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Abstract
Several promising approaches have been developed to represent conscious experi-
ence in terms of mathematical spaces and structures. What is missing, however, is an
explicit definition of what a ‘mathematical structure of conscious experience’ is. Here,
we propose such a definition. This definition provides a link between the abstract for-
mal entities of mathematics and the concreta of conscious experience; it complements
recent approaches that study quality spaces, qualia spaces, or phenomenal spaces; and
it provides a general method to identify and investigate structures of conscious expe-
rience. We hope that ultimately this work provides a basis for developing a common
formal language to study consciousness.

Keywords Quality spaces · Qualia spaces · Phenomenal spaces · Perceptual spaces ·
Q-spaces · Structuralism

Attempts to represent conscious experiences mathematically go back at least to
1860 (Fechner, 1860), and a large number of approaches have been developed since.
They span psychophysics, philosophy, phenomenology, neuroscience, theories of con-
sciousness, and mathematical consciousness science (Clark, 1993, 2000; Coninx,
2022; Fortier-Davy & Millière, 2020; Gert, 2017; Grindrod, 2018; Haun & Tononi,
2019; Hoffman & Prakash, 2014; Kleiner, 2020; Klincewicz, 2011; Kostic, 2012;
Kuehni & Schwarz, 2008; Lee, 2021, 2022; Mason, 2013; Oizumi et al., 2014; Prent-
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ner, 2019; Renero, 2014; Resende, 2022; Rosenthal, 2010, 2015, 2016; Stanley,
1999; Tallon-Baudry, 2022; Tsuchiya & Saigo, 2021; Tsuchiya et al., 2022; Yoshimi,
2007; Young et al., 2014; Zaidi et al., 2013) and are known under various different
names, including quality spaces (Clark, 1993), qualia spaces (Stanley, 1999), expe-
rience spaces (Kleiner & Hoel, 2021; Kleiner & Tull, 2021), Q-spaces (Chalmers
& McQueen, in press), Q-structure (Lyre, 2022), �-structures (Tononi, 2015), per-
ceptual spaces (Zaidi et al., 2013), phenomenal spaces (Fink et al., 2021), spaces of
subjective experience (Tallon-Baudry, 2022), and spaces of states of conscious expe-
riences (Kleiner, 2020). The mathematical structures and spaces introduced by these
approaches have enabled significant advancements in their respective fields. Nev-
ertheless, this research remains largely fragmented. The various approaches employ
different formalizations and different mathematical structures, and they presume a dif-
ferent, and sometimes partial, understanding of the concept of amathematical structure
or space when applied to conscious experience. What is missing, from our perspec-
tive, is a definition of the term ‘mathematical structure of conscious experience’ that
clarifies how this term can and should be used.

In this article, we propose a definition ofmathematical structures of conscious expe-
rience. Our main desideratum is that for a mathematical structure to be of conscious
experience, there must be something in conscious experience that corresponds to that
structure: a specific structural aspect of conscious experience.

Our key idea is to use variations to identify and investigate these structural aspects
of conscious experience. That is because variations can serve as a binding link between
conscious experiences and mathematical structures: on the one hand, variations relate
to conscious experiences, because variations change aspects of conscious experiences
(like qualia, qualities, or phenomenal properties); on the other hand, variations relate
to mathematical structures, because they may or may not preserve them.

In defining a mathematical structure of conscious experience, our proposal does
not answer the question of what this mathematical structure actually is, or which type
it has. Instead, our proposal identifies the analysandum for future work on spaces
and structures of conscious experience, based on which phenomenal spaces, quality
spaces, qualia spaces, �-structures, as well as several other related concepts, can be
constructed and investigated.

This paper is structured as follows. In Sect. 1, we discuss how recent approaches
relate mathematical structures to conscious experience and identify three key issues
in these approaches. In Sect. 2, we present our proposal together with the necessary
background information. In Sects. 3, and 4, we consider two important examples: rel-
ative similarity and topological spaces. In Sect. 5, we show how our proposal resolves
the three problems identified in Sect. 1. Finally, our conclusion follows in Sect. 6.

1 The status quo

So where do things stand? Most of the early work that has attributed mathematical
structure to conscious experience was grounded in intuition. Whether or not a specific
mathematical structure is a mathematical structure of conscious experience—a struc-
ture which “pertains to”, or “belongs to” consciousness, that is—was not assessed
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systematically; instead, it was assessed based on an intuitive insight of appropriate-
ness.More recent approaches have realized the need for a more systematic method, for
example Gert (2017); Lee (2021, 2023); Prentner (2019); Resende (2022); Rosenthal
(2015, 2016). In this section, we analyze what we take to be the condition that under-
lies these approaches: a condition that justifies prescribing a mathematical structure to
conscious experience. As we will see, this condition is quite natural. But, as we will
demonstrate, it cannot be understood as a sufficient condition.

In a nutshell, a mathematical structure consists of two building blocks; for a detailed
introduction, see Sect. 2.2. The first building block consists of one or more sets called
the domains of the structure. The second building block are relations or functions
which are defined on the domains. For reasons explained below, we will denote them
as structures in the narrow sense of the term. A metric space, for example, is a mathe-
matical structure that is defined on two domains: a set of points and the real numbers.
Furthermore, it comprises a function—the so-called metric function—which maps
two points to a real number. A topological space, to give another example, is a math-
ematical structure that is defined on a single domain: a set of points. Furthermore, it
comprises a collection of unary relations, which are subsets of the domain.1

Usually, a mathematical structure also comes with axioms. The axioms establish
conditions that the functions or relations have to satisfy. In the case of ametric structure,
the axioms require the metric function to satisfy three conditions, called positive
definiteness, symmetry, and triangle inequality. In the case of a topological structure,
the axioms ensure that the collection includes the empty set and the whole domain,
that it is closed under finite intersections, and that it is closed under arbitrary unions.

When put in these terms, recent proposals that go beyond intuitive assessments,
make use, either directly or indirectly, of the following condition to justify that a
specificmathematical structure is a mathematical structure of consciousness. Here, we
use the term aspect as a placeholder for qualia, qualities, (instantiated) phenomenal
properties, or similar concepts.2

(MDC) A mathematical structure is a mathematical structure of conscious
experience if and only if the following two conditions are satisfied:

(D1) The domains of the structure are sets whose elements correspond to
aspects of conscious experiences.

(D2) The axioms of the structure are satisfied.

In the case of the metric structure introduced in Clark (1993), for example, (D1)
is satisfied because the set of points corresponds to qualities of conscious experience.
The real numbers might have a phenomenal interpretation as describing degrees of
similarity, as for example in Lee (2021). Condition (D2) requires positive definiteness,
symmetry, and the triangle inequality to hold. This includes, for example, the condition

1 A unary relation on a domain, in the mathematical sense, is a subset of the domain; see Sect. 4.
2 We use the term ‘aspect’ as a placeholder for these terms because the above condition is not unanimously
framed in either of these terms, and because our proposal in Sect. 2 is applicable with respect to any of
these choices. In short, our goal is not to pick any one of these concepts but to offer a definition that works
with respect to all of these concepts. Which concept is best suited for a particular task or domain is a
philosophical question that can be answered independently of our proposal.
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that “points should have distance zero just in case the qualities represented by those
points are phenomenally identical” (Lee, 2021, p. 14). In the case of the topological
structure introduced in Stanley (1999), to give another example, (D1) is satisfied
because the domain of the structure refers to qualia. Condition (D2) would require,
then, that the chosen collection of subsets satisfies the axioms of a topological space.

Prima facie, (MDC) could be taken to define what a mathematical structure of
conscious experience is. However, if understood as sufficient condition, the following
three problems arise.

Problem 1: Incompatible structures

A first reason why (MDC) cannot be a sufficient condition to assess whether a math-
ematical structure is a mathematical structure of consciousness is that it allows for
incompatible structures.

Consider, as an example, the case of topology. A basic question in topology is
whether a target domain is discrete or not. A target domain is discrete if and only if its
topology contains all subsets of the domain (Joshi, 1983). Otherwise, the target domain
is not discrete. These two cases are exclusive, meaning that discrete and non-discrete
topological structures are incompatible.

According to (MDC), conscious experience has a discrete structure. That is because
any set whatsoever can be equipped with the discrete topology. Therefore, picking
a set X of aspects (qualia, qualities, phenomenal properties, etc.) and choosing its
discrete topology provides a mathematical structure that satisfies both conditions (D1)
and (D2). But, according to (MDC), consciousness also has a non-discrete structure.
That is because any set can also be equipped with a non-discrete topology. We can,
for example, take an arbitrary decomposition of the set X into two subsets A and A⊥,
where A⊥ is the complement of A, and consider the topology {∅, A, A⊥, X}. This
choice satisfies all axioms of a topology, and therefore satisfies (D2). Furthermore, it
is built on the same set X as the discrete topology above, which implies that it also
satisfies (D1). Therefore, the discrete and the non-discrete topological structures are
both structures of conscious experience, according to (MDC).

This example shows that, if understood as a sufficient condition, (MDC) implies
that two incompatible structures are both structures of conscious experience, and that
they do so with respect to the exact same domain of aspects. The condition fails to
determine which of the two incompatible structures is the right one.

Problem 2: Arbitrary re-definitions

A second reason why (MDC) cannot be a sufficient condition is that it allows for
arbitrary re-definitions: if one structure is given that satisfies (MDC), then any arbitrary
definition of a new structure in terms of the given structure also satisfies (MDC), so
long as the domains of the structure remain unchanged. If the former pertains to
consciousness, so does the latter.

A simple example of this is given by rescaling a metric function. Let us suppose
that (M, d) is a metric structure which pertains to consciousness according to (MDC),
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where M is a set of aspects and d is the metric function, which provides a real number
d(a, b) for every two aspects a and b. Since (M, d) satisfies (MDC), so does every
structure (M,C · d), where C · d is the multiplication of the function d by a positive
real number C . Here, the number C can be chosen arbitrarily. Therefore, if one metric
structure pertains to consciousness according (MDC), so does an uncountably infinite
number of metric structures.

What is more, when re-defining structures, one is free to change the axioms as one
pleases. For example, we could pick any function f that maps M to the positive real
numbers and define a new distance function by ( f (a)+ f (b)) ·d(a, b). This might not
be a metric structure anymore, because the triangle inequality axiom might not hold.
But it still satisfies positive definiteness and symmetry, and therefore satisfies (MDC),
with a new set of axioms. One could even break asymmetry to get a distance function
like the one applied by IIT (Kleiner & Tull, 2021). More severe cases appear with
more complicated structures.

This is a problem, not only because of the unlimited number of structures that
appear, but also because there is an arbitrariness in the definition of a new structure,
specifically concerning the axioms. It seems strange that the axioms can be redefined
at will, so as to always satisfy Condition (D2). Something is missing that restricts this
arbitrariness in (MDC).

Problem 3: Indifference to consciousness

The third reason, which speaks against the sufficiency of (MDC), is that the proposed
condition seems somewhat indifferent to details of conscious experience.

To illustrate this indifference, let us consider again the discrete and non-discrete
topological structures from above. As we have shown, these structures pertain to
conscious experience according to (MDC). Yet, nothing more than a few lines needed
to be said to establish this fact. In particular, we did not need to use any noteworthy
input related to consciousness other than picking some set of aspects; and it didn’t
matter which aspects we picked.

It is a red flag if so short an analysis, which does not depend on consciousness
in a meaningful way, establishes facts about the mathematical structure of conscious
experience. The example exposes an indifference of (MDC) to details of conscious
experience: the definition only relates to the different aspects, but not to the sort
of mathematical object that connects these different aspects. Speaking somewhat
vaguely, (MDC) does not refer to the “way” in which the different aspects of con-
sciousness are related. This is why, in the case of topology, it allows one to draw
conclusion without any noteworthy input from actual experience. This constitutes
another reason that condition (MDC) is missing some important component, if used
as sufficient condition.

Cause of these problems

These three problems arise because (MDC) is not only a necessary, but also a sufficient
condition: it contains an ‘if’ condition in addition to the ‘only if’ condition. In the first
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problem, we showed that two incompatible mathematical structures—a discrete and
a non-discrete topology—each satisfy (D1) and (D2). Because (MDC) is a sufficient
condition, it follows that both structures are structures of conscious experience, accord-
ing to (MDC). In light of the incompatibility of discrete and non-discrete topologies,
this constitutes an issue of the definition. In the second problem, we showed that for
any given structure or space that satisfies (D1) and (D2), any arbitrary redefinition
yields a structure or space which also satisfies (D1) and (D2), for a suitably adapted
set of axioms. Because (MDC) is a sufficient condition, this implies that the arbitrarily
redefined structure is also a mathematical structure of conscious experience, which
for reasons explained above, constitutes an issue as well. The third problem, finally,
built on the first one and makes use of the sufficient condition in exactly the same
way. Because there is no condition in (MDC) that relates to structure in the narrow
sense of the term—no condition that relates to relations or functions, that is—, and
because of the sufficient condition in (MDC), structures of conscious experience can
be established without reference to structure in the narrow sense of the term.

The way forward

To resolve the three problems, our task is to propose a definition for a mathemati-
cal structure of conscious experience that makes sense as a necessary and sufficient
condition. This will be the content of Sect. 2.

Two desiderata guide our search. First, as is the case with (MDC), an improved
definition should be about conscious experience in the sense that it targets qualities,
qualia, instantiated phenomenal properties, or similar aspects of conscious experience,
as in (D1) above. Second, there should be something in conscious experience—a qual-
ity, or quale or phenomenal property—that relates to structure in the narrow sense of
the term. This “something” should make sure that the definition is not indifferent to
conscious experience in the sense of Problem 3, and that the definition refers to func-
tions or relations in ameaningfulway, so as to stop arbitrary re-definitions (Problem2).
The proposal which we present in the next section is the result of our search.

Despite the above-mentioned problems, we think that (MDC) is an important con-
dition. It might not be suitable as a sufficient condition, but it is valuable as a necessary
condition. If one understands mathematics pragmatically as constituting a language—
a body of symbols and terms with rules that connect these—, then mathematics can
be used to describe phenomena, much like the English language can. Looking back
at Condition (MDC) after our analysis, and presuming this pragmatic conception of
mathematics, we think that (MDC) is best understood as an expression of what it
takes for a mathematical structure to describe conscious experience. That is, (MDC)
might be a valuable descriptive tool that utilizes mathematical structure to represent
information on how aspects are related to each other (as explicated by (D1) and (D2)).

Because of this, we will refer to a mathematical structure that satisfies (MDC) as
a mathematical structure that ‘describes conscious experience’ in what follows. The
new condition which we develop below contains (MDC) as necessary part; this is
aligned with the intuition that any mathematical structure of conscious experience
also describes conscious experience.
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2 Mathematical structures of conscious experience

In this section, we provide a definition of what mathematical structures of conscious
experience are. Based on this definition, phenomenal spaces, quality spaces, qualia
spaces, and related structures can be constructed and investigated. The definition
embodies a way to think and work with mathematical structures when applied to
conscious experience.

Our key desideratum in improving (MDC), explained above, is that for a mathe-
matical structure to be a mathematical structure of conscious experience, rather than
just a descriptive tool for conscious experience, there must be a structural aspect in
conscious experience that relates to that structure. A major goal of this section is to
explain this in detail. Denoting a mathematical structure by S, we call this structural
aspect an S-aspect.

To make sense of what an S-aspect is, we need to understand how aspects (like
qualia, qualities, or phenomenal properties) relate to mathematical structures. While
aspects may have an arity, meaning they may be instantiated relative to other aspects,
they are not experienced as having a mathematical structure per se (unless, of course,
they are aspects of experiences of mathematical structures themselves, such as of
geometric shapes). Therefore, relating aspects to mathematical structures requires a
tool that applies to both: concrete aspects of conscious experience and abstract formal
entities. Variations provide such a tool.

In general, a variation is a change of something into something else; in our case,
it is a change of one experience into another experience. Such variations may be
induced by external stimuli or interventions, occur naturally, or be subjected to imag-
ination (‘imaginary variations’ (Husserl, 1936/1970)). Variations are directly related
to aspects of conscious experiences because a variation can change an aspect. This
is the case iff an aspect is part of the experience before the variation but isn’t part of
the experience after the variation. And variations are also intimately related to mathe-
matical structures, because they may or may not preserve them, as explained in detail
below. An S-aspect, then, is an aspect that is changed by a variation if and only if the
variation does not preserve the structure S. To explain this in detail is the purpose of
the remainder of this section.

2.1 Terminology and notation

Here, we introduce the key termswe use to definemathematical structures of conscious
experience. These terms are conscious experiences, aspects of conscious experiences,
and variations of conscious experiences. The introduction proceeds axiomatically, so
that our construction does not rely on a specific choice of these concepts. Rather, any
choice of these concepts that is compatible with the requirements below can be the
basis of an application of our definition.

Our construction is based on a set E of conscious experiences of an experiencing
subject. We denote individual conscious experiences in that set by symbols like e
and e′; formally e, e′ ∈ E . From a theoretical or philosophical perspective, one may
think of the set E as comprising all conscious experiences which one experiencing
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subject can have, i.e. all nomologically possible experiences of that subject. From an
experimental or phenomenological perspective, onemay think of this set as comprising
all conscious experiences that can be induced in the lab or in introspection. Different
such choices may lead to different mathematical structures being accessible.

We use the term aspect as a placeholder for concepts such as qualia (Tye, 2021),
qualities (Clark, 1993), mental qualities (Rosenthal, 2010), or (instantiated) phenom-
enal properties.3 For every experience e ∈ E , we denote the set of aspects instantiated
in this experience by A(e). The set of all aspects of the experiences in E , denoted
by A, is the union of all A(e); formally A = ⋃

e∈E A(e). Individual aspects, that
are members of A, will be denoted by small letters such as a, b, c. When explaining
examples, we will often use the abbreviation ‘a is the experience of ...’ as a shorthand
for saying ‘a is a ... aspect of an experience’. For example, ‘a is the experience of red
color’ means ‘a is a red color aspect of an experience’.

Some aspects may require other aspects for their instantiation. For example, it is
usually the case that an experience of relative similarity is an experience of relative
similarity of something, for example two color aspects relative to a third color aspect.
If an aspect a requires other aspects for its instantiation, we will say that the aspect a
is instantiated relative to aspects b1, ..., bm , or simply that a is relative to b1, ..., bm .
Aspects which are instantiated relative to other aspects are the building blocks for the
structure of conscious experience.

A variation of a conscious experience e changes e into another experience e′.
Because experiences have structure, there may be various different ways to go from e
to e′.4 Therefore, in addition to specifying e and e′, a variation is a partial mapping

v : A(e) → A(e′) .

This mapping describes how aspects are replaced or reshuffled by the variation. A
mapping which is not surjective, meaning that it does not map to all aspects in A(e′),
makes room for appearance of new aspects. A mapping which is partial, meaning
that it does not specify a target for every aspect in A(e), makes room for aspects to
disappear.

3 Many other concepts work as well. For example, if one works with an atomistic conception of states
of consciousness, where the total phenomenal state of a subject—what it is like to be that subject at a
particular time—is built up from individual atomic states of consciousness, one can take e to denote the
total phenomenal state and aspects to be the states of consciousness in that total state.Another examplewould
be to take aspects to denote phenomenal distinctions as used in Integrated Information Theory (Tononi,
2015). What matters for our definition to be applicable is only that according to one’s chosen concept of
conscious experience, every conscious experience exhibits a set of aspects.
4 To illustrate this point, consider, for example, the following twomappings v and v′ whichmap the numbers
1, 2, and 3 to the numbers 2, 4, and 6. The mapping v is the multiplication of every number by 2, meaning
that we have v(1) = 2, v(2) = 4, v(3) = 6. The mapping v′, on the other hand, is defined by v(1) = 6,
v(2) = 2, v(3) = 4. If we only cared about the sets of elements that these mappings connect, the mappings
would be equivalent: there is no difference between the set {2, 4, 6}, which is the image of v, and {6, 2, 4},
which is the image of v′. If, however, we care about the structure of the elements of the sets—in this case,
the ordering of numbers—, then there is a difference. While 2 ≤ 4 ≤ 6, it is not the case that 6 ≤ 2 ≤ 4.
Because we care about the order of the elements, we need to say which element goes where.

123



Synthese (2024) 203 :89 Page 9 of 23 89

2.2 What is a mathematical structure?

To find a rigorous definition of the mathematical structure of conscious experience,
we need to work with a rigorous definition of mathematical structure. Mathematical
logic provides this definition, which we now review.

A mathematical structure S consists of two things: domains, on the one hand, and
functions or relations, on the other hand. We now introduce these concepts based on
two simple examples.

The domains of a structure S are the sets on which the structure is built. We denote
them by Ai , where i is some index in a parameter range I . In the case of a metric
structure, for example, the domains would beA1 = M andA2 = R, where M is a set
of points and R denotes the real numbers, understood as a set. In the case of a strict
partial order, there is just one domain A, which contains the elements that are to be
ordered.

The second ingredient are functions and/or relations. Functions f map some of the
domains to other domains. In the case of a metric structure, the function would be a
metric function d : M × M → R, which maps fromA1 ×A1 toA2. A relation R, in
the mathematical sense, is a subset of the m-fold product Ai × · · · × Ai . Here, Ai is
the domain on which the relation is defined, and m is the arity of the relation, which
expresses how many relata the relation relates. The product is usually just written as
Am

i . In the case of a strict partial order, the relation is binary, which means that R is
a subset of A2. For binary relations, one usually uses notation like a < b instead of
writing (a, b) ∈ R.

In almost all cases, mathematical structures also comewith axioms, which establish
conditions that the functions or relations have to satisfy. They are useful because they
constrain and classify the structure at hand. For S to be a metric structure, for example,
the function d has to satisfy the axioms of positive definiteness, symmetry, and triangle
inequality (Rudin, 1976). For S to be a strict partial order, the relation R has to be
irrefelxive, asymmetric, and transitive (Joshi, 1989).

To have a nice and compact notation, we will use one symbol S j to denote both
functions and relations. That is because, in any concrete proposal, it is always clear
whether S j is a function or a relation.5 The index j takes values in some parameter
range J that specifies how many functions or relations there are. Using this notation,
we can represent the definition of mathematical structure provided by mathematical
logic as follows:

A mathematical structure S is a tuple

S = (
(Ai )i∈I , (S j ) j∈J

)

of domains Ai and functions or relations S j .

5 In mathematical logic, mathematical structures are denoted as triples of domains, relations, and functions.
However, in our case, using just one symbol for functions and relations improves readability substantially.
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For given domains Ai , the mathematical structure S is fully determined by the S j .
Thus, we can also refer to S j as ‘structures’, if the domains are clear from context.
For simplicity, we can drop the index j and simply write S whenever we consider just
one such structure.

As a final step in this section, we introduce the relata of a structure S. This will
be helpful to present definitions concisely below. The term relata designates those
elements that are related by a structure. In the case where S is a relation R on a
domainA and has arity m, these are the elements of the m-tuples (b1, ..., bm) ∈ R. In
the case where S is a function f : A1×· · ·×Am−1 → Am , the relata are the elements
of them-tuples (b1, ..., bm−1, bm)where bm = f (b1, ..., bm−1), andwhere the other bi
range over their whole domains. For notational simplicity, we write b1, ..., bm instead
of (b1, ..., bm) when designating relata below.

2.3 What is a mathematical structure of conscious experience?

Finally, to the heart of thematter!We recall thatwe have so far identified two desiderata
for a mathematical structure S to be a mathematical structure of conscious experience.
First, it should be about conscious experiences in the sense that its domains should
correspond to aspects of conscious experiences. Second, there should be aspects in
conscious experience that relate to the structure S. The following definition satisfies
these two desiderata. Its explanation is the task of the remainder of this section.

(MSC) Amathematical structure S is a mathematical structure of conscious
experience if and only if the following two conditions hold:

(S1) The domains Ai of S are subsets of A.
(S2) For every S j , there is an S j -aspect in A.

Here, A denotes the set of all aspects of the experiences in E ; formally A =⋃
e∈E A(e), theAi denote the domains of the structure S, and the S j -aspects are

defined below.

Condition (S1) guarantees that the first desideratum is satisfied. Condition (S2) guar-
antees that the second desideratum is satisfied. Furthermore, whenever a certain type
of structure (metric, topological, partial order, manifold, etc.) is claimed to be a struc-
ture of conscious experience, the axioms that constrain and classify that type have to
hold. Therefore, any mathematical structure of conscious experience (MSC) is also a
mathematical structure that describes conscious experience according to (MDC). The
condition that has been applied in previous proposals remains a necessary condition
in (MSC).

The remaining task of this section is to explain what an S j -aspect is. For notational
simplicity,we use the symbol S to denote S j . Aswe have emphasized before, variations
are key to understand the structure of conscious experience, because they link aspects
and structure. Therefore, to be able to precisely define what an S-aspect is, we need
to understand how variations relate to aspects, on the one hand, and structures, on
the other hand. Our strategy is to first discuss how variations relate to aspects. This
amounts to specifying what precisely it means for a variation to change an aspect.
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Second, we focus on how variations relate to mathematical structure. This amounts
to explaining what it means for a variation to preserve a structure. Finally, combing
these two steps allows us to understand S-aspects and provide a useful definition.

What does it mean for a variation v : A(e) → A(e′) to change aspects? The
underlying idea is simply that an aspect is present in the source of the variation,
A(e), but not present any more in the target of the variation, A(e′). We need to take
into account, though, that aspects are often instantiated relative to other aspects (see
Sect. 2.1). This can be done as follows.

A variation v:A(e) → A(e′) changes an aspect a ∈ A(e) relative to
b1, ..., bm ∈ A(e) if and only if a is instantiated relative to b1, ..., bm in A(e), but
a is not instantiated relative to v(b1), ..., v(bm) in A(e′).

In the case where a ∈ A(e) is not instantiated relative to other aspects, the definition
indeed reduces to the simple condition that a ∈ A(e) but a /∈ A(e′). The negation of
the definition is also as intuitively expected: the aspect is present both in the source
and in the target.6

For applications it is important to understand that this definition can fail to apply in
two ways. First, it can fail because there is no a in A(e′) which is instantiated relative
to v(b1), ..., v(bm). This, in turn, can be the case either because there is no a in A(e′)
at all, or because there is an a in A(e′) but it is instantiated relative to other aspects.
Second, it can fail because one or more of the v(b1), ..., v(bm) do not exist. The second
case is possible because v is a partial mapping, which means aspects can disappear.

What does it mean for a variation to preserve a mathematical structure? The under-
lying idea is that a variation preserves the structure if and only if the structure is
satisfied before the variation and remains to be satisfied after the variation. By its very
nature, this is a mathematical condition, namely the condition of being a homomor-
phism (Mileti, 2022). The definition of a homomorphism, though, always applies to
all elements of a domain at once. For our case, it is best to refine this definition to a
single set of relata.7

A variation v : A(e) → A(e′) preserves a structure S with respect to relata
b1, ..., bm ∈ A(e) if and only if we have

(P1) R
(
b1, ..., bm

) = R
(
v(b1), ..., v(bm)

)
if S is a relation R, or

(P2) v
(
f (b1, ..., bm−1)

) = f
(
v(b1), ..., v(bm−1)

)
if S is a function f .

6 Because the definiendum already includes the first part of the condition, the negation is as follows: A
variation v : A(e) → A(e′) does not change an aspect a ∈ A(e) relative to b1, ..., bm ∈ A(e) if and only if
a is instantiated relative to b1, ..., bm in A(e) and a is also instantiated relative to v(b1), ..., v(bm ) in A(e′).
We felt that is the best way of writing things to optimize clarity.
7 For notational simplicity, we write R

(
b1, ..., bm

) = R
(
v(b1), ..., v(bm )

)
instead of R

(
b1, ..., bm

) ⇔
R
(
v(b1), ..., v(bm )

)
.
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As in the previous case, the negation of this definition is exactly what is intuitively
expected: a variation does not preserve the structure if and only if the structure is
satisfied before the variation, but not satisfied after the variation.8

For applications it is again important to see that the definition can fail to apply for
two reasons. First, it could be the case that one or more of the v(bi ) do not exist in
A(e′), if the corresponding aspect disappears. Second, the identities may fail to hold.

We now have the keys to understand S-aspects. The underlying idea is that an S-
aspect is an aspect that, under any variation, behaves exactly as the structure S does:
whenever S is preserved, the S-aspect does not change, and whenever the S-aspect
changes, the structure S is not preserved. This is expressed by the following definition.

An aspect a ∈ A is an S-aspect if and only if the following condition holds:
A variation does not preserve S with respect to relata b1, ..., bm if and only if the
variation changes a relative to b1, ..., bm .

Here, the condition needs to hold true for all variations and all relata. This means that
it needs to hold true for all variations of all experiences e in the set E that instantiate
relata of the structure S.

This concludes our proposal for the definition of the mathematical structure of
conscious experience. It is a structure whose domains correspond to sets of aspects,
and which contains an S-aspect for every relation or function of the structure. In the
next two sections, we apply this definition to two examples. On the one hand, these
examples illustrate the definition. On the other hand, they provide new insights to
structures that have been featured prominently in previous approaches.

3 Relative similarity

Our first example concerns relative similarity, which plays an important role, for
example, in the construction of quality spaces by Clark (1993, 2000).

A first step in applying our definition is to choose a set E . Here we take E to
comprise experiences of three color chips, as indicated in Fig. 1A, where one of the
chip (the reference) has a fixed color coating and the others vary in a range of color
coatings �. A color coating is a physical stimuli.

The second step is to specify the set of aspects A(e) for every experience e ∈ E .
Here, we take A(e) to comprise: (a) the color qualities in e, that is, the experienced
colors of the individual chips; (b) positional qualities of the color experiences, that
is, which chip has which color; and (c) the experience of relative similarity. Relative
similarity is an experience of one pair of aspects to be more, less, or equally similar to

8 A variation v : A(e) → A(e′) does not preserve a structure S with respect to relata b1, ..., bm ∈ A(e)
if and only if we have R

(
b1, ..., bm

) 	= R
(
v(b1), ..., v(bm )

)
if S is a relation R, or v

(
f (b1, ..., bm−1

) 	=
f
(
v(b1), ..., v(bm−1)

)
if S is a function f . This negation agrees with the intuition because the definiendum

already states part of the condition that follows, namely that b1, ..., bm are relata of the structure S in A(e),
which implies that (b1, ..., bm ) ∈ R if S is a relation and that f (b1, ..., bm−1) exists in A(e) if S is a
function, meaning that the structure is satisfied before the variation.
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Fig. 1 To help explain the example of relative similarity, this figure illustrates experiences with color
qualities and variations thereof. Subfigure A illustrates an experience of three color chips as well as the
concept of relative similarity: many readers will experience the color of the top-left color chip to be less
similar to the reference chip than the color of the top-right color chip. SubfigureB illustrates our notation for
the color aspects corresponding to the color chips. SubfiguresC andD illustrate variations v of experiences:
a swap of two color aspects in C; and a replacement of two color aspects in D

each other than another pair of aspects; here, the two pairs have to have one aspect—
the reference—in common. In Fig. 1A, for example, the color of the top left chip will,
for many readers, be less similar to the reference chip than the color of the top right
chip. An experience e in the set E may exhibit many other aspects as well. However,
A(e) only comprises those which are relevant for the construction at hand.

To pick out relative similarity more precisely, we let b0, b1 and b2 denote the color
aspects of the three chips in an experience e, where b0 is the color aspect of the
reference; see Fig. 1B. For some experience e, it might be the case that the colors b1
and b0 are experienced as less similar to each other than the colors b2 and b0. In this
case, the experience e has a relative similarity aspect in the above sense; we denote
this “less-similar” relative similarity aspect by a. So, a is an aspect of e, and it is
instantiated relative to b1 and b2. (The aspect a is also relative to b0. But since b0 does
not vary in E we can leave this implicit.)

Variations change one experience e into another experience e′. An example for a
variation would be a swap of the coatings of the two non-reference chips, as in Fig. 1C.
Another example for a variation would be to change the coatings of both non-reference
chips to some other coating in �, as in Fig. 1D. Formally, variations are represented
by mappings v : A(e) → A(e′). In the first example, Fig. 1C, the mapping is of the
form v(b1) = b2 and v(b2) = b1, and v(c) = c for all other aspects c, except for the
relative similarity aspect a, which is discussed in detail below. In the second example,
Fig. 1D, the mapping is as in the first example but with v(b1) = b3 and v(b2) = b4.

The key question of this example is: Is there a mathematical structure of conscious
experience which corresponds to relative similarity? To answer this question, we pro-
pose a mathematical structure and check whether this structure satisfies (MSC).
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The words “less similar than” in the description of relative similarity already indi-
cate that some order, in the mathematical sense of the word, might be involved. For
reasons that will become clear below, we propose a strict partial order as mathematical
structure. Our task in the remainder of this section is to show that this proposal indeed
satisfies (MSC) with respect to experienced relative similarity. A strict partial order
(C,<), consists of a set C, which is the domain of the structure, and a binary relation
‘<’ on C. For all x, y, z ∈ C, this binary relation has to satisfy the following axioms:

– Irreflexivity, meaning that there is no x ∈ C with x < x .
– Asymmetry, meaning that if x < y, then it is not the case that y < x .
– Transitivity, meaning that if x < y and y < z, then also x < z.

In order to turn a strict partial order into a proposal for a mathematical structure
of conscious experience, we need to specify how the set C and the relation < relate
to aspects of conscious experience. For the set C we choose the color qualities of the
experiences in E , meaning that C now comprises the color qualities evoked by the
coatings � of the chips we consider. For example, it contains what we have labelled
b0, b1, b2, b3 and b4 in Fig. 1. For the relation, we define bi < b j if and only if bi is
experienced as less similar to b0 than b j is to b0. (Since relative similarity, as defined
above, depends on the choice of reference b0, it would be more precise to write <b0
instead of <. However, to simplify the notation, we keep the reference implicit.)

For this proposal to make sense, we first need to check whether the axioms are
satisfied. If they were not satisfied, the proposal could still be a structure of conscious
experience; but it wouldn’t be a strict partial order. That’s why the axioms are not
explicitly mentioned in (MSC). Irreflexivity is satisfied because no color quality is
experienced as less similar to the reference than itself. Asymmetry is satisfied because
if bi is less similar to the reference than b j , then b j is not less similar to the reference
than bi .

The use of terms like ‘less similar to’ in natural language suggests that transitivity
is also satisfied; it suggests that, if bi is less similar to the reference than b j and b j

is less similar to the reference than bk , then bi should be less similar to the reference
than bk . But it might very well be the case that natural language is not precise enough
to describe its target domain. The use of natural language may be justified in simple
cases, or even in a majority of cases, but whether or not transitivity holds for all
bi , b j , bk ∈ C is, ultimately, an empirical question. For the purpose of this example,
we’re going to assume that transitivity holds as well.

Having checked that the axioms hold—that is, that the proposal is indeed a strict
partial order—we can proceed to check whether the structure is a mathematical struc-
ture of conscious experience according to (MSC). Concerning Condition (S1), there is
one domain C and it consists of color qualities, so this condition is satisfied. Therefore,
only Condition (S2) remains to be checked.

We now show that the relative similarity aspect a, as defined above, is in fact an
S-aspect, where S is the ‘<’ relation on C. That is, it is a <-aspect. To see that this
is true, we have to show that a variation does not preserve < with respect to relata b1
and b2 if and only if the variation changes a relative to b1 and b2.

Consider any variation v : A(e) → A(e′) that does not preserve < with respect
to relata b1, b2 ∈ A(e). Two aspects b1 and b2 are relata of < if either b1 < b2 or
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b2 < b1. We focus on the first case as the other one follows from the first by renaming
b2 and b1 in what follows. By definition of the < relation, b1 < b2 means that b1 is
experienced as less similar to the reference than b2. Therefore, there is also a relative
similarity aspect a ∈ A(e) as defined above. As explained in Sect. 2.3, there can be
two ways in which the variation v might not preserve <. Either v(b1) or v(b2) are
not defined, or, if they are defined, it is not the case that v(b1) < v(b2). In the former
case, there cannot be an a in A(e′) relative to v(b1) or v(b2), simply because the latter
do not both exist. In the latter case, it follows from the definition of < that v(b1) is
not experienced as less similar to the reference than v(b2). So, there is no a ∈ A(e′)
relative to v(b1) and v(b2). Hence, we may conclude that v changes a relative to b1
and b2.

For the other case, let v : A(e) → A(e′) be a variation which preserves < with
respect to relata b1 and b2. As before, this implies that a is in A(e) relative to b1 and b2.
Because v preserves <, v(b1) and v(b2) both exist and we also have v(b1) < v(b2).
Applying the definition of < then implies that a is also in A(e′) relative to v(b1) and
v(b2). Hence v does not change a relative to b1 and b2.

Because in both of these cases, v was arbitrary, it follows that a is indeed a <-
aspect. Therefore, Conditions (S1) and (S2) of (MSC) are both satisfied, and the strict
partial order (C,<) is indeed a mathematical structure of conscious experience; it is
themathematical structure of relative similarity of color experienceswith respect to b0.

4 Phenomenal unity and topological structure

Our second example concerns topological structure. Interestingly, this is intimately
tied to phenomenal unity, the thesis that phenomenal states of a subject at a given time
are unified (Bayne & Chalmers, 2003). Phenomenal unity gives rise to a mathematical
structure of conscious experience.9

Recall that we have introduced the set A(e) to denote aspects of the conscious
experience e, where we have used the term ‘aspect’ as a placeholder for concepts
like qualia, qualities, or (instantiated) phenomenal properties. Most examples of these
concepts are “independent” from the experience in which they occur; they could be
experienced together with a largely different set of aspects in a different experience.
Yet, experiences seem unified; their aspects are experienced as tied together in some
essential way. This raises the question of what underlies this experience of the unity
of a conscious experience? As we will see, somewhat surprisingly, the answer is: a
topological structure of conscious experience.

Much has been written about the question of phenomenal unity in the literature, for
example Bayne (2012); Bayne and Chalmers (2003); Cleeremans and Frith (2003);
Mason (2021); Prentner (2019); Roelofs (2016); Wiese (2018), and in order to make

9 A connection between topology and phenomenal unity has already been conjectured in Prentner (2019),
where an attempt was made to construct a topological space based on a binary relation that describes the
“overlap” of mental objects. The construction only leads to the weaker notion of a pre-topology, but should
be regarded as an important first step in this direction. For a summary of the formal construction, see Kleiner
(2020, Example3.22).
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use of some of the results, we assume that the term ‘aspect’ denotes an instantiated
phenomenal property or quale. The set of aspects A(e), then, comprises the phenom-
enal properties or qualia which are instantiated in the experience e, also called the
phenomenal states of the experience e.10 Our question, then, is what it means that
“any set of phenomenal states of a subject at a time is phenomenally unified” (Bayne
& Chalmers, 2003, p. 12).

There are various answers one might give to this question. A promising answer is
the so-called subsumptive unity thesis, developed in Bayne and Chalmers (2003):

For any set of phenomenal states of a subject at a time, the subject has a phe-
nomenal state that subsumes each of the states in that set. (Bayne & Chalmers,
2003, p. 20)

According to this thesis, what underlies the experience of the unity of a conscious
experience is that for any set X of phenomenal states in the conscious experience, there
is a further phenomenal state that subsumes each of the states in X . This phenomenal
state characterizes what it is like to be in all of the states of X at once (Bayne &
Chalmers, 2003, p. 20).

Put in terms of aspects, the subsumptive unity thesis says that for any set X ⊂ A(e)
of aspects of an experience, there is an additional aspect in A(e) that subsumes the
aspects in X . This aspect is the experience of what it is like to experience the aspects
in X as part of one experience e together; this aspect is the experience that the aspects
in X are unified, as we will say. Let us call this aspect the phenomenal unity aspect of
X and denote it by aX . It is instantiated relative to the elements of X .

Phenomenal unity gives rise to a mathematical structure of conscious experience.
To see how, let us use the symbol T to denote a collection of subsets of A(e), to be
specified in more detail below. Every subset of A(e) is a unary relation on A(e),11 and
hence also on the setA that comprises all aspects of the experiences in E . Therefore,
(A, T ) is a mathematical structure; it has the domain A and its structures are the
unary relations in T . As we show next, because of the subsumptive unity thesis, the
mathematical structure (A, T ) is a mathematical structure of conscious experience
according to (MSC).

Because A is the set of all aspects of E , Condition (S1) of (MSC) is satisfied.
Therefore, only Condition (S2) remains to be checked. This condition is satisfied
because for every set X ∈ T , the phenomenal unity aspect aX is an S-aspect for
S = X ; an X -aspect for short. To show that this is the case, we need to check that a
variation does not preserve X with respect to relata b1, ..., bm if and only if it changes
aX relative to b1, ..., bm . Let v : A(e) → A(e′) be a variation that does not preserve
X with respect to relata b1, ..., bm . The relata of the subset X are the elements of that
subset. Therefore, we have b1, ..., bm ∈ A(e), so that the subsumptive unity thesis
implies that there is a phenomenal unity aspect aX relative to the b1, ..., bm in A(e).

10 A phenomenal state is an instantiation of a phenomenal property, or quale, by a subject at a given time.
This instantiation constitutes part of the experience of the subject at the time. An experience e, in our
terminology, is an experience of a subject at a given time. Hence, a phenomenal state is an instantiation of
a phenomenal property, or quale, in an experience e.
11 Anm-ary relation on a set X is a subset R of Xm . Hence, a unary relation, wherem=1, is a subset of X .

123



Synthese (2024) 203 :89 Page 17 of 23 89

The condition that v does not preserve X furthermore implies that either not all of
the v(bi ) exist or that at least one of them is not in the set X . Therefore, there is no
phenomenal unity aspect aX relative to v(b1), ..., v(bm) in A(e′). Hence, the variation
v changes aX relative to b1, ..., bm ∈ X . Vice versa, let v : A(e) → A(e′) be a variation
which preserves X with respect to relata b1, ..., bm . This implies that aX is instantiated
relative to b1, ..., bm in A(e). The condition that v preserves X furthermore implies
that v(b1), ..., v(bm) exist, and that they are elements of X . Therefore, aX is also
instantiated relative to v(b1), ..., v(bm) in A(e′). This shows that the variation does
not change aX relative to b1, ..., bm . Thus, aX is indeed an X -aspect. And because that
is true for any X ∈ T , (A, T ) indeed satisfies Condition (S2) and hence (MSC).

The previous paragraph proves that, if the subsumptive unity thesis holds true for all
sets X in T , then (A, T ) is indeed a mathematical structure of conscious experience.
As we will explain next, this structure is intimately tied to a topological structure.

A topological structure (M, T ) consists of a set M and a collection T of subsets
of M . The collection has to satisfy three axioms, and there are a few different ways of
formulating these axioms. Here, we choose the formulation that corresponds to what
is usually called ‘closed sets’. The axioms are:

– The empty set ∅ and the whole set M are both in T .
– The intersection of any collection of sets of T is also in T .
– The union of any finite number of sets of T is also in T .

Are these axioms satisfied by the structure (A, T ) induced by phenomenal unity?
To answer this question, it is important to note that the subsumptive unity the-

sis does not provide a phenomenal unity aspect aX for every subset of A. It can
only provide such an aspect for a set of aspects that are actually experienced
together. That is, it can only provide such an aspect for a subset X of A(e).
Therefore, T is not the discrete topology introduced in Sect. 1. Second, it also
cannot be the case that it provides a phenomenal unity aspect for every subset of
A(e). That’s because then there would be an infinite regress: for every subset X
of A(e) there would be a new aspect aX in A(e), giving a new subset X ∪ {aX }
that would give a new phenomenal unity aspect aX∪{aX }, and so forth. This prob-
lem is well-known in the literature (Bayne, 2005; Wiese, 2018). Rather, we take
it, the quantifier ‘any set’ in the subsumptive unity thesis must be understood as
‘any set of aspects that are experienced as being unified’. While it is arguably the
case that the whole set of aspects A(e) of an experience is always experienced as
unified—by which we mean: the whole set of aspects is experienced—, introspection
suggests that we consciously experience only a select group of aspects as unified at a
time.12

So, which sets of aspects do we experience as unified? While we cannot give a
general answer to this question here, there is a special casewhere a sufficiently detailed
specification can be given: the case of regions in visual experience. Here, ‘regions’ are

12 This solves the infinite regress problem because, arguably, we do not always experience the phenomenal
unity aspects as unified with the sets they correspond to. So, there is not always a phenomenal unity aspect
aX∪{aX } for the set that consists of aX and X .

123



89 Page 18 of 23 Synthese (2024) 203 :89

sets of positions of the space that visually perceived objects occupy.13 The positions
in a region are experienced as unified. Therefore, the regions of visual experience are
members of the collection T which is induced by phenomenal unity. Furthermore, they
appear to satisfy the axioms of a topology as stated above: the whole set of positions
in a visual experience is a region; it seems to be the case that intersections of regions in
visual experience are also regions in visual experience; and it seems to be the case that
the union of any two regions in visual experience is also a region in visual experience.
For the empty set, no S-aspect of consciousness is required (there are no relata of the
corresponding unary relation), so we may take the empty set to be a member of T .
Thus, all axioms of a topology are satisfied.

Therefore, if we take M to denote the position aspects of visual experiences, and
chooseT to comprise the regions of visual experience, then (M, T ) is indeed a topolog-
ical structure. And, as shown above, it is a structure of conscious experience as defined
in (MSC). We thus find that, because of the subsumptive unity thesis, this topological
structure is indeed a mathematical structure of conscious experience; much like con-
jectured in Tallon-Baudry (2022), it is a topology of the visual content of subjective
experience.

5 The three problems revisited

In this section, we discuss how the new approach (MSC), which we have developed
in Sect. 2.2, resolves the three problems discovered in Sect. 1.

Problem 1: Incompatible structures

The first problem was that the condition (MDC), which has been applied in previous
approaches, admits incompatible structures to conscious experience. Is this also true
of (MSC)?

If two structures are incompatible, then there exists at least one automorphism of
one structure that is not an automorphismof the other structure.14 Aswe explain below,
this condition implies that two incompatible structures cannot have all S-aspects in
common. Therefore, it is not possible for two incompatible structures to pertain to
conscious experience in the exact same way; so, (MSC) indeed resolves the problem
of incompatible structures.

Let S and S′ denote two incompatible structures (in the narrow sense of the term)
with the same domains. Then, there is at least one automorphism of one structure that
is not an automorphism of the other structure. Let us denote such an automorphism

13 It is also plausible to think that visual experiences do not contain positions as aspects, but only regions.
However, assessing whether or not this is the case goes beyond the scope of this paper. Here, we assume
that positions are aspects of visual experiences.
14 Automorphisms are structure-preserving mappings from a structure to itself. Put in terms of the termi-
nology we have introduced in Sect. 2.2, automorphisms are mappings v that map the domains of a structure
to themselves. These mappings have to be bijective, and they have to preserve the structure, meaning that
they have to satisfy (P1) for all elements of the domain in case of relations, and (P2) for elements of the
domains in the case of functions.
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by v and assume that it is an automorphism of S but not of S′. Because v is not an
automorphism of S′, it follows that there is at least one set of relata b1, ..., bm of S′
in some A(e), such that the variation v : A(e) → A(e) induced by the automorphism
does not preserve S′ with respect to these relata. On the other hand, because v is an
automorphism of S, it follows that this variation preserves S with respect to b1, ..., bm .
If an aspect a is an S′-aspect, then, applying the definition of S′-aspects, we find that
the variation v needs to change it. In contrast, if an aspect a is an S-aspect, then,
applying the definition of S-aspects, we find that the variation v must not change it;
either because the b1, ..., bm do not constitute relata of S, or because the variation v

preserves S with respect to relata b1, ..., bm . Because an aspect cannot be both changed
and not changed under a single variation, there cannot be an aspect a that is both an
S-aspect and an S′-aspect.

Problem 2: Arbitrary re-definitions

The definition (MSC) also resolves the problem of arbitrary re-definitions. That’s
because any re-definition changes the relations or functions of the respective structure,
and therefore generates an own, independent condition for something to be an S-aspect
of the redefined structure. Whether or not this new S-aspect is a part of conscious
experience is a substantive question that depends on the actual experiences of the
subject under consideration; it is not automatically the case.

Consider, as examples, the cases of rescaling a metric, which we have introduced in
Sect. 1. If, per assumption, (M, d) were a structure of conscious experience, then for
any relata (b1, b2, d(b1, b2)), the condition for d-aspects would have to be satisfied.
Rescaling this to (M,C · d) generates a new condition because now, the relata to be
considered are (b1, b2,C · d(b1, b2)). These are different relata, and correspondingly,
different experiences and different variations will enter the definition of a C·d-aspect.
The same is true for an ( f (a)+ f (b))·d(a, b)-aspect. Whether or not these structures
satisfy (MSC) depends on the details of the conscious experiences under consideration;
but they do not automatically satisfy (MSC) just because (M, d) does.

Problem 3: Indifference to consciousness

The third problem is resolved, finally, because of the introduction of S-aspects
in (MSC), which are a counterpart “in” conscious experience to the structure in the nar-
row sense of the term. S-aspects introduce a connection between functions or relations
in a mathematical structure, on the one hand, and aspects (qualia, qualities, or phe-
nomenal properties) of conscious experiences, on the other hand. Because S-aspects
are part of the definition of (MSC), any application of (MSC) requires engaging with
details of the conscious experiences of the subject under consideration; (MSC) is not
indifferent to conscious experience in the sense of Problem 3 of Sect. 1.

Consider, for example, the two topological structures of Sect. 1. While (MDC) only
required us to check whether the structures address aspects and satisfy the axioms,
(MSC) also requires us to check whether there is an S-aspect in conscious experience
that corresponds to the topological structures. As we have seen in Sect. 4, this involves

123



89 Page 20 of 23 Synthese (2024) 203 :89

a careful investigation of conscious experience and relies on intricate notions such as
phenomenal unity.

6 Conclusion

In this article, we investigated mathematical structures and mathematical spaces of
conscious experience. We were not concerned with questions of type or explicit form
of these structures or spaces, butwith thequestionofwhat itmeans to speak aboutmath-
ematical structures or mathematical spaces of conscious experiences in the first place.
We answer this question by providing a definition of what mathematical structures of
conscious experience are. This definition provides a foundation for the construction,
investigation and identification of concepts like phenomenal spaces, quality spaces,
qualia spaces and Q-structures.

Our definition of mathematical structures of conscious experiences is grounded in
a foundational understanding of mathematical structures and spaces as laid out by
mathematical logic. And it is axiomatic in the sense that it can be applied to any
conceptualization of conscious experiences, and any choice of aspects thereof (e.g.
qualia, qualities, phenomenal properties, phenomenal distinctions), which satisfy the
formal requirement that for every conscious experience there is a well-defined set of
aspects.

Our definition rests on the notion of variations, which are changes of one conscious
experience to another. Because variations can be induced introspectively (for example,
as in Husserl’s imaginary variations), stimulated in a laboratory by change of stimuli,
or studied theoretically based on a proposed theory of consciousness, our definition
constitutes a general method to identify and study structures of conscious experience.

The grounding of mathematical structures of conscious experiences proposed here
is methodologically neutral in the sense that it can be combined with many methods,
practices, and procedures that are used to investigate conscious experience, spanning
empirical, analytical, and phenomenological research. Furthermore, it is conceptually
neutral in the sense that it can be applied to any conception of ‘conscious experience’
and ‘aspects’ thereof, as long as every conscious experience comes with a well-defined
set of aspects. This includes common conceptions using qualities, qualia, or phenom-
enal properties, but also less common ideas based on atomistic conceptions of states
of consciousness or phenomenal distinctions.

Our definition complements recent approaches that study quality spaces, qualia
spaces, or phenomenal spaces, because it retains the abstract condition that these
proposals apply—Condition (MDC) in Sect. 1—as a necessary part. This abstract
condition is extended by our proposal, so as to avoid three problems that interfere
with recent approaches, see Sect. 1.

In light of the increasing interest in usingmathematical structures to model and rep-
resent conscious experiences in the scientific study of consciousness and philosophy
of mind, the investigation of how to define and understand mathematical structures of
conscious experience is important, in our view. This work contributes to this inves-
tigation. It highlights issues with previous ways of understanding structural claims
and offers an improved conception that rests on meaningful desiderata. Hence, we
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hope, it contributes to building a foundation for structural research for both theory and
experimental practice.

As a first application, and to illustrate our definition, we considered relative similar-
ity and topological spaces. We found that relative similarity, which plays an important
role in several constructions of quality spaces, is indeed a mathematical structure of
conscious experience, see Sect. 3. Topological spaces also qualify as mathematical
structures of conscious experience, but for a surprising reason: they are intimately
related to phenomenal unity, see Sect. 4.

We view the results presented here as one further step in a long journey to investigate
conscious experience mathematically. This step raises new questions and creates new
opportunities, both ofwhich canonlybe explored in an interdisciplinarymanner.Anew
question, for example, iswhether our result onmathematical structuresmight open new
perspectives on measurements of consciousness (Irvine, 2013), as arguably promised
by the Representational Theory of Measurement (Krantz et al., 1971) whenever an
axiomatic structure on a target domain is available.We hope that, ultimately, our result
provides a basis for developing a common formal language to study consciousness
across domains.
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