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A B S T R A C T

This meta-analysis builds on 217 empirical studies in higher education and investigates the role of the different forms of adaptivity and adaptability 
as personalization strategies in simulation-based learning environments for complex skills in higher education. The strategies used to personalize 
scaffolding and task progression were the central point in this meta-analysis. We identified conditions under which personalization advances 
complex skills in higher education. The results indicate that whereas adaptivity (i.e., computer makes decisions) is more effective for scaffolding, 
adaptability (the decisions made by individual learners) seem more beneficial for task progression. We conclude that adaptivity and adaptability can 
be effectively used to personalize simulation-based learning environments in higher education to better address needs of learners with different 
learning needs. We also discuss the potential of artificial intelligence for empowering personalization in simulation-based learning.

1. Problem statement

Simulation-based learning is regarded as a promising means to support learners in acquiring a range of complex skills in different 
domains of higher education. This is empirically backed up by multiple systematic reviews and meta-analyses highlighting that 
simulations positively affect learning outcomes (e.g., Chernikova et al., 2020; Cook et al., 2013; Hegland et al., 2017; Theelen et al., 
2019). However, empirical research also highlights that (i) simulations – as many other types of learning environments – do not show 
uniform effects for all learners and (ii) that learning effects can be further increased by additional instructional support (Chernikova 
et al., 2020; Belland et al., 2017). Combining both aspects leads to the idea of personalization of learning in simulation-based learning 
environments, which can be achieved through (i) adaptive (i.e., system-adjusted) and (ii) adaptable (i.e., human-adjusted) learning 
environments and instructional support (e.g., scaffolding), respectively. Furthermore, exploring adaptivity of learning environments is 
particularly interesting against the background of artificial intelligence (AI), as AI offers a range of new possibilities for fine-tuned 
adaptivity and adaptability (e.g., Holstein et al., 2020).

Even though its benefits are expected theoretically (e.g., Aleven et al., 2016; Plass & Pawar, 2020), only little and rather unsys-
tematic evidence exists for the effects of embedding adaptivity and adaptability in simulation-based learning environments for various 
purposes in higher education, including but not limited to learning complex skills. Therefore, we apply a meta-analytical approach to 
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shed light on the effectiveness of the different forms of adaptivity and adaptability in simulation-based learning environments for 
complex skills in higher education. We aim to systematize existing evidence, advance theory, and offer insights and recommendations 
for the effective design of simulations.

2. Theoretical background

2.1. Simulation-based learning and instructional support

Simulations are being used as effective educational tools in higher education (e.g., Chernikova et al., 2020; Cook et al., 2013), as 
they offer the opportunity for learners to interact with representations of professional practice, decomposed into components that 
learners can interact with (Grossman et al., 2009). These components can enable students to focus on relevant aspects of that practice 
without being overwhelmed (e.g., Codreanu et al., 2020). These so-called “approximations-of-practices” give learners the opportunity 
to engage in more or less comprehensive and authentic professional practices (Grossman et al., 2009). Simulations come in various 
form and range from document-based simulations (e.g. with written vignettes), to non-digital types of simulations such as role-plays or 
clinical simulations with professional actors to more digital types of simulations such as video-based or VR-based simulations or 
surgery simulations using a bio-mechanical simulator (e.g., Gao et al., 2021; Huang et al., 2023; Kron et al., 2021). However, the most 
important elements of a simulation are that (1) a relevant aspect of reality is represented (see approximation of practice by Grossman 
et al. (2009), (2) learners have the opportunity to interact with the representations of practice, and (3) that the development of the 
simulated situation is influenced by learners’ activities or decisions (Heitzmann et al., 2019).

Even though simulations can be highly effective learning environments (e.g., Chernikova et al., 2020, Cook et al., 2013), the 
underlying design principles that make them so effective for learning are not yet fully understood (Bauer et al., 2023). One aspect that 
is particularly relevant for simulations as learning environments is that learning with simulations can be further improved through 
different forms of instructional support (e.g., scaffolding) particularly when such support is tailored to the individual learners’ 
characteristics and needs (e.g., Chernikova et al., 2020). Scaffolding can be used in different types of learning environments and is 
conceptualized as a temporary shift of control from the learner to a more knowledgeable agent (Tabak & Kyza, 2018), directed at the 
learning processes and having the purpose of enabling learners to solve problems that they could not solve without that support (e.g., 
Quintana et al., 2004). It is important to note that scaffolding is often expected to work in the zone of proximal development (e.g., 
Vygotsky, 1978) and can only support the learner with the tasks matching or slightly going beyond their current competence level.

Compared to typical real-life practice in many domains, simulations have the clear advantage that they can efficiently provide 
scaffolding that can be more flexibly adjusted to the current level of a learner’s prerequisites. Learners can make use of the potential to 
work, repeatedly, with authentic cases without being cognitively overwhelmed.

This meta-analysis focuses on the personalization of scaffolding, as one of the means of instructional support. Scaffolding directed 
at the learning process is usually additional information that learners receive intending to direct their activities in a learning envi-
ronment in a way that is beneficial for the learning processes (e.g., procedural facilitation, Bereiter & Scardamalia, 1993) and the 
learning outcomes. It can involve different forms of prompts that can be directed at cognitive, metacognitive, affective-motivational, or 
social processes.

Taking learners’ prerequisites into account through implementing representational scaffolding (Fischer et al., 2022) means that the 
practices in the simulation are purposefully selected from professional practices (e.g., based on informational complexity or typicality) 
and adjusted before or during the simulation so that they fit a learner’s current level of learning prerequisites.

Within the simulated scenario, there might also be an opportunity to select particular tasks (e.g., opportunity to start with easy task 
or particular activity and proceed to more complex ones). This opportunity is also connected to the idea of task progression, introduced 
by Plass and Pawar (2020) or navigation and is in focus in this meta-analysis. To address the task progression, we consider if the order 
of tasks is fixed or can be changed by the learner or the system. According to the results of a recent meta-analysis on simulation-based 
learning in higher education (Chernikova et al., 2020), the design of representations of practice for simulations using representational 
scaffolding might offer potential for improving learning. However, the authors also report a fair amount of heterogeneity of the effect 
sizes within each group of instructional support measures. We assume that one possible further variable contributing to this hetero-
geneity is whether the amount and exact time of instructional support is determined by the learning environment (e.g., instructor or 
pre-programmed system) or by the individual learner (or a mix). This decision on the need for instructional support seems to be crucial 
for simulation-based learning as it provides an opportunity to personalize learning based on learners’ needs and prerequisites (e.g., 
prior knowledge).

2.2. Prior knowledge and personalization

Developing and advancing complex skills and competences in higher education relies on professional knowledge as both a learning 
prerequisite and a building block of the skill (Blömeke et al., 2015). Prior knowledge is thus generally considered one of the most 
important learners’ prerequisites, and prior research in diverse areas has underlined its importance for performance and learning 
performance (Schneider & Preckel, 2017, Simonsmeier et al., 2022). Prior knowledge can be operationalized as familiarity (conceptual 
and procedural) either with the content or the context of a learning environment (see Chernikova et al., 2020). As a learning pre-
requisite, knowledge is also relevant for personalizing a learning environment.

Personalization from an educational perspective refers to tailoring instruction to the needs of an individual to increase its effec-
tiveness (Kucirkova et al., 2021). Personalization can thus be defined as “the data-based adjustment of any aspect of instructional 
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practice to relevant characteristics of a specific learner” (Tetzlaff et al., 2021, p. 865). Kucirkova and colleagues (2021) outline 
different forms of personalization. The initial form, referred to as adaptive personalization, involves a system making choices driven by 
data patterns. In the second form, known as adaptable personalization, individuals make choices based on their own preferences, 
interests, or comprehension. A system supports an individual’s choices, for example, by presenting options but letting the learners 
decide which option to take. In this meta-analysis, we link this framework with a framework on adaptivity, suggested by Plass and 
Pawar (2020) to develop scenarios of adaptive and adaptable learning environments.

2.3. Adaptivity and adaptability in simulations

Adaptivity. As per a widely recognized categorization, a modification made by a computer is referred to as adaptivity (Fischer, 
2001). Adaptivity denotes a computer-assisted learning system’s capacity to identify various learner characteristics and tailor the 
learning environment to cater to an individual learner’s particular requirements (e.g., through additional instructional support), all 
intending to improve learning outcomes (Plass and Pawar, 2020b). Adaptivity, thus focuses on the opportunity to alter the amount, 
type, or timing of instructional support or the task progression (e.g., complexity, speed or order of tasks) within a learning environment 
to address the needs of each individual learner optimally. This operationalization of adaptive instructional support relies on the 
framework suggested by Plass and Pawar (2020). The authors point out that there might be multiple strategies to adapt a learning 
environment and instructional support based on different learners’ characteristics, measured before or during the intervention (e.g., 
prior knowledge or performance). The adaptivity framework by Plass and Pawar (2020) emphasizes the customization of learning 
environments based on individual learner variables, including cognitive, emotional, motivational, and social factors. It involves 
measuring these variables and adjusting instructional support, task progression, and learning content accordingly. According to this 
framework (Plass & Pawar, 2020), adaptivity operates on both macro (course level) and micro (activity level) scales.

Although empirical research has provided first insights into the effects of adapting some instructional support in simulations 
(Chernikova et al., 2020; Belland et al., 2017; Kramer et al., 2021; Nickl et al., 2024), the effectiveness of different strategies and 
scenarios of adaptive scaffolding is currently unclear. In educational research, adapting instructional support to the needs of a learner 
has a long tradition. Earlier attempts known as Aptitude Treatment interaction (ATI) did not consistently demonstrate clear effects of 
learning prerequisites and instructional adaptivity on learning outcomes (Snow, 1991). Nonetheless, Tetzlaff and colleagues (2021)
assume methodological issues as causes for the lack of clear effects. They argue that in previous ATI research, subgroups of learners 
were often built based on their pretests and learners stayed in those groups statically more or less independent of how their skills 
developed (Tetzlaff et al., 2021). Clearer effects were achieved with intelligent tutoring systems (ITS) in which dynamic adaptations 
occur during learning based on the current performance of the learner (e.g., Koedinger et al., 2013). Furthermore, two recent 
meta-analyses highlight that some forms of instructional support (e.g., reflection phases) in problem-solving scenarios in 
simulation-based learning are rather beneficial for more advanced learners than for less advanced learners (Chernikova et al., 2020).

Effectively incorporating adaptivity into simulations can benefit from the advancement of AI-driven technologies, especially the 
emergence of generative AI techniques, which provide extensive prospects for tailoring learning environments and innovative content 
creation approaches. Recently, transformer-based models, like those introduced by Vaswani et al. (2017), have enabled the creation of 
large language models capable of almost human-like text responses. Alongside massive language models such as ChatGPT, smaller 
open-access alternatives exist, delivering high-quality results and allowing for fine-tuning for specific purposes. Additionally, large 
language models can serve as intermediaries for communication between various AI models, facilitating complex task solving and 
more efficient data processing, as demonstrated by Shen et al. (2023). Besides the commonly used “chatbot” option, they may overtake 
specific functions during the learning process that can be assigned in an advanced programming interface such as personalized 
feedback provision or scaffolding support. However, there are mixed results concerning generating better outcomes (Robrecht et al., 
2023).

To realize adaptivity, the simulation (as a system) might benefit from an accurate learner model. Therefore, a certain amount of 
data collection and interpretation is necessary (e.g., Debeer et al., 2021; Plass & Pawar, 2020). Advancements in the design of learner 
models (e.g., Brusilovsky & Millán, 2007; Shute & Zapata-Rivera, 2012), as well as in technologies such as natural language processing 
and other AI make a correct interpretation of complex user data more likely. However, even accuracy rates of 80–90% imply that the 
learner models generated by the simulation may lead to sub-optimal personalization of subsequent instruction. It also seems plausible 
that a simulation can diagnose certain types of learners’ behavior (e.g., errors) better than others or that a simulation can offer 
adequate personalized support only for some learners, but not for others (e.g., for learners with low/high prior knowledge). Because 
relevant mechanisms are not yet completely understood and even simulations involving recent AI can create inappropriate learner 
models, a broad heterogeneity of effects seems plausible.

Adaptability. The second type of personalization, adaptability (as defined by Fischer, 2001), pertains to systems that human actors, 
including the learners themselves, can adjust. A learning environment can thus be considered adaptable when learners have control 
over the instructional support or contents of the learning environment (e.g., the order of tasks) (Fischer, 2001). In other words, the 
learning environment can be adjusted by and to learners’ needs through offering specific controls to the learner (e.g., a “hint” button). 
The expected effectiveness of adaptable instructional support is based on theories such as self-regulated learning (SRL) and empirical 
findings indicating that giving learners control over their learning is beneficial for learning outcomes (e.g., Wang et al., 2017). 
However, it is unclear if and to what extent the adaptability of learning environments can enhance the effects of simulation-based 
learning and if it is equally beneficial for learners with different levels of prior knowledge, as these may or may not be able to 
adapt the learning environment to their needs appropriately.

To theoretically capture underlying causal mechanisms of how and why the degree of control by the learner and thus the 
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adaptability of a learning environment may affect learning, self-regulated learning (SRL) and self-determination theory (SDT) can be 
used as two important cognitive and affective-motivational theories from educational psychology.

Self-regulated learning theory (SRL) and self-determination theory (SDT) see learners as active agents who play a central role in 
their learning and thus emphasize their engagement in the learning process (Ryan & Deci, 2000; Zimmerman & Moylan, 2009). This 
includes, for example, metacognitive strategies that allow setting individual learning goals, choose appropriate strategies to achieve 
these goals, and to monitor their learning process and outcomes (Panadero, 2017). Metacognitive strategies also include assessing need 
for support and identifying possible sources to seek help from (Yang & Stefaniak, 2023). At the same time, SDT (Ryan & Deci, 2000) 
assumes that individuals are more intrinsically motivated to engage in certain activities, when they address their needs for autonomy, 
relatedness, and competence. We believe that simulation-based learning environments can create space for such engaging activities 
and motivate learners (e.g., Moll-Khosrawi et al., 2021). As adaptability targets exactly the learners’ autonomy, by providing choices 
(e.g., seeking for help; choosing task to perform) and allows learners to feel in control, positive effects of adaptability can be expected 
(Vogel et al., 2022).

Albeit SRL and SDT imply positive effects of adaptability, theories such as cognitive load theory (Sweller, 2010) can be used to 
arrive at a different hypothesis: having the opportunity to adapt a learning environment may lead to an increased extraneous cognitive 
load and thus reduce the cognitive resources available for learning. Adaptability may thus also lead to negative effects, in particular for 
those learners with little available cognitive resources, for example those that experience the simulation as difficult based on a lack of 
prior knowledge. To sum up, learners’ self-regulation skills are necessary to correctly monitor and judge their learning, understanding 
or competency, which allows them to correctly act on that information by selecting good strategies to deal with the task. On the other 
hand, self-regulation can be regarded as a complex skill itself (Wang et al., 2017) and can be targeted within simulation-based learning.

Empirical research, on the one hand, supports the idea that adaptable learning environments are beneficial for learning (e.g., 
Dignath & Büttner, 2008), as these can enhance the use of self-regulation skills (e.g., Wang et al., 2017), increase feelings of autonomy, 
support motivation (Rowe et al., 2011; Ryan et al., 2006; Snow et al., 2015), enhance effort and cognitive outcomes (Chen et al., 2019; 
Mercier et al., 2020). On the other hand, while learning in settings with advanced learning technologies, learners might not regulate 
their behavior effectively even though their learning process is not optimal (e.g., Azevedo & Feyzi-Behnagh, 2011; Kirschner, & van 
Merriënboer, 2013) as they might rely on the technology too much.

Given the theoretical rationale for why adaptivity and adaptability may be crucial for learning behavior in general and simulation- 
based learning in particular, the question arises, whether different ways to embed those in the design of a simulation can be delineated. 
Although both adaptivity and adaptability serve personalization and target learners’ needs, there is an essential difference in the 
decision-making authority for the adjustments. In case of adaptivity, the decisions are made by educators/educational designers, who 
created algorithms to identify learners’ needs (using performance measures or prior knowledge and other prerequisites as indicators) 
and address them in actions executed by the system (i.e., pop-up prompt in the learning environment). In contrast, in the case of 
adaptability, the decisions within the simulations can be made by users (in our case learners). The learners assess their own needs, 
based on knowledge, prior experience, or given instructions (or even prompts provided by the system), and set a request to the system 
for additional instructional support or an altered order of tasks, using some in-built control features of the learning environment. In 
both cases, the learning environment changes to a certain extent and support is given by the system. The latter might either be 
restricted to the pre-programmed options (i.e., specific prompts included by the designers of the system) or be more flexible in case of 
using generative AI (i.e., individually generated feedback).

This meta-analysis specifically focuses on adaptivity and adaptability of scaffolding and task order (e.g., navigation), which in 
terms of design principles can be embedded and even combined in simulation-based learning environment (e.g., Kucirkova et al., 
2021). This leads to three possibilities.

First, personalization can target scaffolding in form of examples or prompts, provided to guide the learner through their processing 
of the simulated scenarios within a learning environment. This can be done, for example by providing learners with control over the 
scaffolding they receive within the learning environment or by programming the learning environment to react with a specific type or 
amount of scaffolding to specific indicators (e.g., prior knowledge, errors in the process, poor performance, good and fast 
performance).

Second, personalization can target navigation through simulation by addressing task progression within a learning environment. 
This can be done by providing learners with control over task progression (i.e., the order of tasks within the simulation) or by pro-
gramming the learning environment to alter the task progression (e.g., provide simpler task) based on some indicators (e.g., learner 
error).

Third, simulation can have a default scaffolding/progression scenario, same for all learners; in this case no personalization takes 
place.

3. Research questions

As pointed out, there are multiple theoretical reasons to believe that adaptivity and adaptability can positively affect the effec-
tiveness of learning environments. However, as prior empirical research so far insufficiently considers adaptivity and adaptability and 
effects of different types of adaptivity and adaptability are mostly unclear, we address the following research questions in this meta- 
analysis. 

1. What scenarios are commonly used in primary studies of simulation-based learning environments in higher education to 
personalize learners’ experience through adaptivity and adaptability? (Preliminary review question)

O. Chernikova et al.                                                                                                                                                                                                   Educational Research Review 46 (2025) 100662 

4 



Focusing on personalizing the scaffolding included in a learning environment, four different basic scenarios are conceivable: (i) 
adaptability regarding the amount, timing, and type of scaffolding (ii) adaptivity regarding the amount, timing, and type of scaffolding 
with individual support for all learners, and (iii) a mix of adaptability and adaptivity with only a certain amount of responsibility by the 
learner and additional support by the system) (iv) neither adaptable nor adaptive (not personalized scaffolding).

Similarly, but independent of these scenarios, the focus on personalization of task progression leads to further scenarios: (i) 
adaptability regarding the order of (at least some of) the tasks within the learning environment vs. (ii) adaptivity with individual order 
of at least some of the tasks; (iii) mix of adaptability and adaptivity in selecting tasks, or (iv) default order of tasks (not personalized 
progression).

To examine the effects of these scenarios more closely, we address the following meta-analytical research question. 

2. To what extent do these scenarios of personalizing scaffolding and task progression contribute to the effectiveness of simulation- 
based learning on learning outcomes?

First, we expect generally positive effects of adaptivity on learning outcomes, as learners’ should receive a personalized learning 
experience. Moreover, based on concepts of self-regulated learning and self-determination theory as underlying learning and moti-
vational theories, we expect that adaptability (and thus increased demands onto the learners’ self-regulation) would generally lead to a 
higher effectiveness of simulation-based learning compared to non-adaptable environments. Finally, effects of combinations of 
adaptivity and adaptability with respect to task progression and scaffolding have not yet been systematically investigated, so that no 
hypothesis is possible.

Besides the expected generally positive effect of personalization, embedding adaptability might also increase complexity and the 
cognitive load posed on the learners, so that differential effects based on prior knowledge may occur. Similarly, adaptivity may be 
more or less beneficial for learners with different prior knowledge. We therefore address the following research question in this meta- 
analysis. 

3. To what extent does prior knowledge moderate the effects of the personalization scenarios on learning outcomes in simulation- 
based learning?

Based on prior research on simulation-based learning and the very notion of adaptivity and adaptability, we assume that adapt-
ability scenarios would be more beneficial for learners with higher prior knowledge, as they will be able to determine the suitable 
amount of scaffolding and/or best task order, respectively. Learners with low prior knowledge might be overwhelmed with decisions to 
be made, i.e. by the cognitive load produced by these, and not benefit as much. In contrast, effects of adaptive scenarios should not be 
dependent on prior knowledge, at least not based on cognitive load theory. Therefore, adaptive scenarios can be assumed to be more 
effective than adaptable scenarios for learners with low prior knowledge. The same possibly occurs for learners with higher prior 
knowledge, as their cognitive resources might be consumed by processing scaffolds that are redundant to the prior knowledge.

4. Method

4.1. Literature search and eligibility criteria

To address the research questions, we aimed at studies that investigate effects of simulation-based learning environments on 
learning outcomes (e.g., complex skills). Therewith, we replicated and updated the meta-analysis by Chernikova et al. (2020), by 
performing the search for studies that appeared before December 20, 2020. Keywords searched were: (simulat* OR role-play) AND 
(competenc* OR skill*) AND (teach* OR medic* OR higher education); databases included in search were PsycINFO, PsycARTICLES, 
ERIC, and MEDLINE.

To be included into this meta-analysis, studies had to focus on complex skills in higher education, such as diagnosing, decision- 
making, problem solving, or planning. Studies that solely focused on manual/motor skills were excluded from the analysis, as these 
skills are more specific and can hardly be generalized across different domains of higher education. Only studies, which used simu-
lations to facilitate knowledge, skills, or competencies, and reporting objective measures of learning outcomes, were included. Studies 
which reported using simulation only for assessment purposes and studies only reporting subjective measures of learning outcomes 
were excluded from this analysis. Studies also had to report a “no simulation” control condition (pre-test or control group) and relevant 
statistical values to be included. Eligible studies were not limited to any specific study site, the origin of studies and language of 
conduction were not restricted. To ensure that the concepts and definitions of the core elements coded for the meta-analysis were 
comparable and relevant, only studies published in English were included in the analysis.

The title-abstract screening was performed in a semi-automated mode, using machine learning algorithms (Chernikova et al., 
2024). These algorithms were trained (on the manually classified abstracts), validated, and tested on the data from a previous 
meta-analysis (Chernikova et al., 2020) to support and speed up the abstract screening process. Validation and testing have shown that 
the algorithms were at least as effective as experienced human raters and some of them (support vector machine and random forest) 
performed better than human raters in terms of accuracy (Chernikova et al., 2024). The abstracts, which were identified as eligible by 
at least one of two selected algorithms, were included in full-text screening. Further steps (full-text screening for eligibility and 
moderator coding) were performed manually by first author and research assistants.
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4.2. Coding procedure

Quality of coding was reached through multiple iterations including coder training (N = 6) and estimation of agreement. Within the 
coder training, 50% of the primary studies were double coded (with a Cohen’s Kappa >0.85). All discrepancies were discussed to reach 
the final agreement of 100%, and after agreement was reached, all the studies (including training material) were coded by one of the 
authors and the same student research assistants independently. The studies that did not provide enough information for an unam-
biguous decision were excluded from respective parts of the analysis. To address the current research questions, the following features 
were coded:

Adaptivity and adaptability of scaffolding was coded as: (i) adaptable scaffolding, if learners could decide over the amount, timing, or 
content of their scaffolding (e.g., using hint buttons in the learning environment); (ii) adaptive scaffolding, if learners received 
automated scaffolding based on their performance (e.g., through programmed algorithms within the learning environment); (iii) a mix 
of adaptive and adaptable scaffolding with only a certain amount of responsibility by the learner and additional support by the system 
(e.g., system offers a prompt and learners decides if they want to accept or skip it); and (iv) not personalized (i.e., non-adaptive/non- 
adaptable) scaffolding if any kind of static scaffolding was provided to all learners in the learning environment.

Adaptivity and adaptability of task progression was coded as: (i) adaptable task progression, if the learners had control over at least 
some of the tasks within the learning environment; (ii) adaptive task progression if the tasks were presented in specific order by the 
learning environment, depending on learners performance on the previous task; (iii) mix of adaptivity and adaptability in selecting 
tasks in case the system offered particular task and the learner could accept or decline the offer made by the system; and (iv) not 
personalized (i.e., non-adaptive/non-adaptable) task progression if tasks were presented in fixed order by the learning environment in 
the same way for all the participants.

Prior knowledge (familiarity of context) was coded based on the primary studies’ authors statements about their learners "prior" to 
entering intervention/learning environment (authors mention that topic or context was unfamiliar to students vs. familiar). A demo or 
a lecture is instructional support provided "during" the learning and does not influence the coding of prior knowledge. Thus we could 
distinguish between prior knowledge that learners were coming with to the experiment, and additional knowledge that they were able 
to access just before and during learning. The moderator was coded as high if authors of the studies mentioned that learners had been 
trained in a familiar context (e.g., new relevant concepts, procedures, or performed similar tasks before), low if learners had not been 
trained in similar contexts (e.g., new situations or tasks in the simulation, which learners never encountered before), or mixed if some 
learners in the group were familiar with the context and some not (e.g., if students and professionals participated in the simulation).

Additionally, the following control variables were coded: type and year of publication, domain and study design (experimental, 
quasi-experimental, or one-group pre-post design). Type of control was coded as “baseline” if the effect of simulation was controlled by 
pre-test only; “pure” if control condition had no instruction (e.g., waiting control) or “instructed”, if the control condition received 
other types of instructional support on the same topic, but no simulation.

4.3. Statistical analysis

A random-effects model and Hedges g effect size estimate were applied (Schmidt & Hunter, 2014) with the correction for correlated 
samples (Tanner-Smith et al., 2016). We have selected Hedges’ g effect size estimate as it includes a correction factor for small sample 

Fig. 1. PRISMA Flow Chart for the process of study selection.
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sizes, which makes it a less biased estimator of the population effect size compared to Cohens ’ d (Borenstein et al., 2009).
Whenever available, means and standard deviations were used to calculate the effect sizes, if authors of primary studies reported 

different statistics (e.g., SE in place of SD; results of statistical tests, instead of M and SD values) transformations were made based on 
Borenstein et al. (2009) recommendations. Procedures to trace and correct for publication bias (funnel-plot based and p-curve based) 
were performed as part of the preliminary analysis (Carter et al., 2017).

5. Results

5.1. Results of literature search and preliminary review question (RQ1)

The literature search yielded 217 eligible studies (reporting 427 comparisons) for the analysis (Fig. 1). With regard to the first 
research question, the review of eligible studies indicated that simulations with equal support for all learners (non-adaptive/non- 
adaptable scaffolding) were the most commonly used instructional setting (N = 100). Adaptive scaffolding was identified in N = 25 
studies and adaptable scaffolding in N = 12. A combination of adaptive and adaptable scaffolding was reported in N = 6 studies. 
Relatively many primary studies did not provide sufficient information to identify the used strategies (N = 74) and were excluded from 
subsequent analyses. The coding of adaptive and adaptable task progression yielded similar results: most of the primary studies in this 
analysis reported fixed (non-adaptive/non-adaptable) task progression (N = 109); adaptable task progression was reported in (N = 53) 
studies. Adaptive task progression was not identified in the current set of studies. Other studies did not provide sufficient information 
for the coding.

Most of the studies were from domain of medical education (ca. 85%), followed by other domains like counseling, business, or 
engineering (8%); teacher education (5%) and nursing (2%). The range of analyses skills varied from technical performance (35%); 
general problem-solving skills (20%), managing critical situations (classroom or emergency management, 17%); diagnostic skills in 
teacher or medical education (10%); communication skills (11%); teamwork (2%) and other skills (5%). Control variables (domain, 
type of study, and type of control) did not uncover statistically significant differences between different levels of moderators and were 
not able to explain statistically significant amount of heterogeneity; results were in line with previous meta-analysis (Chernikova et al., 
2020).

In terms of prior knowledge, most studies reported using simulations in familiar context (47%); followed by using simulations to 
introduce new topics or tasks (40%). Results for mixed groups of learners were reported in 13% of studies. Further detailed information 
about studies in the analysis can be found in OSF repository: https://osf.io/xc427/?view_ 
only=c4d7229def8d4ed9acc94416646a5e5a.

5.2. Effects of adaptive and adaptable scenarios in simulations

To address the second research question, we performed the actual meta-analysis with N = 143 studies, which provided enough 
information to be assigned to one of the categories. The direct effects of each strategy regarding scaffolding or task progression are 
represented in Table 1. While the differences in the effect sizes between strategies did not reach statistical significance (p > .05), 
descriptive values indicate that adaptable scaffolding seems to be in general slightly less beneficial than adaptive scaffolding, but 
adaptable task progression increases effects of simulation for learners.

Looking more specifically at interactions between different strategies for scaffolding and task progression, data implies that fully 
adaptable learning environments (g = 0.71, SE = 0.20; N = 7) are significantly less beneficial (p < .05) than other combinations but 
also than non-personalized learning environments (g = 0.85, SE = 0.09; N = 82); differences between other moderator levels and 
groups are not statistically significant (see Table 2).

5.3. Role of prior knowledge

Regarding research question three on the role of prior knowledge, the effects of the different strategies for learners with high and 

Table 1 
Direct effect sizes for adaptive and adaptable scenarios.

Scaffolding
Not personalized g = 0.92a (0.08) N = 100
Adaptive g = 0.98a (0.20) N = 25
Adaptable g = 0.75a (0.15) N = 12
Adaptive and adaptable g = 1.10 ns (0.55) N = 6
Task progression
Not personalized g = 0.87a (0.08) N = 109
Adaptable g = 1.10a (0.14) N = 34
Adaptive NA N = 0
Mixed NA N = 0

Note: The difference between effect sizes is not statistically significant for p 
> .05 (ns).

a significant for p < .05.
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low prior knowledge are summarized in Table 3. The results imply that for learners with low prior knowledge non-personalized 
simulation is the most frequently used and yields average effects (g = 0.68; SE = 0.13). If scaffolding is not personalized, but task 
progression is adaptable, the effects of simulation are twice as big (g = 1.37; SE = 0.26) for low prior knowledge learners, suggesting 
that having control of the task progression combined with non-personalized scaffolding can be particularly beneficial. Fully adaptable 
simulations for learners with low prior knowledge deliver medium results (g = 0.52 ns; SE = 0.20), suggesting that some interventions 
were more effective than others; adaptable scaffolding (g = 0.27 ns SE = 0.06) with non-personalized task progression is descriptively 
the least effective condition.

For learners with high prior knowledge non-personalized simulations are also the most frequently used scenario (g = 0.93; SE =
0.10). If scaffolding is not personalized, but task progression is adaptable, the effects of simulation slightly increase (g = 1.08; SE =
0.25), but adaptable task progression does not seem that important for learners with high prior knowledge as compared to learners 
with a low level of prior knowledge. Learners with high prior knowledge can better learn in fully adaptable simulations (g = 0.92 ns; SE 
= 0.35), in contrast to learners with low prior knowledge. However, the combination of adaptive scaffolding and adaptable task 
progression (g = 2.11 SE = 0.45) is descriptively the most effective scenario for learners with high prior knowledge.

6. Discussion

Prior research has suggested and empirically validated that simulations generally represent effective learning environments to 
develop complex skills (Chernikova et al., 2020; Belland et al., 2017; Cook et al., 2013). Moreover, simulations – when technology 
enhanced – provide rich opportunities to personalize learning. This can be done by integrating adaptivity and adaptability in the 
simulation-based learning environment, both of which are important features when creating and personalizing learning environments. 
Scaffolding and task progression (navigation) – both adaptive and adaptable – are two possibilities in this regard, which were explored 
in this meta-analysis.

Based on the literature review, the majority of studies did not implement any adaptive or adaptable strategies to personalize 
scaffolding (100/143) or task progression (109/162) in simulation-based learning. This can be interpreted as a lack of personalization, 
especially regarding scaffolding. However, this is only partially surprising: while adaptable task progression can in principle be easily 
provided in most simulations, adaptive and adaptable scaffolding is usually more difficult to provide as scaffolding measures (adaptive 
and adaptable conditions) and rules for their deployment must be created, which can be substantially more work (e.g., Nickl et al., 
2024). Still, the share of studies using adaptive and adaptable strategies (RQ1) show that innovative approaches allowing better 
personalization are not sufficiently taken up in research on simulation-based learning. This, in turn is somewhat surprising, as op-
portunities to adapt scaffolding to learners’ needs, knowledge, or performance are considered an essential element of scaffolding 
(Belland et al., 2017), but might also reflect differences in definitions or in reporting standards.

6.1. The role of adaptivity and adaptability and their interplay in simulations

The results for adaptive scaffolding show descriptively high, but also partially significant effects. In contrast, adaptable scaffolding 
appears to be somewhat less effective and goes along with more variance, possibly as only parts of the learners are able to assess their 
own need for scaffolding and choose the appropriate amount of scaffolding for themselves, as the available cognitive resources may be 
limited for these learners. Regarding task progression, effects are descriptively higher for simulations with adaptable task progression, 
when learners can make decisions about the order of tasks.

Table 2 
Interaction of Adaptive and Adaptable scenarios.

Scaffolding Task progression

Not personalized Adaptable

Not personalized g = 0.85 (0.09); N = 82 g = 1.28 (0.18); N = 18
Adaptive g = 0.94 (0.23); N = 17 g = 1.10 (0.42); N = 8
Adaptable g = 0.82 (0.24); N = 5 g = 0.71 (0.20); N = 7
Adaptive + adaptable g = 1.18 ns (0.70); N = 5 NA

Table 3 
Prior knowledge and personalization scenarios.

Scaffolding Task progression

Not personalized Adaptable

Low Prior Knowledge High Prior Knowledge Low Prior Knowledge High Prior Knowledge

Not personalized g = 0.68 (0.13); N = 38 g = 0.93 (0.10); N = 36 g = 1.37 (0.26); N = 9 g = 1.08 (0.25); N = 10
Adaptive g = 0.92 (0.38); N = 9 g = 1.02 (0.31); N = 6 g = 0.39 ns (0.59); N = 3 g = 2.11 (0.45); N = 4
Adaptable g = 0.27 ns (0.06); N = 2 g = 1.33 (0.06); N = 2 g = 0.52 ns (0.20); N = 4 g = 0.92 ns (0.35); N = 3
Adaptive+

Adaptable
g = 1.15 ns (0.70); N = 2 g = 1.12 ns (0.88); N = 4 NA NA
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While there are only very few studies combining the use of adaptivity and adaptability of scaffolding, the effects are descriptively 
higher. This may be the case, as the system effectively provides the needed amount of scaffolding and the learners at the same time 
have an affective-motivational reinforcement, as they perceive higher autonomy and are more engaged in self-regulation (e.g., Wang 
et al., 2017), which is not the case in the settings where only the system has control over the learning.

6.2. The role of prior knowledge

The results highlight that adaptive scaffolding combined with adaptable task progression show the descriptively largest effects 
(Table 3). This, for example, can be illustrated in a scenario, where the learner looks for an interesting problem to solve (e.g., selects the 
task), and if the selected task is too complex for this learner, the system provides the necessary support. However, based on the 
included studies, this combination of adaptivity and adaptability is only beneficial for learners with high levels of prior knowledge, but 
not for learners with low prior knowledge. In the case of learners with higher levels of prior knowledge, this may be explained by the 
provision of effective scaffolding (through reducing extraneous cognitive load) by the system and the affective-motivational rein-
forcement based on autonomy. The feeling of autonomy might increase intrinsic motivation (e.g., Ryan & Deci, 2000). Furthermore, it 
might give advanced learners opportunity to select some even more challenging tasks and still get scaffolding from the system if they 
get lost in those tasks.

In case of learners with lower levels of prior knowledge, this combination of adaptive scaffolding and adaptable task progression 
was not associated with significant increase in the effects and were descriptively the smallest. As only three quite heterogeneous 
studies reported this combination of strategies, results need to be interpreted cautiously. Reasons for these results could be a failed 
adaptation of scaffolding (e.g., due to inadequate learner models), a too complex learning environment (i.e., inadequate intrinsic 
cognitive load for this level of prior knowledge or overly increased extraneous cognitive load (see Sweller, 2010)), as well as or other 
factors (e.g., frustration, lack of intrinsic motivation).

In contrast, combinations of adaptable scaffolding and adaptable task progression were associated with descriptively smallest, 
highly heterogeneous effects for learners with high and low prior knowledge. One of the possible explanations is that the learning 
environment significantly increased extraneous cognitive load particularly for learners with low prior knowledge, leaving little to no 
cognitive resources for learning (e.g., Sweller, 2010), as they have to simultaneously monitor both aspects of the learning process 
(Zimmerman & Moylan, 2009; Zimmerman & Schunk, 2011) and this challenge goes beyond possible effects of autonomy support and 
engagement in the learning situation.

To summarize, the results underline that as long as students have a certain level of prior knowledge and are familiar with the 
context, all personalization strategies lead to mostly comparable positive effects. In case of high prior knowledge, the condition of 
using adaptable scaffolding (i.e., giving learners the opportunity to decide themselves) might under certain circumstances be better 
than adaptive scaffolding (i.e., decision taken by system based on learners’ performance). This may possibly relate to a more accurate 
self-diagnosis of the learner, as compared to the learner model created by the system, and experiencing the autonomy and own 
competence by the learner (SDT).

However, if learners have low prior knowledge, adaptable scaffolding conditions show worse effects compared to other, adaptive 
conditions, which may be related to an extreme increase in extraneous cognitive load (e.g., distributing resources for self-monitoring 
and deciding about task progression, need in scaffolding) and therefore a decrease in cognitive resources, which learners could have 
used for actual learning. Furthermore, not only levels of prior knowledge, but also varying levels of SRL skills might strongly affect the 
effectiveness of personalized instruction (e.g., Dinsmore et al., 2008; Kollar and Fischer, 2006; Seufert et al., 2024), especially if the 
learners need to make choices concerning scaffolding and task selection. The number of primary studies offering adaptability of 
scaffolding is low, and conclusions thus need to be made with caution. However, the significance of the effects and the differences in 
the effects should be considered and further researched.

6.3. Limitations of the study and further research

As mentioned in the discussion, a large part of the studies included in this meta-analysis did not provide sufficient information 
regarding either adaptivity or adaptability of learning settings, leading to low a sample size for some conditions. Combined with the 
high heterogeneity of the results due to different definitions and implications for adaptive and adaptable learning, different target 
outcomes, and settings of the learning environment, this may lead to difficulties in interpreting non-significant findings as well as 
generalizing the results. It is also worth noticing that most of the studies in the analysis are coming from the field of medical education, 
and although domain was not found to be a statistically significant moderator, the results can only cautiously be generalized to 
different contexts and domains of higher education.

Furthermore, this meta-analysis shares a relatively narrow view on adaptability emphasizing learner agency in simulation but not 
taking into consideration other features of adaptability (e.g., actors’ roles during the simulation or human interactors having control 
over immersive simulations). Therefore, one of the implications for future research should be to include a more systematic description 
of the learning settings and study design in primary studies (e.g., using adaptivity framework by Plass & Pawar, 2020), as a shared 
language will facilitate the research and generalizability of further research on adaptability and adaptivity of learning environments. 
For example, with more systematic descriptions, getting more into technical details of adaptivity implementation (e.g., macro vs. 
micro level) would become possible.

Another conclusion to be made regarding future research is the need for more primary studies. They might allow the effects of 
personalization strategies for different learning outcomes and types of simulations. Furthermore, they might enable collecting further 
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evidence by exploring the effects of simulations with adaptive scaffolding (based on learners’ performance) and adaptable task pro-
gression. In case of learners with low/high prior knowledge, these simulations showed effects of 0.39 vs. 2.11. One of the plausible 
explanations of the effect might be that learners with low prior knowledge overestimated their competence level in selecting the tasks 
(task progression). As scaffolding is expected to work in the zone of proximal development (e.g., Vygotsky, 1978), and the selected 
tasks were outside of this zone, no amount of adaptive scaffolding could compensate for this gap. Alternatively, in the particular 
primary studies, the scaffolding could have been adapted in non-optimal way, leading to little effects.

It is also important to mention, that this meta-analysis provides some initial insights about effective simulation-based learning 
environment design, based on research synthesis of previous empirical studies. There are other variables apart from adaptive or 
adaptable strategies responsible for heterogeneity in the effects of simulation-based learning on learning outcomes. The results do not 
provide any causal evidence and further primary experimental research is needed to test and validate found associations. Further 
learner characteristics (interests, goals and motivation; cultural and socio-economic background) as well as contextual factors (e.g., 
institution policy and curricula, available technology) should be considered. Moreover, another promising direction for research 
would be to dive deeper into different activities of simulation-based learning (e.g., debriefing phase, see Cheng et al., 2014 for review) 
and applications of adaptive and adaptable support for these activities.

6.4. Outlook: is generative AI the next frontier in adaptive and adaptable learning?

Emerging technologies, especially within the context of AI, are poised to significantly enhance the landscape of adaptivity and 
adaptability in simulation-based learning. Among the most recent and promising of these developments is the advent of generative AI 
models. Unlike traditional algorithms, generative AI is capable of producing content dynamically, drawing from vast amounts of data 
to tailor instructional content to individual learners. This capability can be transformative for adaptive scaffolding.

More specifically, as learners interact with a simulation, the generative AI can assess their real-time feedback, responses, and 
progression, adjusting the content or guidance instantaneously to best suit the learner’s needs. This means that instructional support 
can evolve on-the-fly, hence offering learners an experience that is not only consistently aligned with their current proficiency and 
learning style but eventually also more engaging. Moreover, the potential of generative AI extends beyond adaptivity. By incorporating 
explicit user input and preferences, generative AI can foster adaptability like no other AI technology was able to achieve before 
(Chernikova et al., 2020). Learners can be given the autonomy to navigate their learning trajectory, while the AI offers personalized 
suggestions, resources, or interventions based on its understanding of both the profile and past interactions of and with the learner 
(Lim et al., 2023).

This allows for more harmonized learning environments, in which system-driven adjustments work together with individual 
agency. For instance, it could provide insights on which elements of the simulations are best to be presented using adaptable or 
adaptive strategies at all stages (e.g., training phase or debriefing) during the simulation-based learning process, sensitively depending 
on a multitude of learner variables beyond prior knowledge.

The confluence of adaptivity and adaptability facilitated by generative AI could potentially lead to a novel learning experience that 
would not only be responsive to the learner’s immediate needs but also empower them to take charge of their own learning journey. 
However, these opportunities require AI to be trained on sufficient data; furthermore, insights into relevant learning situations are still 
insufficient.

Santoni de Sio and Mecacci (2021) argue that there are responsibility gaps in systems with artificial intelligence that are rooted in 
gaps in culpability, moral and public accountability, and active responsibility. The authors propose a solution based on meaningful 
human control that implies the mapping of agents involved in the AI-based system, their intentions, and their relations to the systems, 
as well as an analysis of the capacities of the human agents in the system (Santoni de Sio and Mecacci, 2021).

Ethics councils around the world also identified the complexity of the question of responsibility. German Ethics Council emphasizes 
that responsibility can only be taken by those who develop or implement AI-based technology, by those who facilitate their use or by 
those who use the technology (Deutscher Ethikrat, 2023). Following these arguments, the simulation developers, therefore, play a 
central role and take part of the responsibility.

To sum up, besides the powerful capabilities of generative AI itself and the multitude of opportunities contributing to adaptive and 
adaptable simulation-based learning, it has to be considered that new challenges to use and deal with these opportunities arise (e.g., 
consideration of and deal with uncertainty or bias). This also opens up completely new research opportunities and affordances, 
especially in the context of adaptive and adaptable simulation-based learning.

6.5. Implications for research and practice

To further understand the underlying phenomena making personalization effective, the following evidence should be collected and 
systematized in future research. 

1. Measuring variables supporting SRL and SDT (e.g., interest, engagement, meta-cognitive strategies, help-seeking behavior), 
intrinsic and extraneous cognitive load, and cognitive effort to estimate their moderating role of the effectiveness of learning 
environments using adaptive and adaptable design and instructional support. Aggregating data from the primary studies.

2. Investigating if the results can be generalized to other learning settings but simulation-based learning environments (e.g., problem- 
based learning).
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3. Investigating opportunities of more precise adaptation of instructional support using AI technologies, and to inform learners to 
support them making better decisions in adaptable learning environments.

4. Estimating the generalizability of findings to different domains and set of skills

6.6. Conclusion

Personalization can be highly effective in simulation-based learning environments in higher education. It can be achieved through 
adaptive and adaptable scaffolding and task progression, which have different underlying mechanisms and can be combined to address 
needs of learners with different levels of prior knowledge. Results underline that it may be beneficial to have adaptive scaffolding, for 
learners not to miss essential support and guidance (e.g., only some learners are able to choose the right amount of scaffolding). In 
contrast, different tasks orders can lead to similarly good outcomes in simulations. Navigation is somewhat intrinsic to simulations and 
– if designed well – different task orders should all lead to positive learning outcomes. Making this adaptability visible to learners by 
explicitly letting them choose certain aspects of task flow will thus i) not really change the simulation from the cognitive perspective, 
but ii) allow for higher effects based on affective-motivational perspective.

Personalization is positive as long as learners are in charge of aspects that they are either i) capable of regulating or which are ii) not 
too critical for their learning in simulations. Providing learners with more control in these cases (through adaptable learning settings) 
may lead to affective-motivational benefits. We believe that these findings are a promising starting point for systematic research on 
whether or not these findings still hold when the capabilities of the new generation of AI technologies are used to implement adaptive 
and adaptable support.
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Moll-Khosrawi, P., Zöllner, C., Cronje, J. S., & Schulte-Uentrop, L. (2021). The effects of simulation-based education on medical students’ motivation. International 
Journal of Medical Education, 12, 130–135. https://doi.org/10.5116/ijme.60c0.981e

Nickl, M., Sommerhoff, D., Radkowitsch, A., Huber, S. A., Bauer, E., Ufer, S., Plass, J. L., & Seidel, T. (2024). Effects of real-time adaptivity of scaffolding: Supporting 
pre-service mathematics teachers’ assessment skills in simulations. Learning and Instruction, 94, Article 101994. https://doi.org/10.1016/j. 
learninstruc.2024.101994

Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in Psychology, 8. https://www.frontiersin.org/articles/ 
10.3389/fpsyg.2017.00422.

Plass, J. L., & Pawar, S. (2020). Toward a taxonomy of adaptivity for learning. Journal of Research on Technology in Education, 52(3), 275–300. https://doi.org/ 
10.1080/15391523.2020.1719943

Plass, J. L., & Pawar, S. (2020b). Adaptivity and personalization in games for learning. In J. L. Plass, R. E. Mayer, & B. D. Homer (Eds.), Handbook of game-based 
learning (pp. 263–282). Cambridge, MA: MIT Press. 

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., & Soloway, E. (2004). A scaffolding design framework for software to 
support science inquiry. The Journal of the Learning Sciences, 13(3), 337–386. https://doi.org/10.1207/s15327809jls1303_4

Robrecht, A. S., Rothgänger, M.n, & Kopp, S. (2023). A study on the benefits and drawbacks of adaptivity in AI-generated explanations. In ACM international 
Conference on intelligent virtual agents (IVA ’23), september 19–22, 2023, Würzburg, Germany. New York, NY, USA: ACM. 

Rowe, J. P., Shores, L. R., Mott, B. W., & Lester, J. C. (2011). Integrating learning, problem solving, and engagement in narrative-centered learning environments. 
International Journal of Artificial Intelligence in Education, 21(1–2), 115–133. https://psycnet.apa.org/record/2012-00897-007.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. 
https://doi.org/10.1006/ceps.1999.1020

Ryan, R. M., Rigby, C. S., & Przybylski, A. (2006). The motivational pull of video games: A self-determination theory approach. Motivation and Emotion, 30, 344–360. 
https://doi.org/10.1007/s11031-006-9051-8

Santoni de Sio, F., & Mecacci, G. (2021). Four responsibility gaps with artificial intelligence: Why they matter and how to address them. Philosophy & Technology, 34 
(4), 1057–1084.

Schmidt, F. L., & Hunter, J. E. (2014). Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.). Sage. 
Schneider, M., & Preckel, F. (2017). Variables associated with achievement in higher education: A systematic review of meta-analyses. Psychological Bulletin, 143(6), 

565–600. https://doi.org/10.1037/bul0000098
Seufert, T., Hamm, V., Vogt, A., & Riemer, V. (2024). The interplay of cognitive load, learners’ resources and self-regulation. Educational Psychology Review, 36, 50. 

https://doi.org/10.1007/s10648-024-09890-1
Shen, Y., Song, K., Tan, X., Li, D., Lu, W., & Zhuang, Y. (2023). Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint. arXiv: 

2303.17580.
Shute, V., & Zapata-Rivera, D. (2012). Adaptive educational systems. In P. Durlach, & A. Lesgold (Eds.), Adaptive technologies for training and education (pp. 7–27). 

Cambridge University Press. https://doi.org/10.1017/CBO9781139049580.004. 
Simonsmeier, B. A., Flaig, M., Deiglmayr, A., Schalk, L., & Schneider, M. (2022). Domain-specific prior knowledge and learning: A meta-analysis. Educational 

Psychologist, 57(1), 31–54. https://doi.org/10.1080/00461520.2021.1939700

O. Chernikova et al.                                                                                                                                                                                                   Educational Research Review 46 (2025) 100662 

12 

https://doi.org/10.1016/j.tate.2020.103146
https://doi.org/10.1097/ACM.0b013e31828ffdcf
http://refhub.elsevier.com/S1747-938X(24)00071-X/optuBhSTXufff
http://refhub.elsevier.com/S1747-938X(24)00071-X/optuBhSTXufff
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref10
https://doi.org/10.1007/s11409-008-9029-x
https://doi.org/10.1007/s10648-008-9083-6
https://doi.org/10.1108/ILS-06-2022-0076
https://doi.org/10.1023/A:1011145532042
https://doi.org/10.1023/A:1011145532042
https://doi.org/10.1145/3411764.3445596
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref15
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref15
https://doi.org/10.1016/j.nedt.2017.04.004
https://doi.org/10.14786/flr.v7i4.384
https://doi.org/10.1007/978-3-030-52237-7_20
https://doi.org/10.1007/978-3-658-37895-0_16
https://doi.org/10.1080/00461520.2013.804395
https://doi.org/10.1080/00461520.2013.804395
https://doi.org/10.1609/aimag.v34i3.2484
https://doi.org/10.2190/RK02-7384-2723-G744
https://doi.org/10.1016/j.stueduc.2020.100973
https://doi.org/10.3389/feduc.2021.604568
https://doi.org/10.3389/feduc.2021.604568
https://doi.org/10.1111/bjet.13119
https://doi.org/10.1016/j.chb.2022.107547
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref25
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref25
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref25
https://doi.org/10.5116/ijme.60c0.981e
https://doi.org/10.1016/j.learninstruc.2024.101994
https://doi.org/10.1016/j.learninstruc.2024.101994
https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00422
https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00422
https://doi.org/10.1080/15391523.2020.1719943
https://doi.org/10.1080/15391523.2020.1719943
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref30
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref30
https://doi.org/10.1207/s15327809jls1303_4
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref32
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref32
https://psycnet.apa.org/record/2012-00897-007
https://doi.org/10.1006/ceps.1999.1020
https://doi.org/10.1007/s11031-006-9051-8
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref36
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref36
http://refhub.elsevier.com/S1747-938X(24)00071-X/optQUm6wegyix
https://doi.org/10.1037/bul0000098
https://doi.org/10.1007/s10648-024-09890-1
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref39
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref39
https://doi.org/10.1017/CBO9781139049580.004
https://doi.org/10.1080/00461520.2021.1939700


Snow, R. E. (1991). Aptitude-treatment interaction as a framework for research on individual differences in psychotherapy. Journal of Consulting and Clinical 
Psychology, 59(2), 205–216. https://doi.org/10.1037/0022-006x.59.2.205

Snow, E. L., Allen, L. K., Jacovina, M. E., & McNamara, D. S. (2015). Does agency matter?: Exploring the impact of controlled behaviors within a game-based 
environment. Computers & Education, 82, 378–392. https://doi.org/10.1016/j.compedu.2014.12.011

Sweller, J. (2010). Cognitive load theory: Recent theoretical advances. In J. L. Plass, R. Moreno, & R. Brünken (Eds.), Cognitive load theory (pp. 29–47). Cambridge 
University Press. https://doi.org/10.1017/CBO9780511844744.004. 

Tabak, I., & Kyza, E. (2018). Research on scaffolding in the learning sciences: A methodological perspective. In F. Fischer, C. Hmelo-Silver, S. Goldman, & P. Reimann 
(Eds.), International handbook of the learning sciences (pp. 191–200). Routledge. 

Tanner-Smith, E., Tipton, E., & Polanin, J. (2016). Handling complex meta-analytic data structures using robust variance estimates: A tutorial. Journal of 
Developmental and Life-Course Criminology, 2(1), 85–112. https://doi.org/10.1007/s40865-016-0026-5.

Tetzlaff, L., Schmiedek, F., & Brod, G. (2021). Developing personalized education: A dynamic framework. Educational Psychology Review, 33(3), 863–882. https://doi. 
org/10.1007/s10648-020-09570-w

Theelen, H., Beemt, A. V., & Brok, P. D. (2019). Classroom simulations in teacher education to support preservice teachers’ interpersonal competence: A systematic 
literature review. Computers and Education, 129, 14–26. https://doi.org/10.1016/j.compedu.2018.10.015.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, et al. (Eds.), 
Advances in neural information processing systems (p. 30). USA.

Vogel, F., Kollar, I., Fischer, F., Reiss, K., & Ufer, S. (2022). Adaptable scaffolding of mathematical argumentation skills: The role of self-regulation when scaffolded 
with CSCL scripts and heuristic worked examples. International Journal of Computer-Supported Collaborative Learning, 17(1), 39–64. https://doi.org/10.1007/ 
s11412-022-09363-z

Vygotsky, L. S. (1978). Interaction between learning and development. In C. Gauvain (Ed.), Readings on the development of children (pp. 34–40). Scientifica American 
Books. 

Wang, X., Kollar, I., & Stegmann, K. (2017). Adaptable scripting to foster regulation processes and skills in computer-supported collaborative learning. International 
Journal of Computer-Supported Collaborative Learning, 12, 153–172. https://link.springer.com/article/10.1007/s11412-017-9254-x.

Yang, F., & Stefaniak, J. (2023). A systematic review of studies exploring help-seeking strategies in online learning environments. Online Learning, 27(1), 107–126. 
https://doi.org/10.24059/olj.v27i1.3400

Zimmerman, B. J., & Moylan, A. R. (2009). Self-regulation: Where metacognition and motivation intersect. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), 
Handbook of metacognition in education (pp. 299–315). Routledge. 

Zimmerman, B. J., & Schunk, D. H. (2011). Self-regulated learning and performance: An introduction and an overview. In B. J. Zimmerman, & D. H. Schunk (Eds.), 
Handbook of self-regulation of learning and performance (pp. 1–12). Routledge/Taylor & Francis Group. https://psycnet.apa.org/record/2011-12365-001. 

O. Chernikova et al.                                                                                                                                                                                                   Educational Research Review 46 (2025) 100662 

13 

https://doi.org/10.1037/0022-006x.59.2.205
https://doi.org/10.1016/j.compedu.2014.12.011
https://doi.org/10.1017/CBO9780511844744.004
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref45
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref45
https://doi.org/10.1007/s40865-016-0026-5
https://doi.org/10.1007/s10648-020-09570-w
https://doi.org/10.1007/s10648-020-09570-w
https://doi.org/10.1016/j.compedu.2018.10.015
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref47
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref47
https://doi.org/10.1007/s11412-022-09363-z
https://doi.org/10.1007/s11412-022-09363-z
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref49
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref49
https://link.springer.com/article/10.1007/s11412-017-9254-x
https://doi.org/10.24059/olj.v27i1.3400
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref52
http://refhub.elsevier.com/S1747-938X(24)00071-X/sref52
https://psycnet.apa.org/record/2011-12365-001

	Personalization through adaptivity or adaptability? A meta-analysis on simulation-based learning in higher education
	1 Problem statement
	2 Theoretical background
	2.1 Simulation-based learning and instructional support
	2.2 Prior knowledge and personalization
	2.3 Adaptivity and adaptability in simulations

	3 Research questions
	4 Method
	4.1 Literature search and eligibility criteria
	4.2 Coding procedure
	4.3 Statistical analysis

	5 Results
	5.1 Results of literature search and preliminary review question (RQ1)
	5.2 Effects of adaptive and adaptable scenarios in simulations
	5.3 Role of prior knowledge

	6 Discussion
	6.1 The role of adaptivity and adaptability and their interplay in simulations
	6.2 The role of prior knowledge
	6.3 Limitations of the study and further research
	6.4 Outlook: is generative AI the next frontier in adaptive and adaptable learning?
	6.5 Implications for research and practice
	6.6 Conclusion

	Funding
	Declaration of competing interest
	Appendix A Supplementary data
	Data availability
	References


