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A B S T R A C T

Tumors of the major and minor salivary glands histologically encompass a diverse and partly
overlapping spectrum of frequent diagnostically challenging neoplasms. Despite recent advances in
molecular testing and the identification of tumor-specific mutations or gene fusions, there is an
unmet need to identify additional diagnostic biomarkers for entities lacking specific alterations. In
this study, we collected a comprehensive cohort of 363 cases encompassing 20 different salivary
gland tumor entities and explored the potential of DNA methylation to classify these tumors. We
were able to show that most entities show specific epigenetic signatures and present a machine
learning algorithm that achieved a mean balanced accuracy of 0.991. Of note, we showed that
cribriform adenocarcinoma is epigenetically distinct from classical polymorphous adenocarcinoma,
which could support risk stratification of these tumors. Myoepithelioma and pleomorphic adenoma
form a uniform epigenetic class, supporting the theory of a single entity with a broad but continuous
morphologic spectrum. Furthermore, we identified a histomorphologically heterogeneous but
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epigenetically distinct class that could represent a novel tumor entity. In conclusion, our study
provides a comprehensive resource of the DNA methylation landscape of salivary gland tumors. Our
data provide novel insight into disputed entities and show the potential of DNA methylation to
identify new tumor classes. Furthermore, in future, our machine learning classifier could support the
histopathologic diagnosis of salivary gland tumors.

© 2024 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy
of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

The rarity and remarkable diversity of salivary gland tumors
pose significant diagnostic challenges for surgical pathologists.
The recently revised World Health Organization (WHO) Classifi-
cation of Head and Neck Tumors encompasses 15 benign and 21
malignant epithelial neoplasms.1 Traditionally, histopathologic
diagnosis of this group of tumors is based on morphology and
limited immunohistochemical expression profiles. However, it is
well recognized that many tumor entities encompass a wide dif-
ferentiation pattern, and hence, frequently significant histo-
morphologic and immunohistochemical overlaps exist between
different tumor entities.2 Furthermore, the distinction of several
benign salivary tumor entities from certain low-grade malignant
counterpartsdsuch as myoepithelioma and myoepithelial carci-
nomadrelies on subtle changes (eg, focal invasion) or rather
subjective characteristics (eg, limited nuclear atypia or low pro-
liferation).3 Additionally, our recent work demonstrated that
diagnosis of tumors derived from the minor salivary glands is
significantly more difficult than that derived from the major
glands.4

Over the last few years, molecular profiling has been intro-
duced as an additional approach for improved tumor classification
in the salivary glands. This has led to the discovery of numerous
gene fusion events and mutations that are frequently specific to
certain tumor entities.5 The diagnostic value of these alterations
varies with their frequency. Although >90% of secretory carci-
nomas harbor highly specific ETV6::NTRK3 fusions, MYB/
MYBL1::NFIB translocations were only found in approximately 60%
of adenoid cystic carcinomas.6,7 For some entities, such as myoe-
pithelial carcinoma, no diagnostic molecular alterations have been
identified to date.

In recent years, DNA methylation has emerged as a further
approach for tumor classification and has been initially estab-
lished for brain and soft tissue tumors.8-11 DNA methylation oc-
curs when a methyl group is added to cytosine nucleotides at
guanine cytosine dinucleotides of the DNA. This process can result
in gene repression, especially when it takes place in the gene’s
promoter region. DNAmethylation plays a direct role in regulating
the expression profile of various cell types based on their intended
functions, resulting in highly tissue-specific global DNA methyl-
ation profiles.12 Because these signatures are generally stable
throughout the progression of a tumor, they can be used to classify
neoplasms according to their cell of origin. Owing to the
complexity of global DNA methylation profiles, machine learning
algorithms are trained to identify entity-specific epigenetic pro-
files and can then be used to classify new cases.8

In this study, we provide a reference of the DNA methylation
landscape of salivary gland tumors by profiling a comprehensive
cohort encompassing 20 different benign and malignant salivary
gland tumor entities. On this basis, we demonstrate the feasibility
of machine learningebased epigenetic classification of this diag-
nostically challenging tumor type.
2

Methods

Patients and Samples

For the salivary gland tumor cohort, formalin-fixed paraffin-
embedded tissues from 363 cases were mainly retrieved from the
consultation archive of DERMPATH München (S.I.; 205 cases);
additional cases were acquired from the archives of the Institutes
of Pathology of the Charit�edUniversit€atsmedizin Berlin, Ludwig-
Maximilians-Universit€at München, University Hospital Mainz,
University Hospital Erlangen, University Hospital Graz, New York
University Langone Health, UniversityMedical Center Utrecht, and
the Radboud University Medical Center Nijmegen. Central
reevaluation was performed by an expert salivary gland tumor
pathologist (S.I.).

The cohort consisted of 174 male and 189 female patients with
a median age of 58 years (range, 19-91 years). A total of 243 cases
(66.9%) were located in the major salivary glands, including 216
cases (59.5%) from the parotid, 21 cases (5.8%) from the sub-
mandibular, and 6 cases (1.7%) from the sublingual gland.
Approximately 120 cases (33.1%) affected the minor salivary
glands and were located in the oral cavity (81; 22.3%), nasal cavity
and paranasal sinus (37; 10.2%), and lungs (2; 0.6%).

Generally, only tumors with an unequivocal diagnosis were
included based on histomorphology, immunohistology, and, as far
as necessary and available, molecular studies. Additional molec-
ular data were available for 137 cases (37.7%), including somatic
mutational data for 86 cases (23.7%) and gene fusion data for 66
cases (18.2%). Of note, only cases with positive results in molecular
studies were included in the entities mucoepidermoid carcinoma,
secretory carcinoma, microsecretory adenocarcinoma, basal cell
adenoma, and clear cell carcinoma. In other entities with a lower
prevalence of typical molecular alterations, we also included a
minority of cases with negative molecular tests (eg, adenoid cystic
carcinoma and epithelial-myoepithelial carcinoma). Carcinomas
ex pleomorphic adenoma were not included in this study. The
frequency of the different entities included in this study is shown
in Supplementary Figure S1.

Entities with low tumor cell content (eg, because of intense
lymphocytic infiltration) were not included in this study.
Furthermore, similar to previous DNA methylation classification
studies, we excluded some exceedingly rare tumor entities for
which <5 cases could be collected.

In addition to the salivary gland cohort, we compiled a cohort
of clinically relevant differential diagnoses. This data set contains
cases of 32 clear cell renal cell carcinomas, 17 squamous cell car-
cinomas of the skin, and 64 squamous cell carcinomas of the
upper aerodigestive tract. For 16 of these cases, formalin-fixed
paraffin-embedded tissues were retrieved from the Institute of
Pathology of the Ludwig-Maximilians-Universit€at München. For
the other cases, raw DNA methylation data were retrieved from
the Cancer Genome Atlas through the Genomic Data Commons
Data Portal and the Gene Expression Omnibus repositories
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GSE105288, GSE61441, GSE92482, GSE171994, GSE140686, and
GSE67097.11,13-16 Detailed information for the cases of this cohort
is listed in Supplementary Table S1.
Nucleic Acid Extraction

At least 2 unstained slices with a thickness between 2 and 10
mm were used for nucleic acid extraction. Representative tumor
areas were identified using light microscopy of consecutive he-
matoxylin and eosinestained sections. Macrodissection was per-
formed using sterile surgical blades to achieve tumor cell contents
of at least 50%. Semiautomated nucleic acid extraction was per-
formed using Maxwell RSC Blood DNA kits (Promega) and an
adjusted protocol on the Maxwell RSC 16 machine (Promega).
Concentrations were measured on a Qubit fluorometer
(ThermoFisher).
DNA Methylation Analysis

Extracted DNA between 100 and 500 ng was used as an input
for bisulfite conversion using the EpiTect Fast Bisulfite Conversion
Kit (Qiagen), according to the manufacturer’s instructions. DNA
methylation analysis was performed using Infinium Methyl-
ationEPIC BeadChip arrays (Illumina) following standard pro-
tocols. Arrays were scanned on an iScan (Illumina) or NextSeq 550
device (Illumina).
Copy Number Analysis

Copy number data were extracted from raw DNA methylation
data using a modified version of the conumee package.17 Focal
gains or losses were identified using a previously described
method, which identifies short alterations encompassing <3
million base pairs.18 Copy number heat maps were generated
using the copynumber package.19 To assess the overall copy
number alteration burden of individual cases, we calculated a
chromosomal alteration index (CAI), which we defined as the sum
of the length of all altered segments divided by the total genome
length.
Next-Generation Sequencing Panel

For targetedmutational and gene fusion profiling, 50 ng of DNA
or RNA was processed using the Archer Variantplex nNGM 2.0 or
the Archer FusionPlex Pan Solid Tumor v2 panel. Libraries were
sequenced on a NextSeq 550 device (Illumina), and data were
processed using the Archer Suite Analysis software version 7.1.3.
DNA Methylation Data Preprocessing

Statistical analysis was performed with R (version 4.3.3). DNA
methylation data were processed using a modified version of the
minfi package.20 The pfilter and dasen functions from the wateR-
melon package were used to filter poor-quality cases.21 Probes
with known cross-reactivity or associationwith sex chromosomes
or single-nucleotide polymorphisms were filtered using the
annotation provided by Zhou et al.22-24 The probes were further
reduced to the intersection of available probes in EPIC and 450k
Illumina arrays to allow processing of data obtained with both
platforms.
3

t-Distributed Stochastic Neighbor Embedding

The 10,000 most variant 5'-cytosine-phosphate-guanine-3 on
the salivary gland data set were used as input for t-distributed
stochastic neighbor embedding (t-SNE) dimensionality reduc-
tion using the Rtsne package. To determine the optimal number
of principal components (PCs) and the appropriate perplexity for
t-SNE analysis, we generated t-SNE plots for a range of input PCs
(2, 3, 4, … 200) and perplexities (1, 1.25, 1.5, … 40). The resulting
time-lapse videos of these t-SNE plots are available in Supple-
mentary Files S1 and S2. Our analysis revealed that the data
converge around 20 input PCs, and the plots remain quite similar
up to approximately 100 PCs, indicating that the relevant bio-
logical information is captured within this range. Beyond this
point, as the number of PCs increases, the samples become more
dispersed, and previously stable groups become less distinct.
Occasionally, individual data points may temporarily appear
closer to other groups, but they return to their original groups
within a few iterations. These fluctuations suggest the intro-
duction of technical noise. Thus, we limited the number of PCs to
40 to retain the most biologically relevant information.
Regarding perplexity, the data converge at approximately 5, and
the plots remain consistent for perplexities between 10 and 20,
with no significant changes observed at higher values. Therefore,
we selected a perplexity of 15. The final t-SNE was generated
using the following parameters: input PCs ¼ 40, iterations ¼
2000, perplexity ¼ 15, and eta ¼ n(cases)/12 ¼ 30.25.
Development and Evaluation of Machine Learning Classifier

Following a well-established approach, we developed a 2-
component classification model that predicts calibrated tumor
entity scores from DNA methylation profiles.25 Specifically, a
support vector machine (SVM) classification model with radial
basis function kernel (using R package e1071) was trained for the
prediction of raw class scores, and a multinomial logistic regres-
sion model regularized with a ridge penalty (using R package
glmnet) was trained for their calibration.26

The data set used for classifier development and evaluation
comprised the salivary gland tumor cohort (n ¼ 363) containing
20 classes and additional samples (n ¼ 113) for 3 classes of clini-
cally relevant differential diagnoses. The stability and perfor-
mance of the training procedure were evaluated in a 10 times
repeated 10-fold cross-validation with stratified folds on this data
set. The final production model was then obtained by repeating
the procedure on the full data set.

In the cross-validation loop, the respective training set was
first reduced to its 10,000 most variant features. Optimal
hyperparameters for the SVM model were then selected by
minimizing logloss in another nested 10-fold cross-validation,
performing a grid search over the parameter space spanned by
gamma ¼ 10(-5, …, 5)/10,000 and C ¼ 10(-10,…,10). An SVM model
was retrained on the full training set with the selected hyper-
parameters. The calibration model was developed on the inner
cross-validation SVM scores corresponding to the optimal
hyperparameters. Model training and hyperparameter selection
were performed as previously described for soft tissue classifi-
cation (with 100 times repeated resampling and training data
proportion of 0.7), thus optimizing the calibrated scores for a
rejection threshold of 0.9.11 Finally, the respective test set was
reduced to the 10,000 features selected on the training data, and
calibrated scores were generated by applying the SVM and
glmnet models.
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Results

DNA Methylation Identifies Distinct Epigenetic Salivary Gland
Tumor Classes

We first established a comprehensive reference cohort of high-
quality DNA methylation data for 363 cases, covering 20 different
salivary gland tumor entities and normal salivary gland tissue as a
control class. A detailed list of all samples and associatedmetadata
is available in Supplementary Table S2. t-SNE analysis and unsu-
pervised clustering of the 20,000 most variant 5'-cytosine-phos-
phate-guanine-3 sites were used to identify distinct epigenetic
classes (Fig. 1). We did not observe any apparent differences for
tumors originating from different primary sites, and potential bias
caused by technical batch effects, such as position on the array,
could be excluded (Supplementary Fig. S2).

The majority of the observed epigenetic classes aligned with
the conventional histopathologic classification. Interestingly,
upon visual inspection, the overall grouping of different entities in
the t-SNE plot seems to reflect their general differentiation
pattern, segregating tumors into categories with glandular/ductal,
basaloid/myoepithelial, and indeterminate differentiation. How-
ever, we observed several important divergent findings:

1. According to the current WHO classification, cribriform
adenocarcinoma is regarded as a subgroup of polymorphous
adenocarcinoma. However, we observed that cribriform
adenocarcinoma aggregated in a separate group, that was
adjacent, but clearly distinct from classical polymorphous
adenocarcinoma.
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2. Pleomorphic adenoma and myoepithelioma demonstrated a
shared DNAmethylation profile. Although these 2 entities split
into 2 distinct epigenetic classes, the separation was not in line
with histopathologic criteria and resulted in 2 mixed myoepi-
thelioma and pleomorphic adenoma classes. Fusion data on
HMGA2 or PLAG1 were not available.

3. We identified an additional, mixed, yet clearly distinct epige-
netic class consisting of 10 cases. These cases had, on con-
ventional criteria, initially been diagnosed as epithelial-
myoepithelial carcinoma (6 cases), myoepithelial carcinoma
(2 cases), and adenoid cystic carcinoma (2 cases). This group
was closely related to the 2 pleomorphic adenoma/myoepi-
thelioma groups and distinct from all other entities.

Furthermore, the group of adenoid cystic carcinoma separated
into 2 distinct classes, but we observed no association of the 2
classes with histologic growth pattern, grading, or molecular al-
terations (eg, MYB fusion) that were covered by the next-
generation sequencing panel used in this study. There was no
clear differentiation between mucoepidermoid carcinoma and
hyalinizing clear cell carcinoma. This was irrespective of the
morphologic appearance (eg, clear cell variant of mucoepidermoid
carcinoma) and gene fusion status.

Correlation of DNA Methylation Classes With Additional
Mutational Data

For further assessment of the molecular background of the
different DNA methylation classes, the epigenetic classification
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Figure 2.
Analysis of global copy number alterations derived from DNAmethylation data on the salivary gland tumor cohort. The summary copy number plot on the top of the figure shows
the frequency of numeric chromosomal alterations at the respective site of the chromosome (chr). Losses are depicted as negative (blue) and gains as positive (red) deviations
from the baseline. The heat map below shows the detected copy number alterations of each case ordered by methylation class. The barplot on the right illustrates the chro-
mosomal alteration index (CAI), a per-case metric defined as the percentage of the overall genome with numeric copy number alterations.
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was correlated with available additional molecular data, including
copy number profiles, derived from raw DNA methylation data,
and panel-based somatic mutation and fusion analysis.

The results from global copy number analysis are shown in
Figure 2. Overall, loss of chromosome 6q was the most common
chromosomal alteration, with a frequency of up to 50%. Summary
copy number profiles for each DNAmethylation class are shown in
Supplementary Figure S3. Of note, summary copy number profiles
of pleomorphic adenoma and myoepithelioma were very similar
with comparable rates of losses on chromosomes 6 and 7 and
limited number of additional alterations.

As described in the “Methods” section, we calculated a CAI,
defined as the fraction of the total genome with chromosomal
gain or loss. The overall median CAI across all methylation classes
was 5.8%. CAI was low in benign (eg, Warthin tumor; median CAI,
0.02%) and low-grade malignant tumor entities (eg, micro-
secretory adenocarcinoma; median CAI, 2.0%) but considerably
5

higher in high-grade malignancies (eg, salivary duct carcinoma;
median CAI, 18.8%).

We also screened for focal copy number alterations, defined as
gains or losses encompassing <3 million base pairs. As expected,
ERBB2 amplification was common in salivary duct carcinoma (16/
48; 33%) and not present in other entities. Loss of tumor sup-
pressor gene CDKN2A was detected in 16 of 350 cases (4.6%) but
was not entity specific, occurring in adenoid cystic carcinoma,
salivary duct carcinoma, acinic cell carcinoma, hyalinizing clear
cell carcinoma, and myoepithelial carcinoma. MYB amplification
was exclusively observed in adenoid cystic carcinoma (4/26; 15%).
In t-SNE analysis, none of these alterations defined specific sub-
groups within their methylation class (Fig. 3A). There was no case
of a positive mutation, which was inconsistent with the conven-
tional tumor diagnosis. Similar to copy number alterations, we
observed no epigenetic subgroups associated with recurrent so-
matic mutations or gene fusion events (Fig. 3B, C).
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Machine LearningeBased Diagnostic Classifier Accurately Predicts
DNA Methylation Classes

For reliable and rapid classification of diagnostic cases, we
developed a machine learning classifier that predicts the salivary
gland tumor entity of tissue samples from their DNA methylation
profiles and provides calibrated confidence scores for these pre-
dictions. Taking into account the findings described above, we
defined 20 DNA salivary gland methylation classes as entities for
classifier prediction (Fig. 4A). Additionally, we extended the data
set by cases of clear cell renal cell carcinoma (n ¼ 32), squamous
cell carcinoma of the skin (n ¼ 17), and squamous cell carcinoma
of the upper aerodigestive tract (n ¼ 64) as clinically relevant
nonesalivary gland entities. These tumors are either prone to
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metastasize to the salivary glands or can histomorphologically
mimic primary salivary gland tumors.

Performance and stability of the training procedure were
evaluated in a 10 times repeated 10-fold cross-validation on the
full data set. The classifiers achieved a high balanced cross-
validation accuracy in each repetition (Fig. 4B) with a mean of
0.95 (SD ¼ 0.004) across repetitions. The pooled confusion matrix
of the corresponding predictions is shown in Figure 4A. Rejection
of samples with calibrated scores <0.9 further improved the
balanced accuracies (Fig. 4B) to near-perfect classification,
resulting in a mean of 0.991 (SD ¼ 0.003). The rejection analysis
showed both high sensitivity and specificity in detecting incorrect
classifications (Fig. 4B) with means of 0.827 (SD ¼ 0.041) and
0.883 (SD ¼ 0.018), respectively.
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Discussion

In this study, wedto the best of our knowledgedfor the first
time defined the DNA methylation landscape of salivary gland
tumor entities. We demonstrate that epigenetic profiling re-
capitulates in the majority of entities by the conventional histo-
morphologic classification according to the WHO and present a
machine learning algorithm that can be used for salivary gland
tumor classification. However, we also observed several important
discrepancies, which might contribute to currently ongoing
controversial discussion in the head and neck pathologists’
community.

First, we observed that cribriform adenocarcinoma harbors a
stand-alone DNA methylation profile, clearly distinct from that of
polymorphous adenocarcinoma. In the current WHO classifica-
tion, cribriform adenocarcinoma is classified as a subtype of
polymorphous adenocarcinoma because of substantial histo-
morphologic overlap. However, there is an ongoing dispute about
whether cribriform adenocarcinoma might represent a distinct
tumor entity.27 This view is supported by the observation that
cribriform adenocarcinoma shows distinct morphologic features,
has a strong predilection for the base of the tongue, shows a high
rate of PRKD gene family fusions (instead of mutations in poly-
morphous adenocarcinoma), and is more likely associated with
lymph node metastases.28-30 However, the inability of these fea-
tures to clearly differentiate the 2 entities, along with the exis-
tence of borderline cases, has led to the current definition in the
WHO classification. In our opinion, our finding adds novel and
substantial evidence that cribriform adenocarcinoma might
represent a distinct tumor entity. Regardless of the classification
as a separate entity or a subtype, DNA methylation might be a
novel approach to distinguish cribriform from polymorphous
adenocarcinoma and help identify patients with a higher risk of
developing lymph node metastases.

Second, for pleomorphic adenoma and myoepithelioma, 2
related but overlapping groups were generated in t-SNE analysis.
Thus, both defined entities could not be separated by differences
in their DNA methylation profiles. Interestingly, pleomorphic ad-
enoma is defined as a biphasic tumor consisting of ductal and
myoepithelial cells with a highly variable potency for epithelial-
mesenchymal transdifferentiation. Myoepithelioma is primarily
composed of myoepithelial cells and contains only few ductal
structures with a suggested cutoff of <5% of the tumor area.31

However, this cutoff appears arbitrary, and in clinical practice,
distinguishing these 2 entities can be somewhat subjective. It has
repeatedly been postulated that pleomorphic adenoma and
myoepithelioma represent a pure histomorphologic continuum,
ranging from classical pleomorphic adenoma over myoepithelial-
rich pleomorphic adenoma to myoepithelioma.32 This is sup-
ported by the fact that PLAG1 gene fusions occur in a subset of both
tumors. Several authors suggest that pleomorphic adenoma and
myoepithelioma should be regarded as a single tumor entity with
a broad and continuous morphologic spectrum, which is addi-
tionally supported by our result.

Finally, we identified a so far unclear, yet unique epigenetic
class of 10 cases that, by conventional means, were initially
diagnosed as epithelial-myoepithelial, adenoid cystic, or myoe-
pithelial carcinoma. Additional in-depth molecular analyses are
required to assess if this epigenetic class actually represents a new
distinct tumor entity with dominantmyoepithelial differentiation.
Because our aims for this study were to describe the general
epigenetic landscape of salivary gland tumors and assess the
general feasibility of DNA methylationebased classification, the
7

detailed histologic and molecular characterization of this “mixed
group” is out of the scope of this study and will be addressed in
future work.

A minor limitation of our study is that a few tumor entities (eg,
lymphadenoma and lymphoepithelial carcinoma) could not be
analyzed because of a major reactive (lymphocytic) cell compo-
nent and that some very rare entities could yet not be included
because of the lack of sufficient case numbers. Following the
implementation and broader use of our classifier, we aim to
include these tumor entities in a future updated version.

Interestingly, there was no clear differentiation between
mucoepidermoid carcinoma and hyalinizing clear cell carcinoma.
It is well known that mucoepidermoid carcinoma (especially clear
cell type) and hyalinizing clear cell carcinoma can show consid-
erable morphologic overlap. However, both entities are charac-
terized by distinct and highly recurrent fusion events, namely
CRTC1/3::MAML2 in mucoepidermoid carcinomas and EWS-
R1::ATF1 (rarely EWSR1::CREM) in hyalinizing clear cell carci-
nomas.33,34 The morphologic similarity of the 2 entities and their
very similar DNA methylation profiles could, for unclear reasons,
indicate shared or closely related cells of origin. However, with
additional cases tested in the future, the classification algorithm
may learn minor epigenetic differences more effectively, poten-
tially enabling a clearer separation.

To facilitate the clinical application of DNA methylationebased
diagnosis of salivary gland tumors, we trained and validated a ma-
chine learningebased classifier that predicts salivary gland tumor
entities with confidence scores. Additionally, squamous cell and
clear cell renal cell carcinomas can also bepredicted by the classifier,
covering the most relevant nonesalivary gland entities in a clinical
diagnostic setting. Overall, the classifier achieved an excellentmean
balanced accuracy of 0.991 for sampleswith high confidence on our
data, underscoring the feasibility of incorporating this classifier into
a controlled experimental diagnostic setting.

In conclusion, our study provides a comprehensive resource of
DNA methylation data for salivary gland tumors. Our data suggest
that cribriform adenocarcinoma may represent a distinct tumor
entity, potentially separate from polymorphous adenocarcinoma.
Conversely, pleomorphic adenoma and myoepithelioma could be
regarded as a common entity with a broad differentiation capac-
ity. Similar to earlier research in other tumor types, such as brain
tumors and sarcomas, we further show that DNA methylation
could identify potentially novel tumor entities; the existence of an
additional “mixed tumor group” has to be verified by further in-
depth molecular studies. Finally, we demonstrate that DNA
methylationebased classification of salivary gland tumors is a
promising tool that could, in the future, complement diagnostics
and help solve challenging cases that are in the moment resolved
insufficiently by conventional histomorphology, immunohisto-
chemistry, and molecular profiling.
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