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Abstract

A little more than 10% of the vascular plant flora native to the European Alps is endemic to this area. It has long been noticed
that the distribution of endemics across the Alps is very uneven. While most endemics are found along the southern edge of
the Alps, with some also on its western, eastern, and northeastern edges, the northern edge of the Alps more or less between
Lake Geneva in the west and Lake Traun in the east harbours almost no endemics. The distribution of endemics in the Alps
has often been related to the location of glacial refugia. Accordingly, the virtual absence of endemics from the northern
edge of the Alps has been explained with the unsuitability of climatic conditions for glacial survival of alpine plants there.
After discussing evidence for the existence of glacial refugia for alpine species along the northern edge of the Alps and
north of the Alps, I will examine how these refugia differed from refugia along the southern edge of the Alps. I conclude
that the uneven distribution of endemics in the Alps is best explained by the different climate through time north and south
of the Alps. These climatic differences affected the spatial structure and extent of refugia, the length of isolation of refugial

populations, and selective conditions in refugia.
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Introduction

Following Aeschimann et al.’s (2004) Flora Alpina, the
European Alps harbor 3983 native vascular plant taxa
(species and subspecies), of which 417 are considered
to be endemic to the Alps. It has long been known (Can-
dolle 1875; Chodat and Pampanini 1902; Pawtowski 1970;
Favarger 1972; Tribsch and Schonswetter 2003; Tribsch
2004; Aeschimann et al. 2011a, b; Taberlet et al. 2016) that
these endemics are not evenly distributed across the Alps,
but that a much higher number of endemics is found along
the southern edge than along most of the northern edge of
the Alps.

According to Tribsch and Schonswetter (2003), the dis-
tribution of endemic species in the Alps was first related
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to the location of glacial refugia by Candolle (1875) and
Chodat and Pampanini (1902), and a causal link between
their distribution in glacial refugia and their evolutionary
divergence and eventually speciation has commonly been
assumed. Genetic divergence and subspeciation or specia-
tion in glacial refugia are believed to result from various
processes, including geographical isolation, genetic drift
in small populations, and adaptive evolution in response to
changing abiotic and biotic conditions, where the relative
importance of these factors or their combination has been
assessed differently by different authors (Hewitt 1996, 2000,
2004; Tribsch and Schonswetter 2003; Tribsch 2004; Hampe
and Petit 2005; Carstens and Knowles 2007; Casazza et al.
2008, 2010, 2016b; Stewart et al. 2010; Hampe and Jump
2011; Mee and Moore 2014; Woolbright et al. 2014; Stewart
and Stringer 2012; Gentili et al. 2015a, b; Kiedrzynski et al.
2017; Kadereit 2022).

High densities of endemics in particular refugial areas
have also been linked to the geomorphological, edaphic, and
climatic heterogeneity of these areas (Médail and Verlaque
1997; Médail and Diadema 2009; Casazza et al. 2008, 2010,
2016a; Nieto Feliner 2011, 2014). As such heterogeneity
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clearly has implications for population size, geographical
isolation and variation in selective regimes, environmen-
tal heterogeneity should not be considered a separate fac-
tor when investigating speciation in refugia the Alps. Also,
habitat diversity does not appear to correlate with endemism
(Gugerli et al. 2008; Taberlet et al. 2016).

Finally, time available for divergent evolution and
speciation needs to be considered (Bennett 1997; Willis
and Niklas 2004; Hewitt 2004; Lister 2004; Casazza et al.
2016a; Keppel et al. 2018). While it has been argued that
periods of isolation in the Quaternary were never long
enough for speciation to be completed (Willis and Niklas
2004; but see Kadereit and Abbott 2021), persistence of
interglacial adaptation through glacials has been postulated
for Taxus baccata L. by Mayol et al. (2015), and population
differentiation has been postulated to persist and accumulate
through several climatic cycles by, e.g., Pawtowski (1970),
Hewitt (2004), Lister (2004), Smycka et al. (2017), Jardim de
Queiros et al. (2022), and Parisod (2022). Such persistence
and accumulation of differentiation implies a certain degree
of climatic stability through time in glacial refugia, and such
climatic stability has been advocated as a major condition
in areas of endemism in general (Jansson 2003; Hampe and
Jump 2011; Harrison and Noss 2017; Cai et al. 2023).

Considering the possible role of glacial refugia for
evolutionary divergence and speciation, the uneven
distribution of endemics across the Alps has been explained
by the unsuitability of glacial conditions north of the Alps
for the survival and/or diversification of high-elevation
species by, e.g., Tribsch (2004), Schonswetter et al. (2005),
and Smycka et al. (2017), where these authors referred
to different areas north of the Alps. On the other hand, it
has long been known that high-elevation alpine (and high-
latitudinal arctic) species were widespread in Quaternary
glacials in the lowlands of Central Europe (Birks and Willis
2008). Indeed, Birks and Willis (2008) suggested that the
often small interglacial (or postglacial, i.e., extant) ranges
rather than the often large glacial ranges of alpine species
should be considered refugial (‘warm-stage refugia’).

On the background of these very contradictory views
of the presence of glacial refugia for high-elevation plant
species north of the Alps, the possible role of refugia for the
evident uneven distribution of endemic vascular plant species
across the Alps has been reconsidered. After delimiting the
area along the northern edge of the Alps where endemics
are rare or absent, I will, selecting those endemics which are
distributed in refugial areas, examine which of them are most
closely related to species from the Alps and which originated
in the Quaternary. While this approach concentrates on such
species which are relevant when considering the role of
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refugia for the uneven distribution of endemics, it also aims at
establishing that in the Alps Quaternary speciation possibly
related to glacial refugia has taken place at all. I will then
examine whether the frequency of endemics might be related
to the distribution of species diversity, intraspecific genetic
diversity or environmental diversity. After discussing evidence
for the existence of glacial refugia for high-elevation species
along the northern edge of the Alps and north of the Alps and
discussing the properties of these refugia, I will examine how
these refugia differed from refugia along the southern edge
of the Alps. I will conclude that the uneven distribution of
endemics distributed in glacial refugia in the Alps is best
explained by climatic differences north and south of the Alps.
These affected the spatial structure and extent of refugia,
the length of isolation of refugial populations, and selective
conditions in refugia. In turn, these three factors affected rates
of speciation.

Materials and methods

The endemic taxa examined (excl. apomicts) were taken from
Aeschimann et al.’s (2004) Flora Alpina. Taxon names used
were those used in the respective publication dealing with
a taxon even though this partly differed from Aeschimann
et al. (2004) and partly differs from current usage. I only
considered those endemics which today are distributed in areas
regarded glacial refugia (henceforth referred to as ‘refugial
endemics’) because only these are relevant when considering
the role of refugia for the uneven distribution of endemics.
For these endemics, Google Scholar was used to search for
phylogenetic and/or phylogeographic literature to identify
their closest relatives and to search for information on their
estimated age of origin to establish that they are likely to have
originated in the Alps in the Quaternary. This approach also
served to establish that in the Alps, Quaternary speciation
possibly related to glacial refugia has taken place at all. In
my search of the literature I encountered additional endemics
that were not listed in Aeschimann et al. (2004). However,
other endemics may have been missed. Refugial endemics of
unknown relationships were not considered further. To assess
the distribution of endemics in refugia, I either followed the
assessment provided in individual accounts, referred to Tribsch
and Schonswetter (2003) for distributional information, or
compared their distribution to the distribution of refugial areas
as shown in Schonswetter et al. (2005). When necessary, Flora
Europaea (Tutin et al. 1968; Tutin et al. 1972; Tutin et al.
1976; Tutin et al. 1980; Tutin et al. 1993) was used to obtain
further information on geographical distribution.
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Results and discussion

The uneven distribution of endemic species
across the Alps

Based on the distribution of endemics as mapped by Aeschi-
mann et al. (2011a, b) and Tribsch and Schonswetter (2003),
the area along the northern edge of the Alps that extends
more or less from the Haut-Savoie in the West to the Oberds-
terreichische Voralpen in the East (Fig. 1) is very poor in
endemics. While the western limit of this area has not been
looked at in great detail recently, but may lie in the area of
Lake Geneva (see Vierhapper 1924, 1925; quoted in Aeschi-
mann et al 2011a; Merxmiiller 1954; ‘ligne du lac Léman
au lac Majeur’ of Aeschimann et al. 2011a), the eastern
limit is well known through the work of Merxmiiller (1952,
1953, 1954), Niklfeld (1972), Tribsch and Schonswetter
(2003), and Tribsch (2004). Merxmiiller (1952) and Niklfeld
(1972) identified the river Traun in the Oberosterreichische
Voralpen as the eastern border (‘Traunlinie’, ‘ligne Traun
— Lieser’ of Aeschimann et al. 2011a; Fig. 1) of those parts
of the northern Alps poor in endemics. Interestingly, these
eastern and western limits also coincide with break zones
identified by Thiel-Egenter et al. (2011) and also by ear-
lier authors (see Thiel-Egenter et al. 2011 for discussion)
for the distribution of calcifuge species. From the ‘Oberos-
terreichische Voralpen’ toward the east (‘northeastern cal-
careous Alps’, ‘northeasternmost Prealps’ and ‘eastermost
Central Alps’ following Tribsch (2004)), and particularly
in the ‘southern’ and ‘southeastern calcareous Alps’ (fol-
lowing Tribsch (2004)) and the southwestern (Maritime

Fig. 1 Ice extent in the Alps in the Last Glacial Maximum based on
Ivy-Ochs (2015). Map of the Alps: OpenStreetMap https://umap.
openstreetmap.fr/de/map/alpen-relief_955504#7/46.108/12.953. The
area between the two straight lines on the northern edge of the Alps
harbours essentially no endemics. For numbers of endemic species in
different parts of the Alps, see Aeschimann et al. (2011a, b), Tribsch
and Schonswetter (2003), and Tribsch (2004)

and Ligurian) Alps (Médail and Quezel 1997; Casazza et al.
2008, 2010, 2016a), the number of endemics is much higher.
This general pattern also becomes evident when consider-
ing the distribution (in the Alps) of monophyletic species-
rich lineages such as Moehringia L. sect. Moehringia (Fior
and Karis 2007; Aeschimann et al. 2004), Primula L. sect.
Auricula Duby (Zhang et al. 2004; Boucher et al. 2016a) or
Saxifraga L. sect. Saxifraga subsect. Arachnoideae (Engl.
& Irmsch.) Tkach et al. (Gerschwitz-Eidt et al. 2023) where
most or all endemics are distributed in the southern Alps.
The same applies to, e.g., the diploid and polyploid species
of Knautia L. from the Alps—the genus is considered to be
of East Mediterranean origin (Resetnik et al. 2014; Frajman
et al. 2016)—and to Phyteuma L., a more widespread genus
reconstructed to have originated in the Alps (Schneeweiss
et al. 2013).

There exist a number of endemics in the endemic-poor
area north of the Alps considered here. Thus, Tribsch and
Schonswetter (2003), for their ‘northeastern foreland of Aus-
tria’, ‘northern foreland of Germany’ and ‘Bodenseegebiet’
list Biscutella laevigata L. subsp. kerneri Mach.-Laur. (best
combined with subsp. subaphylla Mach.-Laur. according
to Tremetsberger et al. 2002), Onosma helvetica (A. D.C.)
Boiss. subsp. austriaca (Beck) Teppner, Tephroseris hel-
enitis (L.) B. Nord. subsp. salisburgensis Cufod., Armeria
purpurea W.D.J. Koch and Cochlearia bavarica Vogt. All
these, apart from Biscutella laevigata subsp. kerneri, clearly
are not most closely related to alpine species, and the sta-
tus of Onosma helvetica subsp. austriaca (considered a
disjunct occurrence of the more widespread O. pseudoare-
naria Schur by Kolarcik et al. 2014) has been questioned
(Fischer et al. 2005). Tephroseris helenitis subsp. salis-
burgensis, not recognized taxonomically by Kadereit et al.
(2021), has been hypothesized to be of postglacial origin
(Pflugbeil et al. 2021), and Cochlearia bavarica is a hybrid
taxon of probably very young age (Heubl and Vogt 1985;
Koch et al. 1996; Koch 2002). Another few endemics have
been identified to the west of the area considered by Trib-
sch and Schonswetter (2003). Pulmonaria helvetica Bolliger,
endemic to the northern edge of the Alps in Switzerland and
the Jura Mts., also is a hybrid taxon of likely postglacial
origin (Griinig et al. 2021). Interestingly, Arenaria gothica
Fr. from Lac de Joux in the Jura Mts. (Info Flora 2022) and
Saxifraga oppositifolia L. subsp. amphibia (Siind.) Braun-
Blang. from Lake Constance (Krause et al. 2017), both
discussed by Kadereit (2022), are limited to the shores of
lakes covered by ice in the last glacial and may be of only
postglacial origin. Armeria purpurea, if indeed endemic to
Lake Constance, can be added to this list. The two Lake
Constance taxa appear to be extinct (Dienst et al. 2004).
Arenaria bernensis Favarger, endemic to the western Pre-
alps in Switzerland, may be a rare example for the possibly
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Quaternary origin of a refugial endemic east of Lake Geneva
(Berthouzoz et al. 2013).

Not all refugial endemics of the Alps are part
of alpine lineages and/or of Quaternary age

If the refugial endemics in the Alps originated in glacial
refugia, they should have originated in Quaternary times as
closest relatives of species from the Alps. Although it will
remain unknown whether refugial endemics originated in the
area where they are found today, a number of studies which
modeled the Last Glacial Maximum (LGM) distribution
of refugial endemics in the Alps have shown that the most
likely LGM distribution ranges of such endemics were
geographically close to or included their current ranges
(Schorr et al. 2012, 2013; Casazza et al. 2013; Pan et al.
2020; Guerrina et al. 2022; Adamo et al. 2023). Much has
been published on the phylogeography and phylogeny of
plant taxa—subspecies, species or larger lineages—from the
Alps. However, information on phylogenetic relationships of
refugial endemics and their likely time of origin is limited.
Partly, taxa have not been analyzed at all; partly, sampling
of potential closest relatives is not complete; partly, DNA
sequence information generated was not sufficient to
resolve relationships; and partly molecular dating, clearly
problematical when using, for lack of fossils, secondary
calibration in young lineages (Schenk 2016), was not
attempted. With respect to the last point, all age estimates
reported should be treated very carefully.

Apart from the fact that closer inspection led to
the conclusion that some refugial endemics listed by
Aeschimann et al. (2004) do not deserve to be recognized
taxonomically (Carex norvegica Retz. subsp. pusteriana
(Kalela) Chater: Wigctaw et al. (2017); Galium
meliodorum (Beck) Fritsch: Grossfurthner (2018);
Oxytropis campestris (L.) DC. subsp. tiroliensis (Sieber
ex Fritsch) Leins & Merxm.: Schonswetter et al. (2004a);
several species/subspecies of the Papaver alpinum L.
complex: Schonswetter et al. (2009); Veronica chamaedrys
L. subsp. micans M.A. Fischer: Bardy et al. (2010)), the
literature available clearly shows that not all refugial
endemics of the Alps originated as closest relatives
of species distributed in the Alps, and that not all are
of Quaternary age. Thus, there exist phylogenetically
isolated and clearly pre-Quaternary refugial endemics
such as Berardia subacaulis Vill. (Garcia-Jacas et al.
2016; Guerrina et al. 2022), Gentiana froelichii Rchb.
(Favre et al. 2022), Physoplexis comosa (L.) Schur
(Cellinese et al. 2009; Schneeweiss et al. 2013), Saxifraga
florulenta Moretti (Patsiou et al. 2014; Ebersbach et al.
2017), Valeriana celtica L. (Bell and Donoghue 2005)
and Viola argenteria Moraldo & Forneris (Casazza et al.
2016b; Marcussen et al. 2022). Irrespective of their partly
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high age, however, evidence for a role of Quaternary
climatic oscillations in the evolution and distribution
of such species has been found. Thus, the subspecific
differentiation of Valeriana celtica has been suspected to
be of Quaternary age (Weberling et al. 1971), postglacial
range contraction has been shown for Berardia subacaulis
(Guerrina et al. 2022), and dispersal from a glacial
refugium in Saxifraga esculenta has been hypothesized
by Szovényi et al. (2009).

Some refugial endemics of the Alps appear to have their
closest relatives in geographically very distant areas such
as the Eurasian and North American Arctic (Braya alpina
Sternb. & Hoppe: Warwick et al. 2004; Chen et al. 2020)
or temperate Asia (Callianthemum C.A. Mey.: Kadereit
et al. 2019), of which the latter appears to have arrived
in Europe in the Quaternary. Others are most closely
related to species widespread outside the Alps (Cerastium
carinthiacum Vest: Skubic et al. (2018); Chaerophyllum
elegans Gaudin: Piwczyiiski et al. (2015); Odontites luteus
(L.) Clairv. subsp. lanceolatus (Gaudin) P. Fourn.: Pinto-
Carrasco et al. (2017); Tephroseris integrifolia (L.) Holub
subsp. serpentinii (Gayer) B. Nord. (Kadereit et al. 2021);
Teucrium lucidum L.: Salmaki et al. (2016)), of which the
latter two appear to have originated in the Quaternary.
Several endemics (Table 1) have clear relationships to
southern European species or lineages, although it is not
always clear whether the Alps were colonized from these
southern European areas or vice versa. Many more of
those taxa considered to belong to the ‘South European
Mountain’ and ‘Mediterranean’ floristic groups of
Aeschimann et al. (2011b), the two largest groups of their
floristic classification of the flora of the Alps, probably
have relationships to southern European taxa. Ranunculus
villarsii DC. and R. venetus Huter ex Landolt (Paun et al.
2005: Quaternary; Emadzade and Horandl 2011: just
before onset of Quaternary) are part of a species group
widespread in the European Alpine System (EAS), and
Alyssum neglectum Magauer et al. is the closest relative
of A. montanum L. (Magauer et al. 2014) found across the
EAS, both representing a pattern of relationships known
from many more taxa (Christ 1867; Engler 1879; Ozenda
1985, 2009; Kadereit 2017).

However, of those species and subspecies endemic to the
Alps for which satisfactory data are available, the majority
do have their closest relatives in the Alps, and the origin of
many of these has been dated to the Quaternary. Undated
and dated examples are found in Table 2. In many of the
undated examples, limited genetic divergence may imply
young and possibly Quaternary age.

In summary, it is very clear that a substantial number
of refugial endemics of the southern Alps are the result
of Quaternary subspeciation or speciation of lineages
distributed in the Alps.
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Table 1 (continued)

18

The uneven distribution of refugial endemics

in the Alps is not correlated with the distribution
of species diversity, intraspecific genetic diversity,
or environmental diversity

It is conceivable that the rarity of endemics along the
northern edge of the Alps as opposed to their relatively
high frequency in the south is proportional to the overall
distribution of species, intraspecific genetic, and/or
environmental diversity. However, following Gugerli et al.
(2008) and Taberlet et al. (2016), this does not seem to be
the case. Thus, Gugerli et al. (2008) showed that potential
habitat diversity across the Alps generally follows species
richness patterns, while Taberlet et al. (2016) demonstrated
that species richness does not correlate with areas of
endemism. This in turn implies that areas of endemism do
not correlate with habitat diversity. Gugerli et al. (2008) also
found that highest intraspecific genetic diversity in the Alps
occurs along their northern edge, and Taberlet et al. (2016)
showed that intraspecific genetic diversity is negatively
correlated with species endemism.

Kadereit et al. (2021), Adamo et al.
(2023)

Kuzmanovic et al. (2017)
Kuzmanovié et al. (2017)

Hiihn et al. (2023)

Estimated age of refugial endemic References

Quaternary
Quaternary

The nature of glacial refugia north of the Alps

Various evidence indicates the existence of glacial refu-
gia north of the Alps, i.e., in lowland areas between the
ice shields of the Alps and Scandinavia. Birks and Willis
(2008) provided a list of 70 ‘alpines’, defined as species
that today occur mainly above the altitudinal or beyond
the latitudinal treeline (thus including both alpine and arc-
tic species), for which LGM or Weichselian Late Glacial
(LG) macrofossils or pollen or spores have been found in
northern and Central Europe. However, except for one, all
species listed by Birks and Willis (2008) today are distrib-
uted in both the Alps (or other parts of the EAS) and in
northern Europe, including, for some species, Scotland.
As Birks and Willis (2008) clearly stated that ‘Little is
known, however, of the LGM distributions of the bulk of
the alpines that occur in the Pyrenees and the Alps today
because no taxonomically detailed macrofossil analyses
have, as far as we know, been done on LGM or LG depos-
its in Iberia or near the Alps’, it is essentially unknown
whether these fossils, in Central Europe, are derived from
populations fleeing the Scandinavian ice shield rather than
the ice shield of the Alps. Irrespective of this, these fos-
sils certainly illustrate that LGM growing conditions in
northern and Central Europe were suitable for plant spe-
cies which today grow in the Alps and the Arctic. Birks
and Willis (2008) also provided a map (based on Vire
et al. 2003) of the extant occurrence of alpine species in
the potential forest zone of Central Europe, and interpreted
these occurrences as ‘cryptic Holocene refugia’. Probably

T. balbisiana: Maritime Alps and
Spain

Geographical distribution of closest
relative(s)

Mostly S and SE Europe
Widespread mostly in Europe

helenitis (L.) B. Nord., T. longifolia

(Jacq.) Griseb. & Schenk, T.

Adans., Oreochloa Link unclear
papposa (Rchb.) Schur

clade with Echinaria & Sesleria
s.str. Psilathera ovata, Mibora

Scop. s.str.
V. sect. Melanium Ging

sister Echinaria Desf. or part of
relationships to Echinaria, Sesleria
sister to 7. crispa (Jacq.) Rchb., T.

Closest relative (s)

calcarata subsp. villarsiana (Roem.

& Schulkt.) Merxm., V. dubyana
Burnat ex Gremli, V. valderia All.

Deyl

Viola culminis F. Fen. & Moraldo, V. part of Calcarata species complex of Italy, Sicily, Sardinia, Corsica

Psilathera ovata (Hoppe) Deyl
Sesleriella sphaerocephala (Ard.)
Tephroseris balbisiana (DC.) Holub

Taxon
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at least those occurrences close to the Alps are likely to be
derived from refugial populations of alpine origin.

When considering the glacial distribution of arctic—alpine
disjuncts (for reviews see Birks 2008; Schmitt et al. 2010),
their wide presence between the Scandinavian and Alps
ice shields has been inferred or postulated, based on
phylogeographic data, for Arabis alpina L. (Ehrich et al.
2007), Carex atrofusca Schkur (Schonswetter et al. 2006a),
Cherleria sedoides L. (Scotland-Alps; Valtuefia et al. 2015),
Dryas octopetala L. (Skrede et al. 2006), Gentiana nivalis
L. (Alvarez et al. 2012), Minuartia biflora (L.) Schinz &
Tell. (Schonswetter et al. 2006b), Sibbaldia procumbens L.
(Scotland-Alps; Allen et al. 2015), Saxifraga oppositifolia
L. (Winkler et al. 2013), and Salix herbacea L. (Alsos
et al. 2009). Long-distance dispersal between the Alps and
Scandinavia rather than continuous distribution in glacial
times between these areas has been found in Comastoma
tenellum (Rottb.) Toyok. (Schonswetter et al. 2004b),
Ranunculus glacialis L. (Schonswetter et al. 2003b) and
Trollius europaeus L. (Després et al. 2002), although a
Central European population of the last species was found
to be the closest relative of populations from the Alps.
Independent colonization of Scandinavia and the Alps
from distant areas has been postulated for Ranunculus
pygmaeus Wahlenb. (Schonswetter et al. 2006b). The very
wide distribution of arctic—alpine species in Europe has
also become evident from the analysis of the flora of Upper
Teesdale (England), a very well-studied glacial relic site
(Pigott 1956; Godwin and Walters 1967; Birks 2015).

Occurrences of alpine species in Germany (and Central
Europe) north of the Alps have been looked at in consider-
able detail by Thorn (1957, 1960). Thorn (1957; see this
reference for discussion of earlier authors) provided a list
of 30 ‘dealpine’ species for Germany (and Central Europe).
In his definition of dealpine Thorn (1957) followed Schus-
tler (1923; quoted in Thorn 1957), who considered species
dealpine when they occur mainly at alpine or even nival
elevations but have scattered occurrences in Central Europe
beyond the northern edge of the Alps. Such occurrences
were interpreted as glacial relics by Schustler (1923). In
1960, Thorn provided a list and map of 72 species from
lowland Central Europe beyond the edge of the Alps (Alpen-
vorland) which he considered glacial relics. Most of these
species are found in the Black Forest (and Vosges in France),
Swabian Alb, Franconian Alb, Upper Palatine and Bavar-
ian Forest, Thuringian-Franconian Highlands and West and
East Sudetes, with the northernmost occurrences of alpine
species in the Harz. For the edge of the Bavarian Alps
(Bayerisches Alpenvorland), Bresinsky (1965) identified
ca. 60 species which he considered dealpine. His definition
includes species distributed from alpine to lowland eleva-
tions. However, for lack of secure knowledge, Bresinsky

(1965) abstained from interpreting lowland occurrences of
such species as relic occurrences.

Of those species listed by Thorn (1957, 1960) and
Bresinsky (1965) as dealpine or glacial relics, a number
have been subjected to phylogeographic analyses often
aiming at clarifying their relic status. Mainly based
on patterns of genetic variation, such as the degree of
genetic differentiation among hypothetical glacial relic
populations and/or the occurrence of rare alleles, extra-
alpine populations of Arabis alpina (Ehrich et al. 2007),
Arabidopsis lyrata (L.) O’Kane & Al-Shebaz subsp. petraea
(L.) O’Kane & Al-Shebaz (Clauss and Mitchel-Olds 2006;
Wernisch 2007), Carduus defloratus L. (Vaupel 2013),
Cicerbita alpina (L.) Wallr. (Michel et al. 2010), Draba
aizoides L. (Widmer and Baltisberger 1999; Vogler and
Reisch 2013), Gentiana pannonica Scop. (Ekrtova et al.
2012), Pulsatilla vernalis Mill. (Ronikier et al. 2008;
Kiedrzynski et al. 2017), Saxifraga paniculata Mill. (Reisch
et al. 2003; Reisch and Poschlod 2004) and Swertia perennis
L. (Urbaniak et al. 2018) were interpreted as glacial relics.
When assuming that Biscutella laevigata grew in the Alps in
a diploid form before the LGM (Parisod and Besnard 2007),
the diploid sublineages outside the Alps of this enigmatic
taxon (Manton 1934, 1937) also can be considered glacial
relics (Tremetsberger et al. 2002). Evidence for the status
of populations as glacial relics was considered inconclusive
for Saxifraga aizoides (Lutz et al. 2000) and Tofieldia
calyculata (L.) Wahlenb. (Vlasta and Miinzbergova 2022),
and postglacial colonization of extra-alpine areas beyond the
edge of the northern Alps has been postulated for Polygala
chamaebuxus L. (WindmaiBer et al. 2016), Polygonum
viviparum L. (Bauert 1996) and Rosa pendulina L. (Fér
et al. 2007; but see Danek et al. 2016). Following Reisch
et al. (2002), there is no evidence for glacial relic endemism
of Sesleria albicans Kit. ex Schultes, considered a prime
example for glacial relic species in Central Europe by
Ellenberg (1996).

Ideas about the distribution of trees during the LGM
have changed greatly within the last three decades, based
on new or reconsidered fossils as well as phylogeographic
or species distribution modeling evidence (Gavin et al.
2014). It has become quite clear that at least boreal
tree species, most likely in small populations in locally
favorable conditions, existed in Central Europe and partly
north of the Alps at that time (Willis et al. 2000; Stewart
and Lister 2001; Bhagwat and Willis 2008; Birks and
Willis 2008; Provan and Bennett 2008; Svenning et al.
2008; Tzedakis et al. 2013). This might provide indirect
evidence that growing conditions north of the Alps should
also have been good enough for herbaceous alpine plant
species. Glacial survival in areas north of the Alps has
been inferred from phylogeographic studies even of
herbaceous temperate species such as Galium pusillum
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agg. (Kolaf et al. 2013, 2015; Knotek and Kolar 2018),
Hippocrepis comosa L. (Leipold et al. 2017), Melica
nutans L. (Tyler 2002), Meum athamanticum Jacq. (Huck
et al. 2009), Polygonatum verticillatum (L.) All. (Kramp
et al. 2009), Sanguisorba minor Scop. (Tausch et al. 2017),
Saxifraga rosacea Moench subsp. sponhemica (C.C.
Gmel.) D.A. Webb (Walisch et al. 2015) and, in western
Europe, Meconopsis cambrica (L.) Vig. (Valtueia et al.
2012). Ohlemiiller et al. (2012), in a simulation study, also
identified large areas north of the main European mountain
ranges as suitable for the growth of temperate plant species
during the LGM.

Closer to the Alps, the analysis of distribution patterns
of flowering plants led Merxmiiller (1952—-1954) to infer
refugia along the northern edge of the Alps. Genetic
evidence in support of Merxmiiller (1952-1954) has been
provided for, e.g., Androsace lactea L. (Schneeweiss and
Schonswetter 2010), Helleborus niger L. (Zaveska et al.
2021), Polygala chamaebuxus (Windmaifer et al. 2016),
Hornungia alpina (L.) O.Appel (Winkler et al. 2010) and
Ranunculus alpestris L. (Paun et al. 2008).

Schonswetter et al. (2005), considering the entire Alps,
found that of the several potential calcareous refugia
along the northern edge of the Alps identified through the
combination of geological and palacoenvironmental data,
only three (their refugia V: northern-Alpine peripheral
refugium in central Switzerland; VI: northern-Alpine
peripheral refugium in eastern Switzerland; VII: northern-
Alpine peripheral refugium in southern Germany) could
be verified on the basis of phylogeographic studies
of Erinus alpinus L. and Rumex nivalis Hegetschw.
(Stehlik 2002; Stehlik et al. 2002). In an earlier study,
using the distribution of endemics and the results of
phylogeographic studies of alpine plant species, Tribsch
and Schonswetter (2003) aimed at identifying refugial
areas in the eastern Alps (containing the eastern part of
the northern Alps discussed here). A hypothetical refugial
area for species of upper alpine and subnival distribution
comprising several peripheral parts of the northern
calcareous Alps (Berchtesgadener Alpen, Bayerische
Voralpen, Wettersteingebirge, Allgduer Alpen, Sintis,
northern Glarner Alpen; their area C8) could not be
confirmed because of the absence of narrow endemics
from this area.

In conclusion, it seems beyond reasonable doubt that
suitable areas for glacial survival of high-elevation species
from the Alps were available north of the Alps in much
the same way as south of the Alps. If the distribution of
populations in refugial areas should be causally linked to
their evolutionary divergence resulting in subspeciation or
speciation, this implies that northern and southern refugia
differed in properties relevant for speciation.

@ Springer

Differences between northern and southern glacial
refugia and their potential influence on speciation

Climate

Climatic conditions in glacials were very different north
and south of the Alps (Birks and Willis 2008). While in
the north, climate favored steppe shrub tundra vegetation
(and steppe tundra vegetation further north), most likely
very similar to interglacial ecological conditions at
alpine elevations (Korner 2021), vegetation south of the
Alps, below a narrow montane forest zone, was xeric
Artemisia—Poaceae—Chenopodiaceae steppe. When refugial
populations persisted (in interglacials or the Holocene) in
their glacial refugial areas, they are believed to have been
exposed to strong selection (Hewitt 1996, 2000, 2004;
Ackerly 2003; Hampe and Petit 2005; Stewart et al. 2010;
Stewart and Stringer 2012; Mee and Moore 2014). Along
these lines, Gerschwitz-Eidt et al. (2023) suggested, for a
subgroup of alpine saxifrages, that some speciation in this
lineage may be the result of a two-step process, in which
glacial climate resulted in geographical isolation in glacial
refugia in a first step, and subsequent interglacial climate
resulted in adaptive divergence of populations persisting in
the refugial area in a second step (see also Kadereit 2022).

Space

Looking at fossil evidence, the often rather wide distribution
of glacial relics (dealpines) in Central Europe, and the
possibly very wide glacial distribution of arctic—alpine
species in Central Europe, it seems very likely that glacial
refugia of alpine species north of the Alps will have been
very large areas probably containing many populations
linked through gene flow. This hypothesis is supported
by the fact that ecological conditions in glacials in
Central Europe may have been very similar to interglacial
ecological conditions at alpine elevations. Much in contrast
to this, as mentioned earlier, glacial vegetation south of
the Alps, below a narrow montane forest zone, has been
characterized as steppe (Birks and Willis 2008) or xeric
Artemisia—Poaceae—Chenopodiaceae steppe (Birks 2015).
The latter was considered too dry for high-elevation open
tundra-like vegetation by Birks (2015). This might imply
that much in contrast to the vast size of glacial refugia north
of the Alps, glacial refugia south of the Alps may have been
spatially very limited where the southern latitudinal limits
were imposed by climate. Probably more importantly, there
existed large topographical differences at the northern and
southern edges of at least the LGM ice shield of the Alps.
Looking at this ice shield (Fig. 1), it is obvious that LGM
glaciation, dependent on climate, reached into the lowland
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in most parts north of the Alps. Much in contrast to this,
the edge of the LGM ice shield was located in mountainous
areas in most parts of the southern Alps. In addition to the
latitudinal limitation of southern alpine refugia, this will
have resulted in their further topographical fragmentation.
For the Maritime and Ligurian Alps (Casazza et al. 2008,
2010, 2016a), the effects of small scale refugia on the degree
of among population differentiation have been shown for,
e.g., Gentiana ligustica R. Vilm. & Chopinet (Diadema
et al. 2005), Saxifraga florulenta (Szévenyi et al. 2009),
Primula latifolia Lapeyr. and P. marginata Curtis (Schorr
et al. 2013) and Viola argenteria (Casazza et al. 2016b). In
summary, glacial refugia for high-elevation species north
of the Alps are likely to have been classical macrorefugia,
and those south of the Alps may have had similarities with
microrefugia (or cryptic refugia; for discussion of terms see
Birks 2015).

However, although it seems very likely that expansion
of high-elevation plant species further south than the edge
of the south Alps was not possible in lowland areas due to
climatic conditions there (Birks 2015), it is obvious that a
large number of species from high elevations in the Alps also
grow in southern European mountains. Accordingly, refugial
areas of some high-elevation species south of the Alps also
may have been very large.

Following Aeschimann et al. (2011b), 77 species found in
the Alps are shared with the Dinarids, 66 with the Apennine,
44 with the Pyrenees, and 40 with the Carpathians, and many
more occur in different combinations of these mountain
ranges. The alpine flora of south European mountains
has also been analyzed by Gentili et al. (2015a, b), who
identified suitable habitats of high-elevation alpine species,
and Vargas (2003) provided an early comparative analysis of
seven plant species ranging from the Alps to south European
mountain ranges. Detailed analyses of species distributed
from the Alps via the Massif Central and the Pyrenees to
the southern Spanish Sierra Nevada have been presented by
Kropf et al. (2006, 2008). Examination of six species led to
the conclusion that this distribution is clearly best explained
by interglacial/postglacial disruption of a continuous range
obtained by migration in four of these six species. On the
other hand, the occurrence of Phyteuma globulariifolium
Sternb. & Hoppe in the Pyrenees has been interpreted as
the result of long-distance dispersal from the southwestern
Alps by Schonswetter et al. (2002), and Sanz et al. (2017)
concluded that the Sierra Nevada population of Artemisia
umbelliformis Lam. most likely originated by long-
distance dispersal from the Alps. For the Carpathians, most
disjunctions with the Alps have been interpreted as the result
of vicariance of a once continuous range with some instances
of long-distance dispersal (Ronikier 2011; Mraz and
Ronikier 2016). Habitat continuity in glacial times between
the southwest Alps and the Apennine has been thought likely

by Zhang et al. (2004), Dillenberger and Kadereit (2013) and
Moore et al. (2013), and genetic discontinuity between the
Apennine and the Alps was detected by, e.g., Ansell et al.
(2008) and Grassi et al. (2009), again pointing at vicariance
of a once continuous range.

All this confirms the very close relationship between
the flora of the Alps and those of the Pyrenees, Apennine,
Carpathians, Dinarids, and Balkans already pointed out and
discussed in some detail long ago by, e.g., Christ (1867) and
Engler (1879), and more recently by Ozenda (1985, 2009),
Aeschimann et al. (2011b), and Kadereit (2017).

For the many high-elevation species from the Alps which
did not expand into southern mountain ranges in glacial
times, it seems likely that glacial refugia on the southern
edge of the Alps often will have covered substantially
smaller areas than glacial refugia north of the Alps
because refugia in the south were latitudinally limited by
different climate in the south and because they were further
fragmented by the location of the edge of the ice shield in
mountainous areas. Although such smaller refugial areas do
not qualify as one of three types of microrefugia as defined
by Rull (2009), because these imply the existence of a
macrorefugium, Birks (2015) suggested that a fourth type
of microrefugium without the existence of a macrorefugium
could be recognized. Whether considered microrefugia
or not, small glacial refugia on the southern edge of the
Alps are similar to microrefugia in several respects. Most
importantly, in a spatial context, refugia were isolated (Cai
et al. 2023) and effective population sizes may have been
small, favoring evolutionary divergence through processes
such as genetic drift (Stewart et al. 2010; Mee and Moore
2014; Woolbright et al. 2014).

Time

The overall duration of the Quaternary was the same north
and south of the Alps. However, periods of geographical
isolation of refugial populations, a likely prerequisite for
speciation, might have differed in length in the north and
south. Provided glacial refugia north of the Alps were indeed
the vast lowland areas between the northern European ice
shield and the ice shield of the Alps, geographical isolation
among refugial populations will have been very limited in
glacials, and opportunity for geographical isolation will only
have arisen in interglacials provided populations at high
elevations were geographically isolated. In support of limited
geographical isolation in lowland refugia, gene flow among
refugial populations in glacial times in Central Europe has
been postulated for Carduus defloratus (Vaupel 2013),
Cicerbita alpina (Michl et al. 2010), and Saxifraga rosacea
subsp. sponhemica (Walisch et al. 2015). In contrast to lack
of geographical isolation in the north, geographical isolation
among populations occurred in the small and fragmented
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glacial refugia south of the Alps. As, in sum, interglacials
were much shorter than glacials since the so-called Mid-
Pleistocene between about 1.25 and 0.7 million years ago
(Birks 2019), overall time of isolation will have been longer
south than north of the Alps. The possible evolutionary
effect of this is similar to what has been concluded from a
comparison of the phylogeographic structure of montane
Anthyllis montana L. and alpine Hornungia alpina, where
genetic differentiation in the former was found to be much
stronger than in the latter (Kropf et al. 2003). Kropf et al.
(2003) argued that this can be explained by long glacial
vicariance in the former and short interglacial vicariance in
the latter species.

A potential threefold role for climate
in the evolution of refugial endemics

The above considerations show that climate, either (1)
directly through natural selection or indirectly through
affecting (2) the size of refugial areas and (3) the duration
of geographical isolation, may have played a role in
the evolution of refugial endemics. Their very uneven
distribution in the Alps, with a virtual absence along much
of the northern edge of the Alps and the existence of many
endemics along the southern edge of the Alps, was the
starting point of my argument. Potentially, climate will
have had a direct influence on evolutionary divergence
when populations persisted in southern refugia and were
increasingly subjected to warming conditions and changes
in associated abiotic and biotic factors which represented
dramatically altered selective conditions. In support of this,
Lugman et al. (2023) showed that populations of Dianthus
sylvestris Wulfen in glacial refugia at the southern edge
of the Alps evolved to their current adaptive optima from
an alpine-like refugial state, although far less so than
populations expanding from these refugia. The biology and
evolution of such stable rear edge (Hampe and Petit 2005)
populations or species have been discussed by, e.g., Ackerly
(2003), Hampe and Petit (2005), Hampe and Jump (2011),
Woolbright et al. (2014), Kiedrzynski et al. (2017), and
Kadereit (2022). A potential indirect influence of climate
is twofold. First, unsuitable climate may have limited the
size of glacial refugia for high-elevation species along the
southern edge of the Alps, and the location of the edges of
glaciers in mountainous terrain will have further fragmented
the spatial extent of refugia. Geographically isolated suitable
climatic conditions have recently been hypothesized to be
an important explanatory variable for the geographical
distribution of species diversity (Coelho et al. 2013). Much
in contrast to this, refugial areas in the north of the Alps
most likely were of vast size. Such size difference may have
favored evolutionary processes typical for isolated small
populations (mainly genetic drift) in the south. Second,
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climate affected the duration of geographical isolation
differently in the south and north. While in the south,
isolation arose in long glacials, it arose, if at all, in much
shorter interglacials in the north. This will have increased
the probability of evolutionary divergence in the south. It
seems likely that a combination of all three factors will have
played a role in the evolution of the endemics found along
the southern edge of the Alps.

As pointed out above, the northeastern Alps
(‘northeastern calcareous Alps’ and ‘northeasternmost
Prealps’) have been identified as an area of endemism
by several authors (e.g., Tribsch and Schonswetter 2003;
Tribsch 2004; Essl et al. 2009). As climatic differences
between the northeastern Alps and endemic-poor areas
to the west are less obvious than the climatic differences
between north and south of the Alps, the presence of an
area of endemism in the northeastern Alps deserves special
attention. Probably most importantly, vegetation along the
eastern edge of the Alps appears to have been xeric steppe
probably in much the same way as along the southern edge
of the Alps (Frenzel 1964; Lang 1994), partly, in the area of
the Wiener Becken, even containing stands of Pinus nigra
J.F. Arnold (Niklfeld 1972). In support of this, the refugial
area ‘easternmost Central Alps’ is located on the eastern
edge of the Alps (Tribsch 2004). Interestingly, Janské et al.
(2017) postulated high habitat suitability for typical steppe
vegetation along the easternmost part of the northern edge
of the Alps during the LGM.

Of the endemics of the northeastern Alps listed by
Tribsch and Schonswetter (2003; their refugial area C1),
Campanula beckiana Hayek, probably Campanula pulla
L., Euphorbia austriaca A. Kern. and Euphorbia saxatilis
Jacq. have their closest relatives in southeast Europe and
cannot be considered part of alpine lineages. Many other
of the northeastern Alps endemics listed by Tribsch
and Schonswetter (2003) have at least some (often few)
occurrences along the eastern edge of the Alps when the
Rax-Schneeberg area of Tribsch and Schonswetter (2003) is
considered part of the xeric steppe area. This seems justified
on the basis of the distribution of some taxa (Niklfeld
1972). The endemics listed by Tribsch and Schonswetter
(2003) are: Achillea clusiana Tausch, Biscutella laevigata
subsp. austriaca, Callianthemum anemonoides (Zahlbr.)
Endl., Campanula praesignis Beck, Dianthus alpinus L.,
Dianthus plumarius L. subsp. hoppei (Port.) Hegi (a taxon
not recognized in Aeschimann et al. 2004), Doronicum
glaciale (Wulfen) Nyman subsp. calcareum (Vierh.)
Hegi, Draba stellata Jacq., Galium meliodorum (a taxon
not distinguishable from G. lucidum All. according to
Grossfurthner (2018)), Leontodon montaniformis Widder,
Leucanthemum atratum (Jacq.) DC., Melampyrum
angustissimum Beck, Melampyrum subalpinum (Jur.)
A Kern., Papaver alpinum p.p., Primula clusiana Tausch,
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Pulsatilla styriaca (Pritz.) Simonk., Soldanella austriaca
Vierh., and Thlaspi alpestre Jacq. Also, in much of the
northeastern Alps east of the Traunlinie, the edge of the
LGM ice shield was located in mountainous area (Fig. 1;
Ivy-Ochs 2015; Seguinot et al. 2018).

It is, thus, conceivable that these taxa originated in
refugia along the eastern edge of the Alps where the role of
climate might have been the same as hypothesized for the
southern edge, and then spread westwards. Indeed, Niklfeld
(1972) listed a number of taxa distributed in the Pinus nigra
area along the eastern edge of the Alps which also grow
along the northern edge of the northeastern Alps. Of the
endemic species listed above, only Doronicum glaciale
has been analyzed phylogeographically (Pachschwdll et al.
2015). Pachschwoll et al. (2015) reported that D. glaciale
subsp. calcareum, distributed in unglaciated areas, cannot
easily be separated from D. glaciale subsp. glaciale which
is distributed in formerly glaciated areas to the west. They
identified a primary contact zone between the two and
postulated recent westward migration of subsp. glaciale.

However, Tribsch and Schonswetter (2003) also listed
some endemics which today do not grow along the eastern
edge of the Alps ((Dianthus plumarius subsp. blandus
(Rchb.) Hegi, a taxon not recognized in Aeschimann et al.
(2004), Festuca versicolor Tausch subsp. brachystachys
(Hack.) Markgr.-Dann. and subsp. pallidula (Hack.)
Markgr.-Dann., Galium truniacum (Ronninger) Ronninger,
Pulmonaria kerneri Wettst.)). Understanding the origin of
those taxa found along the northeastern but not the eastern
edge of the Alps clearly requires further investigation.

These considerations for the NE Alps may also apply to
the western limit of the north Alps area lacking endemics,
i.e., to areas west of Lake Geneva (ligne du lac Léman au
lac Majeur of Aeschimann et al. 2011a), as steppe vegetation
bordered on the Alps to the west but not to the east of Lake
Geneva (Lang 1994). Somewhat in accordance with this,
DiviSek et al. (2022) identified the northwestern Alps as
an LGM source area for steppe species limited to Central
Europe. As regards the LGM ice shield west of Lake
Geneva, however, this expanded into lowland areas as far
south as the Chartreuse/Isere area (Fig. 1; Ivy-Ochs 2015;
Seguinot et al. 2018).

Conclusion

Considering glacial refugia in the Alps, Smycka et al. (2017)
concluded that these constitute museums of phylogenetic
diversity and served as islands of suitable conditions
during glacial periods. Equally, Jardim de Queiros et al.
(2022), for terrestrial organisms including vascular plants,
hypothesized persistence through glacial climate cycles as a
major component for the evolution of endemics in the Alps.

Both these explanations clearly emphasize climatic stability
as a major factor in the origin and distribution of endemics,
as postulated more generally by, e.g., Fjeldsa and Lovett
(1997), Jansson (2003), Jetz et al. (2004), Hampe and Jump
(2011), Svenning et al. (2015), Harrison and Noss (2017),
and Cai et al. (2023).

For the specific setting examined here, i.e., the uneven
distribution of endemics in the Alps, a more differentiated
picture of the role of climate for the origin of endemics
emerges. Thus, potentially climate influenced the size
of refugia, the duration of geographical isolation and the
selective conditions in refugia, and thus influenced both
neutral and adaptive evolutionary processes. While a role
of both neutral and adaptive processes has been postulated
before (Hewitt 1996, 2000, 2004; Tribsch and Schonswetter
2003; Tribsch 2004; Hampe and Petit 2005; Carstens and
Knowles 2007; Casazza et al. 2008, 2010, 2016b; Stewart
et al. 2010; Hampe and Jump 2011; Mee and Moore 2014;
Woolbright et al. 2014; Stewart and Stringer 2012; Gentili
et al. 2015a, b; Kiedrzyniski et al. 2017), southern Alps
endemics may serve as good study systems for assessing
the relative roles of these processes. Given the right data
and analytical tools, their distinction may be possible (e.g.,
Lugman et al. 2021; for discussion of analytical approaches
see Johri et al. 2022). As emphasized by de Lafontaine et al.
(2018), it will be particularly interesting to investigate the
role of natural selection, shown by Lugman et al. (2023)
and also postulated by Hua and Wiens (2013) when
concluding that speciation via climatic-niche divergence
may have predominated during the climatic oscillations of
the Quaternary. Probably, as postulated by Gerschwitz-Eidt
et al. (2023), speciation at the southern edge of the Alps
was a two-step process. While in a first step, often small
populations became isolated in glacial refugia, adaptive
divergence took place in interglacials (or the Holocene)
when refugial populations persisted in their refugia. If such
scenario could be confirmed, it would be obvious that glacial
refugia were more than just sanctuaries where species were
preserved from extinction as also concluded by Nieto Feliner
(2011).

Here, it is hypothesized that the uneven distribution of
refugial endemics in the Alps may be the result of uneven
rates of origination north and south of the Alps. The
possibility of uneven rates of extinction in these two areas
was not considered. When assuming that climatic stability
is a major factor in the origin and distribution of endemics
(Fjeldsa and Lovett 1997; Jansson 2003; Jetz et al. 2004;
Hampe and Jump 2011; Svenning et al. 2015; Harrison
and Noss 2017; Cai et al. 2023), it is conceivable that the
generally harsher climate along the northern edge of the Alps
did not allow endemics to persist. However, based on the
evidence presented above, the hypothesis that the properties
of refugia north of the Alps did not favor the origin of
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distinct genetic lineages, i.e., endemics, is favored. Also,
the possible role of other factors for the uneven distribution
of endemics in the Alps was not discussed. For example, as
Smycka et al. (2017) reported that high endemism in glacial
refugia is found only on calcareous bedrock, bedrock as a
factor affecting endemism clearly deserves further analysis.
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