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Recap: Reciprocal Learning

Motivating Example: Self-Training1
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Figure 1: Sketch of Self-Training for Binary Classification

1Other names: Pseudo-Labeling, Self-Labeling.
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Recap: Reciprocal Learning

Motivation

Growing interest in experimental design and subsampling2

We demonstrate that a wide range of (online) learning algorithms
implicitly design experiments
reciprocal relationship between data and parameters: These
algorithms not only learn parameters from data, but also vice
versa

self-training (semi-supervised learning)
active learning
boosting
multi-armed bandits
superset learning
Bayesian optimization
...

2(Lang, Vijayaraghavan, and Sontag 2022; Liu et al. 2023; Malte Nalenz,
Rodemann, and Thomas Augustin 2024; Pooladzandi, Davini, and Mirzasoleiman
2022; Rodemann 2024; Rodemann, Fischer, et al. 2022; Stolz 2023; Yin et al. 2024)
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Recap: Reciprocal Learning

A Visual Perspective

(a) Classical statistical learning (b) Reciprocal Learning

Figure 2: (a) Classical statistical learning fits a model from the model space
(restricted by red curve) to a realized sample from the sample space
(blue-grey), see Hastie, Tibshirani, and Friedman 2009, Figure 7.2. (b) In
reciprocal learning, the sample changes in response to the model fit.
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Recap: Reciprocal Learning

What’s a fit?

Definition (Risk)
Let 𝜃 ∈ Θ a parameter vector. The risk of 𝜃 on 𝑍 = (𝑋,𝑌 ) ∼ 𝑃 is

ℛ(𝑃, 𝜃) := E𝑃 [ℓ(𝑌, 𝑋, 𝜃)] =
∫
Z

ℓ(𝑦, 𝑥, 𝜃)d𝑃(𝑧),

where ℓ : Y ×X × Θ → R is a loss function and Z = X ×Y.

Definition (Empirical Risk Minimizer)
Denote by (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) a sample with empirical law P̂0. Call

𝜃𝑡 ∈ arg min
𝜃∈Θ

ℛ

(
P̂0, 𝜃

)
= arg min

𝜃

1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑦𝑖 , 𝑥𝑖 , 𝜃)

the empirical risk minimizer in iteration 𝑡 ∈ {1, . . . , 𝑇}.
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Recap: Reciprocal Learning

Reciprocal Learning

Call an algorithm reciprocal if ...
1. ... it performs empirical risk minimization (ERM) ...
2. ... iteratively ...
3. ... on a sample that depends ...

... on the previous ERM solution ...

... and the previous sample.

Julian Rodemann (LMU) 8 / 28 7 April 2025 (@LUWSI)



Recap: Reciprocal Learning

Reciprocal Learning

Definition (Sample Adaptation)
Denote by Θ a parameter space and by P a space of (joint) probability
distributions of 𝑋 and 𝑌 . Call

𝑓𝑠 :
{
Θ ×P → P

(𝜃𝑡 , P̂𝑡 (𝑌, 𝑋)) ↦→ P̂𝑡+1(𝑌, 𝑋)

the sample adaptation function.

simple example
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Recap: Reciprocal Learning

Reciprocal Learning

Definition (Reciprocal Learning)
With 𝑓𝑠, Θ, P, 𝑋, and 𝑌 as above, we define

𝑅 :
{
Θ ×P → Θ ×P;
(𝜃𝑡 , P̂𝑡 ) ↦→ (𝜃𝑡+1, P̂𝑡+1)

as reciprocal learning, where

P̂𝑡+1 = 𝑓𝑠 (𝜃𝑡 , P̂𝑡 )

and
𝜃𝑡+1 = arg min

𝜃∈Θ
ℛ(P̂𝑡+1, 𝜃)
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Can Reciprocal Learning Converge?

Yes, it can!

Figure 3: Idea: Bound the change in the data (purple) by the change in the
model (yellow).
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Can Reciprocal Learning Converge?

Convergence of Reciprocal Learning

Theorem (Convergence of Reciprocal Learning, Informal)
If the sample adaptation 𝑓𝑠 is sufficiently Lipschitz (w.r.t.
Wasserstein-2 on P and L2 on Θ) and the loss is strongly convex and
continuously differentiable, the iterates 𝑅𝑡 = (𝜃𝑡 , P𝑡 ) of reciprocal
learning 𝑅 converge to the limit (𝜃𝑐, P𝑐) point-wise at a linear rate.

Proof idea:
Show that 𝑅 : Θ ×P → Θ ×P is a contraction
Convergence is a fixed-point condition on 𝑅

Apply Banach fixed-point theorem
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Can Reciprocal Learning Converge?

Sufficient Conditions for Lipschitz-Continuity of 𝑓𝑠

When is the sample adapation sufficiently Lipschitz?
continuous predictions of 𝑦
regularized or randomized selection of 𝑥
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Can Reciprocal Learning Converge?

Regularized Data Selection

Figure 4: Data regularization is symmetrical to classical model regularization,
see illustration in “The Elements of Statistical Learning” Hastie, Tibshirani,
and Friedman 2009, Figure 7.2.
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Can Reciprocal Learning Converge?

Some Corollaries

Figure 5: Reciprocal Learning generalizes (left) machine learning algorithms.
Corollaries (right) of convergence results give rise to theory-informed bandits,
active learning, self-training etc. algorithms that shall converge.
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Can Reciprocal Learning Converge?

References: Reciprocal Learning

Paper: � Summary: �

Julian Rodemann, Christoph Jansen, Georg Schollmeyer (2024).
Reciprocal Learning, First Workshop on Learning Under Weakly
Structured Information (LUWSI), Munich.
Julian Rodemann, Christoph Jansen, Georg Schollmeyer (2024). Reciprocal
Learning, Advances in Neural Information Processing Systems (NeurIPS),
Vancouver.
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Can Reciprocal Learning Generalize?

Can Reciprocal Learning Generalize?

ℙ

Figure 6: Sample Space
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Can Reciprocal Learning Generalize?

Can Reciprocal Learning Generalize?

ℙ

෢ℙ0
𝛽0

Figure 7: Bound on Wasserstein distance between law P and i.i.d. sample P̂0:
𝑊𝑝 (P, P̂0) ≤ 𝛽0 (Fournier and Guillin 2015)
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Can Reciprocal Learning Generalize?

Can Reciprocal Learning Generalize?

ℙ

෢ℙ0

෢ℙ𝑇

𝛽𝑇

𝛽0

Figure 8: Reciprocal distortion bound 𝑊𝑝 (P̂0, P̂𝑇 ) ≤ 𝛽𝑇
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Can Reciprocal Learning Generalize?

Can Reciprocal Learning Generalize?

Lemma (Reciprocal Distortion Bound)
Let P̂𝑇 be the empirical distribution of training data at iteration 𝑇 in
reciprocal learning and P̂0 the initial one. Denote by 𝑊𝑝 (·, ·) the
𝑝-Wasserstein distance and by sup𝑧,𝑧′ 𝑑Z (𝑧, 𝑧′) 𝑝 < ∞ the diameter
bound. It holds

𝑊𝑝 (P̂0, P̂𝑇 ) ≤
𝐿𝑇
𝑠 − 1

𝐿𝑠 − 1
sup𝑧,𝑧′ 𝑑Z (𝑧, 𝑧′) 𝑝

𝑛
:= 𝛽𝑇 ,

where 0 < 𝐿𝑠 < 1 is the Lipschitz constant of the sample adaptation
function 𝑓𝑠.

Observe 𝛽∞ =
sup𝑧,𝑧′ 𝑑Z (𝑧,𝑧′ ) 𝑝

(1−𝐿𝑠 )𝑛 .
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Can Reciprocal Learning Generalize?

Can Reciprocal Learning Generalize?
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Figure 9: Wasserstein Ball for Reciprocal Learning
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Can Reciprocal Learning Generalize?

Can Reciprocal Learning Generalize?
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Figure 10: Wasserstein Ball for Reciprocal Learning
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Can Reciprocal Learning Generalize?

Generalization Bounds for Reciprocal Learning

Theorem (Generalization Gap)
Assume Θ is compact. Let 𝜃𝑐 be the solution of reciprocal learning with
corresponding P̂𝑐. It holds

ℛ(P, 𝜃𝑐) ≤ ℛ(P̂𝑐, 𝜃𝑐) + 𝐿ℓ

(
log (4𝐶𝑎/𝛿)

𝐶𝑏𝑛

) 𝑝/𝑑
︸                 ︷︷                 ︸

𝛽0

+𝐿ℓ

sup𝑧,𝑧′ 𝑑Z (𝑧, 𝑧′) 𝑝

(1 − 𝐿𝑠)𝑛︸                 ︷︷                 ︸
𝛽∞

with probability of at least 1 − 𝛿 and Lipschitz-constant 𝐿ℓ of the loss.
Constants 𝐶𝑎, 𝐶𝑏 and dimension 𝑑 are properties of Z.
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Can Reciprocal Learning Generalize?

Generalization Bounds for Reciprocal Learning

Theorem (Excess Risk Bound, Informal)
Assume Θ is compact. The excess risk ℛ(P, 𝜃𝑐) − inf 𝜃∈Θℛ(P, 𝜃) of
reciprocal learning is upper bounded with high probabiliy

Proof Idea:
Bound ℛ(P, 𝜃𝑐) −ℛ(P̂0, 𝜃𝑐) via Kantorovich-Rubinstein lemma
Tricky part: bound ℛ(P̂0, 𝜃𝑐) −ℛ(P̂0, 𝜃0)
Bound ℛ(P̂0, 𝜃0) − inf 𝜃∈Θℛ(P, 𝜃) via a standard symmetrization
argument
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Can Reciprocal Learning Generalize?

Generalization Bounds for Reciprocal Learning

Theorem (Excess Risk Bound)
Assume Θ is compact. The excess risk ℛ(P, 𝜃𝑐) −ℛΘ of reciprocal
learning is upper bounded by

𝐿ℓ

(
log (4𝐶𝑎/𝛿)

𝐶𝑏𝑛

) 𝑝/𝑑
+
(1 + 𝐿𝑎)𝐿ℓ sup𝑧,𝑧′ 𝑑Z (𝑧, 𝑧′) 𝑝

𝑛(1 − 𝐿𝑠 max{1, 𝜅
𝛾
}) + 1

√
𝑛

(
24ℭ(F) +

√︁
2 ln(1/𝛿)

)
,

with probability greater or equal than 1 − 𝛿
2 , where 𝐶𝑎, 𝐶𝑏 are again

constants depending on 𝑝, 𝑑, and sup𝑧,𝑧′ 𝑑Z (𝑧, 𝑧′), 𝐿ℓ is the
Lipschitz-constant of the loss, 𝜅 and 𝛾 are from conditions 2 and 3. 𝐿𝑎

shall denote the Lipschitz-constant of P → Θ : 𝑃 ↦→ arg min𝜃∈Θℛ(𝑃, 𝜃).
ℭ𝐿2 (F) is the covering entropy integral of a hypothesis class
F := { 𝑓𝜃 : X → Y | 𝜃 ∈ Θ} with 𝑓𝜃 ≠ 𝑓𝜃 ′ for 𝜃 ≠ 𝜃′.
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Can Reciprocal Learning Generalize?

Anytime Valid Bounds

What if we stop earlier?
Good news: Bounds still hold for compact Θ if data selection is
regularized (strong convexity of loss not required)
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Summary

Summary

Reciprocal learning fruitfully generalizes active learning,
self-training, multi-armed bandits, Bayesian optimization, superset
learning, etc.
Reciprocal learning converges, if change in sample is bounded by
the change in model (Lipschitz)
This can be achieved through data regularization
Generalization requires “good” initial sample and “smooth”/“very
continuous” sample adaptation
Anytime valid bounds allow for stopping criteria with
generalization guarantee
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Summary

Summary
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Appendix: Sample Adaptation – Simple Example

Assume Y = {0, 1} and only one data point being added to a sample of
size 𝑛.

P̂𝑡+1(𝑌 = 1, 𝑋 = 𝑥)

=
1(𝑥 = ((𝜃)ש · ,(𝜃)ש)צ 𝜃) + 𝑛 P̂𝑡 (𝑌 = 1, 𝑋 = 𝑥)

𝑛 + 1 ,

where צ : X × Θ → {0, 1} is any function that assigns a label 𝑦,
potentially based on the model 𝜃, to selected 𝑥. Let ש be any function
that selects features 𝑥 given a model 𝜃.
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Reciprocal Learning: Examples

label assignment צ : X × Θ → {0, 1}
Active Learning: Query function 𝑞𝑦 : X → {0, 1}
Self-Training (SSL): prediction function 𝑦 : X × Θ → {0, 1}
Bandits: 𝑅 : A → {0, 1} reward function

criterion 𝑐 : X × Θ → R
Active Learning: acquisition function
Self-Training (SSL): confidence measures
Bandits: policy function3

selection ש : Θ → X

Active Learning: arg max𝑥

Self-Training (SSL): arg max𝑥

Bandits: Thompson sampling, epsilon-greedy (stochastic); upper
confidence bound (deterministic)

back

3It is often directly defined in terms of action selection probabilities.
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Some More Examples

self-training (semi-supervised learning) (Arazo et al. 2020;
Dietrich, Rodemann, and Christoph Jansen 2024; Lee et al. 2013;
Li et al. 2020; Rizve et al. 2020; Rodemann, Goschenhofer, et al.
2023; Rodemann, Christoph Jansen, et al. 2023)
active learning
multi-armed bandits
Bayesian optimization (Rodemann 2023; Rodemann and Augustin
2024; Rodemann and Thomas Augustin 2021, 2022; Rodemann,
Croppi, et al. 2024)
superset learning (Hüllermeier and Cheng 2015; Rodemann,
Kreiss, et al. 2022)
...
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Reciprocal Learning Through a Decision-Theoretic
Lense

Think of reciprocal learning as sequential decision-making4:
𝑡 = 1 𝜃1 solves decision problem (Θ,AΘ, ℓ)

𝑎1 solves decision problem (Θ,AX , ℓ𝜃1)
𝑡 = 2 𝜃2 solves decision problem (Θ,AΘ, ℓ𝑎1 (𝜃1 ) )

𝑎2 solves decision problem (Θ,AX , ℓ𝜃2)
𝑡 = 3 ...
with Θ the set of states of nature (parameter space) as well as action
spaces AΘ = Θ and AX = X (feature space) for parameter and data
selection, respectively.

4Notably, addressing machine learning problems from a decision-theoretic point
of view has received considerable interest recently C. Jansen, M. Nalenz, et al.
2023; C. Jansen, Schollmeyer, and T. Augustin 2018, 2023; C. Jansen, Schollmeyer,
H. Blocher, et al. 2023; Christoph Jansen et al. 2024; Rodemann and
Hannah Blocher 2024
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Convergence Won’t Come For Free

Assumption (Continuous Differentiability in Features)
A loss function ℓ(𝑌, 𝑋, 𝜃) is said to be continuously differentiable with
respect to features if the gradient ∇𝑋ℓ(𝑌, 𝑋, 𝜃) exists and is 𝛼-Lipschitz
continuous in 𝜃, 𝑥, and 𝑦 with respect to the L2-norm on domain and
codomain.

Assumption (Continuous Differentiability in Parameters)
A loss function ℓ(𝑌, 𝑋, 𝜃) is continuously differentiable with respect to
parameters if the gradient ∇𝜃ℓ(𝑌, 𝑋, 𝜃) exists and is 𝛽-Lipschitz
continuous in 𝜃, 𝑥, and 𝑦 with respect to the L2-norm on domain and
codomain.
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Convergence Won’t Come For Free

Assumption (Strong Convexity)
A loss function ℓ(𝑌, 𝑋, 𝜃) is said to be 𝛾-strongly convex if

ℓ(𝑦, 𝑥, 𝜃) ⩾ ℓ (𝑦, 𝑥, 𝜃′) + ∇𝜃ℓ (𝑦, 𝑥, 𝜃′)⊤ (𝜃 − 𝜃′) + 𝛾

2 ∥𝜃 − 𝜃′∥2
2 ,

for all 𝜃, 𝜃′, 𝑦, 𝑥. If 𝛾 = 0, this assumption is equivalent to convexity. If
ℓ(𝑦, 𝑥, 𝜃) = ℓ(𝑧, 𝜃) with 𝑧 ∈ Z = X ×Y, then strong convexity is
equivalently characterized by the existence of 𝛾 > 0 such that

∀𝑧 ∈ Z : ∇2
𝜃ℓ(𝑍, 𝜃) ≥ 𝛾.

For examples, see Shalev-Shwartz and Ben-David 2014, Chapter 12.
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Conditions for Convergence (ctd.)

Condition (Stochastic Data Selection)
Data is selected stochastically by drawing from a normalized criterion

exp(𝑐 (𝑥, 𝜃𝑡 ) )∫
𝑥′ exp(𝑐 (𝑥′ , 𝜃𝑡 ) )𝑑𝜇 (𝑥 )

.
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Conditions for Convergence II (ctd.)

Condition (Continuous Selection Criterion)
It holds for the decision criterion 𝑐 : X × Θ → R in the decision
problem (Θ,A, ℓ𝜃𝑡 ) of selecting features to be added to the sample that
∇𝑥𝑐(𝑥, 𝜃) and ∇𝜃𝑐(𝑥, 𝜃) are bounded from above.

Condition (Linear Selection Criterion)
The decision criterion 𝑐 : X × Θ → R in (Θ,A, ℓ𝜃𝑡 ) is linear in 𝑥 and
Lipschitz-continuous in 𝜃 with a Lipschitz constant 𝐿𝑐 that is
independent of 𝑥.
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Conditions for Convergence III (ctd.)

Condition (Soft Labels Prediction)
The prediction function 𝑦 : X × Θ → {0, 1} on bounded X gives rise to
a non-degenerate distribution of 𝑌 | 𝑋 for any 𝜃 such that we can
consider soft label predictions 𝑝 : X × Θ → [0, 1] with
𝑝(𝑥, 𝜃) = 𝜎(𝑔(𝑋, 𝜃)) with 𝜎 : R → [0, 1] a sigmoid function. Further
assume that the loss is jointly smooth in these predictions. That is,
∇𝑝ℓ(𝑦, 𝑝(𝑥, 𝜃)) exists and is Lipschitz-continuous in 𝑥 and 𝜃.

We can interpret 𝑝 as 𝑃𝜃 (𝑌 | 𝑋 = 𝑥). In other words, soft labels in the
form of probability distributions are available.
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