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0. Introduction

Consider the following vague

Question. What is the ‘holomorphic’ extra structure on the homotopy type of a complex 
manifold?

To explain what shape an answer could take, consider the case of cohomology: The 
presence of a complex structure on a manifold X equips the complex of C-valued dif-
ferential forms AX with a bigrading for which the differential d = ∂ + ∂̄ decomposes 
into components of type (1, 0) and (0, 1). As a consequence of this simple observation 
there is a large collection of cohomology theories sensitive to the complex structure. For 
example, the de Rham cohomology is naturally a bifiltered vector space and one has the 
Dolbeault, Bott-Chern and Aeppli cohomologies [16], [6], [1]

H∂̄ := ker ∂̄
im ∂̄

, HBC := ker ∂ ∩ ker ∂̄
im ∂∂̄

, HA := ker ∂∂̄
im ∂ + im ∂̄

,

and many more (e.g. [19], [47], [38], [36]).
On the other hand, if one also takes into account the multiplicative structure, the 

graded-commutative differential graded algebra (cdga) of complex forms AX, together 
with conjugation, represents the real homotopy type of a (say, simply-connected) man-
ifold [14], [44], [7]. To access the homotopy information, one has to choose a nilpotent 
model, i.e. a de Rham quasi-isomorphism ΛV → AX from a cdga which is free as an 
algebra and satisfies a nilpotency condition recalled below (this amounts to a cofibrant 
replacement with respect to an appropriate model category structure). One is thus led 
to the following

Question (Sullivan). Is there a free bigraded model for the cdga of forms on a complex 
manifold, invariant by conjugation?
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We will give a positive answer to Sullivan’s question both in a conceptual and a 
computational sense. Before stating it, let us discuss quasi-isomorphisms. Given a map 
f : ΛV → AX where both sides are bigraded and f respects this structure, one may ask 
more of f than inducing an isomorphism in total cohomology. For example, one may 
require H∂̄(f) to be an isomorphism, which implies HdR(f) to be an isomorphism if 
both sides are bounded, by a spectral sequence argument. We will use an even stronger 
notion that does not require boundedness assumptions: Namely, let us say f is a bi-
graded, or pluripotential, quasi-isomorphism if the induced maps HBC(f) and HA(f)
are isomorphisms. This quasi-isomorphism property is universal in a sense made pre-
cise in Theorem C below. In particular, the induced maps in row-, column and total 
cohomology are isomorphisms.

The conceptual answer to Sullivan’s question then reads:

Theorem A. The category of augmented, graded-commutative, bigraded, bidifferential al-
gebras (cbba’s) with a real structure carries a model category structure such that weak 
equivalences are bigraded quasi-isomorphisms and the cofibrant replacement of any cbba 
is nilpotent.

Here, as in the singly graded case, a cbba is called nilpotent if it admits a presentation 
as a free bigraded algebra ΛV with a well-ordered bigraded basis for V such that the 
differential of every basis element lies in the subalgebra generated by the smaller basis 
elements.

Equipping the space of generators of a cofibrant replacement of AX augmented by 
evaluation at a point x ∈ X, with the linear part of the differentials, one can functorially 
associate to any pointed complex manifold a ‘homotopy bicomplex’ π·,·(X, x). For sim-
ply connected (resp. nilpotent) spaces, the total cohomology of π·,·(X, x) recovers the 
dual of the complexified homotopy groups (and the dual of the Mal’cev completion of 
π1(X, x)). Further, one obtains a homotopy version π♠ of any other cohomological func-
tor H♠ (e.g. H∂̄ , HBC , Schweitzer cohomologies,... or also universal diagrams involving 
these). In particular, one obtains a commutative diagram of maps and spectral sequences

πp,q
BC(X,x)

πp,q

∂̄
(X,x) (πp+q(X,x) ⊗C)∨ πp,q

∂ (X,x)

πp,q
A (X,x)

The cofibrant replacements arising from Theorem A make the functorial character of 
the theory evident, but they are very large. Just as in ordinary rational homotopy theory, 
for effective calculations, one wants ‘minimal’ models. In the singly graded case, a nilpo-
tent model is called minimal if d has no linear part. Analogously, we call a cbba model 
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bigradedly minimal if ∂∂̄ has no linear part. The computational answer to Sullivan’s 
question then reads:

Theorem B. For any connected compact complex manifold which is holomorphically sim-
ply connected, there exists a connected, real, degree-wise finite dimensional, bigradedly 
minimal model for the cbba of forms, which is unique up to isomorphism.

Here, a connected complex manifold X is called holomorphically simply connected, if 
H1

A(X) := H1,0
A (X) ⊕H0,1

A (X) = 0. This holds for example on compact Kähler manifolds 
with b1(X) = 0. A cbba M is called connected if it is concentrated in non-negative total 
degree and satisfies M0 = C. When a connected model exists, it is automatically an 
augmented model for any augmentation of the original algebra and so the choice of 
base-point becomes irrelevant (cf. Corollary 2.36). In the non-simply connected case, 
connected, degree-wise finite-dimensional models may or may not exist and we give 
examples for both cases. The case of a compact Kähler manifold with the Hodge diamond 
of a complete intersection will be studied in detail, in particular we obtain a formality 
result (cf. Theorem 3.5).

To prove the above results, we first revisit the additive theory, i.e. we study the 
(symmetric monoidal) category of bicomplexes which, as the category of (bigraded) 
representations of a Frobenius algebra, has a natural model category structure. The asso-
ciated homotopy category Ho(BiCo) can be naturally identified with the stable category 
of bicomplexes as in [24], [27] and the notion of bigraded quasi-isomorphism introduced 
above appears naturally in this context, namely:

Theorem C. For a map f : A → B of bicomplexes the following statements are equivalent:

(1) The map f is an isomorphism in Ho(BiCo).
(2) The maps HBC(f) and HA(f) are isomorphisms.
(3) For any additive functor H from the category of bicomplexes to an additive category, 

vanishing on projective bicomplexes, H(f) is an isomorphism.

If A, B are bounded the above are further equivalent to:

(4) The maps H∂̄(f) and H∂(f) are isomorphisms.

Theorem C recovers partial results in the bounded case obtained by elementary meth-
ods in [41] and puts them into a general algebraic context. It is a main technical input 
for Theorems A and B, since HBC and HA are invariant by conjugation and using them 
to characterize quasi-isomorphisms one can argue – in principle – along the lines of the 
singly graded case, even though the technical details, in particular for Theorem B, are 
still considerable. As an outgrowth of our additive considerations, we prove several results 
that may be of independent interest: A formula which exhibits Dolbeault, Bott-Chern, 
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Aeppli and, more generally, Schweitzer cohomology, as mapping spaces in Ho(BiCo) giv-
ing rise to a long exact sequence in Schweitzer cohomology, and a Künneth type theorem 
for Aeppli- and Bott Chern cohomology (Corollary 1.36).

The underlying idea of our main constructions is – perhaps deceptively – simple. At 
the most elementary level it consists in replacing d by ∂∂̄ in all the ‘right’ places. In 
other words, one replaces ordinary potentials (y = dx) by pluripotentials (y = ∂∂̄x). For 
example, in the singly graded theory, models are built by iteratively building pushouts 
of diagrams

Λ(•) Λ( )

M,

where • denotes a one-dimensional complex concentrated in a single degree and an 
isomorphism d : C −→ C. Depending on whether the vertical map sends the generator of 
• to an exact element or not, this corresponds to adding a cohomology class or enforcing a 
relation in cohomology. In perfect analogy, our constructions will use successive pushouts 
of the form

Λ(•) Λ(�)

M,

where � denotes a four-dimensional bicomplex with ∂∂̄ �= 0 (a square of four one-
dimensional spaces in neighbouring bidegrees, connected by isomorphisms) and • → �
is the inclusion identifying • with the top right corner, i.e. the sub-bicomplex given by 
im ∂∂̄.

Related works. The development of homotopical versions of the cohomological story 
has been mostly focussed on the Kähler or algebraic case, see for instance [32], [21], [22], 
[48]. An exception is [34], where a homotopical analogue of Dolbeault cohomology and 
the Frölicher spectral sequence is established for general complex manifolds, albeit at the 
cost of breaking the inherent conjugation symmetry, see also [23]. In recent years, higher 
multiplicative operations involving ‘double primitives’ (i.e. pluripotentials) have emerged 
[2], [45], [31], which can be nontrivial even on manifolds satisfying the ∂∂̄-property, [40], 
and which do not fit into the existing theories.

In the compact case, the theory developed here includes the Dolbeault cohomotopy 
and Frölicher spectral sequence of [34], [23] and the induced filtrations on the homotopy 
groups of compact Kähler manifolds obtained in [14], [32] via the principle of two types. 
It is also a natural framework for the pluripotential higher operations, a point which is 
elaborated in detail in [31].
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Sins of omission: From a purely algebraic standpoint, one could discuss many results 
in a more general setup. For instance we always work over C, but all proofs of results 
not concerning complex manifolds in sections 1, resp. 2 carry over to arbitrary fields, 
resp. arbitrary fields of characteristic zero, and some can be adapted for modules over 
more general rings. One can also consider n-gradings for n ≥ 2. Since our ultimate goal 
is to study complex manifolds we did not go down these roads. For complex geometry 
itself, it will be very interesting to study the interaction of the bigraded invariants built 
here with the rational or integral structure. Furthermore, one may now ask which results 
and techniques of rational homotopy theory carry over to the holomorphic setting and 
which of the algebraic constructions given here have ‘geometric’ counterparts, say in 
a suitable enlargement of the category of complex manifolds. We leave this for future 
work. Finally, instead of working with cbba’s as we do here, there is also a complementary 
operadic approach using bigraded homotopy transfer methods. This will be explored in 
the forthcoming PhD thesis of Anna Sopena-Gilboy.

Acknowledgments: I am grateful to J. Cirici and the Universitat de Barcelona for an 
invitation to Barcelona and to the Einstein chair (D. Sullivan) and the CUNY Graduate 
Center for an invitation to New York, both in early 2022, where I had the opportunity 
to present and discuss early versions of these results. Further, I thank S. Boucksom, 
J. Cirici, C. Deninger, D. Kotschick, A. Milivojevic, J. Morgan, D. Sullivan, S. Wilson, 
L. Zoller for useful questions, conversations or comments. Last but not least, I thank 
the anonymous referee for a careful reading and useful suggestions that improved the 
presentation.

Notations and conventions: For a bigraded object V = V ·,·, we write V · =⊕
p+q=· V p,q for the associated singly graded object using the total degree. For a pure 

(bi)degree element v ∈ V of a bigraded object we use the notation |v| to denote either 
total degree or bidegree, as will be clear from context, e.g. |v| = (p, q) or |v| = k. We 
refer to [25] for background and definitions concerning model category structures. For 
any two objects A, B of a model category, we denote by [A, B] the set of morphisms in 
the homotopy category.

1. Direct sums and tensor products

1.1. The category of bicomplexes

1.1.1. Basic definitions
We denote by BiCo the category of bicomplexes (or double complexes) of C-vector 

spaces. Objects are bigraded C-vector spaces A =
⊕

p,q∈ZAp,q together with an endo-
morphism d of total degree 1 which splits into components d = ∂+ ∂̄ of degrees (1, 0) and 
(0, 1) and satisfies d2 = 0. Morphisms are C-linear maps of the underlying vector spaces 
that preserve the bigrading and commute with the differential. Even though we use the 
suggestive notation ∂, ∂̄, we do not in general assume bicomplexes to be equipped with 
a real structure in the sense introduced below.
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The category BiCo has ‘shift’ endofunctors [r, s], defined by (A[r, s])p,q := Ap−r,q−s

and differential dA[r,s] = (−1)r+sd and internal homs Hom(A, B), defined by

Hom(A,B)p,q :=
∏

r,s∈Z
HomC−vs(Ap,q, B[r, s]p,q),

with differential

d(φ) := (a 	→ [d, ϕ](a) = dϕ(a) − (−1)|ϕ|ϕ(d(a))). (1.1)

We write DA := Hom(A, C) for the dual complex and DnA := DA[n, n]. The tensor 
product

(A⊗B)p,q =
⊕

r+u=p
s+v=q

Ar,s ⊗C Bu,v,

with differential d(a ⊗ b) = da ⊗ b + (−1)|a|a ⊗ db equips BiCo with a closed symmetric 
monoidal structure. In particular, internal hom and tensor product are adjoint so that 
one has isomorphisms, natural in all entries

(_ ⊗A) : BiCo � BiCo : Hom(A,_) (1.2)

For any finite dimensional bicomplex A, one has A ∼= DDA and there is an identification 
of functors (DA ⊗_) ∼= Hom(A, _). Thus, from (1.2), in this case A ⊗_ has a left-adjoint:

(DA⊗ _) : BiCo � BiCo : (_ ⊗A) (1.3)

1.1.2. Real structures
We denote by R BiCo the category of fixed points of the involution σ on BiCo which 

maps a bicomplex A to its complex conjugate bicomplex Ā. The latter denotes the 
bicomplex which in degree (p, q) is the space Aq,p with the conjugate C-vector space 
structure and for which ∂ and ∂̄ are interchanged. Objects of R BiCo are pairs (A, σ), 
where σ : A → Ā is an isomorphism of bicomplexes. Equivalently, we may consider σ as 
a C-antilinear involution A → A such that σ(Ap,q) = Aq,p and σ∂σ = ∂̄. An object of 
R BiCo may also be considered as an ordinary (cochain) complex over the reals together 
with a bicomplex structure on its complexification, compatible with total grading and 
differential s.t. the conjugation on the coefficients acts as above. For every complex 
manifold X, the bicomplex of smooth, C-valued differential forms AX , with involution 
given by complex conjugation, is an object in R BiCo. The discussion of shifts, duals etc. 
has straightforward analogues for the category R BiCo. In fact, virtually all constructions 
made in this paper are either symmetric in ∂ and ∂̄ or are easily adapted to be and 
therefore extend to R BiCo.
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1.1.3. Bicomplexes as modules
Following [27], the category BiCo can also be described as the category of bigraded 

modules over the bigraded algebra Λ(∂, ∂̄) = H∗(S1 × S1; C), where we write ∂, ∂̄ for 
the fundamental classes of the two factors and we consider the bigrading s.t. |∂| = (1, 0)
and |∂̄| = (0, 1). As a bicomplex, this algebra looks as follows:

〈∂̄〉 〈∂∂̄〉

C 〈∂〉

where all arrows are isomorphisms. We will thus write symbolically � := Λ(∂, ∂̄) if we 
consider this algebra as an object in BiCo. Note that there is an antilinear conjugation 
action exchanging ∂ and ∂̄ and the category of equivariant modules for this action is 
R BiCo.

1.1.4. Indecomposable bicomplexes
Recall that a bicomplex is called indecomposable if it cannot be decomposed into the 

direct sum of two nontrivial subcomplexes. The indecomposable bicomplexes fall in two 
classes: Squares, i.e. bicomplexes isomorphic to �[p, q], for p, q ∈ Z and zigzags, which can 
formally be defined as bicomplexes Z such every nonzero component has dimension 1 and 
the undirected support graph, with set of vertices {(p, q) | Zp,q �= 0} and an edge between 
(p, q) and (r, s) whenever there is a nonzero differential Zp,q → Zr,s, is homeomorphic to 
a non-empty interval (with or without either endpoint). Since ∂2 = ∂̄2 = [∂, ∂̄] = 0, any 
zigzag is concentrated in one or two total degrees. If a zigzag is bounded, it has finite 
dimension, equal to the number of nonzero components, and we call this dimension its 
length. Up to shift and isomorphism, the zigzags of length 1 or 2 look as follows, where 
the superscript denotes the bidegree and all maps are the identity:

C0,0, C0,0 C1,0,

C0,1

C0,0

,

C0,1

C0,0 C1,0,

C0,1 C1,1

C1,0.

We will refer to these as dots and lines and (reverse) L’s. Up to isomorphism and shift, 
there are two zigzags with any given length ≥ 2.

Theorem 1.1 ([27], [41]). Any indecomposable bicomplex is a square or a zigzag and 
any bicomplex is a direct sum of indecomposable subcomplexes. Such a decomposition is 
unique up to (noncanonical) isomorphism and ordering.

Note that infinite dimensional zigzags will be unbounded in one or both anti-diagonal 
directions.



J. Stelzig / Advances in Mathematics 460 (2025) 110038 9
Definition 1.2. A bicomplex is called locally bounded if it does not contain any infinite-
length zigzags as direct summands.

For example, first quadrant complexes, i.e. Ap,q = 0 whenever p < 0 or q < 0, are 
automatically locally bounded. By the usual construction of the spectral sequence of a 
filtered complex applied to the row and column filtrations and a case by case inspection 
as in [27, p.14], we have

Lemma 1.3. For any bicomplex A there are two ‘Frölicher’ spectral sequences with row, 
resp. column cohomology as their first pages. They both converge to the total cohomology 
if and only if A is locally bounded.

Let us call a bicomplex minimal if ∂∂̄ ≡ 0. E.g., zigzags are minimal, but squares are 
not. We note the following consequence of Theorem 1.1 for later use:

Corollary 1.4 (Minimal ⊕ Contractible decomposition). Any bicomplex A admits a (non-
canonical) decomposition A = Azig ⊕Asq, where Asq is a direct sum of squares and Azig

satisfies ∂∂̄ ≡ 0.

1.2. The homotopy category of bicomplexes

The algebra Λ(∂, ∂̄) is a Frobenius algebra and as such the category of modules over 
it is equipped with a canonical model category structure (cf. [25]) and the associated 
homotopy category is a triangulated category as in [24]. Without claiming any originality, 
in this section we spell out these general results for the category of bicomplexes, following 
[24], [25] and [27].

Being the category of bigraded modules over a bigraded Frobenius algebra, projective 
objects in BiCo coincide with injective objects. In fact, projective objects are precisely the 
direct sum of squares. The same holds in R BiCo, indecomposable projective objects are 
direct sums of either conjugation invariant squares on the diagonal or pairs of conjugate 
squares.

Let us say a map A → B in BiCo is nullhomotopic if it factors through a projective 
object and two maps f, g are homotopic f � g if their difference f − g is nullhomotopic. 
We denote the space of nullhomotopic maps between A, B by

Hom0
BiCo(A,B) := {f � 0} ⊆ HomBiCo(A,B)

The following Lemma shows how this notion is a bigraded version of the familiar notion 
of chain homotopy, cf. [27].

Lemma 1.5. Let f : A → B be a map of bicomplexes. The following assertions are 
equivalent:
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(1) f is nullhomotopic.
(2) There exists a map h : A → B[1, 1] of bigraded vector spaces s.t. f = [∂, [∂̄, h]] =

∂∂̄h − ∂h∂̄ + ∂̄h∂ − h∂̄∂.1

Proof. Given any square S with generator x, define a map k := kS : S → S[1, 1] by 
k(∂∂̄x) = x and k(x) = k(∂x) = k(∂̄x) = 0. Denoting ϕk := [∂, [∂̄, k]], we have ϕk = IdS . 
This shows the statement is true for the identity map on a square, and hence on any 
projective object. Next, assume we have a factorisation

f : A i−→ P
p−→ B

with P projective and choose a map k : P → P [1, 1] as above s.t. IdP = [∂, [∂̄, k]]. Then 
define h := p ◦ k ◦ i.

Conversely, given h : A → B[1, 1], set P := � ⊗ A[−1, −1], where we consider � =
Λ(∂, ∂̄) as a bicomplex as usual but consider A[−1, −1] with ∂ = ∂̄ = 0. With this 
definition, the inclusion i : A → P defined by i(a) = ∂∂̄ ⊗ a − ∂ ⊗ ∂̄a + ∂̄ ⊗ ∂a − 1 ⊗ ∂̄∂a

is a map of bicomplexes. Then, defining a map p : P → B by p := m ◦ (Id⊗h) where 
m : Λ(∂, ∂̄) ⊗B → B is the module structure, we have f = p ◦ i. �
Remark 1.6. If in the previous Lemma f is a map in R BiCo, one may take h to be purely 
imaginary (i.e. h̄ = −h).

We say a map f : A → B is a bigraded chain homotopy equivalence if there exists a 
map g : B → A s.t. f ◦ g � IdB and g ◦ f � IdA. We will give further characterisations 
of this property in Section 1.4 below.

Theorem 1.7. The category BiCo (resp. R BiCo) carries a cofibrantly generated model 
category structure, where

(1) Fibrations are the surjective maps of bicomplexes.
(2) Weak equivalences are the bigraded chain homotopy equivalences.
(3) Cofibrations are the injective maps of bicomplexes.

Proof. This is (the bigraded version of) a special case of a general result on categories 
of modules over Frobenius algebras, see [25]. �
Remark 1.8. In the literature one also finds model category structures on the category 
of bicomplexes that use other notions of weak equivalences, e.g. maps that induce iso-
morphisms in total cohomology or on some page of the spectral sequences cf. [33], [10]. 
As we see in Section 1.4, a bigraded chain homotopy equivalence is a weak equivalence 
in all these other structures.

1 This notion was independently suggested to the author by P. Deligne.
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We denote by Ho(BiCo) the homotopy category of BiCo. Every object in BiCo is both 
fibrant and cofibrant, and so one may compute the morphisms as homotopy classes

[A,B] = HomBiCo(A,B)
Hom0

BiCo(A,B)
. (1.4)

Again as a specialization of general results on stable categories [24], [11, Prop. 4.19], 
Ho(BiCo) can be equipped with the structure of a triangulated category as follows (cf. 
also [27]):

A shift functor BiCo → BiCo, which for reasons that will become obvious momentarily, 
we denote by L, is defined by L(A) := ⊗A, where

:= �[−1,−1]/〈∂∂̄〉 =
〈∂̄〉

C 〈∂〉,

with C sitting in degree (−1, −1). A homotopy-inverse to L is given by L−1(A) := ⊗A, 
where

:= ker(� → C) =
〈∂̄〉 〈∂∂̄〉

〈∂〉

Lemma 1.9. In Ho(BiCo), there are natural identifications L ◦L−1 ∼= Id. More generally, 
the action of Ln is naturally identified with tensoring with a length 2|n| + 1 zigzag.

Proof. The first part says the shift functor is an auto-equivalence, as is true in any 
triangulated category. The more general statement is essentially proved in [41, §3], though 
without giving an explicit isomorphism, which can be easily provided. In order not to 
get lost in notation, we give an example instead of a general calculation: Considering 

⊗ and writing x, y for generators in bottom left degree, we find that the subcomplex 
S ⊆ ⊗ generated (as a bicomplex) by x ⊗ y is a square. Since injective-projective 
objects necessarily split off as direct summands, the projection to the quotient is thus 
an isomorphism in Ho(BiCo) onto a length five zigzag. Concretely:

〈∂̄x〉

〈x〉 〈∂x〉

⊗
〈∂̄y〉

〈y〉 〈∂y〉
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=
〈∂̄(xy)〉 〈∂∂̄(xy)〉

〈xy〉 〈∂(xy)〉

⊕

〈∂̄x∂̄y〉

〈x∂̄y〉 〈∂x∂̄y〉

〈∂xy〉 〈∂x∂y〉

�

We may define a cone functor by setting

cone(f : A → B) := coker(A → B ⊕ �[−1,−1] ⊗A)

where the map is given by a 	→ (f(a), i∂∂̄ ⊗ a). Explicitly, as a bigraded vector space, 
we have an isomorphism cone(f) ∼= B ⊕ L(A), with the usual differential on B and 
d(1 ⊗ a) = d ⊗ a + 1 ⊗ da, d(∂ ⊗ a) = −f(ia) − ∂ ⊗ da and d(∂̄ ⊗ a) = f(ia) − ∂̄ ⊗ da). 
Finally, distinguished triangles are those isomorphic to

A
f−→ B −→ cone(f) → L(A).

The tensor product and internal homs make BiCo into a symmetric monoidal model 
category [25, 4.2.15]. In particular, they induce well-defined functors on the homotopy 
category and we still have adjunctions

(_ ⊗A) : Ho(BiCo) � Ho(BiCo) : Hom(A,_) (1.5)

and thus, for any A isomorphic in Ho(BiCo) to a finite dimensional bicomplex:

(DA⊗ _) : Ho(BiCo) � Ho(BiCo) : (_ ⊗A) (1.6)

and analogously for Ho(R BiCo).

1.3. Aeppli, Bott-Chern and Schweitzer cohomology as mapping spaces

Recall that we have functors from bicomplexes to bigraded vector spaces given by 
Bott-Chern and Aeppli cohomologies

HBC := ker ∂ ∩ ker ∂̄
im ∂∂̄

HA := ker ∂∂̄
im ∂ + im ∂̄

.

If A is a bicomplex, the bigrading HBC(A) =
⊕

Hp,q
BC(A), HA(A) =

⊕
Hp,q

A (A) is simply 
induced by that of A.

Example 1.10. For bicomplexes A, B, there is a natural identification [A, B] =
H0,0

BC(Hom(A, B)). This follows from Equation (1.4), Lemma 1.5 and Equation (1.1).
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The Bott-Chern and Aeppli cohomology groups are cohomology groups in particular 
degrees of a complex defined by B. Bigolin, M. Schweitzer and J. P. Demailly [3], [4]
[38], [15]. More precisely, for any bicomplex A and a pair of integers p, q ∈ Z, define a 
complex (L·p,q(A), d) via

Lk
p,q(A) :=

⊕
r+s=k
r<p,s<q

Ar,s if k ≤ p + q − 2,

Lk
p,q(A) :=

⊕
r+s=k+1
r≥p,s≥q

Ar,s if k ≥ p + q − 1,

with differential given by

· · · pr ◦d−→ Lp+q−3
p,q (A) pr ◦d−→ Lp+q−2

p,q (A) ∂∂̄−→ Lp+q−1
p,q (A) d−→ Lp+q

p,q (A) d−→ · · ·

Denoting its cohomology groups by Hk
Sp,q

(A) := Hk(Lp,q(A)), one has Hp,q
BC(A) =

Hp+q−1
Sp,q

(A) and Hp,q
A (A) = Hp+q

Sp+1,q+1
(A).

Write • for the double complex consisting of a single one-dimensional vector space C
in degree (0, 0). Then:

Theorem 1.11. There are natural isomorphisms

[•[p, q], A] ∼= Hp,q
BC(A) and [ [p, q], A] ∼= Hp−1,q−1

A (A)

and, more generally for any k ∈ Z,

[ ⊗k[p, q], A] ∼= Hp+q−k−1
Sp,q

(A).

Proof. We have

[•[p, q], A] = HomBiCo(•[p, q], A)/Hom0
BiCo(•[p, q], A).

Let x = 1[p, q] be the generator for •[p, q]. Then there is an isomorphism

HomBiCo(•[p, q], A) ∼= ker ∂ ∩ ker ∂̄ ∩Ap,q

ϕ 	→ ϕ(x).

On the other hand, by Lemma 1.5, the set of null-homotopic morphisms is given by the 
collection of ϕh = [∂, [∂̄, h]] for h : •[p, q] → A a linear map of bidegree (−1, −1). In that 
case, ϕh(x) = ∂∂̄h(x), so that under the same identification Hom0

BiCo(•[p, q], A) ∼= im ∂∂̄. 
This proves the first isomorphism. Note that we could have also argued via Example 1.10.

For the second, we again denote by x = 1[p − 1, q − 1] a bicomplex generator of 
[p, q], so that as a vector space [p, q] = 〈x, ∂x, ∂̄x〉. As before, sending ϕ 	→ ϕ(x)
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gives an identification of HomBiCo( [p, q], A) ∼= ker ∂∂̄ ∩ Ap−1,q−1. On the other hand, 
to give a linear map h : [p, q] → A of degree (−1, −1) it is necessary and sufficient to 
give the three elements h(x) ∈ Ap−2,q−2, h(∂x) ∈ Ap−1,q−2 and h(∂̄x) ∈ Ap−2,q−1 and 
ϕh(x) = ∂∂̄h(x) − ∂h(∂̄x) + ∂̄h(∂x) so that Hom0

BiCo( [p, q], A) = (im ∂ + im ∂̄) ∩Ap,q

For the general formula, use Lemma 1.9 to replace 
⊗k by an appropriate zigzag of 

length 2|k| + 1. Then the same arguments as above, with more cumbersome notation, 
yield the conclusion. We omit the details. �
Corollary 1.12. For any triangle A → B → C → LA in Ho(BiCo), there is a long exact 
sequence

... → Hp−1,q−1
A (C) → Hp,q

BC(A) → Hp,q
BC(B) → Hp,q

BC(C)

→ Hp+q
Sp,q

(A) → Hp+q
Sp,q

(B) → Hp+q
Sp,q

(C) → Hp+q+1
Sp,q

(A) → · · · (1.7)

Proof. By general properties of triangulated categories, there is a long exact sequence

... → [•[p, q], L−1(C)] → [•[p, q], A] → [•[p, q], B]

→ [•[p, q], C] → [•[p, q], L(A)] → ... (1.8)

and this implies the statement using Theorem 1.11 and that for all bicomplexes E, F
and integers r ∈ Z one has [E, Lr(F )] = [L−r(E), F ] by (1.6). �
Remark 1.13. Using the complex := (C → C) concentrated in degrees (0, 0) and (1, 0), 
we see that [ [p, q], A] ∼= Hp,q

∂̄
(A) and we recover the long exact sequence in column 

cohomology. Considering longer even length zigzags Z going from (0, 0) to (r, −r + 1), 
there is a surjection [Z[p, q], A] → Ep,q

r (A), which is in general not an isomorphism, as 
can be seen e.g. by taking Z to be length 4 and computing [Z, [1, −1]].

Remark 1.14. An elementary construction of the long exact sequence in Corollary 1.12
is as follows: Assume the triangle A → B → C → LA is associated to a short exact 
sequence 0 → A → B → C → 0 of bicomplexes. The sequence of simple complexes 
0 → Lp,q(A) → Lp,q(B) → Lp,q(C) → 0 is still exact and one can consider its associated 
long exact sequence as usual.

Example 1.15. For any map f : X → Y of compact complex manifolds, one obtains a 
triangle AY → AX → cone(f) → LAY in Ho(BiCo) and a corresponding long exact 
sequence in Schweitzer cohomology and Dolbeault cohomology. E.g. one may apply this 
to submersions f : X → Y or embeddings i : Z → X, in which case the cone is (up to 
shift) quasi-isomorphic to the relative forms AX/Y = coker f∗ or A(X, Z) := ker i∗.

To further illustrate the mapping-space long exact sequence in an abstract setting, we 
apply it for a computation that will be used later on, in Section 2.6:
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Let M be a double complex and [c] ∈ Hp+1,q+1
BC (M) for some p, q ∈ Z. Define M ⊕c

�[p, q] to be the pushout of the diagram

•[p + 1, q + 1] �[p, q]

M,

where the horizontal map sends the generator to the top right tip and the vertical map 
sends the generator to c.

Lemma 1.16 (Bott-Chern-classes squared away I). Write j = p + q. The cohomology 
M ⊕c �[p, q] may be computed as follows:

(1) If [c] = 0 ∈ HBC(M), we have M ⊕c �[p, q] ∼= M ⊕ [p + 1, q + 1] and so

Hi
BC(M ⊕c �[p, q]) ∼=

{
Hi

BC(M) ⊕C2 if i = j + 1
Hi

BC(M) else.

Hi
A(M ⊕c �[p, q]) ∼=

{
Hi

A(M) ⊕C if i = j

Hi
A(M) else.

(2) If [c] �= 0 ∈ HBC(M), we have

Hi
BC(M ⊕c �[p, q]) ∼=

⎧⎪⎪⎨⎪⎪⎩
Hi

BC(M) ⊕R if i = j + 1
Hi

BC(M)/[c] if i = j + 2
Hi

BC(M) else.

Hi
A(M ⊕c �[p, q]) ∼=

{
Hi

A(M)/[c]A if i = j + 2
Hi

A(M) else,

where R is a vector space of dimension at most 2, which vanishes if [c]A �= 0.

Proof. First assume c = ∂∂̄b and denote by a a generator for �, by x a generator for 
L[p + 1, q + 1]. Then the isomorphism M ⊕c �[p, q] ∼= M ⊕ L[p + 1, q + 1] is induced by 
the identity on M and b 	→ a − x. The cohomology calculation is then clear.

If [c] �= 0, consider the short exact sequence

0 → M → M ⊕c �[p, q] → L[p + 1, q + 1] → 0,

which has an associated long exact sequence. We write down the relevant portion, where 
H = HBC or H = HA:
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· · · → Hi(•[p + 1, q + 1]) → Hi(M) → Hi(M ⊕c �[p, q]) → Hi( [p + 1, q + 1]) → . . . ,

where we have used L−1( [p + 1, q + 1]) = •[p + 1, q + 1]. The left map sends the 
generator to [c]. Further, we have Hj+1

BC ( [p + 1, q + 1]) = C2, Hj
A( [p + 1, q + 1]) = C

and Hi( [p + 1, q + 1]) = 0 else. It thus remains to analyze the right map in the two 
cases where Hi( [p +1, q+1]) �= 0. If [c]BC �= 0, i.e. c �∈ im(∂∂̄), we see that it is trivial 
when mapping to Hj

A( [p +1, q+1]) and under the additional assumption that [c]A �= 0, 
i.e. c �∈ (im ∂ + im ∂̄), we see that it is trivial when mapping to Hj+1

BC . �
Example 1.17. The following sketch illustrates a situation where dimR = 2. Dots and 
diamonds stand for one-dimensional vector spaces and lines for isomorphisms.

⊕ ∼= ⊕

It is an instructive exercise to draw similar pictures for situations with dimR = 1 or 
dimR = 0.

1.4. Pluripotential quasi-isomorphisms

We give a more in-depth study of maps in BiCo that induce isomorphisms in Ho(BiCo)
and prove Theorem C from the introduction.

Lemma 1.18. Let A be a bicomplex. The following statements are equivalent:

(1) A ∼= 0 in Ho(BiCo).
(2) A is a direct sum of squares.
(3) HBC(A) = 0.
(4) HA(A) = 0.

If A is locally bounded, these statements are further equivalent to:

(5) H∂(A) = H∂̄(A) = 0.

Proof. The equivalence of the first two statements follows from the definitions, keeping 
in mind that projective objects are exactly direct sums of squares. To show (2) ⇔ (3), 
(resp. (4)), use Theorem 1.1 and that HBC (resp. HA) commutes with direct sums and 
check on every bicomplex separately. HBC (resp. HA) is nonzero exactly on dots and 
corners of zigzags with incoming (resp. outgoing) arrows. For the statement on row and 
column cohomology, note that these are nonzero exactly on ‘endpoints’ of zigzags. �
Remark 1.19. One can avoid using the full Theorem 1.1 and prove as in [14, Prop. 5.17]
by elementary means that under the assumption of, say, HBC(A) = 0, one has a decom-
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position A =
⊕

Sp,q, where Sp,q denotes the subcomplex generated by a complement of 
ker ∂∂̄ ⊆ Ap,q.

Remark 1.20. An unbounded projective A still satisfies H∂(A) = H∂̄(A) = 0. However, 
the converse is not true, as one can see by considering a two-sided infinite zigzag.

Theorem 1.21. Let f : A → B be a map of bicomplexes. The following statements are 
equivalent:

(1) f is a bigraded chain homotopy equivalence, i.e. an isomorphism in Ho(BiCo).
(2) cone(f) is a direct sum of squares.
(3) For any choice of decomposition A = Asq ⊕ Azig and B = Bsq ⊕ Bzig as in Corol-

lary 1.4, the map f : Azig → Bzig is an isomorphism.
(4) HBC(f) and HA(f) are isomorphisms.

If A, B are locally bounded, these are further equivalent to H∂(f) and H∂̄(f) being iso-
morphisms.

Definition 1.22. A map satisfying the above equivalent conditions will be called a pluripo-
tential quasi-isomorphism or a bigraded quasi-isomorphism.

We introduce two names for the same concept for the following reasons: The term 
bigraded quasi-isomorphism is ambiguous since it could also refer to a map of bicomplexes 
which is a usual quasi-isomorphism (i.e. it induces an isomorphism in total cohomology). 
On the other hand, it has also been used with the current meaning e.g. in [43], [31]. 
The term pluripotential quasi-isomorphism does not have this ambiguity and conveys 
the crucial point of Theorem 1.21 (4) that information on existence and uniqueness to 
the ∂∂̄-equation is preserved along these quasi-isomorphisms. In this paper, we will use 
both terms interchangeably, favouring ‘bigraded’ in the abstract algebraic setup and 
‘pluripotential’ in context of complex manifolds.

Proof. The equivalence of Item 1 and Item 2 is an instance of the following general fact in 
triangulated categories that follows directly from the axioms: A map is an isomorphism 
if and only if its cone isomorphic to zero. For the equivalence with Item 3, note that 
Azig → A and B → Bzig are isomorphisms in Ho(BiCo).

Next, consider the long exact sequence given by Corollary 1.12

... → Hp−1,q−1
A (A) → Hp−1,q−1

A (B) → Hp−1,q−1
A (cone(f))

→ Hp,q
BC(A) → Hp,q

BC(B) → ... (1.9)

and using 1.18, we see that Item 1 is equivalent to Item 4.
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The statement about row and column cohomology follows again using the associated 
long exact sequences as in Remark 1.13 and Lemma 1.18. �
Definition 1.23 ([42]). Let V be an additive category. An additive functor H : BiCo → V

is called cohomological if it satisfies H(P ) = 0 for any direct sum of squares P .

Typical examples of such functors for us are HBC , HA, H∂̄ , the Schweitzer cohomolo-
gies, etc. Additive functors commute with finite direct sums. If H commutes even with 
infinite direct sums, it is enough to require H(�[p, q]) = 0 for p, q ∈ Z. In practice, all 
our examples will be of this form.

Remark 1.24. In [42], an additional finiteness condition and linearity instead of addictive-
ness were imposed, both of which are irrelevant here. In [41] the same notion appeared 
without name and with the inaccurate wording ‘H vanishes on squares’ which should 
either be read as ‘H vanishes on direct sums of squares’ or be complemented by the 
assumption that H commutes with arbitrary direct sums.

We recover the following result, proved in [41] for bounded complexes by different 
means.

Corollary 1.25. Let f : A → B be a map of bicomplexes s.t. HBC(f) and HA(f) are 
isomorphisms. Then H(f) is an isomorphism for any cohomological functor.

If A, B are locally bounded, it suffices to require H∂(f) and H∂̄(f) to be isomorphisms.

Proof. It is enough to show that H factors through Ho(BiCo). By the universal property 
of localization this is the case if it sends bigraded homotopy equivalences to isomorphisms 
in V . Since H sends projective objects to zero it sends any map factoring over projectives 
to zero. Then, for then for any bigraded homotopy equivalence f with quasi-inverse g, 
one has 0 = H(f ◦ g − Id) = H(f)H(g) − Id and analogously H(g)H(f) = Id. �
Remark 1.26 (Terminology). In [41] and following works, maps between bounded com-
plexes such that H∂(f) and H∂̄(f) are isomorphisms were called E1-isomorphisms.

In the context of triangulated categories, there is a different notion of cohomological 
functor, namely an additive functor to an abelian category which sends triangles to long 
exact sequences. This is a stronger condition than what is considered here, where one 
only has that functor H factors through the (triangulated) homotopy category, but no 
assumption about the behaviour on long exact sequences is made.

1.5. The real motives of complex manifolds

Given any complex manifold X, the bicomplex AX defines an object in R BiCo. One 
may think of the associated object in Ho(R BiCo) as the ‘real motive’ of X. In fact, by 
definition, any cohomological functor factors through Ho(R BiCo) and, as we explain in 
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this section, analytically equivalent maps (resp. correspondences) define the same map 
in Ho(R BiCo). This answers a question the author was asked by C. Deninger and S. 
Boucksom (independently).

Lemma 1.27. Let X, Y be compact connected complex manifolds. The following maps are 
isomorphisms in Ho(R BiCo):

(1) (Künneth formula) AX ⊗AY → AX×Y , given by ω ⊗ η 	→ pr∗X ω ∧ pr∗Y η.
(2) (Duality) AX → DAX , given by ω 	→

∫
X
ω ∧ _.

Proof. Both maps are compatible with the real structures. As noted in [41], they are 
E1-isomorphisms as a consequence of the Dolbeault Künneth formula, resp. Serre duality 
[39]. Since all involved complexes are bounded, this means they are also pluripotential 
quasi-isomorphisms by Theorem 1.21. �

Let us now assume X to be compact and connected and let Cycp(X) denote the free 
abelian group on closed irreducible, reduced complex analytic subspaces of X of pure 
codimension p. We have a map Cycp(X) → (DnAX)p,p which sends Z ⊆ X to its current 
of integration [Z] := (η 	→

∫
Z
η|Z) ∈ (DnAX)p,p. This current is obviously ∂ and ∂̄-closed 

and we can compose with a projection to obtain a ‘fundamental class’ map

Cycp(X) −→ Hp,p
BC(DnAX) ∼= Hp,p

BC(X)

Z 	−→ [Z].
(1.10)

Assume we are given a compact connected complex manifold P , an analytic subspace 
W ⊆ X × P of pure codimension p and two points a, b ∈ P s.t. the fibres Xa := π−1

P (a), 
Xb := π−1

P (b) of the projection πP : X × P → P intersect W transversally. Then 
Za := W ∩ Xa and Zb := W ∩ Xb are said to be elementary analytically equivalent. 
We denote by Cycp0(X) ⊆ Cycp(X) the subgroup generated by differences of elementary 
analytically equivalent cycles. Two cycles Z, Z ′ ∈ Cycp(X) are said to be analytically 
equivalent if their difference lies in Cycp0(X). We call the quotient by this equivalence 
relation the analytic Chow group: CHp

an(X) := Cycp(X)/ ∼an

Lemma 1.28. If Z ∼an Z ′ are two analytically equivalent cycles on X, their fundamental 
classes coincide: [Z] = [Z ′] ∈ HBC(X).

Proof. Without loss of generality, we can restrict to the case of elementary analytically 
equivalent subspaces, so let P, W, a, b, and Za, Zb be as above. Note that [a] − [b] = 0 ∈
HdimP,dimP

BC (P ). In fact, by duality it suffices to check this by pairing with H0,0
A (P ) = C

and for every constant function f one has f(a) − f(b) = 0. Then, 0 = i∗π∗([a] − [b]) =
[Za] − [Zb], where i : W → X ×P is the inclusion and we have used that i∗([Xa]) = [Za]
and i∗([Xb]) = [Zb] (cf. [49], which contains an argument even for integral Bott-Chern 
cohomology). �
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Corollary 1.29. For any compact complex manifold X, (1.10) induces a well-defined map 
CHp

an(X) → Hp,p
BC(X).

Corollary 1.30. For two compact complex manifolds X, Y of dimensions n, m, there is a 
map

CHp
an(X × Y ) −→[AY [p−m, p−m], AX ].

Proof. This follows from the following chain of canonical identifications:

Hp,p
BC(X × Y ) ∼= [•[p, p], AX×Y ]

∼= [•[p, p], AX ⊗AY ]
∼= [DAY [p, p], AX ]
∼= [AY [p−m, p−m], AX ].

Here, we have used Lemma 1.27 in the second and fourth line. The third line uses (1.6), 
which is applicable since AY is quasi-isomorphic to a finite dimensional bicomplex by 
Theorem 1.1 and the fact that Dolbeault cohomology is finite dimensional and nonzero 
on any bounded zigzag (cf. [41]). �

E.g. if f : X → Y is a map and Γf ⊆ X × Y its graph (so it has dimension n and 
codimension p = m), one obtains a class in [AY , AX ] which coincides with the pullback 
map. In particular, analytically equivalent maps give rise to homotopic maps in BiCo and 
hence to the same pullback maps in every cohomological functor. The above Corollary 
also shows that the same holds for maps induced by correspondences.

1.6. ABC-cohomology and minimal models for bicomplexes

For any bicomplex A, by Corollary 1.4 there is a decomposition A = Azig ⊕ Amin

into a minimal and a contractible part. Such a decomposition is a choice and generally 
not compatible with maps. In this section we give a functorial meaning to the summand 
Azig.

We note that the differentials ∂ and ∂̄ induce maps of bidegree (1, 0) and (0, 1):

∂, ∂̄ : HA(A) −→ HBC(A)

and the zero map on HBC . Thus, we can consider HA ⊕HBC as a functor

bicomplexes −→ minimal bicomplexes.

However, in general HA(A) ⊕HBC(A) is not isomorphic to A in Ho(BiCo). For instance, 
if A = C is a dot, concentrated in a single bidegree, then
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HA(A) ⊕HBC(A) = C2 �= C = A

and the two sides can also not be isomorphic in Ho(BiCo) since they have different 
cohomology. We will now present various ways to fix this ‘double counting’. For this, 
it is convenient to introduce reduced versions of HA and HBC . Consider the natural 
transformation induced by the identity

HBC −→ HA. (1.11)

Now we define H̃BC , resp. H̃A, resp Hdot the functors which send a bicomplex to the 
(objectwise) kernel, resp. the cokernel, resp. the image of (1.11), which we may describe 
explicitly as:

H̃BC = im ∂ ∩ ker ∂̄ + im ∂̄ ∩ ker ∂
im ∂∂̄

(1.12)

H̃A = ker ∂∂̄
im ∂ + im ∂̄ + ker ∂ ∩ ker ∂̄

(1.13)

Hdot = ker ∂ ∩ ker ∂̄
im ∂ ∩ ker ∂̄ + im ∂̄ ∩ ker ∂

(1.14)

By definition, for any A ∈ BiCo, there is an exact sequence

0 −→ H̃BC(A) −→ HBC(A) −→ HA(A) −→ H̃A(A) −→ 0,

and one checks that there are natural identifications

H̃BC = im(HA ⊕HA
∂+∂̄−→ HBC) (1.15)

Hdot = ker(HA
(∂,∂̄)−→ HBC ⊕HBC). (1.16)

Definition 1.31. For any bicomplex A, the ABC-cohomology is the bicomplex

HABC(A) := HA(A) ⊕ H̃BC(A)

and the BCA-cohomology is the bicomplex

HBCA(A) := HBC(A) ⊕ H̃A(A).

For any bicomplex A with ∂∂̄ ≡ 0, we have a short exact sequences

0 −→ HBC(A) −→ A −→ H̃A(A) −→ 0, (1.17)

0 −→ H̃BC(A) −→ A −→ HA(A) −→ 0. (1.18)
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We note that ∂∂̄ ≡ 0 on HABC and HBCA, so both constitute functors

bicomplexes −→ minimal bicomplexes.

In fact, the result is quasi-isomorphic to A

Proposition 1.32. For any bicomplex A, there are (non-canonical) isomorphisms in 
Ho(BiCo)

A ∼= HABC(A) ∼= HBCA(A).

Proof. One checks by an elementary computation that all expressions are zero on squares 
and the identity on zigzags. The result then follows from Theorem 1.1. �
Remark 1.33 (Duality). For any bicomplex one has a canonical identification HBCA(DA)
∼= DHABC(A) and thus, by Lemma 1.27, for any compact complex n-fold X there are 
canonical isomorphisms Hp,q

BCA(X) ∼= (Hn−p,n−q
ABC (X))∨. To obtain a self-dual version, one 

may consider H̃BC ⊕Hdot ⊕ H̃A.

1.7. Künneth formulae

For two bicomplexes A, B, there are natural maps

HBC(A) ⊗HBC(B) −→ HBC(A⊗B)

and

HBC(A) ⊗HA(B) ⊕HA(A) ⊗HBC(B) −→ HA(A⊗B).

Contrary to what one might guess, these are in general neither injective nor surjective.

Example 1.34. If A = L = 〈1, ∂, ∂̄〉, B = L−1 = 〈∂, ∂̄, ∂∂̄〉, then Bott-Chern cohomology 
of the tensor product A ⊗B is both one-dimensional and generated by the class [∂̄⊗∂+
1 ⊗ ∂∂̄ + ∂ ⊗ ∂̄]. On the other hand, HBC(A) = 〈[∂], [∂̄]〉 and HBC(B) = 〈[∂∂̄]〉 and the 
first map is zero for bidegree reasons.

The Künneth formulae for Bott-Chern and Aeppli cohomology will give explicit 
expressions for the kernel and cokernel of these maps. Before going through the some-
what technical statement and proof, here is the simple idea: If A = Azig ⊕ Asq and 
B = Bzig ⊕ Bsq as in Corollary 1.4, then since the tensor product with a contractible 
complex is contractible the zigzag part of A ⊗ B can be computed from Azig ⊗ Bzig. 
Since the zigzag part can be unambiguously defined via ABC-cohomology, we expect an 
formula of the form
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HABC(X × Y ) ∼= HABC(HABC(X) ⊗HABC(Y ))

Since HABC is a sum of two components, this would split into two formulas, one for 
HA and one for H̃BC . The same comments apply to HBCA = HBC ⊕ H̃A. We will now 
unwrap the parts referring to HA and HBC and define explicit maps:

Theorem 1.35 (ABC Künneth formulae). Let A, B be bounded bicomplexes.

(1) There is a natural short exact sequence

0 −→ HBC(A) ⊗HBC(B)
∂∂̄(HA(A) ⊗HA(B))

−→ HBC(A⊗B) −→ K −→ 0 (1.19)

where K is the following space

K := (ker ∂ ∩ ker ∂̄)(H̃A(A) ⊗HBC(B) ⊕HBC(A) ⊗ H̃A(B))

(2) There is a natural short exact sequence

0 −→ L −→ HA(A⊗B) −→ (ker ∂∂̄)(HA(A) ⊗HA(B)) −→ 0, (1.20)

where

L := H̃BC(A) ⊗HA(B) ⊕HA(A) ⊗ H̃BC(B)
∂(HA(A) ⊗HA(B)) + ∂̄(HA(A) ⊗HA(B))

Proof. Concerning (1.19), we define the left-hand map via

[a]BC ⊗ [b]BC 	→ [a⊗ b]BC

and denote it by i. It is well-defined since, up to sign,

∂∂̄([c]A ⊗ [d]A) = [∂c]BC ⊗ [∂̄d]BC ± [∂̄c]BC ⊗ [∂d]BC 	→ [∂∂̄(c⊗ d)]BC = 0.

On the other hand, there is a natural homomorphism from p : K → coker(i) as follows:
Consider a class c ∈ K. It can be written as

c =
∑
i

[ai]Ã ⊗ [bi]BC + [ci]BC ⊗ [di]Ã,

where we assume the individual factors to be of pure degree. The conditions ∂c = 0
translate into the existence of e∂j , f∂

j , g
∂
j , h

∂
j of pure degree such that:

∑
∂ai ⊗ bi + (−1)|ci|ci ⊗ ∂di =

∑
∂∂̄e∂j ⊗ f∂

j + g∂j ⊗ ∂∂̄h∂
j

i
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and similarly e∂̄k , f
∂̄
k , g

∂̄
k , h

∂̄
k satisfying the analogous equation with the roles of ∂ and ∂̄

reversed. We may then put

p(c) :=[
∑
i

ai ⊗ bi + ci ⊗ di

−
∑
j

(∂̄e∂j ⊗ f∂
j + (−1)|g

∂
j |g∂j ⊗ ∂̄f∂

j )

+
∑
k

(∂e∂̄k ⊗ f ∂̄
k + (−1)|g

∂̄
k |g∂̄k ⊗ ∂f ∂̄

k )]

One verifies that this defines indeed a class in coker(i) which is independent of the 
choices made and that the resulting map is a homomorphism. For example, if one makes 
a different choice ẽ∂j = e∂j + e′ with a ∂∂̄-closed element e′, the representative for p(c)
changes by ∂̄e′ ⊗ f∂

j ∈ HBC(A) ⊗HBC(B).
Now that the maps are in place, it remains to show injectivity of i and that p is an 

isomorphism. For this, one may assume A and B indecomposable in which case this is 
a straightforward calculation. We will only indicate the results for every possible pair of 
indecomposable bicomplexes:

If either A or B is a square, all terms in the short exact sequence vanish, so there 
is nothing to show. If A is a dot and B an arbitrary zigzag, then A ⊗ B is a shifted 
version of B, and ∂(HA(A)) = ∂̄(HA(A)) = 0 so the denominator of the left hand term 
and K vanish and i is an isomorphism. Finally, assume A, B are both zigzag of length 
≥ 2, concentrated in degrees k(A), k(A) +1 and k(B), k(B) +1. Then the tensor product 
A ⊗ B is a bicomplex concentrated in degrees l, l + 1, l + 2 with l = k(A) + k(B). In 
degree l, all terms in (1.19) vanish. In degree l + 1, the left hand side vanishes and 
p : K → HBC(A ⊗ B) is an isomorphism (note also that there is no choice involved 
in the definition of p in this total degree). Finally, in degree l + 2, K = 0 and i is an 
isomorphism.

The proof for (1.20) is similar, but here the definition and well-definedness of the maps 
is more immediately clear. Again one may verify exactness on a case-by-case inspection of 
the combinations of indecomposable bicomplexes, which yields the following results: For 
A or B a square, the whole sequence is zero. For A a dot and B any zigzag, ∂HA(A) =
∂̄HA(A) = H̃BC(A) = 0 so the left hand side vanishes and the right hand map is an 
isomorphism HA(A ⊗B) ∼= HA(A) ⊗HA(B). Now, consider the case of both A, B zigzags 
of length ≥ 2 in degrees k(A), k(A) +1, resp. k(B), k(B) +1, so that A ⊗B is concentrated 
in degrees l, l + 1, l + 2 with l = k(A) + k(B). All spaces in the sequence will be zero 
except possibly in degrees l, l + 1. In degree l, the left hand side is zero and the right 
hand map is an isomorphism. In degree l + 1, the right hand side is zero and the left 
hand map is an isomorphism. �
Corollary 1.36. Let X, Y be compact complex manifolds and consider the projections 
prX , prY to both factors. Then there are short exact sequences
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0 −→ HBC(X) ⊗HBC(Y )
∂∂̄(HA(X) ⊗HA(Y ))

pr∗X × pr∗Y−→ HBC(X × Y ) −→ K −→ 0, (1.21)

and

0 −→ L −→ HA(X × Y ) −→ (ker ∂∂̄)(HA(X) ⊗HA(Y )) −→ 0, (1.22)

where K, L are defined as in Theorem 1.35.

Proof. This follows from Theorem 1.35, and Lemma 1.27. �
Let us specialize the Bott-Chern formula to the case of degrees (p, 0), i.e. to closed 

holomorphic forms. We then recover the following result:

Corollary 1.37. For compact complex manifolds X, Y , there are injections

⊕
a+b=p

Ha,0
BC(X) ⊗Hb,0

BC(Y ) ↪→ Hp,0
BC(X × Y )

for any given p ∈ Z.

Conjugation gives the analogous result in degrees (0, p). In degree (1, 0), we recover 
the following result, contained (without surjectivity in HA) in [8].

Corollary 1.38. For compact complex manifolds X, Y , there are isomorphisms

H0,1
BC(X) ⊕H0,1

BC(Y ) ∼= H0,1
BC(X × Y )

and

H0,1
A (X) ⊕H0,1

A (Y ) ∼= H0,1
A (X × Y )

Proof. Note that we have H0,0
BC(X) = C. Thus, if we restrict to degree (0, 1), the left hand 

side of (1.21) becomes H0,1
BC(X) ⊕ H0,1

BC(Y ). On the other hand, we have H̃0,0
A (X) = 0

and so

K = (ker ∂ ∩ ker ∂̄)(H̃0,1
A (Y ) ⊕ H̃0,1

A (Y ))

= (ker ∂ ∩ ker ∂̄)(H̃0,1
A (Y )) ⊕ (ker ∂ ∩ ker ∂̄)(H̃0,1

A (Y )) = 0.

This shows the first isomorphism. For the second, we note that again because H̃0,0
A (X) =

0 we have H̃0,1
BC(X) = H̃0,0

BC(X) = 0 and so the left hand side of (1.22) in degree (0, 1) is 
zero. Since H0,0

BC(X) ∼= H0,0
A (X) = C the right hand side is equal to H0,1

A ⊕H0,1
A . �
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Remark 1.39. Another way of proving the Bott-Chern case of this Corollary is to note 
that there is an isomorphism of holomorphic vector bundles p∗XΩ1

X ⊕ p∗Y Ω1
Y

∼= Ω1
X×Y

and hence an identification of global sections (holomorphic forms), which restricts to an 
identification of the spaces of closed holomorphic forms. This gives the result in degree 
(1, 0), which, by conjugation, is equivalent to the statement in degree (0, 1).

The same kind of arguments shows:

Corollary 1.40. If X, Y are compact complex manifolds and X satisfies the ∂∂̄-Lemma, 
the pullbacks p∗X , p∗Y induce isomorphisms

HBC(X) ⊗HBC(Y ) ∼= HBC(X × Y )

HA(X) ⊗HA(Y ) ∼= HA(X × Y ).

2. Wedge products

2.1. Commutative bigraded bidifferential algebras

By a (graded) commutative bigraded bidifferential algebra (short: cbba) over C, we 
mean a bicomplex (A·,·, ∂, ∂̄) with the additional data of a product ∧ : A × A → A

of bidegree (0, 0) and a unit C → A that makes A into a unital graded-commutative 
algebra (with respect to the total degree) and for which ∂ and ∂̄ satisfy the Leibniz-rule. 
We denote the category of all cbba’s by CBBA.

2.1.1. Free-forgetful adjunctions
For any bicomplex B, we can form the free cbba ΛB on B, i.e. the free bigraded 

graded-commutative algebra on B as a vector space, with differentials induced by those 
of B. Conversely, we have a forgetful functor sending a cbba to its underlying bicomplex. 
These constructions give a pair of adjoint functors

Λ : BiCo � CBBA : U (2.1)

We will also consider the category CBBA0 of augmented cbba’s, i.e. of pairs (A, ε) where 
A ∈ CBBA and ε : A → C is a map in CBBA. For instance, for any complex manifold X
and a point x ∈ X, the evaluation map εx : AX → C is an augmentation. For any (A, ε)
in CBBA0, we denote by A+ = ker ε the augmentation ideal. Note that a free cbba ΛB
has a canonical augmentation induced by B � b 	→ 0. This yields an adjunction

Λ : BiCo � CBBA0 : ( )+. (2.2)

We will further consider the full subcategories CBBA≥0 and CBBAf.q. of algebras 
concentrated in nonnegative total degree, resp. the first quadrant, i.e. such that Ap,q = 0
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whenever p + q < 0 (resp. Ap,q = 0 for p < 0 or q < 0). For any cbba A, the complex 
conjugate Ā of the underlying bicomplex is again naturally a cbba and a real structure 
on A is a C-linear isomorphism σ : A ∼= Ā. We denote the category of pairs (A, σ) by 
R CBBA and the augmented version by R CBBA0. There are straightforward versions 
of the free-forgetful adjunction above for the categories R BiCo � R CBBA and the 
bounded-below counterparts of the complex and real categories.

2.1.2. Notions of connectedness
A cbba A is called connected if it is concentrated in non-negative total degrees and 

the unit C → A0 is an isomorphism. It is called simply connected if it is connected and 
A1 = 0. For example, the free algebra on a positively graded bicomplex is connected. A
is called cohomologically connected if H<0

A (A) = 0 and C ∼= H0(A). A compact complex 
manifold X is connected iff AX is cohomologically connected. A is called cohomologically 
simply connected if it is cohomologically connected and H1

A(A) = 0. A compact complex 
manifold X is called holomorphically simply connected if AX is cohomologically simply 
connected. Using Theorem 1.1, one checks that for X holomorphically simply connected 
one has H1

∂̄
(X) = 0 and, in particular, H1

dR(X) = 0.

2.2. A model category structure on CBBA

To define a model category structure on CBBA, we transfer the model category struc-
ture from BiCo via the adjunction in (2.1). More precisely, we claim to obtain a model 
category structure on CBBA if we define a map of cbba’s to be

(1) a fibration if it is surjective,
(2) a weak equivalence if it is a bigraded quasi-isomorphism,
(3) a cofibration if it satisfies the left-lifting property with respect to all acyclic fibrations.

Recall that a fibration is said to be acyclic if it is also a weak equivalence and that a 
map f : A → B has the left-lifting property with respect to a map p : C → D if for any 
commutative diagram of solid arrows

A C

B D,

f p
q

there exists a map q : B → C making the two triangles commute.

Theorem 2.1. Defining the fibrations, weak equivalences and cofibrations as above yields 
a model category structure on CBBA (resp. R CBBA).
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Since for any model category, the category of objects with a map to some fixed object 
has an induced model category structure, we immediately obtain:

Corollary 2.2. There are induced model category structures on the categories of aug-
mented cbba’s CBBA0 and R CBBA0.

To explain the proof of Theorem 2.1, we first look at some particular examples of 
cofibrations, which are the bigraded versions of Hirsch extensions (cf. [20])

Definition 2.3. Let A be a cbba. A (bigraded) Hirsch extension of A is an inclusion

A → A⊗ ΛV

a 	→ a⊗ 1,

where V = V k =
⊕

p+q=k V
p,q is a bigraded vector space concentrated in a single total 

degree k and the bigraded algebra on the right is equipped with a differential that makes 
the inclusion into a map of cbba’s and restricts to a linear map d : V → ker d|A of degree 
(1, 0) + (0, 1).

If A ∈ R CBBA was equipped with a real structure, by Hirsch extension we mean 
the same as above, while also requiring that A ⊗ ΛV is equipped with an involution 
extending that on A and fixing V .

Lemma 2.4 (Hirsch extension lifting Lemma). Hirsch extensions are cofibrations.

Proof. Consider a solid commutative diagram of cbba’s

A B

A⊗ ΛV C

f̃A

g

fAV

where A → A ⊗ ΛV is a Hirsch extension and g : B → C a surjective bigraded quasi-
isomorphism. We need to show there exists a map f̃AV : A ⊗ΛV → B extending f̃A s.t. 
g ◦ f̃AV = fAV .

Note that it suffices to describe f̃AV on V . To lighten up notation, let us assume V
is one-dimensional and let v ∈ V be a basis element (in general, one should take a basis 
(vi); which is furthermore stable under conjugation if one is working in R CBBA). To 
define f̃AV as an algebra map, we could simply pick arbitrary preimages ṽ under g for 
the element fAV (v) and set f̃AV (v) = ṽ. However, we have ∂v, ∂̄v, ∂∂̄v ∈ A and so we 
have to respect the conditions ∂ṽ = f̃A(∂v) and ∂̄ṽ = f̃A(∂̄v).

In a first step, we will show that it is possible to pick preimages ṽ′ of fAV (v) s.t. the 
weaker condition ∂∂̄ṽ′ = f̃A(∂∂̄v) is satisfied: Note that ∂f̃A(∂∂̄v) = ∂̄f̃A(∂∂̄v) = 0 so 
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that we get a well-defined class [f̃A(∂∂̄v)] ∈ HBC(B). Since gf̃A(∂∂̄v) = fAV (∂∂̄v) =
∂∂̄fAV (v), this maps to the zero class in HBC(C). But HBC(g) is injective, so we get some 
element b ∈ B with ∂∂̄b = f̃A(∂∂̄v). So g(b) −fAV (v) maps to zero under ∂∂̄. Since g and 
HA(g) are surjective, this means there is a b̃ ∈ B with ∂∂̄b̃ = 0 and g(b̃) = g(b) −fAV (v). 
Set ṽ′ := b − b̃.

In a next step we modify ṽ′ in a such a way that it satisfies the original conditions. 
Note that ∂ṽ′ − f̃A(∂v) lies in the kernel of ∂ and ∂̄ and so defines a class in Bott-Chern 
cohomology. This class maps to zero under g since g(∂ṽ′) = ∂g(ṽ′) = ∂fAV (v) = gf̃A(∂v). 
Because HBC(g) is injective, this implies that there exists a b∂ ∈ B s.t. ∂∂̄b∂ = ∂ṽ′ −
f̃A(∂v). By an analogous argument, we get a b∂̄ ∈ B s.t. ∂∂̄b∂̄ = ∂̄ṽ′− f̃A(∂v). Therefore, 
ṽ′′ := ṽ′− ∂̄b∂ +∂b∂̄ satisfies ∂ṽ′′ = f̃A(∂v) and ∂̄ṽ′′ = f̃A(∂̄v). It remains to fix its image 
under g. We do this as before: g(ṽ′′) − fAV (v) lies in the kernel of both ∂ and ∂̄ and so 
defines a Bott-Chern class. Since g and HBC(g) are surjective, we obtain a b̃′ ∈ B s.t. 
∂b̃′ = ∂̄b̃′ = 0 and g(b̃′) = g(ṽ′′) − fAV (v). Defining ṽ = ṽ′′ − b̃′, we are done. �
Remark 2.5. There seem to be no obstacles to developing the theory of Hirsch exten-
sions and obstruction cocycles to lifting in analogous fashion to [20, §10-§11], using the 
bigraded mapping cone to define relative cohomology. Since for us the above somewhat 
more elementary arguments suffice, we omit this.

We write S(p, q) := Λ(•[p, q]) for the free algebra generated by a dot in degree (p, q)
and T (p, q) := Λ(�[p, q]) for the free algebra generated by a square with base in degree 
(p, q). This notation is a bit unfortunate for our purposes and will be used in this section 
only, to ease comparison with [7].

Corollary 2.6. The following maps are cofibrations, i.e. they satisfy the left lifting property 
with respect to surjective bigraded quasi-isomorphisms in CBBA.

(1) The inclusion S(p + 1, q + 1) ↪→ T (p, q).
(2) The inclusion C ↪→ Λ(C) in degree (0, 0), where C is any bicomplex.
(3) coproducts, pushouts and (possibly transfinite) compositions of cofibrations.

Proof. (3) is a standard result about maps defined by having the lifting property with 
respect to some class of maps, cf. [7, 4.5.]. (1) is a direct consequence of Lemma 2.4. For 
(2), first consider C to be indecomposable. Then C is concentrated in finitely many (at 
most three) total degrees and so C ↪→ Λ(C) can be written as the composition of finitely 
many Hirsch extensions. The case of a general bicomplex follows from Theorem 1.1 and 
(3). �
Proof of Theorem 2.1. With the results we have, the proof is very similar to the singly 
graded case [7, §4], so we only indicate how to adapt the most interesting axiom, namely 
that any map f : A → B, can be functorially factored as
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f = (acyclic fibration) ◦ (cofibration)

This will use a slightly non-obvious characterization of weak equivalences (Lemma 2.7
below). The proofs of the other axioms carry over immediately from [7]. We will define 
the intermediate space as a colimit of a diagram

A Lf (1) Lf (2) . . .

B,

β1

f

β2

ψ1

β3

ψ2 (2.3)

where each βi will be a cofibration (hence also the colimit A → Lf := colimLf (n)).
Define Lf (1) as follows:

Lf (1) := A⊗
⊗
b∈Bh

T (|b|)

Here Bh =
⋃

p,q∈ZBp,q ⊆ B denotes the set of elements of pure bidegree and for b ∈ Bp,q

we write |b| = (p, q) for its bidegree. By construction, A → Lf (1) is a cofibration as a 
coproduct of cofibrations and the map ψ1 : Lf (1) → B, given by the projection of the 
generators of T (|b|) to b, is surjective, hence a fibration.

With the higher Lf (i), we will make HA(ψ) surjective and kill the lack of injectivity 
of HBC(ψ1). We construct them as follows: Given Lf (i), ψi, consider the set

R :=
{

(w, b)
∣∣∣∣ ∂1w=∂2w=0,

ψi(w)=∂∂̄b
|w|+(1,1)=|b|

}
⊆ (Lf (i))h ×Bh

and define (Lf (i + 1), βi+1) as the pushout

⊗
(w,b)∈R S(|w|) Lf (i)

⊗
(w,b)∈R T (|b|) Lf (i + 1).

βi+1

Since the left-hand map is a cofibration as a coproduct of cofibrations, so is βi+1 and the 
universal property yields a map ψi+1 : Lf (i + 1) → B. By construction, for any element 
[w] ∈ kerHBC(ψi), we have βi+1[w] = 0. Thus, ψ := limψi : Lf → B is injective in 
HBC . Furthermore, already HA(ψ2), and hence HA(ψ), is surjective (consider the pairs 
(0, b) ∈ R). That ψ is acyclic now follows from the next Lemma. �
Lemma 2.7. A map ϕ ∈ Map(BiCo) of bicomplexes s.t. HA(ϕ) is surjective and HBC(ϕ)
is injective is a bigraded quasi-isomorphism.
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Proof. If HA(ϕ) is surjective, also H̃BC(ϕ) is surjective by (1.16). Then the result follows 
by the four Lemma applied to the diagram

0 → H̃BC(ϕ) → HBC(ϕ) → HA(ϕ) → HBC(ϕ) ⊕HBC(ϕ). �
In particular, we obtain a cofibrant replacement functor (cf. [25, p.5]), i.e. using the 

notation from the above proof:

Definition 2.8. For any cbba A with unit ηA : C → A, the cofibrant replacement is 
CA := LηA

.

The cofibrant replacement of a cbba is very big and we will be interested in finding 
smaller cofibrant models. For now we introduce some language:

Definition 2.9. Let A ∈ CBBA0 be an augmented cbba.

(1) A is called a nilpotent if it is a (possible transfinite) composition of Hirsch extensions.
(2) A is called minimal, if it is nilpotent and im ∂∂̄ ⊆ A+A+.
(3) A weak equivalence M → A, where M is a nilpotent algebra is called a model for 

A. If M is minimal, it is called a minimal model.

We note that an augmented cbba A is nilpotent iff there is a presentation as a free 
commutative bigraded algebra A = ΛV with a well-ordered basis {vi}i∈I for the space 
of generators V such that dvi ∈ Λ(span{vj | j < i}). Furthermore, a nilpotent cbba is 
minimal iff the bicomplex of indecomposables A+/A+A+, with induced differentials, is 
minimal. Again, there are obvious real versions of these definitions. By Lemma 2.4 and 
Corollary 2.6, we obtain:

Corollary 2.10 (Lifting Lemma). Nilpotent cbba’s are cofibrant in CBBA0.

Remark 2.11 (Bounded variants). The same kind of constructions used to prove The-
orem 2.1 allows one to transfer the model category structures from the non-negatively 
graded, resp. first quadrant, subcategories of BiCo to CBBA≥0, resp. CBBAf.q., and 
the corresponding real versions. Namely, one defines again fibrations to be surjective 
maps, weak equivalences to be bigraded quasi-isomorphisms and cofibrations via the 
left-lifting property. The reader will have no trouble to verify that the augmentation 
maps Λ(•[p, q]) → C are cofibrations in CBBA≥0 for 0 ≤ p + q ≤ 1 and cofibrations 
in CBBAf.q. whenever p + q ≥ 0 and p = 0 or q = 0. Consequently, one may put 
T (p, q) := C in those bidegrees and run the same proof as above for the construction of 
fibration-cofibration factorizations.
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2.3. Homotopy for cbba’s and complex manifolds

We will define and study various ‘holomorphic’ variants of the homotopy groups.
We start by describing a functorial path object, i.e. a functorial factorization of the 

maps A → A ×A into an acyclic cofibration followed by a fibration.

Definition 2.12. We denote by Ω1
big := Λ〈t, ∂t, ∂̄t, ∂∂̄t〉, where |t| = (0, 0).

Lemma 2.13. The inclusion C → Ω1
big is a bigraded quasi-isomorphism.

Proof. Note that Ω1
big is nothing but the free algebra on a square Λ(�), which is a 

direct summand in the tensor algebra over � which is contractible since nontrivial tensor 
products of projective objects are projective. �
Remark 2.14. Alternatively, it follows from 0 � � in BiCo using that Λ as a part of a 
Quillen adjunction (2.1) preserves weak equivalences. Of course, it can also be seen by 
a direct calculation, see Example 2.33, which could be used to define an ‘integration’ 
operator on Ω1

big.

There are evaluation maps εs : Ω1
big → C, given by sending t → s and every other 

generator to 0. Since C → Ω1
big is a weak equivalence, so is A → Ω1

big ⊗ A for any 
A ∈ CBBA. Further, for the map (ε0, ε1) : Ω1

big ⊗ A → A × A is always a fibration (i.e. 
surjective): A preimage for (a, b) ∈ A ×A is given by (1 − t)a + tb. Thus, we have shown:

Lemma 2.15. The association A → Ω1
big ⊗A is a functorial path object in CBBA.

We therefore say that two maps f, g : A → B in CBBA are (right) homotopic if there 
exists a map H : A → Ω1

big⊗B s.t. ε0⊗Id = f and ε1⊗Id = g. We denote the relation of 
homotopy by f ∼ g. Since all objects in CBBA are fibrant, homotopy is an equivalence 
relation (see e.g. [25, Prop. 1.2.5]). If A is cofibrant, there is an identification

[A,B] ∼= HomCBBA(A,B)/ ∼,

where ∼ denotes the relation of homotopy and we write [A, B] for the set of maps in 
Ho(CBBA). If we need to distinguish [A, B] from the set of morphisms in Ho(BiCo)
between the underlying bicomplexes, we will write [A, B]CBBA and [A, B]BiCo =
[UA, UB]BiCo.

In CBBA0, a functorial path object is given by A 	→ Ω1
big⊗̃A, where

Ω1
big⊗̃A := C ⊕ Ω1

big ⊗A+

with augmentation given by projection to the first summand. The corresponding notion 
of homotopy in CBBA0 is given by a map H : A → Ω1

big⊗̃B. Further, we may consider 



J. Stelzig / Advances in Mathematics 460 (2025) 110038 33
Ω1
big as an object of R CBBA, by equipping it with the antilinear involution σ mapping 

σ(t) = t, σ(∂t) = ∂̄t and σ(∂∂̄t) = −∂∂̄t. The previous discussion applies, mutatis 
mutandis, to CBBA0, R CBBA, R CBBA0 and their bounded below counterparts.

Because of the adjunctions (2.1) and (2.2), and the definition of the model structure 
on CBBA, resp. CBBA0 as a transferred model structure, we obtain induced derived 
functors [25, 1.3.7]

Ho(CBBA) → Ho(BiCo)

Ho(CBBA0) → Ho(BiCo)

We now look at these more closely. The proof of the following two Lemmas is similar to 
the singly graded case:

Lemma 2.16. For two homotopic maps f ∼ g : A → B in CBBA (resp. CBBA0), the 
underlying maps f, g : UA → UB (resp. f+, g+ : A+ → B+) are homotopic in BiCo. In 
particular, H(f) = H(g) for any cohomological functor H.

Proof. Consider a homotopy H : A → Ω1
big ⊗ B between f and g. The decomposition 

Ω1
big = C⊕(Ω1

big)+ induces a decomposition Ω1
big⊗B = B⊕(Ω1

big)+⊗B and since ε0 = ε1
on the first summand, f − g factors through the second summand. However, (Ω1

big)+ is 
contractible (a direct sum of squares) and hence so is (Ω1

big)+⊗B. The argument for the 
augmented case is analogous. �

For any augmented cbba (A, ε), denote by QA := Q(A, ε) := A+/A+A+ the space of 
indecomposables. With the induced differentials, (QA, ∂, ∂̄) is a bicomplex. Further:

Lemma 2.17. The assignment A 	→ QA defines a functor CBBA0 → BiCo which sends 
augmentedly homotopic maps of augmented cbba’s to homotopic maps of bicomplexes.

Proof. Let H : A → Ω1
big⊗̃B an augmented homotopy between two maps f, g : A → B. 

Note that

Q(Ω1
big⊗̃B) = Ω1

big ⊗QB

and hence we may argue as in the proof of Lemma 2.16. �
Denoting by C the cofibrant replacement functor in CBBA0, we define:

Definition 2.18. The homotopy bicomplex of an augmented cbba (A, ε) is given by 
π(A, ε) := (QCA, ∂, ∂̄).

By Lemma 2.17, the homotopy bicomplex defines a functor

π : Ho(CBBA0) → Ho(BiCo)



34 J. Stelzig / Advances in Mathematics 460 (2025) 110038
resp, taking real structures into account,

π : Ho(RCBBA0) → Ho(RBiCo).

We may postcompose π with any cohomological functor and obtain a (co-)homotopy 
version, e.g.

πp,q

∂̄
(A, ε) := Hp,q

∂̄
(π(A, ε))

πp,q
∂ (A, ε) := Hp,q

∂ (π(A, ε))

πk
dR(A, ε) := Hk

dR(π(A, ε))

πp,q
BC(A, ε) := Hp,q

∂̄
(π(A, ε))

πp,q
A (A, ε) := Hp,q

A (π(A, ε))

and, generalizing the last two, πk
Sp,q

(A, ε) := Hk
Sp,q

(π(A, ε)) and πABC(A, ε) :=
HABC(π(A, ε)), πBCA(A, ε) := HBCA(π(A, ε)). If A = (AX , εx) for some pointed com-
plex manifold (X, x), we write π(X, x) := π(AX , εx), πp,q

∂̄
(X, x) := πp,q

∂̄
(AX , εx), etc.

Remark 2.19. As for any bicomplex, by Theorem 1.1 the isomorphism type of π(A, ε)
in Ho(BiCo) is determined by the multiplicities of all zigzags, or also by the minimal 
bicomplex πABC(A, ε).

For any cohomological functor H to some C-linear category C with an antilinear 
involution τ , which is equivariant with respect to that involution H(Ā) = τH, one 
obtains an induced functor on the categories of fixed points. In particular, one has an 
induced real structure on π·,·BC (X, x), π·,·A (X, x) etc.

We now make the relation to usual homotopy precise:

Proposition 2.20. For any connected complex manifold X which has a nilpotent, finite-
type underlying topological space, whenever πk(X, x) is abelian, there is an identification

πk
dR(X,x)∨ ∼= πk(X,x) ⊗C,

compatible with the real structures on both sides.

The commutativity assumption is to avoid technicalities: For a general nilpotent space, 
one should replace π1(X, x) ⊗C by its complexified Mal’cev Lie-algebra, see [7].

Proof. The fundamental theorem of rational homotopy theory yields a natural isomor-
phism

πk(X,x) ⊗Q ∼= [APL(X), APL(Sk)] ≥0 ,
cdgaQ,0
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where cdga≥0
Q,0 denotes the category of augmented rational cdga’s concentrated in non-

negative degrees with the transfered model structure from bounded-below cochain com-
plexes and APL the piecewise-linear forms. As noted in [29], if we denote cdgaQ,0 the 
model category structure of augmented rational Z-graded cdga’s without degree restric-
tions, we have an identification

[APL(X), APL(Sk)]cdga≥0
Q,0

∼= [APL(X), APL(Sk)]cdgaQ,0 ,

because APL(X) is cohomologically connected (and so admits a minimal model, which 
is cofibrant in both categories). Furthermore, Sk is formal and the de Rham theorem 
gives an chain of quasi isomorphisms connecting APL(X) ⊗C with AX . We thus have:

πk(X,x) ⊗C ∼= [AX , H·(Sk,C)]cdgaC,0

∼= [CAX , H·(Sk,C)]cdgaC,0

∼= πk
dR(X,x)∨

where CAX denotes the cofibrant replacement in CBBA0, which, being a composition 
of Hirsch extensions, is also cofibrant in cdgaC,0. The last equality follows from [7, 6.12 
and 6.16].2 �

Note that as for any bicomplex, there are the row and column filtrations F, F̄ on π(A). 
These induce spectral sequences and filtrations on the total cohomology, which we still 
denote by F, F̄ .

Corollary 2.21. For any complex manifold X, there are two conjugate filtrations on 
πk
dR(X), which we call the Hodge filtrations. Furthermore, there are two conjugate spec-

tral sequences with the first page π∂̄(X), resp. π∂(X).

Remark 2.22 (Convergence of the spectral sequences). The spectral sequences starting 
with π∂̄(X, x) and π∂(X, x) converge to πdR(X, x) with its column, resp. row Hodge 
filtration if and only if π(X, x) is locally bounded, see Lemma 1.3. Note that this does 
only depend on the isomorphism class of π(X, x) in Ho(BiCo). In particular, this is the 
case if there is a model for which all generators lie in a strictly convex region of the 
positive-degree half-plane. As we will see later on, this is the case for holomorphically 
simply connected manifolds or nilmanifolds.

If one works with the model category structure on CBBAf.q. instead as sketched in 
Remark 2.11, one always obtains strong convergence, but the relation of the target to 
the usual homotopy groups is less clear.

2 The proof there is for non-negatively graded cdga’s, but the argument is the same when considering all 
cdga’s.
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Remark 2.23 (Diagrams). One can also consider cohomological functors not landing in 
(bigraded) vector spaces but rather in categories of diagrams. For instance, the above 
constructions fit together to form a natural diagram

πp,q
BC(X,x)

πp,q

∂̄
(X,x) πp+q

dR (X,x) πp,q
∂ (X,x).

πA(X,x)

and one has the same maps between Schweitzer and de Rham, resp. Dolbeault cohomo-
topy as one for the respective cohomologies, e.g. there are maps πk

Sp,q
(X) → πk+1

dR (X)
for k ≥ p + q − 1 etc.

We now give an interpretation of various complex homotopy groups as spaces of 
maps in Ho(CBBA0). This is a bigraded analogue of the aforementioned [7, 6.12 and 
6.16] used at the end of the proof of Proposition 2.20. For any bicomplex C, define 
S(C) := Λ(C)/Λ(C)+Λ(C)+, i.e. make every product of two non-units trivial. For inde-
composable, non-contractible C, the S(C) may be considered as naive bigraded analogues 
of spheres. Then we have:

Lemma 2.24. For any augmented cbba A, there is an identification

[A,S(C)]CBBA0
∼= [π(A), C]BiCo.

Proof. Note that π(S(C)) = C, so the map is induced by applying the functor π. Without 
loss of generality, we may assume A to be cofibrant with π(A) = QA and

[A,S(C)]BiCo0 = HomCBBA0(A,S(C))/ ∼ .

We may also assume that A = A/A+A+, and hence QA = A+. Surjectivity is then clear. 
For injectivity, assume we have two augmented maps f, g : A → S(C) such that f+ ∼
g+ : A+ → C in BiCo via a linear homotopy h : A → C[1, 1] s.t. f+ − g+ = [∂, [∂̄, h]]. 
Now define an augmentation preserving map A → Ω1

big⊗̃S(C) by setting for any a ∈ A+:

H(a) := (1 − t) ⊗ f+a + t⊗ g+a + ∂t⊗ [∂̄, h]a− ∂̄t⊗ [∂, h]a + ∂∂̄t⊗ ha

Then, sorting by terms, we have:

∂H(a) −H(∂a) = ∂t⊗ (g+a− f+a− [∂, [∂̄, h]]a) +

∂̄t⊗ [∂, [∂, h]]a +
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∂∂̄t⊗ (−[∂, h]a + ∂ha− h∂a)

= 0,

and similarly for ∂̄, so this is a map of bicomplexes and thus, since the multiplication is 
trivial, of cbba’s. By construction ε0H = f and ε1H = g. �
Remark 2.25. If both sides are equipped with real structures and h is imaginary, H in 
the above proof is real, so the result remains valid in R CBBA0.

Corollary 2.26. Let A be an augmented cbba. Then there are natural identifications

(πp,q

∂̄
(A))∨ ∼= [A,S( [p− 1, q])]CBBA0

(πp,q
∂ (A))∨ ∼= [A,S( [p, q − 1])]CBBA0

(πp,q
BC(A))∨ ∼= [A,S( [p− 1, q − 1])]CBBA0

(πp,q
A (A))∨ ∼= [A,S(•[p, q])]CBBA0

Proof. Let us only do one case, the others are similar:

[A,S( [p− 1, q])]CBBA0 = [π(A), [p− 1, q]]BiCo

= [ [−p,−q], Dπ(A)]BiCo

= H−p,−q

∂̄
(Dπ(A))

= (πp,q

∂̄
(A))∨,

where we have used the adjunctions (1.5) and (1.6) and Remark 1.13. �
2.3.1. Comparison with existing complex cohomotopy theories

Let us compare the resulting notions of cohomotopy groups with those arising from 
existing theories. To avoid an overly technical discussion, we will assume AX is cohomo-
logically simply connected. By Theorem 2.34 below, it then has a simply connected real 
cbba model.

In [34], the authors develop a Dolbeault cohomotopy theory by considering ‘differential 
bigraded algebra (DBA)’ models (ΛV ·,·NT , ∂̄) → (AX , ∂̄), i.e. ΛVNT is a free bigraded 
algebra with generators in non-negative total degree, ∂̄ is a differential of type (0, 1)
that turns ΛV into a nilpotent cdga and the map is a quasi-isomorphism in H∂̄. The 
cohomology of the complex of indecomposables (VNT , ∂̄0) defines Dolbeault cohomotopy 
groups. Forgetting the ∂-differential, a minimal cbba model for AX is DBA-model in the 
sense of [34] and so the Dolbeault cohomotopy groups of [34] and Corollary 2.21 agree.

By [23, Thm. 4.2.], every filtered cdga (A, F ) with a complete (A ∼= lim←−−A/F p) and 
cocomplete (lim−−→F−p ∼= A) filtration admits a filtered (again complete and cocomplete) 
model ϕHT : (ΛVHT , F ) → (A, F ) in the sense that ϕHT induces an isomorphism on the 
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first page of the spectral sequence associated with the filtration. Under the completeness 
assumption, this implies that ϕHT is also a de Rham model. Such a model is obtained 
by perturbing the differential of a bigraded cdga model for the first page of the spectral 
sequence. It is unique up to filtered homotopy equivalence [23, Thm. 8.1.]. The complex of 
indecomposables thus carries a filtration, giving rise to a spectral sequence and filtrations 
on the de Rham cohomotopy. Again, a minimal cbba model for AX is a filtered model 
in the sense of [23] and so the induced filtrations on the cohomotopy groups agree.

We note that a Frölicher cohomotopy sequence was already constructed in [34] where 
the existence of filtered models is already claimed with a short proof in [34, Prop. 1], but 
we were not able to follow the argument [34] that the map from the model is filtration 
preserving. A second proof is given in [34, Thm. 1], which contains a claim that a 
Dolbeault quasi-isomorphism of cbba’s is also a de Rham quasi isomorphism, which 
is false without completeness assumptions as we illustrate in Example 3.12 below. At 
any rate, these issues seem minor and one could use the results of [23] instead.

For compact Kähler manifolds, Morgan constructs a minimal cdga ΛV with two fil-
trations F, F̄ and two homotopic maps ρ, ρ′ : ΛV → AX such that (ΛV, F, ρ) is a filtered 
model for (AX , F ) and (ΛV, F̄ , ρ′) is a filtered model for (AX , F̄ ) in the sense of [23]. 
In particular, the induced filtrations on the homotopy groups are again identified with 
those of Corollary 2.21.

Finally, Morgan’s theory was recast in a more functorial way in [9] which compares 
well with the present approach: Denote by R CBBA′

0 the full subcategory of R CBBA0
consisting of cohomologically simply connected first quadrant cbba’s which satisfy the 
∂∂̄-Lemma (i.e. their underlying bicomplex is a direct sum of dots and squares). De-
note by MHD1

∗ the category of augmented 1-connected Mixed Hodge diagrams as 
in [32, Def. 3.5.], [9]. We obtain a functor Ψ : R CBBA′

0 → MHD1
∗ as follows: For 

any (A, σ) in R CBBA′, we obtain a real Mixed Hodge diagram (cf. [32, Def. 3.5.]) 
Ψ(A) := ((A′, W ), (A, W, F ), ι), where A′ := Aσ=Id, the filtration W denotes in both 
cases the trivial filtration with only jump in degree 0, F denotes the column filtration 
and ι : A′⊗RC ∼= A is the tautological isomorphism. We obtain an induced commutative 
diagram

Ho(RCBBA′
0) Ho(MHD1

∗)

Ho(RBiCo) Ho(MHC),

Ψ

π π

Ψ

where MHC denotes the category of real Mixed Hodge complexes [13], π denotes the 
derived functor of indecomposables constructed in Definition 2.18, resp. [9], and we keep 
denoting Ψ the analogous functor on bicomplexes.

Remark 2.27. Note that the models in [14], [34] and [23] are all bigraded, but they are 
not cbba models in the sense of this article: In fact, the bigrading in [14] is such that d
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is of total degree 0 and the models in [34] are not compatible with the real structure, 
nor are they generally de Rham models, as we illustrate in Example 3.12 below. The 
models in [23] are de Rham models but they similarly do not see the real structure and 
the differential will generally not be of bidegree (1, 0) +(0, 1) but have more components.

2.4. Minimal models: uniqueness

Our first goal will be to show that, just as in the singly graded case [7, 7.6., 7.8], 
minimal models are unique up to isomorphism.

Theorem 2.28. Any weak equivalence between two connected minimal cbba’s is an actual 
isomorphism.

Proof. Let A, B be minimal. Since A, B are both fibrant and cofibrant, a map f : A → B

is a weak equivalence if and only if it is a homotopy equivalence. Thus, assuming f to 
be a weak equivalence, we may pick a g : B → A such that f ◦ g � IdB and g ◦ f � IdA. 
In particular, πABC(f) and πABC(g) are inverse isomorphisms. Given any presentation 
A = ΛVA as a free algebra with VA = V ≥1

A , we may identify VA
∼= QA. Since ∂∂̄ = 0 on 

QA, by (1.18), there is a short exact sequence

0 → π̃BC(A) → VA → πA(A) → 0.

Hence, by the Five-Lemma, the induced map Q(g ◦ f) : QA → QA is an isomorphism, 
and then so are all the maps (A+)n/(A+)n+1 → (A+)n/(A+)n+1. Since A is connected, 
all generators lie in positive degrees and so, we have (A+)n ∩ Am = {0} for n � m. 
Applying the Five-Lemma repeatedly (but finitely many times in every degree) to the 
diagrams

0 (A+)n/(A+)n+1 A+/(A+)n+1 A+/(A+)n 0

0 (A+)n/(A+)n+1 A+/(A+)n+1 A+/(A+)n 0

we conclude that f ◦ g : A+ ∼= A+ is an isomorphism, hence also f ◦ g : A ∼= A is an 
isomorphism, again by the Five Lemma applied to the augmentation sequence. Arguing 
analogously for f ◦ g, we find that f and g must be isomorphisms. �
Corollary 2.29 (Uniqueness of connected minimal models). Any two connected minimal 
models for a cbba A are isomorphic (over A).

Proof. Given ϕ : M → A and ϕ′ : N → A two positively generated minimal models for 
a cbba A, by the lifting Lemma 2.10, we obtain a map f : M → N s.t. ϕ′ ◦ f ∼ ϕ. Since 
ϕ, ϕ′ are weak equivalences, so is f and we conclude by Theorem 2.28. �
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2.5. Technical preparations

The following Lemmas will be the main technical ingredients in the proof of the 
existence of minimal models for simply connected cbba’s. The key point is that we need 
to ‘kill’ redundant classes in Bott-Chern cohomology while controlling the rest of the 
cohomology and keeping the algebra minimal. For this, we have to investigate more 
closely than before the kind of extensions that remove the Bott-Chern classes.

For any cbba M and c ∈ M a pure bidegree element s.t. ∂c = ∂̄c = 0, denote by 
Mc := M ⊗c Λ(�) the pushout of the following diagram:

Λ(•[|c|]) Λ(�)

M

where the horizontal map is induced by inclusion into the top corner.

Lemma 2.30 (Bott-Chern-classes squared away II). Let M = ΛV be a cbba which as an 
algebra is freely generated in degrees 2 ≤ j ≤ k + 1 s.t. (dV )k+2 = (∂∂̄V )k+2 = 0. Let 
c ∈ M be a pure bidegree element s.t. ∂c = ∂̄c = 0. Then, the cohomology of Mc can be 
expressed in terms of the inclusion i : M ↪→ Mc, as follows:

(1) If |c| = k and [c]A �= 0, then i induces an isomorphism

H<k
A (M) ∼= H<k

A (Mc), H<k
BC(M) ∼= H<k

BC(Mc)

and a short exact sequence

0 −→ 〈[c]〉 −→ Hk
BC(M) i∗−→ Hk

BC(Mc) −→ 0

(2) If c is as in (1) and indecomposable, i further induces an isomorphism

Hk+1
BC (M) ∼= Hk+1

BC (Mc)

and a short exact sequence

0 −→ 〈[c]A〉 −→ Hk
A(M) −→ Hk

A(Mc) −→ 0.

(3) If 0 �= [c] ∈ H̃k+1
BC (M), i induces isomorphisms

H≤k
A (M) ∼= H≤k

A (Mc)

and
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H<k
BC(M) ∼= H<k

BC(Mc), H̃k
BC(M) ∼= H̃k

BC(Mc)

and short exact sequences

0 −→ Hk
BC(M) −→ Hk

BC(Mc) −→ R −→ 0

0 −→ 〈[c]〉 −→ Hk+1
BC (M) −→ Hk+1

BC (Mc) −→ 0,

where R is a vector space of dimension at most 2. Any subspace of Hk
BC(Mc) that 

maps isomorphically to R is necessarily indecomposable.

Recall that an element of an augmented cbba a ∈ A+ is called indecomposable if 
its projection onto the indecomposables is nonzero: 0 �= pr(a) ∈ QA = A+/A+A+. 
Analogously, we say a subspace W ⊆ A+ is indecomposable if its projection onto QA is 
injective.

For the proof of Lemma 2.30, it will be convenient to consider the following truncations 
of a bicomplex:

Definition 2.31. For any bicomplex A and k ∈ Z, we define truncated subcomplexes 
τkA ⊆ A by

(τkA)j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if j > k + 1
(ker ∂ ∩ ker ∂̄)k+1 if j = k + 1
(ker ∂∂̄)k if j = k

Aj if j ≤ k − 1.

One checks that

Hj
BC(τkA) =

{
0 if j > k + 1
Hj

BC(A) if j ≤ k + 1,
Hj

A(τkA) =

⎧⎪⎪⎨⎪⎪⎩
0 if j > k + 1
Hk+1

dot (A) if j = k + 1
Hj

A(A) if j ≤ k.

Proof of Lemma 2.30. In all cases, let us denote by p a generator for the bottom left 
space of the generating square in Λ(�) s.t. ∂∂̄p = c in Mc.

For (1), we consider the truncation τk−1Mc. It is described as follows:

(τk−1Mc)j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if j > k

(τk−1M)k if j = k

(τk−1M)k−1 ⊕ 〈∂p, ∂̄p〉 if j = k − 1
Mk−2 ⊕ 〈p〉 if j = k − 2
M j if j ≤ k − 3.
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I.e. τk−1Mc = τk−1M ⊕c � and the result follows from Lemma 1.16.
For (2), we consider the filtration τkMc. It is described as follows

(τkMc)j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if j > k + 1
(ker ∂ ∩ ker ∂̄) ∩ (Mk+1 ⊕ (V 2 ⊗ 〈∂p, ∂̄p〉) ⊕ (V 3 ⊗ 〈p〉)) if j = k + 1
(ker ∂∂̄) ∩ (Mk ⊕ (V 2 ⊗ 〈p〉)) if j = k

Mk−1 ⊕ 〈∂p, ∂̄p〉 if j = k − 1
Mk−2 ⊕ 〈p〉 if j = k − 2
M j if j ≤ k − 3.

Let us describe the first two expressions in terms of τkM . Consider an element e ∈
(τkMc)k+1 and write it as

e = m + v′ ⊗ ∂p + v′′ ⊗ ∂̄p + v ⊗ p,

with v ∈ V 3, v′, v′′ ∈ V 2 and m ∈ M . Then

0 = ∂e = (∂m± v′′ ∧ c) + (∂v′ ∓ v) ⊗ ∂p + ∂v′′ ⊗ ∂̄p + ∂v ⊗ p

and so in particular ∂v′ ∓ v = ∂m ± v′′c = 0. By the same equation for ∂̄, we obtain 
∂̄v′′ ∓ v = ∂̄m ± v′c = 0. Since no generator has differential in degree k + 2, any exact 
element in degree k + 2 has to be a sum of products of at least three generators. Since c
is indecomposable, this implies v′c = v′′c = 0 and so v′ = v′′ = 0. But then also v = 0. 
We have shown (τkMc)k+1 = (τkM)k+1. In degree k, we argue similarly: For any v ∈ V 2, 
we have

∂∂̄(v ⊗ p) = ∂∂̄v ⊗ p + ∂v ⊗ ∂̄p− ∂̄v ⊗ ∂p + v ∧ c. (2.4)

For this to lie in M , we necessarily have ∂v = ∂̄v = 0 and then ∂∂̄(v ⊗ p) = vc and 
arguing as before we see that vc cannot be ∂∂̄-exact in M . Thus (τkMc)k = (τkM)k. In 
summary, we have shown τkMc = M ⊕c � and so the statement about the cohomology 
computation follows again from Lemma 1.16.

Finally, for (3), we consider also τkMc. This time, it is described as follows:

(τkMc)j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if j > k + 1
(ker ∂ ∩ ker ∂̄) ∩ (Mk+1 ⊕ (V ⊗ 〈p〉)) if j = k + 1
(τkM)k−1 ⊕ 〈∂p, ∂̄p〉 if j = k

Mk−1 ⊕ 〈p〉 if j = k − 1
M j if j ≤ k − 1,

and since ∂(m + v ⊗ p) = ∂m + ∂v ⊗ p ± v ⊗ ∂p, the degree k + 1-part is identified with 
ker ∂ ∩ ker ∂̄ ∩Mk+1. Thus, again τkMc = M ⊕c � and we can apply Lemma 1.16.



J. Stelzig / Advances in Mathematics 460 (2025) 110038 43
For the additional statement about indecomposable classes we note that any represen-
tative of a class in Hk

BC(Mc) that does not already lie in Hk
BC(M) must, when written 

as an expression in products of generators, have a nonzero scalar multiple ∂p or ∂̄p as a 
summand and is hence indecomposable. �

In (3) of the previous Lemma, we restricted to the case of [c] �= 0. However, if [c] =
0 ∈ Hk+1

BC (M), then Mc
∼= M ⊗ ΛL and we can even compute the entire cohomology 

from Theorem 1.35. In particular, we again have a short exact sequence

0 −→ Hk
BC(M) −→ Hk

BC(Mc) −→ R −→ 0,

where R has dimension exactly two in this case and again consists of indecomposable 
classes.

Regardless of whether [c] = 0 or not, during the construction of the minimal model, 
we may wish to get rid of the occuring classes in R, too. However, since these classes are 
indecomposable this would break minimality. A naive approach is to quotient out the 
ideal they generate. The next Lemmas show that this is indeed a viable solution.

Lemma 2.32 (Quotienting vs. squaring away). Consider a cbba M = (ΛV, ∂, ∂̄) which 
is free as a bigraded algebra. Let c ∈ V an generator of pure bidegree which is ∂- and 
∂̄-closed and Mc = M(p, ∂p, ∂̄p | ∂∂̄p = c) as above. Then the projection map to the 
quotient by the ideal generated by c

pr : Mc −→ M/(c)

is a weak equivalence.

Proof. We have to show that I = ker pr is acyclic. Pick some splitting V = V ′ ⊕〈c〉 and 
define a bigraded algebra (without specified differentials) M ′ := ΛV ′. Then, as bigraded 
algebras, there is a canonical identification Mc = M ′ ⊗ Λ(p, ∂p, ∂̄p, c). We distinguish 
two cases:

Case 1: deg(a) even. In this case, as vector spaces,

I = (M ′[p, c])degp + degc≥1 ⊕M ′[p, c]∂p⊕M ′[p, c]∂̄p⊕M ′[p, c]∂p∂̄p,

where the superscript in the first summand means there is at least one p or one c in each 
monomial.

Let now e ∈ M ′ − {0} be any nonzero element. For any integers n ≥ 1, m ≥ 0, we 
consider the following subcomplex of I:

Sev
n,m(e) :=

〈∂̄(epncm)〉 〈∂∂̄(epncm)〉

〈epncm〉 〈∂(epncm)〉
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We compute:

∂(pncme) =npn−1cm∂pe + pncm∂e

∂̄∂(pncme) =n(n− 1)pn−2cm∂̄p∂pe− npn−1cm+1e

− npn−1cm∂p∂̄e + npn−1∂̄pcm∂e + pncm∂̄∂e

Now the five summands are all orthogonal with respect to the decomposition

Mc =
⊕
k,l∈N

εε̄∈{0,1}

M ′pkln(∂p)ε(∂̄p)ε̄

and so ∂∂̄(pncme) is not zero, which means Sn,m(e). Furthermore, denoting by B(M ′) a 
vector space basis for M ′ consisting of pure bidegree elements, we see that

I =
⊕

n≥1,m≥0
e∈B(M ′)

Sev
n,m(e),

i.e. I is acyclic.
Case 2: deg(a) odd. In this case, define for any e ∈ M ′−{0} and n, m ≥ 0 the following 

subcomplex of I:

Sodd
n,m(e) :=

〈∂̄(e(∂p)n(∂̄p)mp)〉 〈∂∂̄(e(∂p)n(∂̄p)mp)〉

〈e(∂p)n(∂̄p)mp〉 〈∂(e(∂p)n(∂̄p)mp)〉

As before, we calculate

∂((∂p)n(∂̄p)mpe) =m(∂p)n(∂̄p)m−1cpe + (∂p)n+1(∂̄p)me− (∂p)n(∂̄p)mp∂e

∂̄∂((∂p)n(∂̄p)mpe) = − (n + m + 1)(∂p)n(∂̄p)mce + m(∂p)n(∂̄p)m−1cp∂̄e

+ (∂p)n+1(∂̄p)m∂̄e + n(∂p)n−1(∂̄p)mcp∂e

− (∂p)n(∂̄p)m+1∂e + (∂p)n(∂̄p)mp∂̄∂e

Again, all summands are orthogonal with respect to the vector space decomposition

Mc =
⊕
k,l∈N

ε,η∈{0,1}

M ′(∂p)k(∂̄p)lpεcη.

Therefore, each Sodd
n,m(e) is acyclic and hence so is
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I =
⊕

n,m∈N
e∈B(M ′)

Sodd
n,m(e) �

Example 2.33. Taking M = Λ〈c〉, we see that the algebra freely generated by a square, 
Mc = Λ(p, ∂p, ∂̄p, ∂∂̄p) is contractible (as an augmented cbba). In fact,

Mc = C ⊕
⊕

Sn,m,

where Sn,m := S
ev/odd
n,m (1).

2.6. Minimal models: existence

Theorem 2.34. Let A be a cohomologically simply connected, augmented cbba. Then there 
exists a simply connected minimal model ϕ : M → A. Furthermore, if HA(A) and 
HBC(A) are degree-wise finite dimensional, then so is M and if A is in R CBBA, one 
may take ϕ in R CBBA, too.

The algorithm to produce such M → A is in principle the familiar one from cdga’s: 
Work by induction on the degree and add generators to obtain cohomological surjectiv-
ity, then add more generators to enforce all necessarily relations. This is in principle also 
what happens in the proof of the fibration-cofibration replacement in Theorem 2.1 (but 
the maximal approach there produces generators in negative degrees). An important 
difference to the cdga case is that to enforce relations a given degree, we may have to 
add new generators in degree 2 less, and this makes the verification of (degree-wise)ter-
mination of this algorithm technically more involved.

Proof. We will inductively build partial models (Mk, ϕk), where

(1) Mk is minimal, simply connected and generated in total degrees 2, ..., k.
(2) Mk is a nilpotent extension of Mk−1 arising by adding generators in degrees k, k−1, 

with ∂∂̄ ≡ 0 on the degree k generators.
(3) ϕk : Mk → A is a map of cbba’s extending ϕk−1, such that H≤k+1

BC (ϕk) is injective 
and H≤k−1

A (ϕk) is surjective.

To start the induction note that for cohomologically simply connected A, the unit 
map C → A induces an isomorphism in H≤1

A and is injective in H≤3
BC . So from now on, 

we assume k ≥ 2.
Step 1: Surjectivity Assume we are given (Mk, ϕk). We will construct a nilpotent 

extension Mk ⊆ M̃k which is still minimal and adds only generators in degree k, k + 1
that have no differential in degree k + 2 and a map ϕ̃ : M̃k → A extending ϕ s.t. 
H≤k+1

BC (ϕ̃k) is still injective and H≤k
A (ϕ̃k) is surjective.
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Consider a bigraded vector space C ⊆ ker ∂∂̄ ∩A which projects isomorphically onto 
cokerHk

A(ϕk). Then set M ′ := Mk ⊗ Λ(L(C)[1, 1]) and define ϕ′ : M ′ → A to extend 
ϕ via the map induced by the identity on V . Then the inclusion Mk → M ′ induces an 
injection in Bott-Chern and Aeppli cohomology and an isomorphism in H≤k

BC and H≤k−1
A , 

whereas there is a canonical isomorphism Hk
A(M ′) ∼= Hk

A(Mk) ⊕V . Thus ϕ′ is surjective 
in H≤k

A and injective in H≤k
BC . If Hk+1

BC (ϕ′) is injective, we are done here, and can go to 
the next step.

However, Hk+1
BC (ϕ′) will generally not be injective, as

HBC(M ′) = Hk+1
BC (Mk) ⊕ (∂ ⊗ C) ⊕ (∂̄ ⊗ C).

So assume we have a bigraded vector space {0} �= R ⊆ M ′ k+1 (‘relations’) projecting 
isomorphically onto kerHk+1

BC (ϕ′) and define P := R[−1, −1] (‘primitives’). Now form 
M ′

R := M ′ ⊗R Λ(� ⊗ P ), i.e. the pushout of the diagram

Λ(R) Λ(� ⊗ P )

M ′,

where the vertical map is induced by inclusion and, writing pr := r ∈ P = R[−1, −1], 
the horizontal map is induced by r 	→ ∂∂̄ ⊗ pr.

This is a nilpotent extension of M ′, and by Lemma 2.30, the inclusion M ′ ⊆ M ′
R

induces isomorphisms H≤k
A (M ′) ∼= H≤k

A (M ′
R) and H≤k

BC(M ′) ∼= H≤k
BC(M ′

R) and a short 
exact sequence

0 −→ kerHk+1
BC (ϕ′) −→ Hk+1

BC (M ′) −→ Hk+1
BC (M ′

R) −→ 0.

We can define have a map ϕ′
R : M ′

R → A extending ϕ′ as follows: For a bigraded basis 
ri of r, pick pure-degree elements si ∈ A s.t. ∂∂̄si = ϕ(ri) and define ϕ′

R(1 ⊗ pri) := si. 
By definition, H≤k+1

BC (ϕ′
R) is injective and H≤k

A (ϕ′
R) is surjective.

On the first glance, it seems we can stop here. However, since Hk+1
BC (ϕ) is injective, R

necessarily consists of indecomposable elements and so M ′
R will never be nilpotent. On 

the other hand, M̃k := M ′/(R) is still a nilpotent extension of Mk and minimal.
In summary, we have the following diagram:

M ′
R

Mk M ′ A,

M̃k

ϕ′
R

pr
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where all the maps on the left are nilpotent extensions, hence cofibrant, and the vertical 
map (given by projection) is an acyclic fibration by Lemma 2.32. Thus, by the left-lifting 
property, there exists a map s : M̃k → M ′

R s.t. pr ◦s = Id and the restriction s|Mk

coincides with the inclusion Mk ⊆ M ′
R. We may then define a map ϕ̃k : M̃k → A by 

ϕ′
R ◦ s. Because it extends ϕ on Mk and pr and hence s are weak equivalences, it is 

surjective in H≤k
A and injective in H≤k+1

BC .
Step 2: Injectivity To avoid overloading notation, we now assume that

(Mk, ϕk) = (M̃k, ϕ̃k)

from the previous step and forget about all the intermediate spaces used there.
We want to construct (Mk+1, ϕk+1), i.e. we need to make the map in Hk+2

BC injective. 
Let K ⊆ ker ∂ ∩ ker ∂̄ ∩ (Mk)k+2 be a bigraded vector space which maps isomorphically 
onto kerHk+2

BC (ϕk) and let Q := K[−1, −1], where we write qk = k ∈ K[−1, −1]. Then 
denote by M ′ the pushout of the diagram

Λ(K) Λ(� ⊗Q)

Mk.

Note that M ′ is a nilpotent extension of M and because Mk has no generators in de-
gree k + 2, M ′ is minimal. Further, by Lemma 2.30, the inclusion Mk → M ′ induces 
isomorphisms H≤k

BC(Mk) ∼= H≤k
BC(M ′) and H≤k+1

A (Mk) ∼= H≤k+1
A (M ′) and short exact 

sequences

0 −→ kerHk+2
BC (ϕk) −→ Hk+2

BC (M) −→ Hk+2
BC (M ′) −→ 0

and

0 −→ Hk+1
BC (Mk) −→ Hk+1

BC (M ′) −→ R −→ 0,

where R is a vector space of dimension at most 2 dimK and class in Hk+1
BC (M ′) mapping 

to something nontrivial in R is represented by indecomposable elements. Define a map 
ϕ′ : M ′ → A extending ϕk as follows: Choose a basis {ki} for K and pick li ∈ A of 
bidegrees |ki| − (1, 1) s.t. ∂∂̄li = ki. Then set ϕ′(qki

) := li. Note that by construction 
Hk+2

BC (ϕ′) and H≤k
BC(ϕ′) are injective and H≤k

A (ϕ′) are surjective. However, since we 
(potentially) increased Hk+1

BC , we might have introduced a new kernel in that degree. 
Pick a space R ⊆ M ′ k+1 which projects isomorphically onto R. Note that it is an 
indecomposable space, as it must map isomorphically onto a subspace of (∂⊗Q) ⊕(∂̄⊗Q)
under the projection

R → Q(M ′)k+1 = Q(M)k+1 ⊕ (∂ ⊗Q) ⊕ (∂̄ ⊗Q) → (∂ ⊗Q) ⊕ (∂̄ ⊗Q).
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Now, set Mk+1 := M ′/(R), which is a nilpotent extension of Mk and minimal. To 
compute its cohomology and define ϕk+1, we consider M ′

R := M ′ ⊗R Λ(� ⊗ P ) where 
P := R[−1, −1]. By Lemma 2.32, the projection M ′

R → Mk+1 is a quasi-isomorphism. 
By Lemma 2.30, the inclusion M ′ → M ′

R induces isomorphisms H≤k
BC(M ′) ∼= H≤k

BC(M ′
R), 

Hk+2
BC (M ′) ∼= Hk+2

BC (M ′
R) and H≤k+1

A (M) ∼= H≤k+1
A (M ′

R) and a short exact sequence

0 −→ 〈[r]〉r∈R −→ Hk+1
BC (M ′) −→ Hk+1

BC (M ′
R) −→ 0

and so the map Hk+1
BC (Mk) → Hk+1

BC (M ′
R) is an isomorphism. Now we can define a map 

ϕ′
R extending ϕ′ as the previous times, by picking ∂∂̄-primitives si for a basis {ri} for R

and setting ϕ′
R(pri) := si and by definition it will be injective in H≤k+2

BC and surjective 
in H≤k

BC . Again, M ′
R may not be minimal and we argue as at the end of the surjectivity 

step to obtain from this map the required ϕk+1 : Mk+1 → A with all the required 
properties. �
Remark 2.35. The algorithm presented in the proof is not optimal. In fact, the necessity 
for ‘re-minimalization’ at the end of the surjectivity and injectivity steps indicates that 
we could have made more sensible choices in adding generators beforehand. In concrete 
examples, it will usually be clear how to make those sensible choices. Note also that 
if we are just interested in a connected nilpotent (not necessarily minimal) model, we 
can omit these steps. The resulting model will still be degree-wise finite dimensional if 
HABC(A) was.

Corollary 2.36. For holomorphically simply connected manifolds, the isomorphism class 
of the homotopy bicomplex π(X, x) in Ho(BiCo) is independent of the basepoint x ∈ X.

We will therefore often write π(X) instead of π(X, x).

3. Examples and applications

3.1. Elementary examples

A real bigraded minimal model for projective space CPn is given by

MCPn := Λ(y, z, ∂z, ∂̄z | ∂∂̄z = iyn+1) |y| = (1, 1), |z| = (n, n),

where y, z are real and ϕCPn : MCPn → ACPn sends y to a Kähler form ω and all other 
generators map to zero. The isomorphism class of the homotopy bicomplex is thus given 
by a dot in degree (1, 1) and an L with corner in degree (n, n).

Remark 3.1. As this example shows, even if we start with a compact Kähler manifold, 
the homotopy bicomplex will generally not satisfy the ∂∂̄-Lemma.
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A real bigraded model for a torus Tn = Cn/Γ is given by

MTn := Λ(x1, ..., xn, x̄1, ..., x̄n), |xi| = (1, 0), d ≡ 0,

where xi and x̄i are conjugate and ϕTn : MTn → ATn sends xi to dzi where zi are 
holomorphic coordinates on Cn.

3.2. Complete intersections

We will compute the first stages of a minimal model for Kähler manifolds with the 
Hodge diamond of complete intersections of dimension n > 1. As applications we com-
pute the Bott-Chern and Aeppli cohomotopy groups and prove that such manifolds are 
formal in a strong sense.

Let (X, ω) be a compact Kähler manifold with the Hodge diamond of a complete 
intersection of dimension n > 1. I.e., denoting by δ = 1 if n/2 ∈ Z and 0 else:

hp,q(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 p = q �= n/2
dp,q p + q = n and p �= q

dp,q + δ p + q = n and p = q

0 else,

where dp,q denotes the dimension of the space of primitive harmonic (p, q)-forms. E.g., 
for n = 2, 3 the Hodge diamonds look as follows:

1

0 0

d2,0 d1,1 + 1 d0,2

0 0

1

1

0 0

0 1 0

d3,0 d2,1 d1,2 d0,3

0 1 0

0 0

1

Since X is Kähler, it satisfies the ∂∂̄-Lemma, so HBC(X) ∼= H∂̄(X) ∼= HA(X) and 
the entire additive quasi-isomorphism type of AX is determined by the Hodge numbers. 
Every complete intersection of dimension n ≥ 2 is of course an example, but there are 
many others, e.g. any Kähler surface with b1 = 0.

Let us build a minimal model (M, ϕ) for X, following the above algorithm. Note that 
it is applicable since AX is bounded and from the conditions on the Hodge numbers, we 
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see it is simply connected. We will only do so until we reach the stage where H≤2n
BC (ϕ)

and H≤2n
A (ϕ) are isomorphisms, since afterwards the construction of M and the map ϕ

becomes a formal procedure.
Set M3 = Λ(x) with |x| = (1, 1) and define ϕ3 : M3 → AX by x 	→ ω. This induces 

injections in H≤2n
BC and surjections in H<n

A , so (M3, ϕ3) = (Mn, ϕn). Next, we denote 
by P the space of primitive harmonic forms in degree n and consider formal copies 
Q := P , ∂Q := P [1, 0], ∂̄Q := P [0, 1], where we denote qp := p ∈ Q, ∂qp := p ∈ ∂Q, 
∂̄qp := p ∈ ∂̄Q. Then define

Mn+1 := Mn(P,Q, ∂Q, ∂̄Q | ∂∂̄qp = ixp ∀p ∈ P ).

Define ϕn+1 by ϕn+1(p) = p and ϕn+1(qp) = ϕn+1(∂qp) = ϕn+1(∂̄qp) = 0. Note that 
since the p are primitive, we have ϕn+1(xp) = ω ∧ p = 0 so that ϕn+1 is indeed a map 
of bicomplexes.

Lemma 3.2. There are canonical identifications

H≤2n
BC (Mn+1) ∼= (Λ(x, P )/(xP ))≤2n,

i.e. for all k ≤ 2n one has:

Hk
BC(Mn+1) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈xj〉 2n �= j = 2k �= n

P ⊕ 〈δxn/2〉 k = n

Λ2(P ) ⊕ 〈xn〉 k = 2n
0 else.

Furthermore, the natural map HBC(M2n+1) → HA(M2n+1) is an isomorphism in 
degrees < 2n and an injection in degree 2n.

Proof. Consider the contractible bicomplexes

Sk(Q) :=
∂̄Qxk Pxk

Qxk ∂Qxk

and denote by B := C[x] ⊕Λ≤2(P ) ⊕
⊕

k Sk(Q). The inclusion B ⊆ Mn+1 is an isomor-
phism in degrees < 2n in degree 2n has the complement C2n := Λ2(Q) ⊕Q ⊗ P , which 
does not contain any ∂ or ∂̄-closed elements and extends to a bicomplex complement 
Mn+1 = B ⊕ C in all degrees (note Sk(Q) is injective and always splits off as a direct 
summand). Thus H≤2n

BC (M2n+1) = H≤2n+1
BC (B) and the claim follows. �
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Next, one needs to fix injectivity in H2n
BC . Pick a (bigraded, real) space of relations 

R ⊆ 〈xn〉 ⊕ Λ2(P ) ⊆ M2n
n+1, that maps isomorphically onto the kernel of H2n

BC(ϕn+1). 
Note that by the cohomology calculation above, it is possible to pick R inside that 
subspace and that it is a vector space complement of 〈xn〉 ⊆ 〈xn〉 ⊕Λ2(P ). Then, define 
S := R[−1, −1], ∂S := R[0, −1], ∂̄S := R[−1, 0] and, writing again sr := r ∈ R[−1, −1]
etc., we define

M ′ := M2n+1(S, ∂S, ∂̄S | ∂∂̄sr = ir ∀r ∈ R)

and ϕ′ to extend ϕn+1 by mapping sr to a ∂∂̄-primitive of ϕ(ir) (chosen linearly in r). 
We now have achieved surjectivity in H≤2n

A and injectivity in H≤2n
BC .

Let us pause for a moment and note what we have shown so far:

Proposition 3.3. A minimal model for a compact complex Kähler manifold X with the 
Hodge diamond of a complete intersection of dimension n ≥ 2 is given by a nilpotent 
extension

M = M ′ ⊗ Λ(D),

where M ′ = Λ(x, P, Q, ∂Q, ∂̄Q, S, ∂S, ∂̄S | . . .) is as constructed as above and D is 
concentrated in degrees ≥ 2n − 1.

Since |D| ≥ 2n − 1, we can read off the bigraded homotopy groups in lower degrees:

Corollary 3.4. For X as above, and k ≤ 2n − 2, one has

dim πk
BC(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 k = 2
bn(X) − δ k = n

2 · (bn(X) − δ) k = n + 1
0 else.

and for k ≤ 2n − 2:

dim πk
A(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 k = 2
2 · (bn(X) − δ) k = n

δ · (bn(X) − 1)2 + (1 − δ) ·
(
bn(X)

2
)

k = 2n− 2
0 else.

Proof. We have dimP = bn(X) − δ, dim ∂Q = dim ∂̄Q = dimQ = dimP and dim ∂S =
dim ∂̄S = dimR = dim Λ2(P ) which equals (dimP )2 or 

(dimP
2

)
, depending on the parity 

of n. �
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We now prove a formality result. Recall [31] that a complex manifold is strongly 
(bigradedly) formal, if AX can be connected by a chain of weak equivalences to a cbba 
H with ∂ ≡ ∂̄ ≡ 0 (one may take H = HBC(X)). Even though every ∂∂̄-manifold is 
formal in the usual (de Rham) sense by [14], this is not the case for this stronger notion 
of formality, as it is obstructed by the presence of bigraded higher operations, which may 
be nontrivial on ∂∂̄-manifolds by [40]. It is an open question whether compact Kähler 
manifolds are strongly formal in general.3

Theorem 3.5. Any compact complex Kähler manifold of dimension n ≥ 2 with the Hodge 
diamond of a complete intersection is strongly formal.

Proof. Pick a partial model ϕ′ : M ′ → AX as in Proposition 3.3. We define a map ψ′ :
M ′ → HBC(X) as follows: ψ(x) = [ω], ψ′(p) = [p] for any p ∈ P , and ψ′(Q) = ψ′(S) = 0. 
Note that ψ′ is indeed a cbba map and that it induces an isomorphism in H≤2n

BC and 
H<2n

A .
We now want to extend ϕ to a full model ϕ : M → AX and ψ′ to a full bigraded quasi-

isomorphism ψ : M → HBC(X). To do so, we need to analyze the kernel of H2n
A (ϕ′). 

For this, we will split M ′ additively into subcomplexes up to degree 2n. We will use 
the following ad-hoc notation: For any subset V ⊆ M ′, we denote the sub-bicomplex of 
M ′ generated by V by �V �. For example, �xkQ� = Sk(Q) and �S� is the contractible 
bicomplex with underlying vector space S⊕ ∂S ⊕ ∂̄S ⊕R. We distinguish two cases and 
leave the verification that all sums are indeed direct to the reader:

Case 1: n ≥ 3. There is a decomposition

M ′ =
n⊕

k=0

〈xk〉 ⊕ P ⊕

n/2�⊕
k=0

Sk(Q) ⊕ �S� ⊕ �Λ2(Q)� ⊕ �PQ⊕ xS�

⊕ a subcomplex generated in degrees ≥ 2n + 1.

The bicomplexes Sk(Q), �S�, �Λ2(Q)� are contractible. On the other hand, ∂∂̄ is not 
injective on �PQ ⊕ xS�: In fact, ∂∂̄(PQ) = xΛ2(P ) and ∂∂̄(xS) = xR and xR+ xΛP =
〈xn+1〉 + xΛ2(P ) which has smaller dimension than PQ ⊕ xS.

Case 2: n = 2. We have an additive decomposition into sub-bicomplexes

M ′ = C ⊕ 〈x〉 ⊕ P ⊕ S0(Q) ⊕ �S�

⊕ 〈x2〉 ⊕ S1(Q) ⊕ �Λ2(S)� ⊕ �Λ2(Q)� ⊕ �QS� ⊕ �PQ⊕ xS ⊕ PS�

⊕ a subcomplex generated in degrees ≥ 5

where one checks that S1(Q) ⊕ �Λ2(S)� ⊕ �Λ2(Q)� ⊕ �QS� is contractible, but �PQ ⊕
xS ⊕ PS� is not.

3 Added in proof: This question was resolved with a negative answer in [35].
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To summarize this discussion, H2n
A (M ′) is a subquotient of the space 〈xn〉 ⊕ PQ ⊕

(〈x〉 ⊕ P )2S and so the kernel of H2n(ϕ) can be represented by elements in that space. 
We now show that one can do slightly better:

Claim: One may modify S in such a way that the kernel of H2n
A (ϕ′) has a system of 

representatives lying in PQ ⊕ xS (resp. PQ ⊕ xS ⊕ PS).
To prove the claim let s1, ..., sk be a basis for the vector space

SA := {s ∈ S | ∃a ∈ PQ, b ∈ (〈x〉 ⊕ P )2 s.t. ∂∂̄(a + bs) = 0}

and choose a complement S = SA ⊕S′. Now, pick a basis b1, ..., bl for (〈x〉 ⊕P )2 and let 
αij ∈ C s.t.

[ϕ′(bisj)] = [αijsj ] ∈ Hn,n
A (X).

Let b1, ..., bl be a basis for (〈x〉 ⊕ P )2n−2 s.t. [bibj ] = [δijxn], with δij = 0 if i �= j and 
δii = 1. Define s̃j := sj −

∑l
i=1 αijb

j . Then [ϕ′(s̃j)] = 0 and 〈s̃1, ..., ̃sk〉 ∩ S′ = {0}. 
Set S̃ := 〈s̃1, ..., ̃sk〉 ⊕ S′. Since we only modified by closed elements, S̃ is still a space 
of primitives for R and we have M ′ = Λ(x, P, Q, ∂Q, ∂̄Q, S̃, ∂S, ∂̄S | ...). On the other 
hand, if we now take any element z = c · xn + a + bs ∈ 〈xn〉 ⊕ PQ ⊕ (〈x〉 ⊕ P )2S̃ s.t. 
∂∂̄(z) = 0, we have [ϕ′(z)] = [cxn]. This finishes the proof of the claim.

From now on assume S = S̃ has the properties of the claim. We may apply the 
algorithm of Theorem B to complete (M ′, ϕ′) to a nilpotent model M = M ′ ⊗ Λ(D), 
where D<2n−2 = 0, dD2n−1 ⊆ D2n−1, dD2n−1 ⊆ D2n ⊕ ker ∂∂̄(PQ ⊕ (〈x〉 ⊕ P )2S). 
Thus, defining ψ to extend ψ′ by ψ(D) = 0 yields a cbba map which is necessarily 
a bigraded quasi-isomorphism as it induces surjective maps between equidimensional 
vector spaces. �
Remark 3.6. The argument used to prove the intermediate claim is inspired by [18, Thm. 
3.1.]. It may be possible to adapt that theorem to the cbba setting and use it to prove 
strong formality for larger classes of manifolds, e.g. the compact Kähler n-folds which 
have no cohomology in degrees below n/2 other than that coming from the powers of 
the Kähler class.

3.3. Non-simply connected examples

3.3.1. Nilmanifolds
A nilmanifold is a quotient X = G/Γ of a simply connected nilpotent Lie group G by 

an (automatically co-compact) lattice Γ. A left-invariant complex structure on X (with 
respect to the natural G-action) is called nilpotent if there exists a basis ω1, ..., ωn for 
the space of left-G-invariant (1, 0)-forms (Al.i.

X )1,0 s.t. for every i one has

dωi =
∑

Aijkωj ∧ ωk +
∑

Bijkωj ∧ ω̄k
j<k<i j,k<i
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for some Aijk, Bijk ∈ C. Examples of nilmanifolds with nilpotent complex structures are 
when G is itself a complex Lie group or when the complex structure is abelian, meaning 
d(Al.i.

X )0,1 ⊆ (Al.i.
X )1,1. We refer to [12] for a more in-depth discussion of nilmanifolds and 

nilpotent complex structures on these, including a more intrinsic definition in terms of 
descending series.

Theorem 3.7. For a nilmanifold X = G/Γ with nilpotent complex structure, the inclusion 
of left-invariant forms Al.i.

X ⊆ AX is a real bigraded minimal model.

Proof. The left-invariant forms are canonically a free cbba, generated by the dual of 
the complexified Lie-algebra g = Lie(G), i.e. Al.i.

X = Λ(g∨C). The nilpotency con-
dition means exactly that one can write Al.i.

X as the union of subcbba’s Al.i.
X (i) :=

Λ(ω1, ...ωi, ω̄1, ..., ω̄i) ⊆ Al.i.
X and each inclusion Al.i.

X (i) ⊆ Al.i.
X (i + 1) is a Hirsch ex-

tension. Thus, the left invariant forms are a nilpotent cbba and, since all generators 
are in degree 1, necessarily minimal. By [12, Main Theorem], the inclusion Al.i.

X ⊆ AX

induces an isomorphism in Dolbeault cohomology and so by conjugation also H∂, thus 
it is a pluripotential quasi-isomorphism. �

In particular, we see that the isomorphism type of the homotopy bicomplex does 
again not depend on the basepoint. Furthermore, as the left-invariant forms are the free 
algebra on the dual Lie-algebra, one obtains:

Corollary 3.8. For a nilmanifold X with nilpotent complex structure associated to a Lie 
algebra g with complex structure J , there is an isomorphism π(X) ∼= g∨C in Ho(R BiCo), 
where we consider the right hand side as a bicomplex concentrated in total degree 1 with 
the splitting g∨C = g

1,0
C ⊕ g

0,1
C induced by J and trivial differentials.

This means, as one would expect, that nilmanifolds with nilpotent complex structure 
are ‘holomorphically aspherical’. As the following example shows, the situation is different 
if we drop the assumption on nilpotency of the complex structure:

Example 3.9. (Homotopy bicomplex of a nilmanifold with non-nilpotent complex struc-
ture) The first real dimension in which nilmanifolds with non-nilpotent left-invariant 
structures appear is 6. An example is determined by the following structure equations 
(for either choice of sign), cf. [46]:

dω1 = 0, dω2 = ω13 + ω13̄, dω3 = ±i(ω12̄ − ω21̄).

Let us denote by X any compact nilmanifold associated with the corresponding Lie-
algebra. By [37, §.4.2.], the inclusion

Al.i.
X = Λ(ω1, ω2, ω3, ω̄1, ω̄2, ω̄3) ⊆ AX
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is a bigraded weak equivalence. Note that since Al.i.
X is connected the isomorphism type 

of π·,·(X, x) does not depend on the base point. However, while Al.i.
X is free as a cbba, 

it is not nilpotent. A minimal model (MX , ϕX) is given as follows: As a bigraded algebra 
with conjugation we have

MX := Λ(x, x̄, y, ȳ, z, w, w̄, p, ∂p, ∂̄p),

where the conjugation is determined by taking p, z to be real and otherwise as indicated 
by the superscripts. The degrees of the generators are determined by

|p| = (0, 0), |x| = |y| = |w| = |∂p| = (1, 0), |z| = (1, 1).

A differential of type (1, 0) + (0, 1) on MX is determined by

dp = ∂p + ∂̄p, dx = 0, dy = iz, dw = xy + xȳ, d∂p = i(±(xw̄ − wx̄) − z).

The map ϕ : MX → AX is determined by

ϕX(x) = ω1, ϕX(y) = ω3, ϕX(w) = ω3, ϕX(z) = ±(ω12̄ − ω21̄), ϕX(p) = 0.

Note that by definition ϕ factors as

MX Al.i.
X

M ′
X ,

ϕX

pr
ϕ′

X

where M ′
X := Λ(x, ̄x, y, ȳ, z, w, w̄, z)/(±i(xw̄ − wx̄) − iz). Since ϕ′

X is an isomorphism 
and pr is a pluripotential quasi-isomorphism by Lemma 2.32, the map ϕX is indeed a 
pluripotential quasi-isomorphism.

From MX we may read off the isomorphism type of the homotopy bicomplex, which 
consists of two pairs of conjugate dots in degree (1, 0) and (0, 1) one L with corner 
in degree (0, 0) and one reverse L with corner in degree (1, 1). In particular, one has 
π1,1
BC(X) = π0,0

A (X) = C.

3.3.2. Hopf manifolds
Denote by Xn := (Cn \ {0})/Z, where Z acts via scaling with a real constant λ with 

|λ| �= 0, 1. One has diffeomorphisms Xn
∼= S2n−1 × S1.

Following Greg Kuperberg [28], we consider the real sub-cbba of A ⊆ AXn
generated 

by the following 1 and 2-forms:

α = z̄ · dz
, ᾱ = z · dz̄

ω = i · dz · dz̄ ,

z · z̄ z · z̄ z · z̄
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where z · z̄ =
∑n

i=1 ziz̄i etc. We have

∂α = 0 ∂̄α = αᾱ + iω ∂ω = −αω.

Lemma 3.10. The inclusion A ⊆ AXn
is a pluripotential quasi-isomorphism.

Proof. As noted by Kuperberg, the bicomplex A consists of the invariant forms for the 
natural action of the compact group U(n) × S1. As such, it is a direct summand in 
AXn

by averaging, which computes the de Rham cohomology. On the other hand, the 
Hodge numbers of Xn are known [26], [5] and as a consequence, the Frölicher spectral 
sequence degenerates at the first page and so the inclusion induces an isomorphism in 
H∂̄ and H∂ ; since A, AXn

are bounded this is a pluripotential quasi-isomorphism by 
Theorem 1.21. �

Since A is finite dimensional, we may readily compute its cohomology (cf. [41], [28]). 
Namely, we have:

HBC(Xn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C k = 0
C[ω − iαᾱ]BC k = 2
C[αωn−1]BC ⊕C[ᾱωn−1]BC k = 2n− 1
C[ωn]BC k = 2n
0 else

and

HA(Xn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C k = 0
C[α]A ⊕C[ᾱ]A k = 1
C[αᾱωn−2]A k = 2n− 2
C[ωn]A k = 2n
0 else.

Note that the algebra A is not free. In fact, one has the relation

ωn = iαᾱωn−1.

Proposition 3.11. A real bigraded minimal model for Xn is given by (M, ϕ), where

M = Λ(x, x̄, y, z, ∂z, ∂̄z | ∂̄x = y, ∂∂̄z = iyn),

with

|x| = (1, 0), |y| = (1, 1), |z| = (n− 1, n− 1)
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and

ϕ(x) = α, ϕ(y) = ω − iαᾱ, ϕ(z) = 0.

Proof. M is clearly minimal and real, so by it suffices to check that ϕ : M → A is a 
quasi-isomorphism, which is a straightforward calculation given the explicit formulas for 
the cohomology above. �
Example 3.12 (Dolbeault models for the Hopf surface). We use the example of the Hopf 
surfaces X2 to compare bigraded models constructed here to those used in [34]. Recall 
that [34] considers cbba models (not necessarily with real structure) which are quasi-
isomorphisms only with respect to H∂̄ . As such, the models constructed in this article fit 
into that framework, but others are possible. For instance, consider the following cbba 
which is free on two one-sided infinite zigzags:

MNT := Λ(x0,1, y1,1, x1,0, y2,0, x2,−1, . . . , x2,1, y3,1, x3,0, y4,0, . . .),

where the generators live in the indicated bidegree and, writing y0,2 = y2,2 = 0, the 
differential is defined by

dxp,q = yp,q+1 + yp+1,q.

A map of cbba’s ϕNT : MNT → AX2 with H∂̄(ϕNT ) an isomorphism is given by sending 
all generators to zero except

ϕNT (x0,1) = ᾱ, ϕNT (y1,1) = ᾱα− iω, ϕNT (x1,0) = −α, ϕNT (x2,1) = αω.

As noted in Section 2.3.1, the spectral sequence computed from this model is the same 
as that of constructed here (and in fact as for any filtered model). However, (MNT , ϕNT )
is not a de Rham model, since HdR(MNT ) = C �= HdR(X2).

3.4. Manifolds without connected model

We have seen already in Example 3.9 that in general a manifold does not have to 
admit a connected model, even if it is cohomologically connected (e.g. compact). This 
turns out to be not an uncommon phenomenon as the following two examples illus-
trate:

Example 3.13 (Riemann surfaces of higher genus). Let X = Σg be a Riemann surface 
of genus g ≥ 2 with a fixed point x ∈ X. To build a model for (X, x), one first adds a 
formal copy of the space of holomorphic and antiholomorphic forms as generators, M ′ :=
Λ(Ω1(X) ⊕Ω̄1(X)). Then the tautological map ϕ′ : M ′ → AX induces an isomorphism in 
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Bott-Chern and Aeppli cohomology in degree 1 and a surjection in degree 2. To achieve 
injectivity in H2

BC , one has to remove

K := ker
(
H2

BC(M ′) = Λ2(Ω1(X) ⊕ Ω̄1(X)) −→ H2
BC(X) = A2

X/∂∂̄(A0
X)

)
.

To kill this kernel, one is forced to add a new space of generators FK
∼= ∂FK

∼= ∂̄FK s.t. 
∂∂̄FK = K. This means the model will not be connected and a similar argument shows 
that no nilpotent bigraded model which is bigradedly quasi-isomorphic can exist. This 
example leads to very basic analytic questions the answer to which the author currently 
does not know: Is ϕ′|K necessarily injective? Is X strongly formal?4 Also note that the 
space of primitives for ϕ′(K) is a canonically defined finite dimensional space of functions 
on X since the kernel of ∂∂̄ in degree (0, 0) consists only of the constants and we fixed 
a base-point.

Example 3.14 (CdF). The same argument as above shows that any connected compact 
complex manifold X for which

Λ2(H1
BC(X)) → H2

BC(X)

fails to be injective will not have a bigradedly quasi-isomorphic connected model. Note 
that there are two linearly independent forms ω1, ω2 ∈ H1,0

BC(X) with ω1 ∧ ω2 = 0 ∈
H2,0

BC(X) if and only if X fibres over a curve of genus at least 2. (This is a formula-
tion of the classical Castelnuovo de Franchis theorem without the Kähler hypothesis. 
The proof is the same as in the Kähler setting as it uses only that ω1, ω2 are closed 
holomorphic.).

The examples in this and the preceding sections beg the question:

Question 3.15. Under what conditions does a compact complex manifold (resp. coho-
mologically connected real cbba) admit a connected model in R CBBA? Under what 
conditions is there a model with finitely many generators in each degree?

We note that the condition of injectivity of Λ2H1
BC(X) → H2

BC(X) is not sufficient 
to ensure existence of a connected model by Example 3.9.

3.5. A question on realizability

One can look at the theory in this article from the point of view of a complex geometer. 
Then it gives us new tools with a topological flavour to structure and study the realm of 
complex manifolds. Or one can take a topologist’s perspective and ask what, if anything, 

4 Added in proof: As we learned later, no Riemann surface of genus ≥ 2 is strongly formal, see [35].
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this newly found extra structure tells us about the underlying homotopy type. The most 
basic instance of this is the following

Question 3.16 (Sullivan). Which rational cdga’s are quasi-isomorphic (over R) to a real 
cbba?

To avoid technicalities, let us assume we are dealing with cohomologically simply 
connected rational cdga’s A s.t. H(A; Q) is a finite dimensional vector space. Then one 
finds a finite CW-complex CA s.t. the piecewise-linear forms of CA are quasi-isomorphic 
to A, [44], [20]. One may embed CA into some large R2N and thicken it up a little so 
that it is exhibited as a deformation retract N(CA) � CA of a smooth open submanifold 
N(CA) ⊆ R2N . Restricting the standard complex structure of R2N to N(CA) equips it 
with a complex structure and so there is a chain of quasi-isomorphisms of real cdga’s 
between A ⊗R and the cdga of differential forms on N(CA), where the complexification 
of the latter naturally has the structure of a real cbba. Technically, this gives a positive 
answer to the above question, but one which is unsatisfying for a number of reasons: The 
manifolds N(CA) thus constructed are non-compact and will not satisfy Serre duality, 
even if A did. They are of higher dimension than the cohomology of A suggests and 
their cohomology (Dolbeault or Bott-Chern) will generally be infinite-dimensional.5 The 
following version thus remains open:

Question 3.17. Which connected rational cdga’s satisfying 2n-dimensional Poincaré du-
ality that have the cdga of forms on a compact almost complex manifold in their 
homotopy type, are quasi-isomorphic over R to cohomologically connected real cbba’s 
with finite-dimensional cohomology concentrated in the first quadrant satisfying Serre 
duality?

Note that the realizability by compact almost complex manifolds is well understood, 
and depends only on the cohomology ring cf. [30], so that the above is – in principle – 
an algebraic question.
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