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A B S T R A C T

Virtual reality (VR) finds various applications in productivity, entertainment, and training, often requiring
substantial working memory and attentional resources. Effective task performance in VR relies on prioritizing
relevant information and suppressing distractions through internal attention. However, current VR systems fail
to account for the impact of working memory loads, leading to over or under-stimulation. In this work, we
designed an adaptive system using Electroencephalography (EEG) correlates of external and internal attention
to support working memory tasks. Participants engaged in a visual working memory N-Back task, where we
adapted the visual complexity of distracting elements. Our study demonstrated that EEG frontal theta and
parietal alpha frequency bands effectively adjust dynamic visual complexity. The adaptive system improved
task performance and reduced perceived workload compared to a reverse adaptation. Furthermore, we trained
a Linear Discriminant Analysis (LDA) model and achieved a classification accuracy of 79.4% for distinguishing
internal and external attention states using EEG frequency features, demonstrating the feasibility of EEG-based
models for real-time attention state detection. These results highlight the potential of EEG-based adaptive
systems to balance distraction management and maintain user engagement without causing cognitive overload.
1. Introduction

The immersive nature of Virtual Reality (VR) environments allows
users to engage with a wide range of lifelike and immersive scenarios,
making it an ideal tool for various applications, such as remote col-
laboration (Knierim et al., 2021), training (Zahabi and Abdul Razak,
2020) and entertainment (Lécuyer et al., 2008). These applications
also extend to productivity settings, where specific VR applications
have been shown to improve productivity by enabling higher focus and
multitasking capabilities (Gonzalez-Franco and Colaco, 2024; Aufegger
and Elliott-Deflo, 2022; Chiossi et al., 2024). Here, productivity settings
benefited from specific VR applications. However, VR environments’
inherent predominant visual nature can challenge users’ capacity to
process information. For example, users have been overwhelmed when
the VR system provided excessive visual stimuli for training in visual
tasks (Ragan et al., 2015), spatial memory (Huang and Klippel, 2020),
and immersive analytics (Bacim et al., 2013; Gonçalves et al., 2022).

Researchers have proposed adaptive systems that aim to detect if
a user is overwhelmed and adjust the VR environment. One promis-
ing approach to detect such overload states , i.e., a state where the
cognitive demands placed on a user exceed their capacity to pro-
cess information effectively (da Silva Cezar and Maçada, 2023; Kosch
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et al., 2023a), is to employ physiological measures, potentially allowing
for online adaptation. A robust approach is detecting the relation-
ship between internally-oriented (Hutchinson and Turk-Browne, 2012)
and externally-oriented (Jiang et al., 2021a) attention using EEG as
when the attentional state of the user changes, the electrophysiological
activity is unintentionally altered and this physiological signal can
be employed for implicit adaptations, i.e., cognitive fatigue detection
in pilots (Dehais et al., 2018)). Internal attention involves focusing
on stimuli within oneself or stored in working memory (WM), or
episodic memory (Chun et al., 2011), while external attention allows
the processing of stimuli in the external environment, such as visual
or auditory cues (Jiang et al., 2021a). This is specifically relevant,
as many VR tasks can share internal attention (Rowe et al., 2000;
Magosso et al., 2019) and external attention features (Ricci et al., 2022;
Magosso et al., 2019). Users might become overwhelmed, distracted,
and lose focus if external attention is prioritized over internal attention.
On the other hand, users may miss important external cues if they
are in a predominant internal attention state, leading to suboptimal
performance in VR. Thus, balancing internal and external attention
processes in VR settings is crucial. Therefore, it is not a matter of
whether a task employs internal or external attention exclusively but
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rather how to balance one in the face of the other. This is consistent
with Chun’s taxonomy that internal and external attention are part of
a continuum (Chun et al., 2011).

Internal and external attention share specific EEG features in this
ontinuum (Putze et al., 2016; Benedek et al., 2014; Cona et al.,

2020), i.e., alpha and theta frequency bands. Alpha power is associated
ith enhancing relevant sensory information processing and concur-

ent suppression of irrelevant information. Theta mediates WM and
ognitive control processes (Pastötter et al., 2013). In the context of
R systems, they have also been associated with increased immer-
ion and engagement with the VR task (Magosso et al., 2019; Ricci
t al., 2022). Previous work has employed alpha and theta frequency

bands in adaptive VR systems focused on neurofeedback for concen-
tration (Kosunen et al., 2016), cognitive training (Dey et al., 2019)
nd immersion enhancement (Woźniak et al., 2021). However, most
hysiologically-adaptive systems focused on main task features, such as

visual search targets (Dey et al., 2019), learning material (Walter et al.,
2017) or secondary task difficulty (Chiossi et al., 2022a). However, it
s important to note that while alpha and theta oscillations are key
arkers for attention and WM (Klimesch, 2012, 1999), other frequency

ands, also play roles in such cognitive processes (Harmony et al.,
2004; Fernández et al., 2021). The most closely related to our work
s the paper by Vortmann et al. (2019), that, even if in Augmented
eality (AR), used alpha and theta bands for offline classification of

internal and external attention states. Thus, the next step is to employ
alpha and theta bands for online adaptation of distracting features of
the environment from calibrating and allocating the user’s attention.

In this work, we designed and evaluated two VR adaptive systems
based on EEG correlates of external and internal attention, i.e., alpha
nd theta frequency bands, that either balance for external or internal
ttention.These bands were selected due to their strong links with
ttention and WM, although they are not the sole indicators, nor are
hey exclusively tied to attention processes. We engaged participants
n a visual WM task that required both internal and external atten-
ional resources. We adjusted the peripheral visual distractors based
n their detected attentional state. We demonstrated that balancing for
nternal attention during a WM task enables dynamic adaptations of

visual distractors, resulting in improved WM task performance. This
ndicates that our approach helped users avoid distracting external
ttention states while staying engaged with the virtual environment and
aintaining an optimal internal attention state.

1.1. Contribution statement

We make the following key contributions through our study. Firstly,
we designed a VR adaptive system that employs visual complexity to
dynamically support task performance and engagement. This system
leverages the dynamic adaptation of peripheral environmental factors
to implicitly balance the user’s attentional state and overall experience
without altering the main task features. Secondly, our study demon-
strates that online adaptation of EEG correlates of external and internal
attention results in efficient user modeling. We focused on adapting
peripheral environmental factors using these EEG correlates, ensuring
that the primary task remains consistent while effectively managing the
user’s attentional state. Furthermore, we make the VR adaptive system
openly available along with a recorded dataset of behavioral, qualita-
tive, and EEG data, facilitating further research and development. This
open access promotes replication studies, comparative analyses, and
further innovation, contributing to the broader scientific community.
Our study introduces several novel contributions that significantly
advance the field of EEG-based adaptive VR systems. Unlike previous
studies that primarily focus on neurofeedback or cognitive training,
our approach integrates real-time EEG-based adaptation to balance
internal and external attention states during complex tasks in VR. This
real-time adaptation is achieved by dynamically adjusting peripheral
environmental factors, providing a subtle yet effective enhancement of

task performance and user engagement. b

2 
2. Related work

In the following, we highlight the relevance of investigating internal
and external attentional states for VR, and then we discuss their EEG
correlates in terms of alpha and theta frequency bands. Finally, we
summarize previous work that employed EEG as input for adaptation
in VR.

2.1. Relevance of internal and external attentional states in VR

When immersed in VR, our senses are continuously stimulated,
allowing us to interact with the virtual environment. Sensory inputs,
particularly vision and hearing, strongly influence attention. Vision,
in particular, has garnered the most interest (Hutmacher, 2019), as
it is the primary channel stimulated in VR (Hvass et al., 2017) and
significantly influences the orientation of human attention (Souza and
Naves, 2021).

Attention orienting refers to the process of directing cognitive focus
toward specific stimuli, whether internal, such as thoughts and memo-
ries, or external, such as visual and auditory cues (Chun et al., 2011),
ee Fig. 1.

External attention is drawn to external stimuli. Task demands can
voluntarily drive external attention in a top-down manner, such as
when we focus on a specific spatial location or feature of sensory
stimuli that is goal-relevant (Verschooren et al., 2019). Alternatively,
external attention can be captured involuntarily in a bottom-up man-
er, which occurs when attention is drawn to salient stimuli or unex-

pected events in the environment, even without the intention to focus
on them (Cona et al., 2020). This bottom-up attention is driven by
the inherent properties of the stimuli, such as brightness, movement,
r sudden changes, which naturally attract our attention (Katsuki and

Constantinidis, 2014).
Internal attention reflects the processing of internal representa-

ions of information. For example, retrieving information about re-
ent or past events (episodic memory) (Hutchinson and Turk-Browne,

2012), WM (Myers et al., 2017), and mental imagery (Putze et al.,
2016).

Recently, Lim and Pratt (2023) challenged Chun’s framework due
to inconsistencies in how internal breadth affects external perceptual
processing. They showed that internal attention does not always impact
external attention, contradicting the idea that these forms of attention
share identical processes and resources. Their findings suggest that
internal and external attention may have different characteristics and
may not always compete for the same cognitive resources.

However, it is important to note that internal and external atten-
tion, while potentially relying on different cognitive resources, are
both crucial processes for successful task performance in VR environ-
ments (Souza and Naves, 2021). Currently, Human Computer Interac-
tion (HCI) research mostly focuses on internal and external attention for
investigating levels of immersion and engagement in VR systems. For
example, Magosso et al. (2019) explored the conflict between external
nd internal attention in a mental arithmetic task (internal attention)
nd being immersed in a VR environment (external attention). Here, a
ighly detailed VR environment recruited external attention resources
imilarly to a reading task, which requires high levels of external at-
ention, as shown in EEG alpha power. Their result was also confirmed
n Ricci et al. (2022), showing how exposure to a VR environment
ncreased their attention to the external environment compared to a

relaxation state, i.e., internal attention task.
Attentional states also influence how much users can be engaged

in a task. Katahira et al. (2018) investigated different flow experi-
nces in an internal attention task, i.e., mental arithmetic task (Putze

et al., 2016). They found that EEG correlates of external and inter-
al attention discriminated between states of overload, boredom, and
low. Thus, investigating the external and internal attentional state can
enefit users’ level of immersion (Souza and Naves, 2021) and task
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Fig. 1. This figure illustrates Chun’s continuum between internal and external attention, depicting the allocation of attentional resources across different cognitive activities.
Internal attention encompasses functions such as ‘‘Mind Wandering’’, ‘‘Working Memory’’, and ‘‘Executive functions’’ such as mental calculation, which rely heavily on internally
generated information. External attention involves states like ‘‘Immersion’’, ‘‘Spatial Location’’, and ‘‘Arousal’’, which require focus on external stimuli. The continuum demonstrates
the fluidity of attention as it shifts between internal and external demands, highlighting the importance of balancing these states for optimal cognitive performance and immersion.
engagement (Katahira et al., 2018).
However, it is important to state that external and internal attention

rather than independent states are part of a continuum (Chun et al.,
2011). The continuum between external and internal attention provides
a fertile ground for developing adaptive systems. This aspect is specif-
ically relevant for settings where the visual components prevail, such
as VR. In particular, the visual nature of VR environments makes it
challenging to direct internal attention but also creates opportunities
to guide external attention. By leveraging this continuum, adaptive
systems can tailor the VR experience to the user’s attentional needs and
goals, supporting them in achieving optimal performance, immersion
and engagement.

2.2. Alpha and theta frequency bands as an EEG correlate of external and
internal attention

A large number of studies investigated neurophysiological mech-
anisms underlying external and internal attention. EEG studies, in
particular, have strongly supported the functional significance of two
brain oscillatory rhythms: theta (4–8 Hz) and alpha (8–12 Hz). Vari-
ations in external and internal attention states are strongly linked to
the modulation of alpha and theta frequency bands. These relationships
highlight the importance of understanding the underlying mechanisms
and their implications for designing efficient VR adaptive systems
that are grounded in physiological inference (Allanson and Fairclough,
2004).

The alpha rhythm is the dominant oscillatory rhythm of the human
brain and is traditionally linked to attentional load changes (Foxe and
Snyder, 2011). Alpha band power is thought to act as a sensory gating
mechanism by enhancing relevant sensory information processing and
suppressing irrelevant information processing (Jensen and Mazaheri,
2010; Foxe and Snyder, 2011). Thus, alpha activity plays a crucial
role in regulating attention processes, both within and outside the
focus of attention. Studies have explored posterior alpha as a possible
index of internal and external attention, with external attention linked
to alpha power decrease and internally directed attention primarily
associated with alpha power increase (Cona et al., 2020; Benedek
et al., 2014). Specifically, alpha increase aims at preventing external,
irrelevant sensory information from interfering with internal processes.
On the other hand, when individuals enter an external attention state,
alpha power tends to decrease in the occipital region. This decrease
in alpha frequency band reflects increased excitability of the visual
cortex, which in turn enhances the processing of external sensory
information (Van Diepen et al., 2019).

Regarding theta frequency band, its increased power has been
linked to WM engagement and cognitive control, particularly in frontal
regions (Harmony, 2013). Both WM and cognitive control involve
internal attention features. WM requires temporarily maintaining and
manipulating internal representations of information (Rerko and Ober-
auer, 2013). Cognitive control refers to the ability to regulate thoughts
and actions to achieve specific goals (Braver, 2012), and therefore
ignoring task-irrelevant or distracting information (Lavie, 2010). The
3 
theta activity could be indicative of a balance between external and
internal attention (Cona et al., 2020) and their competition (Magosso
et al., 2021). Theta decrease may signify the act of shifting attention
towards external stimuli, allowing for the processing of potentially dis-
tracting information. In contrast, an increase in frontal theta underlies
protection and prioritization of ongoing internal processing (Lorenc
et al., 2021; de Vries et al., 2020).

In conclusion, alpha and theta changes can index different levels
of the continuum between external and internal attention, namely,
their competition. In the next section, we review adaptive and passive
BCI (pBCI) systems that employ such frequency bands as input for VR
systems.

2.3. EEG as an input for adaptation in virtual reality

EEG frequency bands have been used as the primary input for
interaction in pBCI systems. A pBCI system derives an output from
automatic, involuntary, spontaneous brain activity, interpreted in the
given context (Lotte et al., 2018). Historically designed for communi-
cation and control for patients with severe disabilities, pBCIs recently
found new applications for patients and healthy users when combined
in VR settings (Lécuyer et al., 2008). pBCIs and VR can see reciprocal
benefits as pBCI can become more intuitive than traditional devices.
At the same time, VR can enrich interaction and provide more moti-
vating feedback for pBCI users than traditional desktop settings (Aricò
et al., 2018). Therefore, VR-pBCI or physiologically-adaptive VR sys-
tems could support system learnability, i.e., reduced time required to
learn BCI skills or increased classification performance (Leeb et al.,
2006; Ron-Angevin and Díaz-Estrella, 2009), and allow for an extensive
range of applications (Chiossi et al., 2022b).

In VR adaptive systems, alpha and theta were the basis for designing
adaptive systems for meditation (Kosunen et al., 2017) and adaptation
of task difficulty based on cognitive interference (Wu et al., 2010). An-
other related work focused specifically on alpha for cognitive training
is the study by Dey et al. (2019), where authors modulated the visual
task difficulty in a VR visual search task. Finally, frontal theta power
has also been employed in adaptive systems to index the continuum
between overload and optimal motivational engagement (Ewing et al.,
2016). Closer to our work, even though applied to AR settings, are the
adaptive systems developed by Vortmann et al. (2022), Vortmann and
Putze (2020). Here, the authors employed the entire EEG frequency
spectrum and eye tracking to categorize internal and external attention
with an 85.37% accuracy in a special alignment task.

Previous work explored alpha and theta EEG frequencies for adap-
tation in human factors, VR and AR environments, but mostly for
interaction methods and monitoring cognitive load or task engagement.
However, only a few works investigated the use of EEG for external
and internal attention in VR settings (Magosso et al., 2019, 2021) and
adaptive systems have been designed only in AR settings (Vortmann
et al., 2019). Our research is the first that investigates how to develop
an adaptive VR system to balance for internal attention, grounded in
physiological inference (Allanson and Fairclough, 2004), and validated
in a user study.
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2.4. Summary

The immersive nature of VR technology has revolutionized how
we interact with digital content. However, VR is primarily designed
round visual information that challenges users’ capacity to process
nformation (Bacim et al., 2013; Gonçalves et al., 2022), leading to
n unbalanced allocation of external attention resources at the expense
f internal attention (Vortmann and Putze, 2021). Thus, the design of

an adaptive VR system grounded in EEG correlates of external/internal
ttention state, leveraging the amount of task-irrelevant elements in the

internal–external attention continuum (Chun et al., 2011), can impact
ubjective workload, engagement, and task performance (Aricò et al.,

2018). Here, we compare two adaptive systems, one balancing for
external attention (Negative Adaptation) and one for internal attention
(Positive Adaptation) while participants engaged in a visual N-Back, a
task that primarily recruits internal attention but also features both
attention components, which act along a spectrum. Based on related
work, we designed an adaptive system to support performance by
balancing the two attentional components. However, given the inherent
trade-off, we designed two systems that balance for external or internal
ttention, we hypothesize that:

HP1: An adaptive system designed for balancing the attention com-
petition towards internal attention should positively impact WM
task performance.

HP2: An adaptive system designed for balancing the attention compe-
tition towards external attention should negatively impact WM
task performance.

HP3: By balancing the visual complexity and achieving a balanced
allocation of internal and external attention resources, the adap-
tive system designed for internal attention is hypothesized to
increase subjective engagement in the WM task.

HP4: If the adaptive system balancing for external attention has a
detrimental effect on WM task performance, we expect increased
subjective workload ratings.

Moreover, detecting and understanding a user’s attentional state
ould significantly enhance the utility of VR systems and enable novel
se cases that are purposefully designed to react, detect and bal-
nce it (Allanson and Fairclough, 2004). Therefore, drawing from
R settings (Vortmann et al., 2019; Vortmann and Putze, 2021) and
onsidering how much internal and external attention are recruited in
R settings, we expect that:

HP5: External and internal attentional states in VR can be reliably
classified.

We explore classification-based differentiation of external and inter-
al states as an alternative to literature-driven selection of adaptation
ariables from the EEG signal. Potentially, machine learning can better
alance multiple such variables in one model and deal better with EEG
rial-by-trial fluctuations (Lotte et al., 2018). As this approach requires
ore tuning and is less predictable, we explore its potential for future

daptation approaches.

3. Architecture of the EEG-adaptive VR system

VR environments are often designed to be immersive, realistic,
nd engaging, making it easy for users to become distracted or over-

whelmed by external visual stimuli. Thus, we might see a constant
ompetition between internal and external attention when engaged in

VR scenarios. Here, an EEG-adaptive system can monitor users’ atten-
tional states and balance attentional processing to improve internal task
performance in VR settings by adapting surrounding visual information.
We define the goal of balancing attentional processing as enhancing
the efficiency and effectiveness of attentional processing necessary for a
given task. This goal requires identifying and achieving an ideal balance
4 
between external and internal attentional processes to improve task
performance while maintaining engagement with the virtual environ-
ment. The critical aspect is not whether a task exclusively relies on
internal or external attention, but rather how to achieve an optimal
balance between the two. For example, during a mostly internal task,
the goal is to provide external attention as much as possible without
compromising the focus on the internal processing of the task. This
aligns with Chun et al. (2011) perspective that internal and external
ttention are interconnected along a continuum, and their interaction
ust be considered when balancing attentional processing.

In this work, we designed and compared two VR adaptive systems
based on EEG correlates of internal and external attention. We frame
the adaptive systems from the perspective of a situation in which being
n a state of internal attention is desirable. Specifically, the system

called from here on Positive Adaptation is designed to balance the
internal attention state. In contrast, the system defined as Negative Adap-
tation aims to balance externally-directed attention. We used the visual
WM N-Back task developed by Chiossi et al. (2022a) for both adaptive
ystems. We chose the VR N-Back task as it recruits WM resources
nd results in changes in alpha and theta frequency bands (Chiossi

et al., 2023a; Tremmel et al., 2019). The N-back task is a continuous
performance task used to assess working memory, where participants
are presented with a sequence of stimuli and must identify when the
current stimulus matches the one from 𝑁 steps earlier (Mallett and
Lewis-Peacock, 2018). The task can vary in difficulty; for instance, in
the 1-back task, participants must match the current stimulus with the
one immediately preceding it. In the 2-back task, they must match the
current stimulus with the one from two steps before.

The N-back task is particularly well-suited for balancing internal
and external attention because it inherently requires the management
of both types of attentional resources. Internally, participants must
continuously update and maintain information in their WM, reflecting
internal attention processes. Externally, they must remain vigilant to
new stimuli presented during the task, engaging their external atten-
tion. This dual demand makes the N-back task an ideal candidate
for studying and balancing the balance between internal and external
attention states.

Furthermore, implementing the N-back task in a VR environment
rovides significant advantages. VR enhances the immersion and en-

gagement of the N-back task by incorporating 3D spatial cues and
interactive elements, making the task more realistic and ecologically
valid than traditional 2D presentations. VR’s rich, multisensory envi-
ronment allows for a comprehensive assessment of cognitive functions,
as it integrates visual, auditory, and haptic inputs. This heightened real-
ism ensures that the task better reflects real-world scenarios, providing
more accurate data for adapting the VR environment in real-time.

We adapted the surrounding visual complexity of the VR environ-
ment in the form of non-player characters (NPCs) that were passing
next to the participant. We denote the number of NPCs passing by
the participants per minute as Stream. NPCs were used as colorful,
dynamic, and task-irrelevant distractors to introduce controlled visual
complexity, allowing for systematic testing of the system’s adaptive
mechanisms. NPCs provide a controlled and consistent way to validate
the system’s functionality and evaluate its potential effectiveness in
balancing internal and external attention. However, while NPCs serve
as a proof-of-concept implementation, they are not an essential com-
ponent of the system. The adaptive framework can be applied to other
forms of distracting or task-irrelevant stimuli in real-world applications,
tailored to specific scenarios and requirements. The Stream of NPCs was
constant, making NPCs appearing/disappearing at the same rate. The
Stream of NPCs contributes to the general amount of detail, clutter, and
objects in the scene, namely its visual complexity (Olivia et al., 2004).

PCs are task-irrelevant elements, and for the purpose of this task, they
act as distractors.
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Fig. 2. Adaptation Methodology for the two adaptive systems based on the increase and decrease of the alpha and theta frequency bands and their relevance to internal and
external attentional states.
t
i
i
t
s

e

s

a

c
t

s
N

t
t

e

3.1. EEG adaptive system

Both adaptive systems shared the same apparatus encompassing
our components: (I) an R-Net 64 channel EEG with two wireless
iveAmp amplifiers (BrainProducts, Germany), (II) Transmission Con-
rol Protocol (TCP)/Internet Protocol (IP) for online EEG data pre-
rocessing (III) the Unity 3D (Version 2022.1) game engine for VR
evelopment; and (IV) HTC Vive Pro (HTC, Taiwan) VR HMD for the
isplay of the VR environment. For online adaptation, we first applied a
otch filter at 50 Hz and then performed a band-pass filtering between

(1–70 Hz) to remove high and low-frequency noise. Then, we extracted
alpha and theta EEG powers via Welch’s periodogram method using
a Hamming window of .1 s (50 samples) at 10% overlap (5 samples)
to obtain a 10 Hz frequency resolution. For determining the alpha
frequency range, we computed the Individual Alpha Frequency (IAF)
via the method developed by Corcoran et al. (2018). Then, based on the
individual alpha lower bound, we defined the theta frequency range,
using the alpha lower bound as the high theta bound and defining the
theta lower bound by subtracting 4 Hz from the alpha lower bound.
For computing alpha power we used parieto-occipital channels (P3, Pz,
PO3, POz, PO4, O1, O2) (Benedek et al., 2014; Magosso et al., 2019),
while for theta, we chose frontal channels (Fp1, Fp2, AF3, AF4, F1, F2,
F3, Fz, F4, FC1, FC2) (Magosso et al., 2019). Electrode FCz was set as
an online reference.

For data streaming and online preprocessing, we transmitted the
data through a Transmission Control Protocol (TCP)/Internet Protocol
(IP) client to a TCP/IP server implemented via Python network pro-
gramming. This implementation enabled us to exchange data between
Lab Streaming Layer1 and the VR Unity environment in both forward
nd backward directions. We utilized a Network Time Protocol (NTP)
ervice to time-synchronize the VR Unity scene’s time and the bridge

server’s operating system time.

3.2. Adaptive system architecture

Adaptive system architecture was grounded on previous work on
the functional significance of alpha and theta frequency bands (Putze
et al., 2016; Benedek et al., 2014; Vortmann et al., 2019) as input
or the VR adaptive systems. First, we used a continuous adaptation,
ontinuously comparing the mean alpha and theta bands over two

consecutive time windows, 𝑤1 and 𝑤2, both of 20 s duration, based
n previous work (Chiossi et al., 2022a, 2023a). Second, we compute

the mean alpha and theta power for 𝑤1 and 𝑤2. Here, we compare
he direction of change (defined as exceeding a 15% threshold) of both
ean alpha and theta in 𝑤2 to the average power in 𝑤1. We determined

he threshold after multiple sessions (N = 14, 𝑀 = 25.62, 𝑆 𝐷 =

1 https://labstreaminglayer.org/
5 
2.52; 7 female, 7 male, none diverse) to identify a threshold allowing
he system to balance external attention while avoiding overshooting,
.e., always performing the same adaptation response or undershooting,
.e., not reacting to changes in alpha and theta EEG frequencies. We
ested multiple thresholds (5% steps from 5%–30%) and evaluated
ystem performance. If the change from 𝑤1 to 𝑤2 of both alpha and

theta exceeded the decision threshold, depending on the direction of
the frequency band, a change in Stream of NPC is performed. We
define our adaptation goal as biased toward a specific type of attention
(internal or external) while maintaining a balance between the two
states. This balance is crucial, as attention operates along a continuum,
and users often need to shift fluidly between internally and externally
directed attention based on context and task demands (Vortmann and
Putze, 2021). To support this balance, our systems dynamically adjust
nvironmental factors (e.g., peripheral visual complexity) to gently

guide users toward the desired attentional state while avoiding extreme
hifts that may disrupt task performance or cognitive engagement.

On average, the Stream in the Positive Adaptation condition stabi-
lized at 133.17 NPCs per minute (SD = 14.86). Participants executed
 mean of 152.25 (SD = 73.19) WM trials in the Positive Adaptation

condition, compared to 167.33 (SD = 68.04) in the Negative Adaptation
ondition and 182.96 (SD = 68.53) in the baseline condition. The Posi-
ive Adaptationmethodology is depicted in Fig. 2(a) and the architecture

in Fig. 3.

3.2.1. Rationale and parameters
Parameters are based on previous work on adaptive system de-

ign, accounting for the task irrelevance and distracting effect of the
PCs (Chiossi et al., 2023a,b). They also ensure that the number of

distracting NPCs does not drop to zero per minute, maintaining a
consistent level of visual complexity. Participants began the adaptive
blocks with a Stream set at 115 NPCs entering the scene per minute,
chosen as the mean value between the lowest possible value and
the highest (230) based on Chiossi et al. (2023b). The 15% adapta-
ion threshold was selected to ensure a balance between sensitivity
o attentional changes and stability in the adaptation process. Mul-

tiple sessions determined this threshold by identifying a level that
allows the system to balance external attention without overshooting
or undershooting (Chiossi et al., 2023b).

Analysis of EEG alpha frequency spectra over 20-second sliding
windows supported this choice, aligning with prior findings that alpha
activity fluctuates dynamically within short intervals. For example,
studies have shown periodic shifts between synchronized and desyn-
chronized EEG states (Tirsch et al., 2004) and task-relevant cortical
xcitability changes (Klimesch et al., 2007). These dynamic oscillatory

patterns, along with observed pilot results, informed the selection of
a 15% threshold to ensure responsiveness while avoiding excessive
adaptation triggers.

https://labstreaminglayer.org/
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Fig. 3. Architecture of the two adaptive systems. The Stream of NPCs adapts based on alpha and theta variation in two different time windows (𝑤1 and 𝑤2), each lasting 20 s.
If the change is bigger than the decision threshold of 15%, the NPC stream is either increased by +16 or decreased by −8 NPCs. The Positive Adaptation system (a) aims at
balancing internal attention, while the Negative Adaptation system (b) targets external attention.
Fig. 4. Game VR Capture of the experimental tasks. In the Visual Monitoring task (a), participants are exposed to a stream of NPCs and are required to monitor, i.e., follow with
their gaze, NPCs of a specific color. In the N-Back No Adaptation task (b), participants interact with a sequence of spheres presented on a marble-like pillar. They must place
each sphere into either the left or right bucket based on its color and the color of the sphere presented two steps prior (N = 2). If the current sphere’s color is different from the
sphere two steps ago, it is placed in the left bucket; if the same, it goes in the right bucket. In (c) and (d), we depict the participants’ point of view while interacting with the
two adaptive systems. While interacting with the two systems, participants perform the N-Back task while being exposed to NPC that act as distractors.
3.3. Positive adaptation

The Positive Adaptation system dynamically adjusts the visual com-
plexity of the VR environment based on real-time changes in the user’s
alpha and theta EEG bands. The system monitors these EEG signals
over two consecutive 20-second time windows, 𝑤1 and 𝑤2, and makes
adjustments to the number of non-player characters (NPCs) passing by
the participant, referred to as the Stream.

3.3.1. Decision tree
The Positive Adaptation system operates using a decision tree to

interpret changes in the user’s EEG bands and adjust the visual com-
plexity as follows.
6 
Internal attention state. When a shared 15% increase in both alpha and
theta bands is detected in 𝑤2 compared to 𝑤1, the system interprets this
as the user being in an internal attention state. To find an optimal level
of visual complexity and test the tradeoff between internal attention
and external visual complexity, the system increases the Stream by 16
NPCs. This adjustment allows us to investigate how individuals adapt
to a dynamic environment where attentional demands are subject to
change.

External attention state. Conversely, when both alpha and theta bands
decrease by at least 15% in 𝑤2 compared to 𝑤1, the user is assumed to
be in an external attention state. To support the internal attention state,
the system removes 8 NPCs from the scene. This decision is grounded in
research indicating that internal attention is associated with increases
in alpha (Benedek et al., 2014; O’Connell et al., 2009) and theta (Cona
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et al., 2020), reflecting increased WM engagement (de Vries et al.,
2020).

Divergent attention states. In cases where alpha and theta bands show
opposite directions, the system makes specific adjustments based on the
type of attentional state inferred as follows.

Alpha Decreases and Theta Increases. When alpha decreases and theta
ncreases by 15%, it is assumed that the user has entered an external
ttention state. This is indicated by the alpha band (Benedek et al.,

2014) and increased cognitive control due to the effort to maintain
focus while ignoring distractors (Braver, 2012). In this scenario, the
Stream is decreased by 8 NPCs.

Alpha Increases and Theta Decreases. Conversely, if alpha increases
and theta decreases, it is theorized that the user is increasing inter-
nal attention with decreased WM engagement. Therefore, the system
increases the Stream by adding 16 NPCs.

3.4. Negative adaptation

The Negative Adaptation system dynamically adjusts the visual
complexity of the VR environment to balance for external attention.
It operates by monitoring the user’s alpha and theta EEG bands over
two consecutive 20-second time windows, 𝑤1 and 𝑤2, and adjusting
the number of non-player characters (NPCs) passing by the participant,
referred to as the Stream.

3.4.1. Decision tree
The Negative Adaptation system uses a distinct set of rules to modify

he visual complexity based on EEG band changes.

External attention state. When a decrease of at least 15% in alpha power
s observed in 𝑤2 compared to 𝑤1, it indicates that the user is in

an external attention state. To further promote external attention, the
system increases the Stream by adding NPCs, thereby increasing the
visual complexity.

Internal attention state. On the other hand, if both alpha and theta
bands show a 15% increase in 𝑤2 compared to 𝑤1, it suggests that
the user is in an internal attention state. To counteract this and shift
attention externally, the system also increases the Stream.

Divergent attention states. When alpha and theta bands change in op-
osite directions, the system makes specific adjustments. A decrease
n alpha combined with an increase in theta indicates that the user is
aintaining focus despite distractors, reflecting an external attention

tate. In this case, the Stream is increased to heighten visual com-
plexity. Conversely, if alpha increases and theta decreases, it suggests
an increase in internal attention with reduced WM engagement. To
prevent boredom and ensure continued engagement, the system de-
creases the Stream by 8 NPCs (Ewing et al., 2016). This choice is meant
to evaluate if adaptation can still impact the user’s WM performance

ithout improving it, demonstrating that BCI-based adaptation can-
not be replaced equivalently with a purely performance-based one. If
participants already exhibit an internal focus of attention, this might
ecrease engagement with the task, enforcing such an internal state.

Finally, when alpha and theta have the same direction, indexing an
internal attention state, the system increases the visual complexity by
adding 16 NPCs to the Stream.

4. User study

The study evaluated if adaptation of visual complexity, based on
EEG correlates of internal and external attention, can balance behav-
ioral WM performance and subjective engagement ratings compared
to a system designed to balance for external attention. As the main
task, we chose the established N-Back task (Soveri et al., 2017) in the
VR version as adapted from Chiossi et al. (2022a). The task involved
updating the information in WM and paying continuous attention to the
7 
presented spheres while retaining the previously presented information.
We selected this task because it evokes external and internal attention
processing, making it ideal for balancing one of the two processes in
adaptive systems.

4.1. Design

To examine differences in behavioral performance, perceived work-
load and engagement and alpha and theta frequency bands, we per-
formed a within-subjects study for the system’s adaptability factor
(Positive vs Negative Adaptation). The experiment encompasses six blocks
of which four are the experimental ones and either recruit only external
(Ext-Att Task : Visual Monitoring Task) or internal attention (Int-Att
task : N-Back No Adaptation), and two adaptive blocks which have a
ompetition between the two processing with two different adaptive
ystems (Ext/Int Task: N-Back Negative Adaptation and Ext/Int Task:
-Back Positive Adaptation). The first two blocks are the Individual
lpha Frequency Block (IAF computation Block), which lasted 2 min
nd is necessary for computing the IAF for each participant, and the
esting State block, used as a basal condition for normalization to the
xperimental blocks. The Ext-Att Task (Visual Monitoring task) requires
articipants to inspect the VR scene, identify and follow with the gaze
PCs of a specific color, see Fig. 4(a). The Int-Att Task (N-Back No
daptation) is a visual N-Back task (N=2) where the participants have

to retain information regarding the color of a sphere and internally
direct attention towards the memory of the color of the sphere and
compare it to the color of the current sphere, and place in a specific
bucket depending on the match of the color, see Fig. 4(b). The two
‘‘adaptive’’ experimental conditions required participants to perform
the N-Back task while being exposed to a Stream of NPCs, i.e, an
adaptation of the visual complexity through changes in the participant’s
alpha and theta EEG frequency bands. In the two adaptive tasks, NPCs
serve as distractors as they are elements that are not relevant to the task
at hand (see Fig. 4(c) for the Positive Adaptation and see Fig. 4(d) for
the Negative Adaptation). Respectively, positive adjustments of Stream
(Increase) resulted in adding 16 NPCs to the scene, while negative
adjustments of Stream (Decrease) resulted in removing 8 NPCs from the
cene. In Fig. 6 we depict the Stream variation over time in both adap-

tive systems across participants, while in Fig. 10(a) and in Fig. 10(b) we
display the Stream variation for a representative participant together
with alpha and theta powers for the Positive and Negative adaptive
systems, respectively.

4.2. Participants

We recruited 24 participants (𝑀 = 26.33, 𝑆 𝐷 = 5.12; 12 female,
12 male, none diverse) via convenience sampling and social media.
Participants self-reported the gender they identified with. However, we
removed 2 participants due to technical interferences, resulting in a
total population of 22. Participants provided written informed consent
before participating. We surveyed participants’ familiarity with AR,
AV, and VR devices as in previous work (Chiossi et al., 2024d,a). All
articipants reported prior experience with VR (𝑀 = 4.23, 𝑆 𝐷 = 1.27)
n a scale from 1 (not at all familiar) to 7 (extremely familiar). None
f the participants reported a history of neurological, psychological, or
sychiatric symptoms.

4.3. Task

Participants executed two types of tasks, i.e., Visual Monitoring task
and N-Back task. In the Ext-Att block, participants were exposed to a
fixed Stream (334 NPCs per minute) and were asked to monitor and
follow with the gaze approaching NPCs of a randomized color (blue,
green, black, and red). This Visual Monitoring task is expected to recruit
external attention resources as it only requires visual processing and

externally directed attention to participants. This block acts as a control
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Fig. 5. Experiment Procedure. The experiment encompassed six different blocks. In between blocks, participants filled in NASA-TLX and GEQ subscales and observed a three-minute
pause in VR. Blocks order was randomized for the Visual Monitoring, N-Back with No Adaptation and N-Back with Positive or Negative Adaptation. In the first block, participants
maintained their eyes closed to compute the Individual Alpha Frequency (IAF). In the Resting state block, participants relaxed in the neutral VR environment without distracting
elements. After those two blocks, participants experienced the experimental tasks (Visual Monitoring, N-Back No Adaptation, N-Back Positive Adaptation, N-Back Negative Adaptation
block) in a randomized order. Refer to Section 3 for a complete description of the adaptive systems.
condition as it is the only one in which participants performed a task
that mainly required external attention.

In the Int-Att Block and in the two adaptive blocks, participants
executed the N-Back (N = 2) as adapted from Chiossi et al. (2022a).
Here, participants are presented with a sequence of spheres over a
marble-like pillar that has to be placed in one of two buckets on the
left and the right, respectively. Spheres could have been spawned in
four possible colors (green, red, blue, and black), according to McMillan
et al. (2007), in a randomized sequence. Participants were required to
pick up the spheres with an HTC Vive Pro controller and place them in
the correct buckets. The placement of each sphere depended on its color
and the color of the sphere presented two steps before. If the colors
matched, the participant had to place the sphere in the right bucket. If
the colors did not match, the participant had to put the sphere in the
left bucket. New spheres would appear either after the current sphere
was placed in one of the two buckets or after 4 s. Participants received
accuracy feedback every 20 sphere placements and were instructed
to maintain a performance level of 90%. The feedback frequency and
performance target were informed by previous work in VR n-back
tasks, demonstrating that periodic feedback supports engagement and
prevents cognitive overload (Chiossi et al., 2022a, 2023b; Tremmel
et al., 2019). Errors were computed by the proportion of times the
sphere was positioned in the wrong bucket.

4.4. Procedure

Upon participants’ arrival, we provided them with information re-
garding the study’s procedure and addressed any inquiries they had
before having them sign the informed consent form. Participants were
provided with instructions for each task to ensure they understood the
requirements and objectives. For the N-Back, they were specifically
instructed to balance accuracy and speed, rather than prioritizing one
over the other, to achieve an optimal performance tradeoff based on
Rival et al. (2003). This approach was designed to encourage partic-
ipants to focus on both the quality and efficiency of their responses,
ensuring a balanced performance. Additionally, participants were not
informed about which adaptive system they were interacting with
during the experiment. This was done to avoid any persuasive effects
on their performance that could arise from their awareness of the
intelligent system’s presence (Kosch et al., 2023b). In the experiment,
participants were seated comfortably in a chair while performing the
tasks. The study began with a trial phase to enable participants to
acclimate to the VR environment. During the VR trial phase, partici-
pants practised the 2-back task until they achieved a minimum accuracy
level of 95% while identifying a sequence of 80 spheres (Chiossi
et al., 2022a). Next, the experimenter set up the water-based EEG
cap. The experimental procedure started with the IAF Block, where
participants kept their eyes closed for 2 min and 10 s. We describe
the IAF computation in Section 4.6 . Then participants observed 3 min
of rest for physiological adaptation (not included in the analysis) and
8 
started the Resting State Block for 6 min. They sat comfortably in
the VR environment without NPCs or N-Back task elements, keeping
their hands on their thighs without moving. After the Resting State,
participants moved to the experimental phase consisted of four random-
ized experimental blocks (Ext-Int task, Int-Att Task, Positive Adaptation
and Negative Adaptation), lasting six minutes each. In between blocks,
participants fill the NASA TLX questionnaire to evaluate perceived
workload (Hart and Staveland, 1988) and the Game-Experience Ques-
tionnaire (GEQ) In-Core Module, choosing the Competence, Immersion,
and Positive Affection subscales for validated content validity for per-
ceived engagement (Law et al., 2018). Immersion and Competence
subscales measure the level of engagement participants experience
with the task at hand which is related to challenge immersion (Burns
and Fairclough, 2015). The Immersion subscale evaluates the extent
to which participants feel absorbed and involved in the task, reflect-
ing their level of engagement and the VR environment’s adaptations
in maintaining their focus. The Positive Affection subscale assesses
participants’ emotional responses to the task, indicating their over-
all satisfaction and enjoyment, which is important for understanding
their motivation and sustained engagement. The Competence subscale
measures participants’ perceived effectiveness and skill in performing
the task, which is crucial for assessing how well they manage the
attentional demands of the N-back task. Again, between questionnaire
completion, participants rest for 3 min in the VR scenario for physio-
logical adaptation. Overall, the experiment lasted one hour and thirty
minutes. The experiment procedure is depicted in Fig. 5.

4.5. Offline EEG recording and preprocessing

EEG data were recorded from 64 Ag-AgCl pin-type passive elec-
trodes mounted over a water-based EEG cap (R-Net, BrainProducts
GmbH, Germany) at the following electrode locations: Fp1, Fz, F3, F7,
F9, FC5, FC1, C3, T7, CP5, CP1, Pz, P3, P7, P9, O1, Oz, O2, P10,
P8, P4, CP2, CP6, T8, C4, Cz, FC2, FC6, F10, F8, F4, Fp2, AF7, AF3,
AFz, F1, F5, FT7, FC3, C1, C5, TP7, CP3, P1, P5, PO7, PO3, Iz, POz,
PO4, PO8, P6, P2, CPz, CP4, TP8, C6, C2, FC4, FT8, F6, F2, AF4, AF8
according to the 10–20 system. Two LiveAmp amplifiers acquired EEG
signals with a sampling rate of 500 Hz. All electrode impedances were
kept below ≤ 20 kΩ. We used FCz as an online reference and AFz as
ground. For offline preprocessing we used MNE Python (Gramfort et al.,
2013). We first notch-filtered at 50 Hz followed by a band-pass filter
between 1–70 Hz to eliminate noise at high and low frequencies. Next,
we re-referenced the signal to the common average reference (CAR) and
applied the Infomax algorithm for Independent Component Analysis
(ICA). We utilized the ‘‘ICLabel’’ MNE plugin Pion-Tonachini et al.
(2019) for automatic classification and correction of ICA components.
On average, we removed 2.97 (𝑆 𝐷 = 5.19) independent components
within each participant.
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Fig. 6. Stream Visualization. Here, we depict the average evolution over time of the
tream for the two adaptive systems. The Positive Adaptation averaged on 133.17 NPCs
er minute while the Negative Adaptation on 161.48 NPCs. The line shading represents
he standard deviation, providing a visual indication of the variability in the Stream
ver time.

4.6. Individual alpha and theta frequencies bands range computation

We employed the methodology established by Corcoran et al. (2018)
o calculate IAF, based on Klimesch (2012). This method enables
s to determine the alpha band at the individual level, taking into
ccount the differences between individuals, thereby facilitating a

more accurate and detailed online adaptation and offline analysis. We
removed the first and last four seconds of data from the beginning
and end of each IAF recording to remove signals unrelated to cortical
activity and impacted by eye blinks. For IAF computation, we use
posterior electrodes (P3, Pz, PO3, POz, PO4, O1, O2). Overall, the lower
alpha range stabilized across participants on an average of 8.02 Hz
𝑆 𝐷 = .09), while with the higher bound, we obtained an average of
2.99 Hz (𝑆 𝐷 = 1.03). After determining the IAF for each participant,

we utilized this information to calculate the alpha power for parieto-
occipital electrodes employed for adaptation, see Section 3.1. For Theta
ower, we applied to a window of 4 Hz falling below the alpha lower

bound computed from the IAF. Participants showed an average lower
theta bound of 4.02 Hz (𝑆 𝐷 = .09) and an average upper theta bound
of 8.02 Hz (𝑆 𝐷 = .09). We then computed the Theta power from the
frontal electrodes selected for adaptation, see Section 3.1.

4.7. Statistical analysis

For EEG power bands, behavioral accuracy, and subjective scores
n perceived workload (NASA-TLX) and engagement (GEQ), we use
epeated measures ANOVA or Friedman’s test for not data not coherent
ith a normal distribution, as evaluated by the Shapiro–Wilk test.

For post hoc comparisons, we use Conover’s tests with Bonferroni
correction. We compared the effect of Block (N-Back No Adaptation, N-
Back Positive Adaptation, N-Back Negative Adaptation) over measured
dependent variables. For subjective measures, we also include the
Visual Monitoring task for comparison.

We employ Linear Mixed Models (LMMs) for analyzing reaction
imes because they can handle skewed distributions and account for
oth fixed and random effects (Lo and Andrews, 2015). LMMs enable us

to consider individual differences and repeated measures within partic-
ipants, avoiding the averaging that can obscure meaningful variability.
They are particularly suited for nested data structures, allowing us to
model participant and condition variability accurately.
 d

9 
Specifically, for LMMs we use a Restricted Maximum Likelihood
(REML) and a nloptwrap optimizer2 for variance component estimation
to account for the loss of degrees of freedom associated with estimating
fixed effects. This results in less biased estimates, particularly in models
with complex random effects structures or when the sample size is not
large.

For reaction times, see Section 5.2.2, we fitted an LMM on raw
correct reaction times (RTs) with Block (N-Back No Adaptation, N-Back
ositive Adaptation, N-Back Negative Adaptation) as a fixed effect and

participant and the amount of visual distractors per trial as random
effects. We selected the formula rt ∼ Block + (1|participant)
+ (1|distractor) based on a model selection procedure using the
Bayesian Information Criterion (BIC) to ensure the best fit. Several
alternative models were evaluated, and the one associated with the
lowest BIC value was selected (Peng and Lu, 2012; Barr et al., 2013).

his procedure and detailed results are included in Fig. 5. Outliers
were removed by excluding values exceeding three standard deviations
bove the mean (Berger and Kiefer, 2021).

For Repeated Measures ANOVA, we report the effect sizes using
artial eta squared (𝜂2𝑝), while for the Friedman test, we use Kendall’s
. We compared the effect of Block (N-Back No Adaptation, N-Back

ositive Adaptation, N-Back Negative Adaptation) over measured de-
endent variables. For subjective measures, we also include the Visual
onitoring task for comparison. For LMMs, we report the effect sizes

using marginal 𝑅2.

4.8. Classification

We performed a binary classification task to predict internal and
external attention states using EEG data. We performed the classifica-
tion using the frequency features of the EEG signals, specifically alpha,
theta, delta, beta, and gamma bands, as input data. Based on recom-
mendations from Lotte et al. (2018), we used a Linear Discriminant
Analysis (LDA) model for this purpose. The classification task involved

apping a vector of frequency features to one of two labels: internal
attention or external attention.

4.8.1. Data preparation
For class labeling, EEG data from the Visual Monitoring task was

used for the External Attention label, and data from the N-Back No
daptation task was used for the Internal Attention label. As the feature

vector for each 20-second interval, we used the mean power values of
the alpha, theta, delta, beta, and gamma bands, as computed from the
EEG data.

For the feature vector, we computed EEG frequency bands every
20 s over the 6-minute (360 s) blocks for both the Visual Monitoring
and N-Back No Adaptation tasks across 24 participants. This resulted
n 18 (360 s/20 s) samples per block per participant. With two blocks
er participant, we obtained a total of 36 samples per participant.
herefore, we had 864 samples (432 for internal attention and 432 for

external attention) for training, resulting in perfect class balance.
For the data splitting, we followed the recommendation by Le et al.

(2020). Here, we divided the data into training, validation, and test
sets. Importantly, we employed a participant-wise split to ensure that
data from any given participant appeared in only one of the three
sets, thereby counteracting potential overfitting and ensuring robust
generalization across participants. Specifically, data from 14 partici-
pants (63%) were used for training, 6 participants (20%) for validation,
and 4 participants (17%) for testing. This process was repeated across

2 The ‘nloptwrap‘ optimizer (https://search.r-project.org/CRAN/refmans/
lme4/html/nloptwrap.html) was used in our analysis to handle the opti-

ization required for fitting the linear model. The ‘nloptwrap‘ optimizer is
articularly well-suited for models with random effects structures and large
atasets, ensuring efficient and accurate parameter estimation.

https://search.r-project.org/CRAN/refmans/lme4/html/nloptwrap.html
https://search.r-project.org/CRAN/refmans/lme4/html/nloptwrap.html
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1000 bootstrap iterations, ensuring variability and robustness in our
valuations.

Each classifier was trained using data pooled from multiple partici-
ants, not from individual participants. For each bootstrap iteration, a
ingle classifier was trained using the training set (14 participants) and
alidated using the validation set (6 participants). The number of data
oints per class per fold was consistent across bootstrap iterations, with
52 samples per class (internal and external attention) in the training
et, 108 samples per class in the validation set, and 72 samples per class
n the test set. This setup ensured a balanced representation of classes
n every fold of cross-validation. A total of 1000 classifiers were trained
cross the bootstrap iterations.

To ensure robustness and generalizability, we employed a bootstrap
esampling approach combined with hyperparameter optimization for
he classification task. We conducted 1000 bootstrap iterations, where
articipants were randomly shuffled and assigned to training, vali-
ation, and test sets in each iteration. This ensured that the splits
ccounted for variability in participant-level data, reducing the risk of
odel overfitting to specific subsets.

We performed hyperparameter search for the LDA classifier. This
ncluded variations in the solver (svd, lsqr, and eigen) and the shrinkage
arameter (None, auto, and fixed values of .25, .5, .75, and 1). Using
 grid search with the validation set, we identified the optimal combi-
ation of hyperparameters for each bootstrap iteration. The grid search
ollowed a PredefinedSplit strategy, where training and validation sets
ere explicitly defined to prevent data leakage. We used accuracy as

he metric for hyperparameter selection.
After determining the best hyperparameters, the model was re-

rained on the training set and evaluated on the validation and test
ets. Predictions were made for all three splits, and we computed key
erformance metrics, including accuracy and F1 scores. To interpret the

contribution of each EEG feature (alpha, theta, beta, delta, and gamma)
o the classification, we derived LDA weight vectors following the

methodology by Haufe et al. (2014), which maps model coefficients to
europhysiologically interpretable feature contributions. These weights
nform on the relevance of different frequency bands in discriminating
etween internal and external attention.

This approach ensures robustness through a combination of hyper-
arameter optimization and bootstrap resampling, counteracting the
ias–variance tradeoff (Guan and Burton, 2022). By conducting 1000
ootstrap iterations, we accounted for variability in training and test
plits, simulating diverse data conditions to evaluate the stability of the

model’s performance. The inclusion of hyperparameter optimization
further refined the LDA classifier by systematically exploring parameter
settings (e.g., solver type and shrinkage) to select the configuration
yielding the highest validation accuracy. This combination minimizes
bias while maintaining variance at a manageable level, resulting in a
model that generalizes well across unseen data.

Our choice of LDA was based on its proven effectiveness in EEG
lassification tasks, especially in scenarios with limited training data,
f. Lotte et al. (2018). LDA is particularly suited for EEG data due to its
bility to model Gaussian-distributed data effectively and provide in-
erpretable weight vectors that highlight the contribution of individual
eatures. Furthermore, LDA’s regularization options, such as shrinkage,

reduce the risk of overfitting when the number of features approaches
or exceeds the number of samples. These characteristics make LDA an
ppropriate choice for managing the balance between bias and variance
hile maintaining interpretability and computational efficiency.

We chose 20-second time intervals for EEG feature extraction and
daptation based on several considerations. First, this interval aligns
ith the parameters we used in rule-based adaptive systems, ensuring

onsistency and comparability between different adaptive mechanisms.
dditionally, prior research has demonstrated that 20-second intervals
rovide a stable measure of brain activity, balancing sensitivity and sta-

bility in EEG measurements (Jansen et al., 1981). Studies by Vortmann
et al. (2019) and similar task settings from Chiossi et al. (2022a,
2023a, 2024b) have shown that this duration is effective for capturing
significant variations in EEG signals corresponding to attentional shifts,
upporting real-time adaptation in VR environments.
 c
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4.8.2. Feature extraction
We extracted EEG features based on the Power Spectral Densities

(PSD) via Welch’s method. We computed averaged alpha and theta
based on the individual frequency range computed (see Section 4.6)
and delta (.5–4 Hz), beta (13–30 HZ), and gamma (30–45 Hz) based
on the preprocessing pipeline described in Section 4.5. All frequency
values were normalized based on the Resting state data. We used
electrodes chosen for adaptation for alpha and theta as in Section 3.1.
For beta, we used the same frontal electrodes as theta (Putman et al.,
2014), while for delta and gamma, we based our choice on previous
work in internal–external attention classification (Vortmann et al.,
2019; Vortmann and Putze, 2021; Harmony et al., 1996; Darvas et al.,
2010).3 The EEG features were computed on 20 s intervals, mirroring
the time window used for adaptation.

The input tensor for the LDA model is composed of five EEG fea-
tures: alpha, theta, beta, delta, and gamma. These features were extracted
rom the EEG data of 24 participants, following the preprocessing
teps described in the manuscript. The data was split into training,

validation, and test sets across 1000 bootstrapped iterations, ensuring
articipant-wise separation. Typically, the training set consisted of data
rom 14 participants (63%), resulting in 504 samples per class (144
otal samples per participant across both classes). The validation set
ncluded data from 6 participants (20%), resulting in 216 samples
er class, while the test set included data from 4 participants (17%),
esulting in 144 samples per class. Each sample was represented as a
ector with five EEG features, giving shapes of (1008, 5), (432, 5), and
288, 5) for the training, validation, and test sets, respectively.

4.8.3. Classification apparatus
We performed the data analyses using Python (version 3.11) and

R (version 4.2.3) environments, ensuring compatibility with widely
used data analysis frameworks. All packages and their exact versions
are documented in the Open Science Framework (OSF) computational
notebooks, publicly available for transparency and reproducibility, see
Section 8. The computational environment consisted of two Intel Xeon
Gold 6132 CPUs (28 cores, 2.6 GHz each), 754 GB of RAM, and
a Tesla V100-SXM2 GPU (32 GB memory). The machine ran on an
Ubuntu 20.04 LTS operating system. Despite the availability of these
high-performance resources, the analysis and modeling tasks were not
computationally intensive.

5. Results

In this section, we first present results on EEG power bands, be-
avioral accuracy and subjective scores on perceived workload (NASA-
LX) and engagement (GEQ). Finally, we report our results on the
lassification of the two attentional states based on Visual Monitoring
External Attention) and N-Back task with No Adaptation (Internal
ttention) using accuracy and F1 score.

5.1. EEG results

5.1.1. Alpha
The normality of Alpha power was assessed using the Shapiro–

Wilk test, which indicated that the data were consistent with a normal
distribution (𝑊 = .981, 𝑝 = .176). A repeated measures ANOVA was
conducted to examine the effect of Block on Alpha. The results showed
o significant differences (𝐹 (3, 69) = .43, 𝑝 = .73, 𝜂2𝑝 = .005), indicating

a negligible effect on Alpha power. As depicted on the left in Fig. 7, the
ariation in Alpha power across different blocks was not substantial.

3 For the delta band analysis, we did not use the T3, T4, T5, and T6
lectrodes, as these are only available on EEG caps with 256 electrodes.
nstead, we limited our analysis to the electrodes shared with our 64-electrode
ap.
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Fig. 7. EEG Alpha and Theta Powers. Boxplots representing average Alpha (left) and
Theta (right) frequencies. Frequencies were obtained from the parieto-occipital channels
for Alpha, while for Theta, we chose frontal channels. Values are computed for each
experimental condition and normalized to the resting state.

5.1.2. Theta
As Theta power was not consistent with a normal distribution

Shapiro–Wilk, 𝑊 = .965, 𝑝 = .012), we conducted a Friedman test.
The results showed no significant differences (𝜒2(3) = 2.10, 𝑝 = .552),
ndicating a negligible effect on Theta power, as depicted on the right
n Fig. 7.

5.2. Behavioral results

5.2.1. Accuracy
Shapiro–Wilk test showed accuracy scores were not consistent with

 normal distribution (𝑊 = .959, 𝑝 = 0.019). We tested the effect
f Block on Accuracy via a Friedman’s test. We found a significant
ain effect (𝜒2(2) = 30.583, 𝑝 < .001, Kendall’s 𝑊 = .621). Post
oc comparisons with Bonferroni correction revealed that the mean
ccuracy in Positive Adaptation (𝑀 = .88, 𝑆 𝐷 = .06) was significantly
ncreased from the mean score for Negative Adaptation (𝑀 = .74, 𝑆 𝐷 =
07), 𝑝 < 0.001. Additionally, the accuracy in Negative Adaptation was
ignificantly lower compared to the N-Back Block with no distractors
𝑀 = .88, 𝑆 𝐷 = .06), 𝑝 < .001. Results are depicted in Fig. 8(a).

5.2.2. Reaction times
The model’s total explanatory power, as indicated by the condi-

tional 𝑅2, was substantial (𝑅2
conditional = .45), suggesting that both the

fixed and random effects explained 45% of the variance in reaction
imes (RTs). The contribution from fixed effects alone was minimal
𝑅2

marginal = .003). The model’s intercept, corresponding to the N-Back
 No Adaptation condition, was 2.18, 95% CI [1.91, 2.46], 𝑡(9972) =
5.45, 𝑝 < .001. The effect of Positive Adaptation was statistically non-
ignificant and negative, 𝛽 = −.06, 95% CI [-.12, .009], 𝑡(9972) = −1.69,
= .091; standardized 𝛽 = −.06, 95% CI [−.12, .009]. The effect of
egative Adaptation was statistically significant and negative, 𝛽 = −.14,
5% CI [−.20, −.07], 𝑡(9972) = −4.08, 𝑝 < .001; standardized 𝛽 = −.14,
5% CI [−.20, −.07]. The mean reaction times and standard deviations
or each condition were as follows: for the N-Back - No Adaptation
ondition, 𝑀 = 1.99, 𝑆 𝐷 = 1.04; for the Positive Adaptation condition,

= 1.92, 𝑆 𝐷 = .999; and for the Negative Adaptation condition,
= 1.83, 𝑆 𝐷 = .953. Results are depicted in Fig. 8(b).
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5.3. Subjective results

5.3.1. Perceived workload
As Shapiro–Wilk showed data were consistent with a normal distri-

bution (𝑊 = .982, 𝑝 = .210), an ANOVA indicated that average raw
NASA-TLX scores were significantly influenced by Block (𝐹 = 4.21,
𝑝 < .001, Kendall’s 𝑊 = .137). Pairwise comparisons via paired t-tests
with Bonferroni correction showed that Negative Adaptation resulted in
a significantly higher workload (𝑀 = 70.13, 𝑆 𝐷 = 16.97) than Positive
Adaptation (𝑀 = 57.00, 𝑆 𝐷 = 13.09), N-Back (𝑀 = 57.65, 𝑆 𝐷 = 16.94),
and Visual Monitoring (𝑀 = 54.81, 𝑆 𝐷 = 27.21), all 𝑝 < .01. No
significant differences were detected in other comparisons. Results are
shown in Fig. 9.

5.3.2. GEQ-competence
The Shapiro–Wilk normality test indicated data not consistent with

a normal distribution for the GEQ competence scores (𝑊 = .947,
𝑝 = .001). A Friedman’s test revealed no significant effects (𝜒2(3) = .17,
𝑝 = .983), see Fig. 9.

5.3.3. GEQ-positive affection
As the Shapiro–Wilk test showed a distribution not coherent with

 normal one (𝑊 = .954, 𝑝 = .002), a Friedman rank sum test was
onducted to examine the effect of Block on the GEQ Positive Affection
cores. The analysis revealed a significant main effect of Block on GEQ
ositive Affection scores (𝜒2(3) = 21.20, 𝑝 < .001, Kendall’s 𝑊 =

.397). Pairwise comparisons using a Wilcoxon signed-rank test with
a Bonferroni correction showed that GEQ Positive Affection scores in
Negative Adaptation were significantly lower (𝑀 = 1.11, 𝑆 𝐷 = .79) than
n Positive Adaptation (𝑀 = 1.86, 𝑆 𝐷 = 0.98) and N-Back (𝑀 = 1.86,
𝑆 𝐷 = .99), all 𝑝 < .05. Identical results were found in comparisons with
the Visual Monitoring task, where participants reported significantly
lower subjective positive affection (𝑀 = 1.13, 𝑆 𝐷 = 0.97) than in
the Positive Adaptation and N-Back tasks. No differences were detected
in the comparison between Positive Adaptation and N-Back. Results are
depicted in Fig. 9.

5.3.4. GEQ-immersion
The Shapiro–Wilk test indicated that the distribution of GEQ Immer-

ion scores was not coherent with a normal one (𝑊 = .952, 𝑝 = .001).
 Friedman rank sum test revealed a significant main effect of Block
𝜒2(3) = 32.06, 𝑝 < .001, Kendall’s 𝑊 = .518). Pairwise comparisons

using a Wilcoxon signed-rank test with a Bonferroni correction showed
that the GEQ Immersion scores in Negative Adaptation (𝑀 = 1.36,
𝑆 𝐷 = 1.36) were significantly lower than those in Positive Adaptation
(𝑀 = 2.98, 𝑆 𝐷 = .83) and in N-Back (𝑀 = 2.48, 𝑆 𝐷 = .71), all
𝑝 < .005. The Visual Monitoring task condition showed significantly
lower Immersion scores (𝑀 = 1.52, 𝑆 𝐷 = .96) compared to Positive
Adaptation and N-Back (𝑝 < .005). No differences were detected in
the comparison between Visual Monitoring and Negative Adaptation, see
Fig. 9.

5.4. Classification results

5.4.1. Accuracy
The LDA model was trained on data from a subset of participants

(𝑁 = 14) and validated on data from a separate set (𝑁 = 6). We then
evaluated the model on the remaining participants (𝑁 = 4). The results
demonstrated a mean training accuracy of .792 (SD = .047), a mean
validation accuracy of .794 (SD = .061), and a mean test accuracy of
.759 (SD = .091).
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Fig. 8. Behavioral Results. On the left (a), we present the results on Behavioral Accuracy. Here, participants significantly showed higher accuracy in N-Back and Positive Adaptation
conditions as compared to the Negative Adaptation. On the right (b), we present an overview of reaction time distributions, separated by correct and error responses. No significant
differences were detected in reaction times distributions.

Fig. 9. Subjective Results. Box-plots for perceived workload (NASA-TLX) and engagement (GEQ). Participants reported significantly more workload in the N-Back task with Negative
Adaptation. Regarding perceived engagement, we found that participants experienced more Positive Affection and Immersion in N-Back (No Adapt) and N-Back (Pos Adapt) as
compared to the Visual Monitoring task and the N-Back task in the Negative Adaptation.

Fig. 10. (a) Positive Stream variation and (b) Negative Adaptation Stream variation for representative participants. Yellow and Blue lines indicate the normalized Theta and Alpha
frequency bands, while the dark red line represents the Stream Variation. Colored areas indicate whether the system increased (light red) or decreased (light blue) the NPCs Stream
in a 20 s time window. On top of each plot, the Stream increase is depicted by an arrow pointing up (↑), while if the Stream decreases, the arrow points down (↓). White areas
represent no change in the stream, corresponding to small changes of less than 15 percent.
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5.4.2. F1 score
The model’s F1 scores demonstrated consistent performance, with

 mean training F1 score of .804 (SD = .047), a mean validation F1
score of .803 (SD = .057), and a mean test F1 score of .771 (SD = .090).
These metrics illustrate that the model achieved stable and reliable
performance, with standard deviations reflecting moderate variance
between iterations, particularly in the test set.

5.4.3. LDA weights
To understand which features were most informative for predicting

internal and external attention, we examined the weight coefficients of
the LDA model. The coefficients indicate the relative influence of each
eature in predicting attention. Specifically, a positive coefficient for
 feature indicates that higher values of that measure are associated
ith predicting external attention. In contrast, a negative coefficient

indicates that higher feature values are associated with predicting
internal attention.

Our results showed that the alpha measure was predictive of exter-
al attention, with a positive mean coefficient of M = .028, SD = .100.
elta power was predominantly predictive of internal attention, with a
egative mean coefficient of M = −.273, SD = .280. The coefficients for

the theta, beta, and gamma measures were M = −.640, SD = .367, M =
.296, SD = .113, and M = −.149, SD = .059, respectively. These results
suggest that theta, gamma and delta were specifically informative for
internal attention prediction, while beta and alpha were indicative of
external attention.

6. Discussion

We presented a physiologically adaptive VR system that employed
EEG correlates of internal and external attention to perform dynamic
visual complexity adjustments to enhance task performance. We eval-
uated the effect of visual complexity adaptations, in the form of NPCs,
on task performance, Alpha and Theta power, subjective workload, and
engagement. In the study, participants performed a VR N-Back task
recruiting WM resources. Here, we discuss our results regarding the
outcome of our adaptive algorithms for modeling internal and external
attention. Then, we envision applications for online attentional state
detection and classification in VR and reflect on limitations and future
work.

6.1. Internal and external attention modeling

When users engage in VR tasks that feature both external and in-
ternal processing components, we hypothesized that they could benefit
from an adaptation that could adjust the number of visual distractors
in real-time to balance their attentional state and enhance task perfor-
mance. To achieve this, we designed two adaptive VR systems based on
EG alpha and theta power to balance external and internal attentional

states, respectively.
We identified four initial hypotheses. HP1 and HP2 predicted that

he adaptive system designed for internal attention would improve
WM task performance, while the system designed for external attention

ould decrease task performance. Our findings supported those two hy-
potheses, showing that participants performed better on the visual WM
task when the adaptive system balanced distractors based on internal
attention (HP1) and performance decreased when external attention
was balanced (HP2). These results are consistent with previous research
showing that attentional resources are essential for successful WM
performance as the balance between external and internal attention
can significantly affect task performance (Myers et al., 2017). When
we need to recall and manipulate visual information and ultimately per-
form decisions, adapting task-irrelevant visual information can improve
our task performance. Conversely, it could be argued that distracting
information could be removed from the environment to balance in-

ernal attention for improving task performance. However, our results t
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show that adaptation of visual distractors based on internal attention
states enhanced perceived engagement through positive affection and
immersion, supporting HP3. Participants reported higher levels of en-
gagement when the adaptive system balanced distractors based on
internal attention. Conversely, they reported significantly lower levels
when interacting with the Negative Adaptation. Incorporating real-time
adaptation based on internal attention states into VR systems could lead
to more effective and enjoyable user experiences when high-level cog-
nitive processing is involved. Additionally, our findings highlight the
importance of considering internal and external attention in designing
VR systems. Balancing one at the expense of the other may adversely
affect overall user experience and performance. In fact, an increase
in engagement could have impacted the increase in task performance.
Positive affection, for example, has been shown to enhance the focus
of attention (Rowe et al., 2007).

Interestingly, despite lower accuracy, participants were faster when
interacting with the negative adaptation system, which emphasized
external attention. This was initially counterintuitive, as one might
expect slower reaction times with higher error rates. This discrepancy
may be explained by the nature of external attention systems inducing
a higher arousal state or promoting rapid decision-making in response
to increased visual complexity. Such a state could prioritize speed over
ccuracy, leading to more impulsive responses (Kajimura and Nomura,

2016a).
Alternatively, the continuous need to filter task-irrelevant informa-

tion might have contributed to cognitive overload, resulting in hasty,
error-prone behavior. This aligns with previous research demonstrating
hat environments requiring heightened external attention can increase
erceived workload and degrade performance on cognitively demand-
ng tasks (Rissman et al., 2009). External attention systems inherently

shift cognitive resources to process environmental stimuli, often prior-
itizing sensory processing over executive control. This may explain the
bserved lower accuracy despite faster reaction times.

In contrast, participants interacting with the positive adaptation
system (internal attention) reported higher engagement, positive affect,
and immersion, supporting HP3. Internal attention systems likely re-
duced cognitive interference from distractions, allowing participants to
allocate more WM resources to the task. This aligns with findings that
ositive emotions and reduced cognitive load enhance attentional focus
nd task accuracy (Rowe et al., 2007). These findings highlight the
rade-offs between internal and external attention systems: while exter-
al systems may stimulate faster responses through heightened arousal
nd sensory prioritization, internal systems better support precision and
ognitive performance by fostering deliberate processing and sustained
ocus.

Finally, we verified HP4, as participants reported significantly
igher levels of perceived workload when interacting with the Negative
daptation as compared to the Positive Adaptation and to the N-Back
ith no distractors. This finding aligns with previous research showing

hat increased external attentional demands can lead to a higher
erceived workload (Rissman et al., 2009; Kajimura and Nomura,

2016b). The perceived workload might have been associated with
the continuous need to actively filter out task-irrelevant information,
which can interfere with the processing of relevant information and
increase cognitive load. Our results suggest that an adaptive system
that prioritizes internal attention can enhance executive performance
in a VR environment. In contrast, external attention balancing can have
a detrimental effect.

The results of the classification suggest that reliable decoding of
internal and external attentional states in VR settings is possible, repli-
ating similar results derived from AR settings (Vortmann et al., 2019;

Vortmann and Putze, 2021). Specifically, the main features contribut-
ing to the classification were theta and delta for internal states and beta
nd alpha for external states, with gamma playing a minor role. We can,
herefore, state that HP5 has been verified.
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These findings provide further support for the importance of theta
and delta in internal attention. Theta power emerged as the strongest
predictor of internal attention, with its significant negative weight
indicating its critical role in maintaining WM processes and inhibiting
distracting information (Sauseng et al., 2005). Delta power, while more
variable, also contributed negatively to internal attention classification.
This aligns with its established role as a functional modulator of sensory
input and its association with internal concentration and phase reset-
ting mechanisms (Harmony, 2013). Additionally, delta’s involvement
in dynamic switching between internal and external attention states
underscores its relevance in balancing attentional processes (Jiang
t al., 2021b).

Gamma power, although less influential compared to theta and
elta, provided a minor yet stable contribution to internal attention
lassification. Its negative weight reflects its role in facilitating in-
ernal cognitive processes, such as neural synchronization, despite its
usceptibility to noise in EEG recordings (Hasib and Vengadasalam,

2023).
Regarding external attention prediction, our results showed that

he beta band was the strongest predictor, followed by alpha. Beta
power emerged as a dominant positive feature for external atten-
tion, reflecting its role in active cognitive processing and alertness.

his finding is consistent with previous research showing that beta
scillations are associated with external stimuli processing, increased
rousal, and faster response times (Kaminski et al., 2012; Nieuwenhuis

et al., 2011). Beta’s significant contribution highlights its function in
aintaining attentional arousal and sensory engagement, particularly

n tasks requiring rapid orienting responses.
Alpha power, with its weak positive weight, indicates a subtle

ssociation with external attention, consistent with its role in regulating
ensory processing. Alpha decreases are typically linked to attention-
emanding tasks, suggesting that lower alpha levels facilitate external
ensory engagement (Klimesch, 2012). Its weaker contribution com-

pared to beta reflects its complementary role in external attention
allocation rather than a primary mechanism.

Taken together, these results illustrate the distinct roles of EEG
requency bands in predicting internal and external attentional states.
heta and delta bands predominantly support internal cognitive pro-
esses, while beta and alpha bands are more associated with external
ensory engagement. Gamma contributes minimally but consistently to
nternal attention, reinforcing the complexity of attentional dynamics.

These findings extend our understanding of EEG feature importance
and emphasize their utility for adaptive immersive environments.

6.2. Applications for attention-aware VR adaptive systems

Our findings have implications for the design and implementation
of VR adaptive systems that aim to balance attentional resources during
tasks that jointly require internal and external processing.

6.2.1. Balancing internal attention
We found that we can balance internal attention and improve task

performance compared to an adaptive system that can be balanced
or external attention. Moreover, we report that the performance with
istractors in the Positive Adaptation did not significantly differ from
he task executed without distractors. This can be specifically relevant

for three application fields: VR productivity and cognitive training in
healthy and clinical populations.

Our work showed how internal attention optimization can support
ask performance when engaged in a WM task. In the context of a
irtual office (Knierim et al., 2021), users might be novices to the

multitude of visual stimuli, representing the surroundings or human
colleagues, i.e. VR human avatars and more prone to distractions and
nefficient workflows. Additionally, NPCs function can be adapted to
rovide cues, prompts, and reminders that can aid users in maintaining
heir focus and concentration on the task at hand. The design of a
 T
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system that can minimize distraction while supporting engagement
can be valuable for enhancing productivity in virtual environments,
particularly in tasks that require WM.

Cognitive training is another application where balancing internal
attention in WM tasks can be valuable. WM is essential in many
cognitive tasks, such as problem-solving, decision-making, and learn-
ing, and is impaired in various clinical populations, including indi-
iduals with attention-deficit/hyperactivity disorder (ADHD) (Karbach
nd Verhaeghen, 2014). Cognitive training interventions aim to sup-

port WM performance while generalizing to other cognitive functions
and have shown promising results in healthy, ageing and clinical
populations, including ADHD (Cortese et al., 2016).

In VR, adapting the system to balance internal attention during
cognitive training tasks could enhance the effectiveness of such in-
erventions. Users could more efficiently engage in cognitive train-

ing tasks by minimizing distractions and improving focus, leading
to better outcomes. Additionally, NPCs can be adapted to provide
feedback, coaching, and reinforcement, enhancing cognitive training
outcomes (Schroeder et al., 2020).

6.2.2. Balancing external attention
Internal and external attentional mechanisms play a crucial role

n determining the effectiveness of VR applications. Even though the
entral purpose of attentional mechanisms is to facilitate the process-
ng of relevant information over irrelevant one, sometimes internally

directed attention can be undesired depending on the VR application
and user state scenario. Internal attention might also refer not only
to the prioritization of memory-related information but also to mind
wandering (Gruberger et al., 2011) and rumination (Chuen Yee Lo
et al., 2012).

Therefore, if the user is engaged in a scenario where the visual infor-
ation is task-relevant, but the user’s attention is internally directed,

he VR system can increase the perceptual salience to capture the users’
ttention or pause the interaction until they re-enter the external atten-
ion state. Such a scenario can be found in VR content or motor learning
nd visual analytics (Keim et al., 2008), where users are provided with

highly detailed and animated content. Such an interaction paradigm
could prevent interrupting task-relevant thoughts and ignoring external
information. This type of application could be based on the Optimal
theory of learning (Wulf and Lewthwaite, 2016), which postulates
that an external focus of attention can result in improved learning
skills compared to an internal one. Therefore, balancing for external
attention in VR could allow for designing better learning systems.

6.2.3. From heuristic-based to automated attention detection: Rationale and
trade-offs

Our heuristic-based system was designed to balance computational
implicity and interpretability. The decision rules were informed by
ell-established electrophysiological relationships between alpha and

heta band power and attentional states (Cona et al., 2020; Long et al.,
2024). By explicitly defining rules, we ensured that the system’s behav-
ior was transparent, predictable, and suitable for real-time applications,
especially in scenarios where computational resources or large datasets
for training machine learning models might not be readily available.

While the heuristic approach provides stability and simplicity, fu-
ture systems could benefit from fine-grained adaptation mechanisms
that continuous EEG signals or multiple features. Such systems could
employ machine learning models, such as reinforcement learning or
neural networks, to dynamically choose and optimize adaptation strate-
gies based on user behavior and physiological responses (Long et al.,
2024; Chiossi et al., 2024c). Rather than predefining thresholds for
alpha and theta changes, future approaches could utilize unsupervised
earning to dynamically identify patterns in EEG data associated with
ttentional shifts (Vortmann and Putze, 2021; Chiossi et al., 2024c).
his could allow for personalized adaptation, accounting for individual
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variability in EEG responses and attentional needs. However, transi-
tioning to unconstrained systems introduces challenges, such as the
need for larger training datasets, computational overhead for real-time
learning, and reduced interpretability (Long et al., 2024). These factors
must be carefully addressed to ensure the system remains practical and
ser-centric.

6.2.4. Alternative frameworks for adaptive systems
Our perspective is to enhance performance by manipulating external

nd task-irrelevant factors without altering the task itself. However, we
ropose alternative approaches that act on the main task to impact task
erformance directly. One approach is adaptive object manipulation,
here the size of the interactive sphere increases as the user approaches

t, facilitating task completion. Implementing an automatic snapping
echanism can help the sphere snap to the correct location, reducing

he need for fine motor precision. Additionally, dynamic difficulty
djustment can vary the interval between stimuli presentations based
n user performance and cognitive load. Real-time feedback, such as
ighlighting the correct bucket to prevent mistakes, can also enhance
ask accuracy, especially when users are either not familiar with the
ask or in a state of attentional overload. These adaptive features
ffer a holistic approach, combining environmental and task-specific
odifications to support user performance in VR tasks.

6.3. Limitations and future work

We acknowledge that our work is prone to certain limitations
elated to the task we designed, their classification and how to improve
ur designed VR adaptive system.

In our study, we use the VR N-Back task, which inherently features
n external shift of attention given its VR nature. This is an inherent
imitation of using VR to recruit internal attention, and it must be
cknowledged when designing experiments with a prominent visual
omponent. To further evaluate the reliability of this paradigm, we
uggest increasing the memory-related demands, such as increasing the
mount of information held to be held in WM, i.e., moving from a 2-
ack to a 3-Back VR task. Another possibility would be the addition
f other internal components, such as episodic memory. Regarding
he visual monitoring task, it is worth noting that while we did not
xplicitly verify whether participants directed their attention towards
he NPCs, the task design and instructions provided to participants were
ased on prior research aimed at recruiting external attention (Cona
t al., 2020; Vitali et al., 2019; Arrabito et al., 2015). However, we

acknowledge the limitation of not implementing a manipulation check
based on eye-tracking. In future work, we plan to address this limi-
tation by incorporating eye-tracking measures to assess participants’
attentional focus accurately.

On the other hand, comparing the Visual Monitoring task to a VR
version of an established external attention task, such as the visual
oddball task (Putze et al., 2016), would allow for better generalization
of our results. These limitations and challenges are common in VR
research, mainly when designing tasks that have to be ecologically
ituated.

Improving the generalizability of our results would support the reli-
bility of our classification. Although we have selected tasks that theo-
etically recruit internal and external attention resources, our classifier
ould only discriminate between two tasks. Future work will address
he training phase on more diverse tasks to validate our results further.
onetheless, the high accuracy achieved in the between-participant

ask classification is comparable to previous work in AR (Vortmann
et al., 2019; Vortmann and Putze, 2021) and suggests the potential for
online implementation to evaluate its performance. Specifically, LDA
is a machine learning model that allows for low computation and is
successful for online cognitive state detection (Lotte et al., 2018). A new
daptation mechanism could be based on this classification approach,
o balance the impact of multiple features and thus increase robustness
 i
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against trial-to-trial variability.
Furthermore, we recognize the need to address optimal channel

election from the total EEG channels used in our study. While our cur-
ent approach focused on electrodes placed in the frontal, parietal, and
ccipital regions, informed by related work on internal and external
ttention allocation, future work will investigate how each electrode
nd combination of electrodes can best contribute to classification
ccuracy.

Methodological approaches such as Recursive Feature Elimination
(RFE), Genetic Algorithms (GA) will be employed to systematically
evaluate the contribution of individual electrodes. Additionally, we
will apply advanced feature importance techniques including Random
Forest Importance, Mutual Information, Permutation Importance, Shap-
ley Additive Explanations, and Ablation Study to our dataset. These
methods will help us systematically evaluate and identify the most
relevant EEG channels. Random Forest Importance ranks features based
on their contribution to reducing impurity in decision trees, helping us
identify the most critical channels. Mutual Information measures the
dependency between EEG features and attention labels, highlighting
the channels with the most informative signals.

Permutation Importance assesses the impact of each channel by
easuring the increase in prediction error when its values are per-
uted. Shapley Additive Explanations (SHAP) uses game theory to

ompute the average contribution of each channel to the prediction
odel, providing a comprehensive importance ranking. Ablation Study

evaluates the decrease in model accuracy when individual channels are
excluded, directly indicating their importance.

Recent studies, such as Putze and Eilts (2023), have demonstrated
that using these methods can significantly reduce the number of chan-
els without compromising accuracy, specifically in the context of

attention prediction. For example, they reduced the number of channels
from 32 to 2 while improving accuracy from 60% to 62%. Their
findings suggest that minimal channel subsets can maintain or enhance
erformance.

Finally, our study demonstrated that conventional methods, such as
the Welch periodogram computed on a moving time window, can ade-
quately detect temporal variations in non-stationary signals. However,
more advanced signal processing techniques like wavelet analysis can
further improve the detection of temporal changes (Hillebrand et al.,
2016). Thus, implementing and evaluating wavelet analysis in future
research may enhance the accuracy of attentional state classification.
It is worth noting that efficient wavelet computation algorithms are
available, which can be used in real-time applications (Khalid et al.,
2009; Xu et al., 2009).

7. Conclusion

In this work, we presented a VR adaptive system based on EEG
correlates of internal and external attention to dynamically adjust
visual complexity and support task performance in a WM task. Visual
complexity adjustments based on alpha and theta bands allowed for
modulation of task-irrelevant elements adaptation and increased WM
task performance. Furthermore, we showed that successful classifica-
tion of EEG data in a VR N-Back task based on internal and external
attention is possible. Even with linear machine learning algorithm,
the classifier could reliably predict offline the attentional state of the
participant, allowing for future implementation in real-time adaptive
systems.

8. Open science

We encourage readers to reproduce and extend our results and anal-
sis methods. Our experimental setup, collected datasets, and analysis
cripts are available on the Open Science Framework via https://osf.
o/ar4fs/.

https://osf.io/ar4fs/
https://osf.io/ar4fs/
https://osf.io/ar4fs/
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Appendix A. Order effects

In examining potential fatigue or learning effects, we tested changes
in NASA-TLX scores and Alpha and Theta over the course of the
experiment. Before analysis, we tested the normality of NASA-TLX
cores and Alpha and Theta for each block using the Shapiro–Wilk test
o conduct repeated measures ANOVA (RM ANOVA) or Friedman test,

for non-normally distributed data. We depict our order effect results in
Fig. A.11.

A.1. Perceived workload

A Shapiro–Wilk normality test was conducted to assess the nor-
mality of the NASA scores. The results indicated that the data were
ormally distributed, 𝑊 = .982, 𝑝 = .21.A repeated measures ANOVA
as conducted to examine the effect of presentation order on NASA

cores. The results of the ANOVA indicated that there was no significant
ain effect of order, 𝐹 (3, 69) = 2.06, 𝑝 = .113, generalized eta-squared
𝜂2𝑔) = .05. Mauchly’s Test for Sphericity indicated that the assumption
f sphericity was met (𝑊 = .859, 𝑝 = .655). Thus, no sphericity

corrections were applied.
The descriptive statistics for NASA scores across orders were as

follows: Order 0 (𝑀 = 49.8, 𝑆 𝐷 = 12.7), Order 1 (𝑀 = 53.5, 𝑆 𝐷 =
14.7), Order 2 (𝑀 = 59.0, 𝑆 𝐷 = 18.5), and Order 3 (𝑀 = 57.7,
𝑆 𝐷 = 18.0). Although a trend of increasing NASA scores across orders
is apparent, the results did not reach statistical significance, indicating
that presentation order does not significantly influence NASA scores in
this dataset.

A.2. Alpha

The normality of the Alpha power was assessed using the Shapiro–
ilk test, which indicated that the data were normally distributed,
= .981, 𝑝 = .177. A repeated measures ANOVA was conducted to

xamine the effect of order on Alpha power. The results showed that
he order of blocks did not have a significant effect on Alpha power,
(1, 23) = 2.78, 𝑝 = .109, generalized eta-squared (𝜂2) = .108.
𝑔
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Fig. A.11. Boxplot of raw NASA-TLX scores across presentation orders. The scores show
a trend of increasing workload from the first to the third order, with a slight decrease
n the fourth order. Descriptive statistics indicate that the mean NASA-TLX scores were

= 49.8, 𝑆 𝐷 = 12.7 (First), 𝑀 = 53.5, 𝑆 𝐷 = 14.7 (Second), 𝑀 = 59.0, 𝑆 𝐷 = 18.5
Third), and 𝑀 = 57.7, 𝑆 𝐷 = 18.0 (Fourth). Although a repeated measures ANOVA
uggested no significant main effect of presentation order (𝐹 (3, 69) = 2.06, 𝑝 = .113),
he figure illustrates variability in workload perception across different orders. Error
ars represent interquartile ranges.

A.3. Theta

The normality of the Theta power was assessed using the Shapiro–
Wilk test, which indicated that the data were not coherent with a
ormal distribution, 𝑊 = .965, 𝑝 = .012. Therefore, a Friedman test was
onducted to examine the effect of order on Theta power. The results of
he Friedman test indicated no significant differences among the orders,
2(3) = .95, 𝑝 = .813.

A.4. Comparison between first and last task order

To address potential confounds arising from the temporal character-
istics of EEG rather than task-related activity, we conducted an analysis
to compare EEG power bands between the study participants’ first and
last tasks. This approach helps to determine whether observed EEG
changes are due to the inherent temporal dynamics of the EEG signal
or the specific task-related activities.

A.4.1. Alpha
The normality of the Alpha power was assessed using the Shapiro–

Wilk test, which indicated that the data were normally distributed,
𝑊 = .981, 𝑝 = .911. A paired t-test was conducted to compare the

lpha power between the first and last blocks. The results showed no
ignificant difference in Alpha power between the first and last blocks,
(11) = −.29, 𝑝 = .779, 95% CI [-1.65, 1.27]. The mean difference in
lpha power between the first and last blocks was −.19. These results
uggest that the temporal order of the tasks did not significantly influ-
nce the Alpha power, indicating that observed changes in Alpha power
re likely task-related rather than due to temporal characteristics.

A.4.2. Theta
To examine potential order effects on Theta power, we compared

the EEG Theta power between the first and last blocks completed by
the participants. The Shapiro–Wilk test indicated that the Theta power
data for both the first block (𝑊 = .957, 𝑝 = .380) and the last block
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Table B.1
BIC values for candidate models. The best model is
Model 3 with the lowest BIC of 24 400.66.
Model BIC

Model 1 25 896.96
Model 2 25 362.14
Model 3 24 400.66
Model 4 24 420.92
Model 5 24 439.52

(𝑊 = .957, 𝑝 = .380) were normally distributed. A paired t-test was
erformed to compare Theta power between the first and last blocks.

The results showed no significant difference in Theta power between
the first and last blocks, 𝑡(11) = −.57, 𝑝 = .582, 95% CI [−3.25, 1.92].
The mean difference in Theta power between the first and last blocks

as −.67. These findings suggest that the sequence of tasks did not
ignificantly affect Theta power.

Appendix B. Model selection for reaction times statistical analysis

To identify the best-fitting model for predicting reaction times (RT)
n our study, we performed a model selection procedure using the

Bayesian Information Criterion (BIC). The following steps outline the
procedure we followed:

B.1. Candidate models

We considered five candidate models, each with different fixed and
andom effects structures:

1. Model 1: rt ∼ BlockNumber + (1 | PId)
2. Model 2: rt ∼ BlockNumber + CountActual + (1 | PId)
3. Model 3: rt ∼ BlockNumber + (1 | PId) + (1 | distractor)
4. Model 4: rt ∼ BlockNumber + distractor + (1 | PId) + (1 |

distractor)
5. Model 5: rt ∼ BlockNumber * distractor + (1 | PId) + (1 |

distractor)

B.2. BIC calculation and model comparison

We computed the BIC for each fitted model using the BIC function
and compared the BIC values to identify the best model. The BIC values
for the models are displayed in Table B.1. Overall, the model with the
lowest BIC value was selected as the best model. In this case, Model 3
was identified as the best model with a BIC of 24400.66.

B.3. Best model summary

The best-fitting model (Model 3) was a linear mixed model with the
ormula rt ∼ BlockNumber + (1 | PId) + (1 | distractor).

Data availability

We share our data in the Open Science Framework. Link is available
n Section 8 in the manuscript.
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