tasks. Specifi-
cally, the embedding for the [CLS] token (i.e., o/c5;) can be used for
classification tasks as it aggregates the meaning of the entire input
sequence.

During training, BERT utilizes a technique called masked language
modeling, where some of the input tokens are randomly masked
(i.e., omitted) for self-supervised learning. The objective of BERT
during training is to correctly predict these masked tokens. Thereby,
BERT updates its internal weights and learns a deep understanding
of language context and relationships between words. Due to self-
supervised learning, large-scale textual databases (e.g., Wikipedia) can
be used for training but without the need for explicitly annotated labels.
A schematic visualization is in Fig. 2.

Our implementation is as follows. We use the so-called basic, un-
cased version of BERT (Devlin et al., 2018), comprised of 12 lay-
ers with ~110 million trainable parameters. It generates embeddings
0[cLs]» 01,02, .- € R” of dimension n = 768. BERT is shipped as a
pre-trained network where parameters have already been learned from
open-source content. Before applying BERT, all text is lowercased and
tokenized using the WordPiece algorithm, which maps the text onto
subwords or unigrams from the WordPiece vocabulary. Afterward, the
text is passed through the pre-trained BERT network. The embedding
of the [CLS] token (i.e., ojcrs)) is then used as the document embed-
ding xTSP, representing the textual self-description for the downstream
classification. Hence, our document embedding xTSP is of dimension
mpgp = 786.

3.2.2. Baseline text representations

We compare our machine learning approach based on a tailored,
fused large language model against three traditional text representa-
tions. All of the baselines are again concatenated to the fundamental
variables and are then fed into a final machine learning classifier. The
final machine learning classifier is again subject to rigorous hyperpa-
rameter tuning (see later for details) for fair comparison. Therefore, all
performance gains from our approach must be attributed to that large
language models are better at handling textual content.
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Fig. 2. Schematic overview of a large language model (here: BERT).

» Manual feature extraction: The first text-based baseline is based
on manual feature extraction. Specifically, we manually craft
features that capture textual information (e.g., the length, the
mean word length, and the number of geographic references). We
follow prior literature and extract the same features as in Kaiser
and Kuhn (2020). This results in a text representation of dimen-
sion 10. We refer readers to Kaiser and Kuhn (2020) for a full list
of the features.

Bag-of-words: We compare our machine learning approach
against the traditional approach of a bag-of-words baseline. We
refer readers to Jurafsky and Martin (2020) for an introduction.
We implement bag-of-words as follows. We first tokenize the
words of the textual self-description to unigrams, remove stop
words, lemmatize, and apply a tf-idf weighting. Furthermore, we
remove words with more than 95% sparsity. The bag-of-words
baseline results in a 98-dimensional text representation.

GloVe: GloVe (Pennington, Socher, & Manning, 2014) transforms
words into vectors (so-called word embeddings) based on their co-
occurrence in a text corpus. Thereby, the vectors capture semantic
relationships, offering a rich set of features for text analysis. We
use the GloVe model pre-trained on Wikipedia (i.e., glove—
wiki-gigaword-50) to extract the 50-dimensional word em-
beddings. We average the individual word embeddings to get the
final text representation used for the downstream classification.

3.2.3. Final machine learning classifier

The final machine learning classifier ¢,(-) with parameters 6 is
responsible for the “fused” approach and, for this, receives the concate-
nated vector of (1) fundamental variables and (2) document embed-
dings. The output is then the predicted probability of startup success.
We thus optimize

0* = argmin E[£ (¢ ([xF¥, x™V7), y)], €Y)
4

where L is a convex loss (e.g., mean squared error) and where [-,-] is
the concatenation operator.
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We experiment with different classifiers that are designed to handle
both linear and non-linear relationships in the data. Specifically, we
make use of the following classifiers:

- Logistic regression: The logistic regression is a simple linear
model used for binary classification. It models the probability
of a binary outcome using the logit function to map predictions
to probabilities. The logistic model expresses the log-odds of the
outcome variable as a linear combination of the independent vari-
ables, formalized as log (fp) = 07 x, where p is the probability
of the outcome of interest.

Elastic net: The elastic net extends the logistic regression in
which overfitting is prevented through regularization (Zou &
Hastie, 2005). Specifically, regularization is given by a combi-
nation of both an L1- and an L2-norm penalty (analogous to
lasso and ridge methods, respectively). This thus shrinks some
coefficients closer to zero, and, as a result, the classifier gener-
alizes better to out-of-sample observations. Formally, let ¢y(x) =
67 x. Then the regularized loss L,, is formalized as L, (x,y) =
L(pg(x), )+ 1 (1%"’ ||I9||§ +a ||9||1) with hyperparameters « and 1.
The elastic net is especially beneficial in tasks where predictors
are subject to linear dependence (Hastie, Tibshirani, & Fried-
man, 2009). For reasons of completeness, we also experimented
with lasso and ridge methods (Hastie et al., 2009), but with
qualitatively similar results (and thus omitted the results for
brevity).

Random forest: The random forest is an ensemble learning clas-
sifier where predictions are made from a multitude of decision
trees (Ho, 1995). Each decision tree is fit to a random subset of
the data, while the final prediction is then made by taking the
majority vote over the individual decision trees. As a result, the
classifier is less prone to overfitting, has a better prediction per-
formance than a single decision tree, and is effective in handling
non-linear relationships (Hastie et al., 2009).

Neural net: The neural network is a flexible model for classifi-
cation by using layers of nodes that transform the input through
non-linear activation functions. The output layer uses a sigmoid
to produce class probabilities. The loss is regularized by a com-
bination of both the L1- and L2-norm penalty to prevent over-
fitting. Neural networks excel due to their flexibility in handling
non-linear relationships.

3.3. Performance metrics

To evaluate the performance of machine learning in predicting
startup success, we report different performance metrics: balanced
accuracy, precision, recall, F;-score, area under the curve from the
precision-recall curve (AUCPR), and area under the curve from the
receiver operating characteristics (AUROC). However, due to its inher-
ent benefit of considering the complete distribution of discrimination
thresholds (Hastie et al., 2009), we primarily focus on the AUROC. We
remind that we follow common practice in machine learning and eval-
uate the performance on out-of-sample observations, that is, startups
that have not been part of the training set but from the test set so that
they are thus unseen to the machine learning classifiers.

Furthermore, we calculate the return on investment (ROI) for the
machine learning-selected portfolios. Let T P denote the number of true
positives (i. e., cases where startup success was predicted correctly) and
F P the number of false positives (i. e., cases where the model predicted
success despite that the startup was actually not successful). We then
calculate the net investment gain for correctly predicted successful
startups by taking the sum of the final investment values FIV ;p (i.e.,
the startup valuations after a success event) minus the sum of the total
cost of investment (I C). Note that, since data on startup valuations and
costs of investment is not always publicly available, we approximate
these variables using constants determined based on historical mean
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Table 1
Tuning grid for hyperparameter tuning.

European Journal of Operational Research 322 (2025) 198-214

Classifier Hyperparameter Tuning range
Logistic regression —
Elastic net L1 ratio {0.1, 0.2, 0.3, 0.5}

Tolerance for stopping

Regularization parameter

{0.00001, 0.0001, 0.001, 0.01}
{0.1, 0.25, 0.5, 1, 2, 4, 8}

Random forest % of randomly selected predictors {0.4, 0.6, 0.8}
Splitting rule {gini, entropy}
Minimal node size {5, 8, 10}
Minimal split size {8, 10}
Neural network # Hidden units input_dim %{0.25, 0.5, 0.75, 1, 1.5, 2}
# Hidden layers 2,34
Dropout rate {0, 0.2}

Batch size

Optimizer

Learning rate

Max Epochs

Learning rate decay
Activation function
Early stopping patience

{128, 256, 512}

AdamW (Loshchilov & Hutter, 2018)
{0.001, 0.0001, 0.00001}

500

0

ReLU

3

Note: input_dim is the number of input features and therefore depends on whether the fundamental variables,
the textual self-description, or a combination of both is used for training.

values for startups listed on Crunchbase.! For companies that were non-
successful, we conservatively assign a final investment value of zero
(FIV p). The ROI for the portfolio is then calculated by taking the net
investment gain divided by the total cost of investment. Formally,

TPXFIVyp+ FPXFIVpp—(TP+FP)XIC
(TP+FP)XIC

ROI = 100, 2)

where the total investment costs (/C) comprise (i) the investor’s in-
vestment into equity of the startup; and (ii) we consider 10% of the last
valuation as additional screening and monitoring costs for the investor.

3.4. Implementation details

Our implementation follows best practice in machine learning
(Hastie et al., 2009). For this, we split the data into a training set and
a test set. The former is used for training the model; the latter is used
to evaluate the out-of-sample performance. In our work, we randomly
assign 80% of the data samples to the training set and 20% to the test
set. Due to class imbalances, common procedures in machine learning
are followed; that is, we apply a stratified split (Goodfellow, Bengio,
& Courville, 2016), so that both sets have the same ratio of successful
vs. non-successful startups. To ensure robustness in our evaluation, we
repeat the random split five times and report the mean and standard
deviation of the performance metrics on the test set across the five
iterations. This allows us to quantify how well machine learning can
predict success for ventures that were not seen during training.

Hyperparameter tuning is conducted using 10-fold cross-validation.
Specifically, hyperparameters are tuned via randomized grid search (20
iterations), using the tuning grid in Table 1. The best hyperparameters
are selected based on the cross-validated AUROC score. Note that
the hyperparameter tuning is done separately for the different input
variables, that is, for when training our machine learning approach
using fundamental variables (FV), textual self-descriptions (TSD), or a
combination of both (FV + TSD).

1 In our Crunchbase dataset (see Section 4), the valuation of a startup
after a success event (i. e., initial public offerings, funding, acquisitions) is, on
average, $184.47 million. The pre-success valuation (i. e., the last valuation in
previous funding rounds) is, on average, $12.19 million. Hence, startups have,
on average, a 15.13 times higher valuation if they become successful.
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4. Empirical setting
4.1. Online profiles on crunchbase

Our evaluations are based on data from Crunchbase.? Crunchbase is
a leading online VC platform that connects startups and investors. For
this, Crunchbase allows startups to create online profiles where they
can present information on their business, founders, and funding. Edits
can be made by verified employees to ensure that correct information
is entered.

We collected online profiles (i.e., both fundamental variables and
textual self-descriptions) from all US-based startups that were listed
on Crunchbase. Furthermore, we excluded startups that went public
and that have already received series C funding (or a later funding
round). The latter is important as our objective is to make predictions
for companies that fall under the definition of a startup.

4.2. Definition of startup success

In our study, we predict startup success with regard to different
events that are conventionally used as indicators of success (cf. Arroyo
et al., 2019; Hegde & Tumlinson, 2014; Nanda & Rhodes-Kropf, 2013),
namely, whether startups had an initial public offering, have been
acquired, or secured external funding. If any of these events occurred,
we treat the startup as “successful”. Otherwise, a startup is treated
as “non-successful”. If not stated otherwise, these labels are used to
evaluate our machine learning approach. As part of our sensitivity
analyses, we later continue to compare how the prediction performance
varies across these events - i.e., initial public offerings, funding, and
acquisitions.

4.3. Time-aware prediction and evaluation framework

We implemented a time-aware approach that is common in time-
series forecasting (Hastie et al., 2009). Recall that we aim to evaluate
whether we can predict if startups will become successful in the future.
Consequently, we processed our data as follows. We restricted our anal-
ysis to startups that were founded between 2013 and 2015, based on
which we predicted their future development until the end of 2020. We
obtained raw access to the Crunchbase database with historical data.
This allowed us to collect information from online profiles that were

2 http://www.crunchbase.com
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Table 2
Variable descriptions.
Variable Description
OUTCOME VARIABLE
Success True (= 1) if a startup had an initial public offering, received funding, or has been acquired. False

(= 0) otherwise.

PREDICTORS

Fundamental variables (FV)
Age

Has email
Has phone
Has Facebook
Has Twitter
Has LinkedIn

Founders count

Founders country count
Founders male count

Founders female count

Founders degree count total
Founders degree count maximum
Founders degree count mean

Number of investment rounds
Raised funding

Last round investment type

Last round raised funding

Last round post money evaluation
Last round time lag

Investor count

Last round investor count

Known investor count

Last round known investor count

Industries

» o«

e.g., “machine learning”,

Textual self-description (TSD)
Document embedding

Number of investment rounds
Total raised funding (in million USD)

Investment type (seed, series A, etc.) of the last funding round

Raised funding (in million USD) in the last funding round

Valuation (in million USD) of the startup after the last funding round

Time since last funding round (in months)

Overall number of investors that invested in the startup

Number of investors in the last funding round only

Overall number of investors with a profile on Crunchbase

Number of investors in the last funding round with a profile on Crunchbase

Time since the startup has been founded (in months)

Whether the startup has added an email address (= 1 if true, otherwise 0)
Whether the startup has added a phone number (=1 if true, otherwise 0)
Whether the startup has added a link to Facebook (=1 if true, otherwise 0)
Whether the startup has added a link to Twitter (=1 if true, otherwise 0)
Whether the startup has added a link to LinkedIn (=1 if true, otherwise 0)

Number of founders of the startup

Number of unique countries the founders are from
Number of male founders
Number of female founders
Total number of university degrees of the founders
Number of degrees for most educated founder
Average number of degrees per founder

Fine-grained industries in which the startup operates (according to the Crunchbase coding scheme;
machinery manufacturing”)

Textual self-description encoded via large language model (BERT)

available in 2015. In particular, we discarded information that was
added or updated later, so that we only considered data as presented
on Crunchbase at the end of 2015.

We then predict whether an event indicating startup success has oc-
curred during the years 2016 through 2020, that is, we make forecasts
whether startups were successful over a time horizon of five years. The
forecast horizon is set analogous to earlier statistics reporting upon a
high failure rate among startups in their early stage (U.S. Bureau of
Labor Statistics, 2016), so that a 5-year-ahead forecast horizon should
be sufficient to distinguish successful from non-successful startups. Our
choice of events representing startup success is listed in the previous
section.

4.4. Variable descriptions

Our fused machine learning approach makes use of an extensive
set of variables from Crunchbase (see Table 2). The outcome variable
(i. e., the variable to predict) is binary, denoting whether a startup was
successful (= 1; otherwise = 0).

The predictors (i.e., the variables that are fed into our machine
learning classifiers) consist of the following: (structured) fundamental
variables and (unstructured) textual self-descriptions. (1) The funda-
mental variables (FV) describe different characteristics of startups such
as their age or the industries in which they operate (see Table 2).
Note that we use the industries as reported on Crunchbase, which is
based on a highly granular scheme (e.g., an Internet-of-Things company
may be assigned simultaneously to “artificial intelligence”, “industrial
automation”, etc.). Social media activity has been found to be related
to startup success (Jin, Wu, & Hitt, 2017), and, analogously, we include
information about whether startups are on social media (e. g., whether
they have a Twitter/X or LinkedIn profile). Furthermore, we collect
information about the characteristics of the founders (e. g., the number
of university degrees). We follow previous literature (Conti & Graham,
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2020) by controlling for the presence of known investors that have a
profile on Crunchbase themselves. We also include information on pre-
vious funding rounds but, since we use a historical view on Crunchbase
data, we only access information up to our time point when making the
predictions so that there is no lookahead bias (i.e., we discard funding
rounds that occur during the forecast horizon to ensure a time-aware
evaluation framework).® (2) The latter, i.e., textual self-descriptions
(TSD), are encoded via the large language model (BERT). This yields
document embeddings, which are then used as input to the machine
learning classifier.

4.5. Descriptive statistics

The above filtering yields a final dataset with 20172 startups. De-
scriptive statistics on startups for our dataset are as follows (see Ta-
ble 3). Out of all startups, 7252 (i.e., 35.94%) startups have been
labeled as successful, whereas 12920 (i.e., 64.06%) have been la-
beled as being non-successful. Frequent events indicating success are
founding rounds (i. e., 32.45% of all startups), followed by acquisitions
(3.10%) and initial public offerings (0.40%). For startups in our dataset,
the average age is 18 months. Startups tend to be more successful if
they provide a link to their social media profiles. In general, startups are
more frequently founded by males (i. e., 1.58 male founders per startup)

3 We also considered a less sparse encoding of business sectors (rather than
fine-grained industries as in the Crunchbase coding scheme) but we discarded
this. The reason is seen in our later analysis, where there is little variability
across business sectors and, thus, sector information has only little predictive
power. Furthermore, we also considered additional information about founders
(e.g., their number of current and past jobs) and prominence (e.g., site visitors,
growth in site visitors, number of media articles) but found that these are too
sparse to make a meaningful addition to our predictions.
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Table 3
Descriptive statistics.
Variable Overall Non-successful Successful
Mean SD Mean SD Mean SD
OUTCOME VARIABLE
Success 0.36 0.48 0.00 0.00 1.00 0.00
FUNDAMENTAL VARIABLES (FV)
Age (in months) 18.14 10.01 19.54 9.85 15.66 9.81
Has email 0.77 0.42 0.75 0.43 0.82 0.38
Has phone 0.58 0.49 0.58 0.49 0.58 0.49
Has Facebook 0.73 0.45 0.73 0.44 0.72 0.45
Has Twitter 0.77 0.42 0.75 0.43 0.79 0.41
Has LinkedIn 0.70 0.46 0.62 0.49 0.84 0.36
Founders count 1.83 0.97 1.69 0.89 1.98 1.03
Founders different country count 1.20 0.42 1.17 0.39 1.23 0.45
Founders male count 1.58 1.03 1.43 0.94 1.74 1.08
Founders female count 0.25 0.52 0.26 0.52 0.24 0.51
Founders degree count total 1.16 1.46 0.88 1.22 1.46 1.62
Founders degree count maximum 0.84 0.92 0.69 0.88 1.00 0.94
Founders degree count mean 0.78 0.84 0.66 0.83 0.92 0.83
Number of investment rounds 1.36 0.73 1.25 0.61 1.51 0.83
Raised funding (in million USD) 3.16 21.45 1.83 21.58 4.81 21.17
Last round raised funding (in million USD) 2.59 22.23 1.73 22.92 3.85 21.12
Last round post money evaluation (in million USD) 12.19 48.39 8.48 36.06 16.84 60.19
Last round time lag (in months) 11.59 8.55 14.14 8.80 8.40 7.03
Investor count 2.07 3.82 1.11 2.55 3.28 4.70
Last round investor count 1.42 2.65 0.79 1.88 2.34 3.27
Known investor count 1.16 0.68 1.06 0.38 1.30 0.91
Last round known investor count 1.08 0.46 1.02 0.25 1.16 0.62
TEXTUAL SELF-DESCRIPTIONS (TSD)
TSD length in chars (only for descriptive purpose) 665.02 429.26 694.04 462.13 613.32 357.64

SD = standard deviation

Table 4
Exemplary textual self-descriptions for each class.

N = 20,172 startups

Textual self-description

Outcome

“Fluc (which is Miles & Company Services now) is building the world’s first

non-successful

social marketplace for consumers to search, discover, and purchase
freshly-made food. Whether people desire a cup of coffee or a freshly cooked
pacific trout, Fluc powers the connection between consumers and local food
merchants. Fluc wraps complex logistics into a simple and affordable consumer
experience, enabling anyone to access thousands of food items from the palm of

their hand.”

“Lemonade is a licensed insurance carrier that offers homeowners and renters

successful

insurance powered by artificial intelligence and behavioral economics. By
replacing brokers and bureaucracy with bots and machine learning, Lemonade
promises zero paperwork and instant everything. And as a Certified B-Corp,
where underwriting profits go to nonprofits, Lemonade is remaking insurance
as a social good, rather than a necessary evil.”

than by females (i. e., 0.25 female founders per startup). Successful star-
tups have, on average, more founders (mean: 1.98) than non-successful
ones (mean: 1.69). Furthermore, founders with university degrees often
have more successful startups. On average, startups have previously
raised funding totaling to USD 3.156 million from 2.07 investors. Un-
surprisingly, startups that are eventually labeled as successful have
received more funding (mean: USD 4.81 million) and are backed by
more investors (mean: 3.28). On average, successful startups provide
a shorter textual self-description (mean: 613.32 characters) than non-
successful ones (mean: 694.04 characters). Table 4 lists two example
textual self-descriptions, one for each class.

Startups listed on Crunchbase operate in a variety of business sectors
(see Table 5). The majority of startups in our data operate in the area of
InrorMATION TECHNOLOGY and CoMMUNICATION SERVICES. In contrast, startups
in the Enercy, Utiities, and MATERIALS sectors are less common. Note
that startups can be assigned to multiple business sectors. Across the
business sectors, we also see variation in the success rate of startups.
For instance, startups in some sectors such as Urries have a high
success rate (50.79%), while the success rate for COMMUNICATION SERVICES
amounts to only 32.71%.
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Table 5
Relative frequencies and success rates of startups across different business sectors.

Business sector Relative Success rate
freq. (in %)
(in %)
INFORMATION TECHNOLOGY 54.32 40.61
COMMUNICATION SERVICES 43.23 32.71
INDUSTRIALS 34.72 41.53
CONSUMER DISCRETIONARY 34.14 32.95
Hearth CARE 16.21 52.06
CONSUMER STAPLES 15.86 42.06
FINANCIALS 10.01 41.14
ReAL ESTATE 5.99 35.84
UriLiTies 2.21 50.79
ENERGY 2.16 44.14
MATERIALS 1.52 43.97

Note: Business sectors are categorized according to the Global Industry Classification
Standard (GICS). Startups can belong to multiple business sectors.
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5. Empirical findings
5.1. Comparison of our large language model against the baselines

We now evaluate the performance of our fused large language
model in predicting startup success (see Table 6). We use the neural net
as the best-performing final machine learning classifier within our fused
large language model for this evaluation. For a detailed comparison
across different final machine learning classifiers, we refer to Section
B of the Supplementary Materials. We further remind that we follow
common practice in machine learning and evaluate the performance on
out-of-sample observations, that is, startups that have not been part of
the training set and are thus unseen to the machine learning classifiers.
In addition, we repeat the random splitting of our train and test sets
five times and thus report the mean and standard deviation of our
evaluation metrics across the five test sets.

Overall, we find that our tailored, fused large languages model is
considerably more accurate than a majority vote (i.e., a model that
always predicts the majority class label) and a random vote (i.e., a
model that predicts class labels randomly based on the distribution
of the class labels in the training data). Both approaches represent
naive baselines from machine learning, which are outperformed by
a large margin. Our tailored, fused large language model using both
fundamentals and textual self-descriptions yields an AUROC of 82.78 %,
a balanced accuracy of 74.33 %, and a 7.23-fold ROL Altogether, this
demonstrates the efficacy of machine learning based on our fused large
language model in predicting startup success from VC platforms.

We further compare our fused large language model against com-
mon baseline text representations. Specifically, we draw upon manual
feature extraction from textual data (Kaiser & Kuhn, 2020), GloVe
document embeddings (Pennington et al., 2014), and a bag-of-words
approach (Jurafsky & Martin, 2020). The baseline text representations
have a known limitation in that they struggle with capturing long-
term dependencies across language, because of which semantics are
ignored to a large extent. As expected, we find that, compared to our
fused large language model, the baselines are inferior. For example,
the best baseline in terms of AUROC (GloVe) has a 6.41-fold ROI,
while our custom, fused large language model has a 7.23-fold ROI,
which is a plus of 82.19 percentage points. Note that both our fused,
large language model and the bag-of-words baseline have access to the
same data, that is, fundamental variables and textual self-descriptions.
Hence, all performance improvements must solely be attributed to the
better model architecture of our fused large language model.

In addition, we compare using fundamental variables only vs. a
combination of fundamental variables and the textual self-description.
Here, including textual self-description using the baseline text represen-
tations increases the AUROC by 0.62 percentage points (manual feature
extraction Kaiser & Kuhn, 2020), 1.29 percentage points (GloVe Pen-
nington et al.,, 2014), and 0.5 percentage points (bag-of-words). In-
cluding textual self-descriptions within our fused large language model
performs best and increases the AUROC by 2.18 percentage points. As
such, we yield consistent evidence that demonstrates the operational
value of textual self-descriptions: a significant improvement in pre-
diction performance is achieved by including textual self-descriptions.
Altogether, this highlights the importance of textual self-descriptions
for successful investing decisions.

4 We also perform an out-of-time evaluation in Section A of the Supplemen-
tary Materials, where we evaluate the performance in predicting the success
of startups that originate from a period outside the one used for training.
Overall, the performance remains robust but, due to the task formalization,
has a smaller sample size and thus tends to have a larger variance.
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5.2. Sensitivity to final machine learning classifier

We now provide a sensitivity analysis where we vary the final
machine learning classifier (i.e., elastic net, random forest, neural
network) and within our fused large language model.> Thereby, we
confirm that our choice of a neural network for the final machine
learning classifier in our fused large language model is superior. The
results are reported in Table 7. By varying the final machine learning
classifier in our fused large language model using both fundamentals
and textual self-descriptions, we yield an AUROC of 81.76% (logistic
regression), 82.51% (elastic net), 81.75% (random forest), and 82.78%
(neural network). We observe a similar pattern with regard to the other
performance metrics. For instance, the neural network achieves a 7.23-
fold ROIL Hence, the best overall AUROC is obtained by the neural
network, followed by the elastic net, logistic regression, and the random
forest. Altogether, this demonstrates the efficacy of our fused large
language model based on a neural network in predicting startup success
from VC platforms.

5.3. Sensitivity to fine-tuning our large language model

We now experiment with fine-tuning our fused large language
model. Specifically, we add a classification head to the [CLS] embed-
ding (i.e., o[cig)) for classifying startup success on top of BERT. We
concatenate the fundamental variables to the [CLS] embedding before
feeding them to the classification head. This way, both the classification
head is trained and BERT is fine-tuned simultaneously based on the task
of predicting startup success. Hence, the difference to no fine-tuning lies
in the fact that we now allow for parameters in BERT to be fine-tuned
for the task of classification.

We fine-tuned BERT using the transformers framework from Hug-
gingface (Wolf et al., 2020). We use a training batch size of 32 and a
learning rate of 4 - 107. We freeze the first 8 layers as they capture
language patterns and an understanding of text in general. We update
the weights of BERT and the classification head using the AdamW
optimizer (Loshchilov & Hutter, 2018). We fine-tune for a maximum
number of 5 epochs. We validate the performance every 50 steps. We
performed early stopping when the loss on the hold-out set does not
decrease for more than 5 steps.

Table 8 reports the results. Overall, we do not observe any perfor-
mance improvement when fine-tuning our fused-large language model.
The performance of fine-tuning is comparable to that of our fused
large language model with a neural net classifier. Specifically, fine-
tuning our fused large language model yields a 0.12 percentage point
decrease in accuracy, 0.1 percentage point decrease in AUROC, and
10.64 percentage point decrease in ROI, as compared to our not fine-
tuned fused large language model. Hence, the pre-trained embeddings
of BERT already capture textual information relevant to the task of
success prediction. Our findings underline an important aspect of ma-
chine learning: Increasing the number of trainable (or fine-tunable)
parameters does not necessarily guarantee performance improvements.
We discuss the finding later in Section 6.

5.4. Prediction performance across business sectors

We now perform a sensitivity analysis in which we compare how
the prediction performance from our fused large language model varies
across business sectors (see Table 9). In general, startup activities and
outcomes vary significantly across business sectors (Konon, Fritsch,
& Kritikos, 2018). For example, the sector of INFORMATION TECHNOLOGY

5 We also tested the performance of varying the input variables (i.e., FV,
TSD, FV + TSD) within our final machine learning classifiers. We report the
results in Section C.
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Table 6
Prediction performance of our large language model vs. the baselines.
Approach Balanced Precision Recall F;-score AUROC AUCPR ROI
accuracy
Majority vote 50.00 —t 0.00 —F 50.00 0.00 —
Random vote 50.00 36.59 36.14 36.36 50.00 23.16 403.40
FV only 72.00 56.03 79.46  65.56 80.60 70.92 670.84
(1.33) (3.27) (4.45) (0.92) (0.44) (0.68) (45.05)
FV + Manual feature extraction 72.40 56.83 78.86 65.89 81.22 71.42 681.88
(1.15) (3.13) (4.65) (0.77) (0.39) (0.63) (43.12)
FV + GloVe 71.87 53.86 85.16 65.85 81.89 72.59 640.90
(1.93) (3.27) (3.72) (1.48) (0.59) (0.59) (44.93)
FV + Bag-of-words 72.38 55.71 80.95 65.98 81.10 71.74 666.38
(0.49) (1.23) (1.49) (0.38) (0.18) (0.63) (16.88)
Our fused large language model (FV + TSD) 74.33 59.83 78.28 67.77 82.78 73.70 723.09
(0.25) (1.79) (2.63) (0.15) (0.25) (0.49) (24.56)

“Value not defined due to division by zero (i.e., there is no successful class).

FV = fundamental variables.

Note: Reported is the mean (and standard deviation) out-of-sample prediction performance across 5 random splits (in %).

The best value per metric and model is highlighted in bold.

Table 7

Out-of-sample performance of different final machine learning classifiers within our fused large language model.

Classifier Balanced Precision Recall F;-score AUROC AUCPR ROI
accuracy

Logistic Regression 73.71 58.51 78.79 67.15 81.76 72.18 704.98
(0.40)  (0.47) (0.48) (0.43) (0.31) (0.59)  (6.43)

Elastic net 74.27 58.61 80.43 67.81 82.51 73.11 706.30
(0.21) (0.31) (0.22) (0.22) (0.25) (0.50) (4.30)

Random forest 73.69 58.28 79.28 67.16 81.75 72.17 701.72
(0.64) (0.90) (1.68) (0.70) (0.63) (0.82) (12.37)

Our fused large language model (neural network) 74.33 59.83 78.28 67.77 82.78 73.70 723.09
0.25) (1.79) (2.63) (0.15)  (0.25)  (0.49)  (24.56)

Note: Reported is the mean (and standard deviation) out-of-sample prediction performance across 5 random splits (in %).

The best value per metric and model is highlighted in bold.

Table 8

Prediction performance of our large language model with and without fine-tuning.

Fine-tuning Balanced Precision Recall F,-score AUROC AUCPR ROI
accuracy

No 74.33 59.83 78.28 67.77 82.78 73.70 723.09
0.25) (1.79) (2.63) (0.15)  (0.25)  (0.49)  (24.56)

Yes 74.21 59.06 79.77 67.72 82.68 73.43 712.45
0.79) (2.67) (4.84) (0.77) (0.35) (0.48)  (36.77)

FV = fundamental variables, TSD = textual self-descriptions (via document embeddings).

Note: Reported is the mean (and standard deviation) out-of-sample prediction performance across 5 random splits (in %).

The best value per metric and model is highlighted in bold.

typically features better data coverage and a higher number of star-
tups, potentially leading to better predictability. Motivated by these
differences, we perform a sensitivity analysis to provide insights into
the extent to which textual self-descriptions contribute to performance
gains across sectors. Here, we focus our evaluations on the implementa-
tion based on a neural network, i. e., the best-performing classifier. We
compare high-level business sectors for easier interpretability (this is
different from the fine-grained but sparse industries that are reported
on Crunchbase and that we use as predictors). Overall, we find that
the prediction performance is fairly robust. The AUROC varies from
72.04 % (ENERGY) to 85.39 % (InpustriaLs). This thus confirms that our
fused large language model allows for accurate predictions across all
business sectors. Furthermore, including textual self-descriptions im-
proves the prediction performance across most business sectors. The
only exceptions are the four sectors with the smallest number of data
points (EnerGy, MarteriaLs, ReaL Estate, and Uriities). For these sectors,
including textual self-descriptions does not lead to a performance im-
provement as compared to using only the fundamental variables for
prediction. Also, the standard deviation in the prediction performance

207

is higher across these sectors. This implies that a sufficient number of
training observations is necessary to make accurate predictions from
textual self-descriptions.®

5.5. Prediction performance across investment events

We compare the prediction performance of our fused large language
model across different events that are indicative of startup success,
namely initial public offering, acquisition, and external funding. For
this, we evaluate our models on subsets of the out-of-sample test

® We also tested whether the lower prediction performance in these
business sectors could stem from more diverse textual self-descriptions as
compared to other business sectors. However, the representations of the textual
self-descriptions are (a) not more/less discriminatory for successful vs. non-
successful startups across business sectors, and (b) not more/less diverse across
business sectors, suggesting that more diversity in self-descriptions within
specific business sectors is not a factor for lower prediction performance.
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Table 9
Prediction performance across business sectors.
Business sector N Predictors Balanced Precision Recall F,-score AUROC AUCPR ROI
accuracy
ENERGY 92 Fv 65.20 54.74 90.23 67.77 77.41 73.75 653.04
(3.50) (6.89) (6.55) (4.82) (2.51) (2.68) (94.75)
FV + TSD 64.38 55.56 79.81 65.23 72.04 63.88 664.36
(3.87) (7.49) (6.86) (6.03) (3.949) (6.16) (103.05)
MATERIALS 63 FV 71.51 57.23 93.59 70.83 81.83 77.03 687.33
(2.44) (5.79) (6.45) (4.83) (3.23) (4.71) (79.72)
FV + TSD 67.57 55.35 83.76 66.5 78.62 71.73 661.5
(4.18) (5.94) (7.49) (5.54) (5.75) (8.79) (81.68)
INDUSTRIALS 1412 FV 73.00 61.29 84.57 70.98 82.85 76.94 743.17
(0.92) (2.18) (4.0) (0.74) (0.53) (1.41) (29.95)
FV + TSD 76.53 65.56 85.27 74.11 85.39 79.98 801.92
(0.77) (1.35) (1.84) (0.83) (0.41) (0.79) (18.60)
CONSUMER DISCRETIONARY 1382 FV 72.19 54.06 77.33 63.44 80.26 67.63 643.66
(2.17) (3.64) (4.62) (1.55) (1.29) (1.66) (50.13)
FV + TSD 74.32 58.19 75.51 65.57 82.52 71.54 700.48
(1.16) (2.32) (5.37) (1.15) (1.23) (1.15) (31.85)
CONSUMER STAPLES 642 Fv 68.47 56.48 83.55 67.28 78.09 72.5 677.02
(1.57) (2.4) (4.69) (0.85) (1.57) (1.93) (33.02)
FV + TSD 71.53 60.52 81.07 69.25 80.70 75.67 732.62
(2.25) (1.95) (4.84) (2.43) (2.30) (1.63) (26.88)
HEALTH CARE 658 FV 63.69 60.67 92.39 73.18 77.09 77.47 734.59
(2.08) (2.93) (2.14) (1.63) 1.4 (2.2) (40.37)
FV + TSD 66.58 63.47 88.12 73.77 78.36 78.88 773.20
(1.19) (2.03) (1.46) (1.18) (0.46) (1.71) (27.91)
FINANCIALS 404 FV 70.02 58.92 84.33 69.25 80.18 76.38 710.51
(2.249) 3.1) (3.73) (1.28) (1.18) (1.04) (42.59)
FV + TSD 72.73 62.88 81.94 71.03 82.84 79.25 765.00
(1.349) (2.56) (4.55) (0.98) (1.24) (1.68) (35.20)
INFORMATION TECHNOLOGY 2202 Fv 70.43 58.07 82.09 67.92 79.72 73.5 698.91
(1.43) (2.38) (4.08) (0.96) (0.9) (1.29) (32.81)
FV + TSD 73.70 62.44 81.21 70.56 82.30 76.64 759.02
(0.73) (1.57) (2.56) (0.90) (0.51) (0.92) (21.64)
COMMUNICATION SERVICES 1747 FV 72.36 53.36 77.42 62.88 79.96 65.84 634.13
(0.90) (4.16) (6.12) (1.37) (0.72) (1.07) (57.22)
FV + TSD 73.40 56.25 74.52 64.02 81.46 69.22 673.88
(1.09) (2.55) (3.25) (0.83) (0.91) (1.13) (35.07)
REAL ESTATE 236 FV 71.18 53.46 79.24 63.74 81.52 73.48 635.41
(3.56) 3.7) (3.45) (2.66) (2.89) (3.80) (50.87)
FV + TSD 71.29 54.70 75.98 63.41 80.70 72.11 652.46
(2.03) (3.42) (5.79) (1.97) (2.33) (2.32) (47.02)
UTILITIES 93 Fv 64.53 59.6 95.58 73.12 80.26 79.26 719.91
(5.13) (7.43) (2.67) (4.8) (1.93) (2.12) (102.22)
FV + TSD 68.64 63.53 90.71 74.57 78.55 77.47 773.97
(4.76) (6.34) (3.32) (4.67) (4.01) (5.68) (87.28)

FV = fundamental variables, TSD = textual self-descriptions.
Note: Reported is the mean (and standard deviation) out-of-sample prediction performance across 5 random splits (in %). The best value per metric and sector is highlighted in
bold.

sets split by the different events. Hence, the corresponding accuracy we confirm that machine learning benefits from incorporating textual
quantifies, for example, to what extent startups are correctly classified self-descriptions. In fact, using textual self-descriptions increases the
in the subset of startups that eventually had an initial public offering. rate of correct classifications for initial public offerings by 4.02 %, for
We proceed analogously for acquisition and funding events. The results acquisitions by 3.92%, and for funding events by 2.75%. Therefore,
are reported in Table 10. Overall, the events vary in their frequency, as our findings suggest that textual self-descriptions from VC platforms
only a few startups had an initial public offering or had been acquired, are informative for predicting startup success, consistently across all
whereas a larger proportion received external funding. success events.

We find that the prediction performance is generally higher for
initial public offerings and funding events. Here 82.05 % of initial pub- 5.6. Robustness checks
lic offerings and 80.17 % of funding events were predicted correctly.
In contrast, only 65.54% of acquisitions were predicted correctly, We perform the following additional robustness checks. We evaluate
implying that, for the latter, inferences are more challenging. Again, the prediction performance of our fused large language model across
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Table 10
Prediction performance across different success events.

Success event N Predictors Balanced
accuracy

Initial public offering 17 FV 78.03

(5.33)

FV + TSD 82.05

(6.84)

Acquisition 190 FV 61.62

(5.42)

FV + TSD 65.54

(1.36)

Funding 1244 FV 77.42

(4.09)

FV + TSD 80.17

(2.92)

Non-successful 2584 FV 69.23

(6.27)

FV + TSD 70.38

(3.10)

FV = fundamental variables, TSD = textual self-descriptions.

Note: Reported is the mean (and standard deviation) out-of-sample prediction perfor-
mance across 5 random splits (in %). Results are based on the neural network. The
best value per success event is highlighted in bold.

different company characteristics (i. e., the age of a startup) and the
length of the textual self-description. We find that the inclusion of
textual self-descriptions improves the prediction performance consid-
erably, which is consistent across startup ages and across different text
lengths. This contributes to the robustness of our findings.

5.6.1. Prediction performance across startup age

The prediction performance with and without textual self-descrip
tions grouped across startup age is reported in Table 11. For all age
groups, the majority vote and random vote as naive baselines from
machine learning are outperformed by a considerable margin and thus
point towards the overall large prediction performance. In addition,
all performance metrics increase by a considerable margin when in-
cluding textual self-descriptions. This adds further robustness to our
finding that textual self-descriptions are predictive of startup success.
Furthermore, the balanced accuracy is higher for older startups with
and without textual self-descriptions, indicating that more established
startups potentially yield more predictive information on Crunchbase.

Varying the age of startups is also important for another reason:
it allows us to assess the prediction performance across different time
periods. Startups with an age between 1-12 months originate from
2015, an age between 13-24 months originate from 2014, etc. This thus
contributes to the robustness of our findings.

5.6.2. Prediction performance across length of textual self-description

The prediction performance with and without textual self-descripti
ons across different lengths of the textual self-description is reported in
Table 12. For all length groups, a majority vote and a random vote are
outperformed by machine learning. In addition, a clear improvement in
AUROC is found for all groups when including textual self-descriptions.
Overall, this adds robustness to our finding that textual self-descriptions
are predictive of startup success. Furthermore, the AUROC is higher for
startups with longer textual self-descriptions. Similarly, both metrics
increase for the baseline without textual self-descriptions. Still, the
length of the textual self-description appears to play a minor role in
the prediction performance.
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5.7. Post-hoc explainability of our machine learning approach

The previous analyses demonstrate the performance improvement
of including textual self-descriptions for the task of startup success
prediction. Now, we analyze the contributions of each variable (i.e.,
fundamentals and textual self-descriptions) for predicting startup suc-
cess. To this end, we aim to understand how our fused large language
model uses the variables to arrive at predictions. We use the SHAP
value method (Lundberg & Lee, 2017). Intuitively, the SHAP value
method treats the prediction of a model as a cooperative game, i.e., the
prediction (i.e., the payoff) must be allocated fairly among the feature
values (i.e., the individual players) based on their contribution. Hence,
the SHAP value method enables a nuanced understanding of how each
feature contributes to the prediction of the model and is frequently used
for understanding machine learning in management applications (e.g.,
Senoner, Netland, & Feuerriegel, 2022).

SHAP values are computed for each observation separately, i.e., ev-
ery feature within the vector of each observation is assigned a SHAP
value. SHAP values can also be interpreted at the model level. There-
fore, we quantify both feature attribution and feature importance based
on the SHAP values. Feature attribution is directly determined by
the SHAP values and feature importance is computed by averaging
the absolute SHAP values across observations. We follow previous
research (Senoner et al., 2022) and aggregate the SHAP values (sum)
across the document embedding of the TSD to one feature representa-
tion.

Fig. 3 shows the summary plot of SHAP values computed for the
predictions of our fused large language model. In the left plot, the dots
across each feature represent the feature attribution for each prediction
of a specific observation. The right plot shows the mean of the absolute
SHAP values across all samples. Both plots show the 20 features with
the highest computed feature importance, ranking them from highest
(top) to lowest (bottom) importance. Notably, the aggregated repre-
sentation of the textual self-description is the most important feature,
indicating that it contributes, on average, the most to the prediction of
our fused large language model. Here feature attributions range from
—0.53 to 0.76 with a mean absolute value of 0.29. Thus, out of all
features, the textual self-description adds the most to the predictions
of our fused large language model.

Variables characterizing the momentum of a startup also make
important contributions to the predictions of our fused large language
model. Overall, the age of the startup is the second most important
feature. Feature attributions range from —0.28 for a startup age of 35.59
months to 0.20 for a startup age of 4 months. On average, a higher
age of startups is estimated to have a negative feature attribution to
success prediction. This may indicate that startups with a longer market
presence face reduced probabilities of success due to, for example,
lower perceived growth potential and questionable viability of their
business model if they have not yet achieved success. In addition, recent
funding activities (last round time lag) are estimated as positive contri-
butions to predictions of success, with feature attributions ranging from
—0.37 to 0.05. A plausible explanation might be that recent funding
signals reduced risk, as other investors have recently found the startup
promising enough to invest in (i. e., a form of validation). Similarly, the
number of investors in the last investment round contributes positively
to the success predictions, reinforcing the idea that previous funding
may serve as a form of validation that predicts success also in the
future.

Founder characteristics also play an important role in the predic-
tions made by our fused large language model. Among these, the
number of founders and their educational backgrounds are highly
influential. Here, the total number of founders positively contributes
to success predictions, which suggests that startups with a higher
number of founders may benefit from diverse skill sets and shared
responsibilities. The total number of degrees among the founders also
shows a positive contribution, with attributions ranging from -0.09
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Table 11
Prediction performance across startup age.
Startup age N Predictors Balanced Precision Recall F,-score AUROC AUCPR ROI
accuracy
1-12 months 1174 FV 66.99 58.82 88.09 70.47 78.21 75.34 709.14
(1.56) (2.44) (2.86) (1.18) (1.25) (1.36) (33.51)
FV + TSD 71.66 64.55 83.61 72.76 81.20 78.63 788.05
(0.73) (2.44) (4.01) (0.93) (1.06) (0.61) (33.53)
13-24 months 1307 FV 70.44 54.77 79.33 64.68 79.64 70.76 653.53
(1.93) (3.25) (4.78) (2.01) (0.75) (1.28) (44.75)
FV + TSD 73.81 59.62 78.71 67.78 82.54 74.40 720.26
(0.85) (2.29) (3.2) (1.25) (1.09) (1.38) (31.50)
25-36 months 1460 FV 72.68 53.9 67.43 59.41 80.52 63.87 641.56
(1.53) (5.23) (8.08) (2.16) (0.82) (0.59) (71.9)
FV + TSD 74.05 54.04 70.24 61.07 82.15 65.13 643.50
(1.25) (1.99) (1.88) (1.67) (1.08) (1.89) (27.44)

FV = fundamental variables, TSD = textual self-descriptions.

Note: Reported is the mean (and standard deviation) out-of-sample prediction performance across 5 random splits

(in %). The best value per metric and age group is highlighted

in bold.
Table 12
Prediction performance for different lengths of the textual self-descriptions.
Text length N Predictors Balanced Precision Recall F,-score AUROC AUCPR ROI
accuracy
50-100 words 2306 FV 71.05 58.11 79.47 66.94 79.82 73.0 699.47
(1.64) (3.79) (4.43) (1.11) 0.7) (0.72) (52.15)
FV + TSD 73.55 60.85 80.59 69.31 82.29 75.86 737.08
(0.54) (1.55) (2.21) (0.63) (0.71) (1.25) (21.28)
101-200 words 1103 FV 73.56 54.42 81.26 65.06 82.15 70.65 648.61
(1.36) (2.63) (4.10) (0.91) (0.69) (1.6) (36.25)
FV + TSD 75.23 59.49 76.32 66.78 83.36 71.90 718.42
(0.81) (2.85) (3.12) (1.46) (0.85) (1.55) (39.23)
>201 words 279 FV 75.93 38.74 76.80 51.2 83.36 55.01 432.95
(2.65) (4.54) (7.95) (3.88) (2.08) (9.07) (62.45)
FV + TSD 73.46 49.67 59.47 53.52 84.04 53.51 583.33
(3.18) (7.84) (7.73) (4.87) (2.67) (5.41) (107.92)

FV = fundamental variables, TSD = textual self-descriptions.

Note: Reported is the mean (and standard deviation) out-of-sample prediction performance across 5 random splits (in %). The best value per metric and length group is highlighted

in bold.

to 0.09. This suggests that a higher number of educational degrees
within the founding team may predict success, possibly reflecting the
founding team’s capability to tackle complex challenges and innovate.
In addition, the presence of a LinkedIn profile (and an email) for
founders also stands out as an important and positive contributor to
the predictions of our model. This indicates that visible professional
networking and the credibility it brings might be a strong predictor of
later startup success.

The contributions of the sectors in which a startup operates are also
reflected in the SHAP values. For example, as seen by the SHAP values,
SOFTWARE is the most influential sector feature. Startups in the sorTwARE
sector typically exhibit high growth potential, so that the information
of whether a startup operates in this sector helps to predict later
success. Similarly, sectors such as HEALTHCARE and ARTIFICIAL INTELLIGENCE
also show positive contributions, with HeaLTHCARE ranging from —0.04
to 0.13 and ArTIFICIAL INTELLIGENCE from —0.04 to 0.22. These sectors
are typically characterized by innovative solutions of high impact. In
contrast, sectors such as Foob AND BEVERAGE and HARDWARE show smaller
but still positive contributions, which could be attributed to higher
capital requirements and longer time to market.

6. Discussion
6.1. Managerial implications

Our work demonstrates that VC platforms can be used to predict
startup success and thus support investing decisions. We find that
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predictions from our fused large language model achieve an AUROC
of up to 82.78%, a balanced accuracy of up to 74.33%, and a 7.33-
fold ROL. Thereby, baselines without machine learning (e. g., a majority
vote) are outperformed by a considerable margin. Prior literature has
already shown that various fundamental variables are predictors of
startup success, whereas we show that additional predictive power is
offered by textual self-descriptions. Here, we find that incorporating
textual self-descriptions through our fused large language model in-
creases the AUROC by 2.18 percentage points, the balanced accuracy
by 2.33 percentage points, and the ROI by 52.25 percentage points. The
increase in prediction performance is statistically significant. As such,
our work is of direct managerial relevance as it provides computerized
decision support for venture capitalists with the prospect of making
financially rewarding investments.

We also show that traditional machine learning methods for making
predictions from text (e.g., bag-of-words with manual feature extrac-
tion (Kaiser & Kuhn, 2020)) are inferior to state-of-the-art methods
based on large language models. Traditional methods (e.g., Kaiser &
Kuhn, 2020) rely on manually crafting features from text that might
not capture the entire latent textual information. In contrast, our fused
large language model utilizes so-called neural representation learning,
capturing latent information in texts through an automated, data-driven
procedure that learns from data. Notably, we observe that fine-tuning
the language model does not increase the performance. The complexity
behind the alignment of pre-trained knowledge and target domain
characteristics has been discussed in recent NLP literature (Bertsch
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Fig. 3. Left: Summary plot of the SHAP values for our fused large language model predictions. Each dot represents a SHAP value for a feature across different samples, where color
indicates a high (red) to low (blue) feature value. Right: Bar plot of the mean (absolute) of SHAP values across all samples. The features are sorted by their feature importance.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

et al.,, 2024; Zhang, Liu, Cherry, & Firat, 2024), where evidence is
provided that fine-tuning does not always help performance due to it
being highly task- and data-specific. The fact that fine-tuning shows
similar performance as no fine-tuning underlines an important aspect
of machine learning: increasing the number of trainable or fine-tunable
parameters does not necessarily guarantee performance improvements.
Thus managers should carefully consider the use of large language
models when dealing with decision problems that involve text data.

The improvements in prediction performance when incorporating
textual self-descriptions are robust across all business sectors and eco-
nomically significant. To assess the practical implications, we trans-
late the prediction performance into investment portfolio performance
(ROI). Our results show significantly increased ROI when incorporating
textual self-descriptions through our fused large language model: The
best-performing baseline without textual self-descriptions amounts to a
6.71-fold ROI, while our fused large language model achieves a 7.23-
fold ROL. The financial gains from our fused large language model can
be further explained by the substantial costs of false positives in the
context of startup investment decisions. False positive classifications for
investment decisions lead to investing in startups predicted to succeed
but ultimately failing. Hence, investments in startups that eventually
fail lead to a potential loss of the entire investment amount. Our model
significantly reduces the probability of false positives compared to the
baselines, thereby increasing the overall returns from our machine
learning approach for making investment decisions.

The Crunchbase database is widely used for academic research,
which in turn yields practical implications. Crunchbase offers an online
platform with comprehensive data on startups including fundamental
variables (e.g., the age of the startup) and textual self-descriptions.
Such data has key differences from the data traditionally collected by
VC investors for decision-making (Kaplan & Lerner, 2016; Retterath
& Braun, 2020). Here, two reasons stand out why investors tradi-
tionally have only little data about startup trajectories. On the one
hand, investors typically collect only a few variables about startups
(e.g., via scorecards) (Bohm et al.,, 2017; Yankov et al., 2014) and
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often not in a structured format (C.F.A. Institute, 2015). On the other
hand, and more importantly, investors typically screen only a few
dozen startups and thus only have access to startup data for a very
small sample size (Retterath & Kavadias, 2020), which precludes data-
driven inferences. In sum, both of the aforementioned reasons are
salient hurdles for training and deploying machine learning tools. As a
remedy, prior literature evaluated the predictive ability of fundamental
variables on Crunchbase (e.g., Arroyo et al., 2019; Dellermann et al.,
2017; Sharchilev et al., 2018). We add to prior literature by using
large language models to incorporate the additional predictive ability
of textual self-descriptions on Crunchbase. Hence, Crunchbase offers
valuable data for VC investors and other practitioners regarding the
evaluation of startups and the enhancement of decision-making tools.

6.2. Methodological implications

We contribute to business analytics research by demonstrating the
operational value of large language models in the context of more ef-
fective investment decisions. Thereby, we connect to a growing stream
of machine learning in business analytics (e.g., Bastani et al., 2022;
Choi et al., 2018; Cohen, 2018; MiSi¢ & Perakis, 2020). Different from
explanatory analysis (i. e., regression analysis) that merely estimates
associations in an in-sample setting, machine learning is concerned
with how well inferences can be made in an out-of-sample setting. Here,
we demonstrate an impactful application of machine learning in VC
decision-making.

Large language models have several favorable advantages over tra-
ditional methods for natural language processing. On the one hand,
large language models provide a flexible way to capture semantics
and structure in textual materials, thereby bolstering the prediction
performance over alternative machine learning approaches (e.g., bag-
of-words). On the other hand, large language models can learn from
vast amounts of unlabeled texts through pre-training. As such, large
language models can often be applied out-of-the-box with little need for
fine-tuning. This is beneficial as it greatly reduces the manual effort and
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the cost for data annotation. However, applications of large language
models in business analytics are still rare, while we develop a tailored,
fused architecture for our decision-making problem. As shown above,
large language models may need custom tailoring. In our case, we build
a fused large language model that can leverage running text but where
the final prediction layer can also process structured data. As such, we
expect that our fused large language model is of direct relevance for
many business analytics settings where the goal is to expand traditional
operational information in structured form with additional text data.

Our study offers implications for the use of large language models
in business analytics. We based our predictions on a tailored large
language model, a recent innovation from machine learning research.
We expect that large language models are beneficial for a wide array
of managerial decision-making tasks. This opens new opportunities for
research by adapting large language models to, for instance, sales and
demand forecasting from social media data, credit scoring, and business
failure prediction.

6.3. Limitations and future research

As with other works, ours is not free of limitation, which of-
fers promising directions for future research. First, large language
models such as BERT may embed biases that are populated in down-
stream tasks. Large language models are trained on vast corpora of text
data, which inevitably contain societal biases (Bolukbasi, Chang, Zou,
Saligrama, & Kalai, 2016; Caliskan, Bryson, & Narayanan, 2017; Garg,
Schiebinger, Jurafsky, & Zou, 2018). Consequently, there is a risk that
these embedded biases could influence predictions (De-Arteaga, Feuer-
riegel, & Saar-Tsechansky, 2022), potentially disadvantaging certain
startups. Addressing this challenge requires ongoing efforts to mitigate
biases within large language models. Future research could focus on
refining these models to ensure equitable decision-making processes.
For now, we call for careful use when deploying our model in practice.
Second, our work is centered on data from the VC platform Crunchbase.
While this choice is informed by prior research (Arroyo et al., 2019;
Dellermann et al., 2017; Sharchilev et al., 2018), it does introduce a
limitation to our work. Crunchbase is a leading online VC platform that
collects rich startup and investor data; however, it may not capture the
full set of startups and investors globally. Future work might expand
the data sources to include a broader spectrum of startups, enhancing
the relevance and robustness across different sectors and regions. Third,
the economic landscape of startups is dynamically evolving. To ensure
ongoing predictive performance, continuous data collection and model
retraining is needed. Lastly, the dynamic nature of the economic land-
scape might lead to startups adapting their textual self-descriptions in
response to model predictions. This suggests an area for future research
on the equilibrium implications of textual self-descriptions and model
predictions. Specifically, analyzing equilibria could unveil the response
of startups to prediction models in designing self-descriptions. Such
analysis would require a different form of analysis using equilibria but
not machine learning as in our paper.

7. Conclusion

The majority of startups fail. Owing to this, the decision-making
of investors is confronted with considerable challenges in identifying
which startups will turn out to be successful. To support investors in
this task, we developed a tailored, fused large language model that
incorporates the textual self-description of startups alongside other
fundamental variables to predict startup success. Here, we show that
additional predictive power is offered by the textual self-descriptions.
Our model helps investors identify investment targets that promise
financial returns. For this, our work provides computerized decision
support that allows investors to automate their screening process with
data-driven technologies. Furthermore, our study highlights the poten-
tial of applying large language models in domains where relevant text
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data is available but has not traditionally been used for predicting out-
comes needed for decision-making. For example, similar to ours, future
work could attempt using textual self-descriptions of venture capitalists
to predict the performance of their investments. In such scenarios, the
findings from our study suggest that combining textual information
with conventional data sources may have the potential to significantly
enhance predictive accuracy and decision-making processes.
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