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A B S T R A C T

Because Venus is completely shrouded by clouds, they play an important role in the planet’s atmospheric
dynamics. Studying the various morphological features observed on satellite imagery of the Venusian clouds is
crucial to understanding not only the dynamic atmospheric processes, but also interactions between the planet’s
surface structures and atmosphere. While attempts at manually categorizing and classifying these features have
been made many times throughout Venus’ observational history, they have been limited in scope and prone
to subjective bias. We therefore present and investigate an automated, objective, and scalable approach for
their classification using unsupervised machine learning that can leverage full datasets of past, ongoing, and
future missions.

To achieve this, we introduce a novel framework to generate nadir observation patches of Venus’ clouds at
fixed consistent scales from satellite imagery data of the Venus Express and Akatsuki missions. Such patches are
then divided into classes using an unsupervised machine learning approach that consists of encoding the patch
images into feature vectors via a convolutional neural network trained on the patch datasets and subsequently
clustering the obtained embeddings using hierarchical agglomerative clustering.

We find that our approach demonstrates considerable accuracy when tested against a curated benchmark
dataset of Earth cloud categories, is able to identify meaningful classes for global-scale (3000 km) cloud
features on Venus and can detect small-scale (25 km) wave patterns. However, at medium scales (∼500 km)
challenges are encountered, as available resolution and distinctive features start to diminish and blended
features complicate the separation of well defined clusters.
. Introduction

Venus is enveloped by a thick layer of clouds that are nearly
eatureless in visible light but show many variable features in the
V spectrum (e.g. Rossow et al., 1980), particularly around 365 nm
the characteristic wavelength of the unknown UV absorber (e.g.
olaverdikhani et al., 2012). Studying the morphology and tempo-

al evolution of these features can give insights into the dynamic
tmospheric processes, as well as interactions between the planet’s
tmosphere and surface structures such as gravity waves, which may
anifest themselves as visible wave trains at the cloud tops (Piccialli

t al., 2014). This endeavor is crucial for understanding the energy
ransfer between different atmospheric layers and the global climate
ystem of Venus.

Over the past decades, significant efforts at categorizing, classifying,
nd explaining the different types of cloud features found on Venus by
arefully examining satellite images from missions such as the Pioneer

∗ Corresponding author at: University Observatory Munich, Faculty of Physics, LMU Munich, Scheinerstr. 1, Munich, D-81679, Germany.
E-mail address: jmittend@usm.lmu.de (J. Mittendorf).

Venus Orbiter (e.g. Rossow et al., 1980), Venus Express (e.g. Titov et al.,
2012), and Akatsuki (e.g. Limaye et al., 2018; Peralta et al., 2019) have
been made. However, manual classification is a labor-intensive process
that is often constrained to specific regions or time frames and therefore
limits the ability to extract comprehensive, large-scale insights from the
full dataset. Moreover, manual classification is inherently subjective,
which can lead to inconsistencies in the identification and categoriza-
tion of cloud features, especially when working with large datasets from
long-duration missions with images at various spatial scales, which all
contain different types of features.

An automated, objective approach that can perform such a multi-
scale classification is therefore essential for advancing our understand-
ing of the Venusian atmosphere. This paper presents and investigates
such an approach using unsupervised machine learning methods, which
can leverage the entire datasets of Venus Express, Akatsuki, and fu-
ture missions, as well as perform the classification task for features
ttps://doi.org/10.1016/j.ascom.2024.100884
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Fig. 1. Examples of raw satellite UV (365 nm) images for Venus Express VMC and
Akatsuki UVI.

at arbitrary consistent scales where data with enough resolution is
present. Since unsupervised methods do not require labeled data, they
are particularly suited for planetary science, where such labels are
generally not available and the uniqueness of extraterrestrial environ-
ments complicates traditional classification techniques. Partly adopting
a method presented in a previous work on unsupervised classification
of Earth cloud satellite imagery by Kurihana et al. (2019), we employ
a deep convolutional neural network to extract high-level encoded
feature vectors from a set of fixed-scale cloud patches which are then
subsequently divided into classes using a clustering algorithm.

This paper is divided into the following major sections: Section 2
briefly introduces the datasets whose data will be ultimately used in
the classification process. Section 3 explains the multi-step process
for generating ‘‘virtual’’ cloud patches in nadir observation with min-
imal distortion from the raw satellite images, post-processing steps
to improve the feature extraction results, as well as the complete
classification framework. Section 4 shows and discusses the results
of applying the unsupervised classification method to a benchmark
dataset and multiple example Venus cloud patch datasets at different
fixed scales. Finally, Section 5 discusses the implications of our findings
for future studies of Venus and other planetary atmospheres.

2. Datasets

The datasets used in this paper consist of two Venus satellite im-
agery datasets (Venus Express VMC & Akatsuki UVI) and one benchmark
dataset (Cloud-ImVN 1.0). Note that for convenience sake the files
directly from the data archives will be referred to as raw data, even
though they may have already been processed by the respective data
providers.

2.1. Venus Express VMC

The first Venus satellite imagery dataset contains the images taken
by the Venus Monitoring Camera (VMC) onboard Venus Express (VEX)
(Markiewicz et al., 2007).1 The spacecraft’s orbit allows for studying
small-scale cloud structures near Venus’ North pole and complements
the high quality larger scale and more global observations made by
Akatsuki (see Section 2.2). In this paper we specifically focus on the
365 nm UV images as such are also available from the Akatsuki mission.
The dataset consists of calibrated image files and corresponding geome-
try files which provide information about the incidence angle, emission
angle, phase angle, latitude, and longitude for each pixel (Roatsch and

1 Data available at: https://www.cosmos.esa.int/web/psa/venus-express.
2 
Fig. 2. Example images for each of the six Cloud-ImVN 1.0 categories.

Markiewicz, 2015). This information will later be used for generating
the cloud patches (see Section 3.1). Fig. 1(a) shows four raw example
images of this dataset.

2.2. Akatsuki UVI

The second Venus satellite imagery dataset comes from the Ultra-
violet Imager (UVI) instrument of the Akatsuki spacecraft (Murakami
et al., 2017, 2018; Yamazaki et al., 2018). Like for the VEX VMC
dataset, we will only be focusing on the 365 nm UV images. Similarly,
this dataset also contains calibrated image data files and geometry
information files that map each pixel of an image to its corresponding
latitude, longitude, local time, phase angle, incidence angle, emission
angle, and azimuthal angle. Specifically, we use the calibrated Level
2b (l2b) FITS files in conjunction with the pointing corrected geometry
Level 3bx (l3bx) FITS files.2 Fig. 1(b) shows four raw example images
of this dataset. It should be noted here, that while the bandwidths of
the VMC (40 nm) and the UVI (14 nm) are different, the impact on
the opacities and therefore also the morphological features should be
minor. Furthermore, we will not be combining data from both datasets
for any particular scale-classification in Section 4, so this difference is
negligible for our results.

2.3. Cloud-ImVN 1.0

Cloud-ImVN 1.0 (Hoang, 2020) is a labeled Earth cloud image
dataset that comprises 2100 images (150×150 px) equally distributed
among six categories: clear sky, patterned clouds, thin white clouds,
thick white clouds, thick dark clouds, and veil clouds (see Fig. 2 for
examples).

With the exception of the additional ‘‘thin white clouds’’ category,
the remaining five are identical to the ones found in the SWIMCAT
(Singapore Whole-sky Imaging Categories) dataset (Dev et al., 2015),
which contains a total of 784 images and of which this dataset is an
extension. While this means that one could theoretically combine the
images from both datasets, due to the equally distributed nature and the
already significantly higher number of images in Cloud-ImVN 1.0, we
only use the images from the latter. This dataset will act as a benchmark
for testing the efficiency and accuracy of our classification method.

2 Data available at: https://darts.isas.jaxa.jp/planet/project/akatsuki/uvi.
html.en.

https://www.cosmos.esa.int/web/psa/venus-express
https://darts.isas.jaxa.jp/planet/project/akatsuki/uvi.html.en
https://darts.isas.jaxa.jp/planet/project/akatsuki/uvi.html.en
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Fig. 3. Example of a raw Akatsuki UVI image with its corresponding geometry
information.

3. Methods

3.1. Cloud patch generation

Cloud patches, planet patches, or simply patches for short are square
images of a section of a planet’s cloud deck or surface in nadir observa-
tion (i.e. viewed at a 90◦ angle to the surface) generated from satellite
imagery via geometry information, projections, and post-processing
steps. Collections of patches with a particular fixed physical scale will
make up the patch image datasets for the subsequent classification
task. The following subsections will explain the steps to generate such
patches from the raw satellite datasets covered in Section 2.

As mentioned in Section 2, both Venus datasets contain geometry
information files (see Fig. 3 for an example3) that can be used to easily
map the image information back onto a three-dimensional sphere.
We can therefore position a ‘‘virtual camera’’ around the planet to
generate perfect nadir observation images from different viewpoints
and interpolate the projected image points back onto a two-dimensional
image.

3.1.1. Pre-processing steps
Prior to mapping the image data onto the 3D sphere, a number of

pre-processing steps are conducted. The first step consists of removing
all pixels marked as invalid, which automatically includes all empty
space in the background, as it is not valid data in the geometry files.
As a next step both the unilluminated parts of the planet (incidence
angles >90◦), as well as the parts close to a 90◦ observation angle
(≡ emission angle) are removed based on a threshold angle value 𝛼.
This is done to improve the results of the third pre-processing step,
which is normalizing the image with respect to geometric brightness
difference effects (i.e. illumination and observation angles) according
to the Minneart law (Minnaert, 1941), following Titov et al. (2012):

𝐼(𝜇, 𝜇0) = 𝐼0 × 𝜇𝑘−1𝜇𝑘
0 . (1)

Here, 𝐼0 is the theoretical intensity value of an image pixel at zero phase
angle (i.e. in nadir observation and with the Sun directly behind the
observer) and 𝐼(𝜇, 𝜇0) is the actual measured intensity as a function
of the cosine of the spacecraft zenith angle (≡ emission angle) 𝜇 and
the cosine of the solar zenith angle (≡ incidence angle) 𝜇0 at that
pixel. As reported by Titov et al. (2012), this law seems to generally
be acceptable for normalization purposes on Venus when pixels with

3 Unless otherwise noted, the raw satellite data files used for all example
figures in this section are uvi_20151207_052330_365_l2b_v10.fit
(image data) and uvi_20151207_052330_365_l3bx_v10.fit (geome-
try data).
3 
Fig. 4. Example scatter plot of the terms in Eq. (2) for an Akatsuki UVI image, including
the linear fit whose slope yields the value of the limb-darkening coefficient 𝑘 ≈ 0.752.
The brightness of the scattered points corresponds to the actual pixel values in the
image.

Fig. 5. The first three pre-processing steps applied to the raw satellite images,
demonstrated for an Akatsuki UVI image with the threshold value for the angle-based
removal step set to 𝛼 = 75◦ (for both the incidence and emission angle).

incidence and emission angles above 85◦ are excluded (i.e. for 𝛼 ≤ 85◦).
Multiplying 𝐼 with 𝜇, one can derive from Eq. (1), that

log(𝜇𝐼) = log(𝐼0) + 𝑘 log(𝜇𝜇0) (2)

and therefore the limb-darkening coefficient 𝑘 (Limaye, 1984) can be
determined for an image via a linear fit through log(𝜇𝐼) vs. log(𝜇𝜇0).
Fig. 4 demonstrates this procedure on the example image. Once ob-
tained, the intensity values for an image can then be normalized as

𝐼norm =
𝐼(𝜇, 𝜇0)
𝜇𝑘−1𝜇𝑘

0

. (3)

Fig. 5 illustrates all pre-processing steps mentioned thus far.
The final pre-processing step is the removal of any outlier pixels

from the images. This is achieved by filtering the original image (after
the first three pre-processing steps) with a median filter of kernel size
3×3 and masking any pixels as outliers whose absolute difference
between the filtered version and the original is larger than 𝑡 ×𝜎 , where
o d
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Fig. 6. Outlier removal pre-processing step illustrated on an example VEX VMC
image with an outlier parameter threshold value of 𝑡o = 5. (Original file:
V2496_0041_UV2.IMG).

𝑡o is a free parameter and 𝜎d is the standard deviation of the difference
image. The outlier pixels are then removed entirely from the data while
the remaining gaps will be automatically filled at the interpolation step
in Section 3.1.4. Fig. 6 shows an example of this outlier removal step
applied to a VEX VMC image.

3.1.2. Spherical mapping and patch center pre-selection
Once a satellite image has been pre-processed, its corresponding

longitude and latitude information are used to map the points back
onto a three-dimensional sphere. To improve the spacing between the
patches and to ensure that even close-up images of the planet that
only produce small sections of the sphere on the scale of the patches
themselves always have at least one virtual camera viewpoint in their
center, the 3D sphere is rotated along the 𝑧- and 𝑦-axis so that the
median vector of all points lies directly on the 𝑥-axis. The inverse of
the required rotation matrix is stored so that the final patch center
coordinates can be traced back to their corresponding original longi-
tude, latitude, and local time. The virtual camera viewpoints (i.e. the
patch centers) are generated as an equally spaced4 grid on the sphere’s
surface in spherical coordinates with the angles 𝛥𝜙v and 𝛥𝜃v between
viewpoints calculated from the respective patch scale 𝑠p (e.g. 3000 km)
of the dataset as

𝛥𝜙v = 𝛥𝜃v = 2 arcsin
( 𝑠p
2𝑅pl

)

, (4)

where 𝑅pl is the radius of the planet. A pre-selection of suitable patch
centers is made by excluding those that lie outside the rectangular
boundary of the actual data points. Fig. 7 shows an example of the
viewpoints generated for the example satellite image and a patch scale
of 3000 km.

3.1.3. Projections and density criteria
Once the viewpoints have been generated, the sphere of data points

is repeatedly rotated along the 𝑧- and 𝑦-axis to center each viewpoint on
(1, 0, 0). In each instance the data points whose 𝑧- and 𝑦-coordinates are
within 1.5 times half of the patch size in each direction are selected and
their 𝑥-coordinates are discarded to create a flat projection along the
𝑥-axis. Fig. 8 shows two examples of such a projection for the example
image.

To ensure that the number of data points in the projection roughly
matches the expected patch resolution (i.e. to avoid strongly undersam-
pled images after the final interpolation step), a simple density check
is performed: If the number of points 𝑁p is lower than 𝑁p,min = 𝜌p,min ×
𝑟2p × 1.52, where 𝜌p,min is an arbitrary minimum density parameter and

4 The periodic nature of a sphere’s surface makes it impossible to create a
perfectly evenly spaced grid without an angle that is an integer ratio of 2𝜋.
However, since only one half of the planet can be visible at once, one can
ensure that the non-evenly spaced points of the grid lie on the side without
data points.
4 
Fig. 7. Spherically mapped and shifted points of a pre-processed Akatsuki UVI image
and pre-selection of patch centers/virtual camera viewpoints (red) for a patch scale of
3000 km.

Fig. 8. Two examples for projections of data points for a 3000 km patch of an Akatsuki
UVI image. The left projection’s data points fully cover the patch area and are therefore
suitable for the final interpolation step, while the right panel shows a projection with
an empty area on its left side, which is not suitable for interpolation and is therefore
ideally eliminated by the local density check (depending on the parameter settings).

𝑟p is the patch resolution in pixels, the projection is discarded.5 If a
projection has passed this ‘‘global’’ density threshold, another ‘‘local’’
density check is performed to ensure that there are no large empty areas
in the projection (see the second panel of Fig. 8 for an example): The
patch area is divided into 𝑛bin × 𝑛bin bins and the number of points in
each bin 𝑁bin is compared against the minimum required number of
points in a bin 𝑁bin,min = 𝜌bin,min ×

(

𝑟p∕𝑛bin
)2, where 𝜌bin,min is another

arbitrary minimum bin density parameter. If 𝑁bin < 𝑁bin,min for any of
the bins, the projection is also discarded.

3.1.4. Interpolation and patch images
Once a projection has passed both density checks, the last step

towards the final patch image is the interpolation of its irregularly
scattered points. To do so we use the Python library scipy ’s (Virtanen
et al., 2020) scipy.interpolate.griddata function with the

5 The factor of 1.5 is related to the fact that the full projection area is 1.5
times the size of the final patch image in both 𝑥- and 𝑦-direction and should
therefore give the density parameter 𝜌p,min a more intuitive relation to the pixel
density in the final image.
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Fig. 9. Example of the final interpolation step for an Akatsuki UVI patch image
of 3000 km scale and 128×128 resolution, as well as a comparison between three
different interpolation methods: nearest (neighbor), linear, and cubic. One can clearly
see that the difference between the nearest neighbor interpolation and the linear/cubic
interpolations is only minute.

nearest interpolation method.6 Since the density checks above should
ensure that the number of points in the projection roughly matches
the patch image resolution, a nearest neighbor interpolation provides
sufficient results while also being much faster than a higher quality
linear or cubic interpolation. Fig. 9 demonstrates the interpolation
step for an example patch, as well as comparisons between different
interpolation methods.

These steps are applied to all images in a satellite dataset and create
the full patch datasets used for the classification task.

3.1.5. Patch flattening and standardization
In order to help the machine learning tools focus more on small-

scale details and features rather than large-scale brightness gradients
and differences, an additional but theoretically optional flattening +
standardization step is applied to all images of a completed patch
dataset. The flattening procedure consists of subtracting a Gaussian-
blurred version of each patch from itself, where the kernel size 𝑘f
and standard deviation 𝜎f used for the Gaussian blurring are again
free parameters and determine the strength of the flattening procedure.
Standardization is then applied by subtracting the mean of each image
from itself, dividing it by its standard deviation, multiplying it with
a contrast parameter 𝑐s, and finally clipping its values to a range of
[−1, 1]. Fig. 10 shows the flattening procedure applied to an example
patch.

3.2. Encoding the patches

Once a full patch dataset has been generated, the first step towards
the classification is to encode each image into its latent representa-
tion via a deep convolutional neural network (CNN). The resulting
feature vectors will then be clustered using a clustering algorithm (see
Section 3.3), following the methodology of Kurihana et al. (2019).

6 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
griddata.html.
5 
Fig. 10. Example of the patch flattening and standardization process applied to a
3000 km Akatsuki UVI patch of resolution 128×128. The standard deviation of the
Gaussian blur was set to 𝜎f = 16, which corresponds to a physical size of 375 km, the
blurring kernel size was set to 𝑘f = 2 × 3𝜎f + 1 = 97, and the standardization contrast
was set to 𝑐s = 0.33.

3.2.1. Choice of encoder base model
Because Chen et al. (2020) propose to use a ResNet (He et al.,

2016) base encoder for training with SimCLR (A Simple Framework
for Contrastive Learning of Visual Representations, more details in Sec-
tion 3.2.2), we choose to use a ResNet-18 model as our base model
since its architecture is comparable to the encoder used by Kurihana
et al. (2019). Additionally, as our patch datasets are quite small (1708–
10 734 images, see Section 4) and a default ResNet-18 already has over
11 million trainable parameters, larger models would only increase the
chance of overfitting and unnecessarily raise the required training time.
The base model is initialized with weights obtained from pre-training
on the ImageNet-1K dataset (Russakovsky et al., 2015).7 Because the
final layer of this model represents a probability distribution over the
1000 categories in the ImageNet-1K dataset and our data does not fall
under these categories, it is removed from the base model. Hence, the
second-to-last layer of the base model acts as the feature vector of
length 512 for each input image. Fig. 11 shows an illustration of the
resulting architecture.

3.2.2. Choice of training method
The results of testing a selection of model architectures and training

methods shown in Table 1 reveal that even a simple encoder consisting
only of the pre-trained base model without any actual training on
our own data already has sufficient feature recognition and extraction
capabilities to provide high clustering accuracies on the benchmark
dataset and is better than explicitly training a simple Autoencoder
(with a decoder that mirrors the base model) on our dataset such
as Kurihana et al. (2019). The latter is likely limited by the low
amount of available training data in our case (only 2100 images in
the benchmark dataset) and cannot learn good latent representations
purely by learning reconstructions of the input images, even when ap-
plying augmentations (i.e. transformations such as rotation, horizontal
flipping etc.) to the images. We also found that even after the patch
flattening step, the Autoencoder ’s embeddings were highly sensitive to
large-scale gradients and artifacts such as holes, which even with the
precautions taken in step 3.1.3 can still occasionally occur. However,
with the right combination of additional dimensionality reduction and
clustering methods (see Section 3.3), a model trained on the benchmark
images using SimCLR by Chen et al. (2020) provides the best results (see
also Section 4.1). For training a model with SimCLR, the base model
is appended with a small multilayer perceptron (MLP) projection head
with one hidden layer that projects the feature vector into a lower
dimensional space where a contrastive loss is calculated. In our case this
projection head consists of two fully connected layers with respective
output sizes of 256 and 64 and a ReLU activation function after the
first.

7 https://pytorch.org/vision/main/models/generated/torchvision.models.
resnet18.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
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Table 1
Mean total accuracies obtained from classifying the benchmark Cloud-ImVN 1.0 dataset with various combinations of encoder
models, additional reduction methods, reduction dimensions, and clustering methods. To determine the mean values, each
combination of methods was ran for a total of eight times. The Simple model refers to a simple modified ResNet-18 model
pre-trained on the ImageNet-1K dataset as explained in Section 3.2.2, while the SimCLR and Autoencoder models were
trained specifically on the benchmark dataset. PCA is short for Principle Component Analysis and HAC refers to Hierarchical
Agglomerative Clustering.

Encoder model Red. method Red. dims. Clustering method Mean tot. accuracy [%] Std. deviation [%]

SimCLR t-SNE 3 k-Means 84.9(19) 5.3
SimCLR t-SNE 3 HAC 84.8(4) 1.0
SimCLR None None HAC 84.5 0.0
Simple t-SNE 3 k-Means 82(3) 6
Simple t-SNE 3 HAC 81.7(18) 4.9
SimCLR PCA 256 HAC 81.4(11) 2.9
SimCLR PCA 64 HAC 76.9(5) 1.4
SimCLR PCA 64 k-Means 75.1(3) 0.6
SimCLR None None k-Means 74.7(3) 0.6
SimCLR PCA 16 HAC 74.4 0.0
SimCLR PCA 256 k-Means 74.2(7) 1.7
Simple None None HAC 73.0 0.0
SimCLR PCA 16 k-Means 72.4(15) 4.2
Simple PCA 256 k-Means 72.3(6) 1.7
Simple PCA 64 k-Means 72.3(8) 2.1
Simple PCA 64 HAC 72.3(10) 2.6
Simple None None k-Means 70.1(8) 2.0
Simple PCA 256 HAC 69.2(14) 3.8
Simple PCA 16 k-Means 68(3) 7
Simple PCA 16 HAC 64.24(9) 0.24
Autoencoder PCA 16 HAC 63.8 0.0
Autoencoder t-SNE 3 k-Means 62.0(14) 3.9
Autoencoder PCA 64 HAC 61.2(11) 2.9
Autoencoder None None HAC 59.9 0.0
Autoencoder PCA 256 HAC 59.9 0.0
Autoencoder t-SNE 3 HAC 59.3(17) 4.8
Autoencoder None None k-Means 57.2(12) 3.2
Autoencoder PCA 16 k-Means 56.3(10) 2.7
Autoencoder PCA 64 k-Means 56.2(15) 4.1
Autoencoder PCA 256 k-Means 54.4(13) 3.6
Fig. 11. Architecture of the modified ResNet-18 base model used for encoding the patches. The data flows from the original patch image on the left to the Flatten layer on the
right, where the final feature vector is obtained. The fully connected layer that is part of the original model is removed from our version.
w
𝑧
1

The main idea behind SimCLR is to train a model to maximize the
agreement between the model outputs of two augmented versions of
the same input image. Specifically, for a given batch of size 𝑁 , each
image in the batch is augmented twice to form a set of 2𝑁 augmented
images. Each pair of such augmented images that originates from the
same original image is defined as a positive pair, while all other 2(𝑁−1)
images are treated as negative examples, respectively. One can then
define the NT-Xent (normalized temperature-scaled cross entropy) loss
 p

6 
function for a positive pair (𝑖, 𝑗) as

𝑙𝑖,𝑗 = − log
exp

(

sim
(

𝑧𝑖, 𝑧𝑗
)

∕𝜏
)

∑2𝑁
𝑘=1 1[𝑘≠𝑖] exp

(

sim
(

𝑧𝑖, 𝑧𝑘
)

∕𝜏
)

, (5)

here 𝑧𝑖 is the output of the model for an input 𝑥̃𝑖, sim
(

𝑧𝑖, 𝑧𝑗
)

=
⊤
𝑖 𝑧𝑗∕

(

‖𝑧𝑖‖ ‖𝑧𝑗‖
)

is the cosine similarity between two output vectors,
[𝑘≠𝑖] is equal to 1 if 𝑘 ≠ 𝑖 and 0 otherwise, and 𝜏 is a temperature
arameter. For each batch, the sum of this loss function applied to all
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positive pairs (𝑖, 𝑗) and (𝑗, 𝑖) in the batch (normalized via a division by
2𝑁) is then the full loss function to be minimized during training. The
augmentations we employ are a random rotation (cropped to eliminate
empty areas) of the input image, a random resized crop with a scale
range of [0.5, 1], a random horizontal flip, color jitter8 with the bright-
ness and contrast parameters set to 0.5 and no hue/saturation jitter,
and a random application of Gaussian blur with a probability of 50%,
a kernel size of 25 and a blurring standard deviation range of [0.1, 2].
These augmentations help the model to learn rotationally invariant
embeddings that are also less sensitive to changes in resolution and
total image brightness and contrast, which is ideal for our Venus cloud
patches. Just like Chen et al. (2020), we also use the LARS (Layer-wise
Adaptive Rate Scaling) optimizer (You et al., 2017, preprint) to perform
the gradient descent steps, but without learning rate warm-up or decay.

3.2.3. Normalization
During pre-training of the base model on the ImageNet-1K dataset,

ormalization was applied to all input images so that the mean value
f each channel over the entire dataset is 0 and the corresponding
tandard deviation is 1. To effectively use our own data with the model,
he same transformation must be applied to our images. This can be
chieved by simply subtracting the means 𝝐RGB = (0.485, 0.456, 0.406)
f the ImageNet-1K channels from the respective patch image channels
nd then dividing the resulting values by the corresponding standard
eviations 𝝈RGB = (0.229, 0.224, 0.225).9 However, since all Venus patch
mages are single-channel grayscale images and the normalization val-
es for each RGB channel are slightly different, this transformation
ould introduce colors into the images. For single-channel patch im-
ges, we therefore only use a single mean 𝜖gs = 0.4589225 and standard
eviation 𝜎gs = 0.2255861 value for normalizing all three RGB channels,
oth of which are calculated from the full normalization RGB vectors
ia the color to luma (𝐿) conversion formula used by PyTorch10:

= 0.2989𝑅 + 0.587𝐺 + 0.114𝐵 (6)

dditionally, all images are resized to 224×224 before being passed
hrough the model, as that is the native input resolution.11

.3. Clustering

Once a full patch dataset has been encoded with a model previously
rained on the patches, they are finally divided into classes by clustering
he base model’s output feature vectors for each image with a cluster-
ng algorithm, following the methodology of Kurihana et al. (2019).
s Table 1 shows, we also tested using an additional dimensionality
eduction step between the encoding and clustering step with Principal
omponent Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor
mbedding) (van der Maaten and Hinton, 2008) on the benchmark
ataset. The latter is a statistical algorithm that maps high-dimensional
ata into three- or two-dimensional space in such a way that similar
oints in the original domain maintain proximity in the output map
ith a high probability. While we are using it as an intermediate dimen-

ionality reduction step here, it is also particularly useful for visualizing
igh-dimensional clusters and inspecting how well the model assigns
imilar encodings to images belonging to the same class, as will become
pparent in Section 4.1. On average, clusters obtained with k-means

8 https://pytorch.org/vision/main/generated/torchvision.transforms.
olorJitter.html.

9 https://pytorch.org/vision/main/models/generated/torchvision.models.
esnet18.html#torchvision.models.ResNet18_Weights.
10 https://github.com/pytorch/vision/blob/main/torchvision/transforms/

functional_tensor.py#L146.
11 These normalization steps are part of the encoding section because the

ransformations are applied to the dataset images at encoding time in our code,
owever, one could also choose to apply them as a permanent last step in the

atch dataset generation process.
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Table 2
Parameters used for training the encoder model with SimCLR and the LARS
optimizer.

Parameter Value

Batch size 32
Max. epochs 64
Loss temperature 1
Base learning rate 0.0375
LARS coefficient 0.001
LARS momentum 0.9
LARS weight decay 0.0001

clustering after an additional three-dimensional t-SNE reduction are
the most accurate for both a Simple encoder and an encoder trained
with SimCLR. This is likely due to the t-SNE algorithm producing
better separated ‘‘islands’’ (see e.g. the 2D examples in Fig. 12) and
k-means clustering generally performing better on lower-dimensional
data. However, not only can the t-SNE algorithm sometimes introduce
islands that are not ‘‘real’’ clusters, but these accuracies are also highly
variant accross different iterations of the clustering pipeline, as both t-
SNE and k-means depend on random initialization. We therefore choose
to use the option with no additional reduction method and hierarchical
agglomerative clustering (HAC) withWard’s method (Ward, 1963), as the
corresponding results are much more stable for different iterations of
the clustering approach and the accuracy is only negligibly smaller than
the highest score for the SimCLR encoder (see also Section 4.1). Unlike
k-means clustering, HAC also has the advantage of not assuming equally
sized clusters, which we cannot necessarily expect for our Venus cloud
patch classes.

All neural network related tasks are performed using the PyTorch
library (Paszke et al., 2019) for Python, while the scikit-learn library (Pe-
regosa et al., 2011) is employed for performing the clustering and
imensionality reduction steps (including all t-SNE embeddings). Un-

less indicated otherwise, we use the default values for all corresponding
functions and classes.

4. Results

4.1. Benchmark on Cloud-ImVN 1.0

To further validate the choice of methods outlined in Sections 3.2
& 3.3, we will first evaluate their performance on the Cloud-ImVN 1.0
benchmark dataset. Because our Venus cloud patches are grayscale
images, both the original full color version, as well as a grayscale
version (using Eq. (6)) of the benchmark dataset are tested. The number
of classes for the clustering algorithm is set to 6. The parameters for
training the encoder model (which are also used for the Venus patch
results in Section 4.2) can be found in Table 2. The datasets are split
into a training and test dataset of sizes 80% and 20%, respectively.
Once a model has been trained for the maximum number of epochs, the
model weights after the epoch with the lowest loss on the test dataset
are chosen as the final weights to minimize overfitting.

Fig. 12 shows a t-SNE embedding of the encoded image feature vec-
tors, including the actual images and their corresponding class labels.
It is already apparent here that images belonging to the same class are
also assigned similar feature vectors, as ideally expected. Additionally,
except for the ‘‘thin white clouds’’ and ‘‘thick white clouds’’ category,
which are often visually similar even for a human observer, as well as
the ‘‘clear sky’’ and ‘‘veil clouds’’ category, which due to their often
flat and almost featureless nature are very difficult to distinguish in
the grayscale version, the classes seem to fall into distinct clusters,
further supporting the clustering approach for classification. It should
be noted that a failure to distinguish between ‘‘clear sky’’ and ‘‘veil
clouds’’ images does not raise a problem in the case of Venus as clouds

are omnipresent and the former category is therefore non-existent.

https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html
https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html#torchvision.models.ResNet18_Weights
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html#torchvision.models.ResNet18_Weights
https://github.com/pytorch/vision/blob/main/torchvision/transforms/_functional_tensor.py#L146
https://github.com/pytorch/vision/blob/main/torchvision/transforms/_functional_tensor.py#L146
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Fig. 12. t-SNE embedding of the encoded Cloud-ImVN 1.0 dataset for both the full color and grayscale version. The left panels show the actual images and the right panels show
the corresponding true class labels.
To allow for the calculation of an accuracy score, the predicted
class labels are matched to the true labels by finding the mapping that
maximizes the total accuracy. The latter is calculated from the average
of the individual class accuracies (the number of members is equal
for each class, so no weighting is necessary), which are the ratio of
correctly predicted labels to total class members.

Fig. 13 and Table 3 show the result of applying our classification
approach to the dataset. For the full color dataset, the classification
achieves a total accuracy of 84.5% with a high agreement between the
true and predicted class labels. The largest discrepancy is found for
predicting the labels of members of the ‘‘thin white clouds’’ category
which are sometimes assigned to the ‘‘thick white clouds’’ category
instead. Some images from the ‘‘veil clouds’’ category are also classified
as ‘‘thick white clouds’’. A closer examination of the t-SNE mappings
in Figs. 12(a) and 13(a) reveals that most of these misclassification
occur for images in a ‘‘transition zone’’ between the two categories,
where clouds from both categories are blended. As will be shown in
8 
Section 4.2, such cases also present a challenge for our classification
method with the Venus cloud imagery. In the case of the grayscale
dataset a lower accuracy of 59.7% is achieved with most inaccuracies
occurring between the ‘‘thick dark clouds’’ and ‘‘thin white clouds’’
category, the ‘‘veil clouds’’ and ‘‘clear sky’’ category, which as already
explained above is to be expected, and the ‘‘thin white clouds’’ and
‘‘thick white clouds’’ category, similar the full color version. As ex-
pected from the loss of color information, the total accuracy is lower
in the grayscale case, but still significantly higher than the baseline
accuracy of 1∕6 for completely random labels.

4.2. Venus patch classification

The previous section showed that our unsupervised classification
method is able to achieve good accuracies when applied to the bench-
mark dataset. We will now present the results on three example Venus
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Table 3
Confusion matrices (predicted vs. true classes) and class/total accuracies for the example Cloud-ImVN 1.0 classification results in Fig. 13.

(a) Full color dataset

True classes Predicted classes Accuracy [%]

Clear sky Patterned Veil Thin white Thick white Thick dark

Clear sky 339 0 4 3 4 0 96.9
Patterned 0 339 0 2 7 2 96.9
Veil 8 0 260 3 79 0 74.3
Thin white 0 4 0 229 108 9 65.4
Thick white 0 3 6 12 327 2 93.4
Thick dark 0 0 0 69 0 281 80.3

Total 84.5

(b) Grayscale dataset

True classes Predicted classes Accuracy [%]

Clear sky Patterned Veil Thin white Thick white Thick dark

Clear sky 157 0 41 44 94 14 44.9
Patterned 0 308 0 20 22 0 88.0
Veil 123 0 215 0 12 0 61.4
Thin white 2 2 1 154 191 0 44.0
Thick white 20 1 44 11 274 0 78.3
Thick dark 0 5 0 152 47 146 41.7

Total 59.7
Fig. 13. Unsupervised classification approach applied to the full color and grayscale
version of the Cloud-ImVN 1.0 dataset, visualized with a t-SNE embedding of the feature
vectors (also see Fig. 12). The right panels show the resulting labels of the classification
which have been matched to the true labels in the left panels. Table 3 contains the
corresponding confusion matrices and individual class accuracies.
9 
Table 4
Parameter values (see Section 3.1) used for generating the Venus patch datasets in
Section 4.2.

Parameter Value

Angle-based removal threshold 𝛼 = 75◦

Outlier removal sigma multiplier 𝑡𝜎 = 5
Minimum patch density 𝜌p,min = 0.5
Local density bins 𝑛bin = 8
Minimum bin density 𝜌bin,min = 0.1
Interpolation method Nearest
Resolution 𝑟p = 128
Flattening blur sigma 𝜎f = 16
Flattening blur kernel size 𝑘f = 97
Standardization contrast 𝑐s = 0.33

patch datasets at different scales. A 3000 km and 500 km dataset gen-
erated from the Akatsuki UVI 365 nm satellite images provide cloud
patches on a global and medium scale with high contrast features, and
a 25 km dataset generated from the Venus Express UV images provides
close-up patches on the scale of some of the wave features discussed
by Piccialli et al. (2014). In all cases the number of clusters/classes is
set to 4, as higher numbers tend to be difficult to interpret. All necessary
parameter values that were used for generating the patch datasets as
described in Section 3.1 are listed in Table 4.

4.2.1. 3000 km patches (Akatsuki UVI 365 nm)
The 3000 km dataset contains global-scale cloud patches in a range

from −60◦ to 60◦ in latitude and 8 h to 16 h in local time with full
longitudinal coverage (see Fig. 14(a)) and consists of a total of 6474
patches. The results of the 4-class classification pipeline can be seen in
Figs. 14(b)–14(d), which show a random selection of images from each
cluster, the class labels on the same latitude vs. longitude / local time
scatter plot as in Fig. 14(a), and the class labels on a t-SNE visualization
of the feature vectors like in the case of the benchmark dataset. Looking
at Fig. 14(c), one can see that the classes clearly capture different
distinct regions in latitude vs. local time. Class 0 consists mostly of
the turbulent and patterned clouds in the afternoon convective wake,
while class 1 contains the streaky clouds found in mid- to high-latitude
regions (Titov et al., 2012; Rossow et al., 1980). Class 3 seems to mostly
capture clouds near the morning edge of the local time distribution,
which could potentially be linked to a small gradient artifact on the
right side of many of such patches (see Fig. 14(b)) but also to the
morphological features which are generally a mix of streaky and patchy
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Fig. 14. Results of the classification framework applied to the 3000 km Venus cloud patches generated from the Akatsuki UVI 365 nm images.
patterns and less pronounced than the previous two classes. Class 2 is
harder to interpret and appears to simply be the rest of the patches that
do not belong to any of the other three classes.

Comparing the t-SNE embedding of the feature vectors in Fig. 14(d)
to the t-SNE embedding of the Cloud-ImVN 1.0 dataset in Fig. 12, one
can see that there is a clear difference in their distribution patterns.
Unlike in the latter case, where discrete clusters are evident, the
embeddings in the former exhibit a much more uniform distribution
without clear boundaries between classes. This observation is crucial,
as it highlights an intrinsic challenge in classifying cloud formations on
planets with extensive cloud coverage like Venus. The cloud patterns
captured in our patches do not necessarily always correspond to iso-
lated categories but are part of a continuous distribution of features that
cover the entire planet. This inherently complicates the classification
task, as features often blend into one another and a particular patch
may therefore not always be assigned to a distinct type of cloud. This
limitation becomes increasingly apparent as we go to the medium scale
500 km patches in the next section, where the resolution of distinctive
features decreases, further blurring the lines between categories and
challenging our approach of classifying unique cloud formations.

4.2.2. 500 km patches (Akatsuki UVI 365 nm)
The 500 km patch dataset consists of 1708 images and covers a

similar range as the 3000 km patches but extends slightly further South
to −70◦ latitudes (see Fig. 15(a)).12 Compared to the 3000 km patches,

12 While a much larger amount (20 000+) of patches at this scale could be
generated from the VMC data, we found that a significant portion of these
patches are either very noisy or contain visual artifacts from the instrument
and would therefore require manual cleanup, which is contrary to our idea of
finding an automated framework.
10 
structures at this scale are more difficult to distinguish from one
another, with most patches showing some form of patterned features
of varying contrast or almost no features at all. This is also visible in
the classes, which – as can be seen on Fig. 15(b) – are less distinct from
another than in the previous example. While all classes seem to contain
images with patterned clouds, class 1 and 3 mostly consist of images
with higher contrast features in the afternoon region (see Fig. 15(c)),
whereas class 0 holds images that are more flat and almost featureless,
but also occasionally show slightly more streaky features. Similar to
the previous case, class 2 seems to simply carry the images that do not
belong to any of the other classes. The t-SNE visualization of the feature
vectors in Fig. 15(d) again shows no real cluster separation between the
different classes, complicating a separation into distinct categories.

4.2.3. 25 km patches (VEX VMC UV)
The small-scale 25 km patch dataset contains 10 734 images and

has a much smaller latitudinal extent than the previous two datasets
due to the orbit of Venus Express (see Fig. 16(a)). At this scale the
large majority of images is close to featureless with only a few images
showing the expected wave patterns. This is also apparent in the classes
which, as can be seen in Fig. 16(b), consist of three classes that only
contain almost featureless images and class 3, which holds most of the
patches with visible waves. However, the latter also contains multiple
images without such features, which can again be attributed to the fact,
that the wave patches are continuously blended into the rest of the
images (see Fig. 16(d)) and therefore no clear boundary can be drawn
between them and the other patches.

5. Conclusions

In this study we introduced a novel framework to generate and
classify nadir observation patches of Venus’ clouds at various consistent
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Fig. 15. Results of the classification framework applied to the 500 km Venus cloud patches generated from the Akatsuki UVI 365 nm images.

Fig. 16. Results of the classification framework applied to the 25 km Venus cloud patches generated from the Venus Express UV images.
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scales through the use of unsupervised machine learning techniques.
We found that our approach is able to achieve promising accuracy when
applied to a curated benchmark dataset of Earth cloud categories and
is able to identify meaningful classes for global-scale cloud features
on Venus, as well as capture the wave patterns often found at small
scales. However, at medium scales we encountered challenges as res-
olution and distinctive features start to diminish and blended features
complicate the separation of well defined clusters.

Experiments with advanced unsupervised classification methods
such as replacing the clustering stage with SCAN, a full unsupervised
deep learning framework presented by Van Gansbeke et al. (2020),
were not able to improve upon the results achieved with our presented
method. A possible explanation for this may be, that in the context of
machine learning tools, which generally depend on extensive amounts
of available training data, our patch datasets are still relatively small,
thereby constraining the learning capacity of the neural networks. This
also represents a limitation of our method, as it currently relies on
a base model CNN that has been pre-trained on a large number of
unrelated images to enhance its general image recognition capability.
Hybrid approaches that combine both supervised and unsupervised
methods may offer a solution by incorporating additional information
to improve feature separation and classification accuracy.

Overall, these findings represent a significant advancement, as this
automated framework offers a scalable and objective solution for ana-
lyzing large datasets and has the potential to streamline future studies
of cloud evolution and atmospheric processes on Venus. By applying
our method to datasets spanning multiple time periods, researchers
could systematically track the formation, propagation and dissipation
of clouds features over time, which would have been difficult to achieve
with manual classification methods due to the large volume of data.
In the context of the broader field of planetary science, our technique
could of course also be applied to other planetary bodies with similar
atmospheric phenomena such as Titan.

Looking ahead, the rapid advancements in machine learning and
artificial intelligence in recent times allow us to remain optimistic that
the data limitations and methodological challenges may be overcome
in the future. New missions that extend the amount of available data
or innovative model architectures should also unlock more effective
classification strategies for Venus’ clouds. This endeavor not only en-
hances our understanding of atmospheric phenomena on Venus but also
contributes to the broader field of planetary science by refining our
methodological toolkit for extraterrestrial atmospheric analysis.
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