Towards Reciprocal Learning Theory

Generalizing From Self-Selected Samples

Julian Rodemann¹, Christoph Jansen², Georg Schollmeyer¹, James Bailie³

2nd Workshop on Learning Under Weakly Structured Information Tübingen

¹Department of Statistics, LMU Munich ²School of Computing & Communications, Lancaster University ³Department of Statistics, Harvard University Julian Rodemann (LMU) 1/28 7 April 2025 (@LUWSI)

Image Credits: CBS, Prime Video

Julian Rodemann (LMU)

7 April 2025 (@LUWSI)

Can Reciprocal Learning Converge?

Can Reciprocal Learning Generalize?

MU

Can Reciprocal Learning Converge?

Can Reciprocal Learning Generalize?

Julian Rodemann (LMU)

7 April 2025 (@LUWSI)

Motivating Example: Self-Training¹

Figure 1: Sketch of Self-Training for Binary Classification

¹Other names: Pseudo-Labeling, Self-Labeling. Julian Rodemann (LMU) 4/28

7 April 2025 (@LUWSI)

LMU

Motivation

- Growing interest in experimental design and subsampling²
- We demonstrate that a wide range of (online) learning algorithms *implicitly* design experiments
- reciprocal relationship between data and parameters: These algorithms not only learn parameters from data, but also vice versa
 - self-training (semi-supervised learning)
 - active learning
 - boosting
 - multi-armed bandits
 - superset learning
 - Bayesian optimization
 - **...**

²(Lang, Vijayaraghavan, and Sontag 2022; Liu et al. 2023; Malte Nalenz, Rodemann, and Thomas Augustin 2024; Pooladzandi, Davini, and Mirzasoleiman 2022; Rodemann 2024; Rodemann, Fischer, et al. 2022; Stolz 2023; Yin et al. 2024) Julian Rodemann (LMU) 5/28 7 April 2025 (@LUWSI)

A Visual Perspective

Figure 2: (a) Classical statistical learning fits a model from the model space (restricted by red curve) to a realized sample from the sample space (blue-grey), see Hastie, Tibshirani, and Friedman 2009, Figure 7.2. (b) In reciprocal learning, the sample changes *in response to* the model fit.

What's a fit?

Definition (Risk)

Let $\theta \in \Theta$ a parameter vector. The **risk** of θ on $Z = (X, Y) \sim P$ is

$$\mathscr{R}(P,\theta) := \mathbb{E}_P\left[\ell(Y,X,\theta)\right] = \int_{\mathscr{Z}} \ell(y,x,\theta) \mathrm{d}P(z),$$

where $\ell: \mathcal{Y} \times \mathcal{X} \times \Theta \to \mathbb{R}$ is a loss function and $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$.

Definition (Empirical Risk Minimizer)

Denote by $(x_1, y_1), \ldots, (x_n, y_n)$ a sample with empirical law $\hat{\mathbb{P}}_0$. Call

$$\hat{\theta}_t \in \operatorname*{arg\,min}_{\theta \in \Theta} \mathcal{R}\left(\hat{\mathbb{P}}_0, \theta\right) = \operatorname*{arg\,min}_{\theta} \frac{1}{n} \sum_{i=1}^n \ell(y_i, x_i, \theta)$$

the **empirical risk minimizer** in iteration $t \in \{1, ..., T\}$.

Julian Rodemann (LMU)

Reciprocal Learning

Call an algorithm reciprocal if ...

- 1. ... it performs empirical risk minimization (ERM) \ldots
- 2. ... iteratively ...
- 3. ... on a sample that depends ...
 - \blacksquare ... on the previous ERM solution ...
 - ... and the previous sample.

Reciprocal Learning

Definition (Sample Adaptation)

Denote by Θ a parameter space and by \mathscr{P} a space of (joint) probability distributions of X and Y. Call

$$f_s:\begin{cases} \Theta \times \mathcal{P} & \to \mathcal{P} \\ (\hat{\theta}_t, \hat{\mathbb{P}}_t(Y, X)) & \mapsto \hat{\mathbb{P}}_{t+1}(Y, X) \end{cases}$$

the sample adaptation function.

simple example

Reciprocal Learning

Definition (Reciprocal Learning)

With f_s , Θ , \mathcal{P} , X, and Y as above, we define

$$R:\begin{cases} \Theta \times \mathscr{P} & \to \Theta \times \mathscr{P}; \\ (\hat{\theta}_t, \hat{\mathbb{P}}_t) & \mapsto (\hat{\theta}_{t+1}, \hat{\mathbb{P}}_{t+1}) \end{cases}$$

as reciprocal learning, where

$$\hat{\mathbb{P}}_{t+1} = f_s(\hat{\theta}_t, \hat{\mathbb{P}}_t)$$

and

$$\hat{\theta}_{t+1} = \operatorname*{arg\,min}_{\theta \in \Theta} \mathcal{R}(\hat{\mathbb{P}}_{t+1}, \theta)$$

Julian Rodemann (LMU)

7 April 2025 (@LUWSI)

Can Reciprocal Learning Converge?

Can Reciprocal Learning Generalize?

Julian Rodemann (LMU)

7 April 2025 (@LUWSI)

Yes, it can!

Figure 3: Idea: Bound the change in the data (purple) by the change in the model (yellow).

Julian Rodemann (LMU)

LMU

Convergence of Reciprocal Learning

Theorem (Convergence of Reciprocal Learning, Informal)

If the sample adaptation f_s is sufficiently Lipschitz (w.r.t. Wasserstein-2 on \mathcal{P} and L2 on Θ) and the loss is strongly convex and continuously differentiable, the iterates $R_t = (\theta_t, \mathbb{P}_t)$ of reciprocal learning R converge to the limit (θ_c, \mathbb{P}_c) point-wise at a linear rate.

Proof idea:

- \blacksquare Show that $R:\Theta\times\mathcal{P}\to\Theta\times\mathcal{P}$ is a contraction
- \blacksquare Convergence is a fixed-point condition on R
- Apply Banach fixed-point theorem

Can Reciprocal Learning Converge?

Sufficient Conditions for Lipschitz-Continuity of f_s

• When is the sample adapation sufficiently Lipschitz?

- \blacksquare continuous predictions of y
- \blacksquare regularized or randomized selection of x

Can Reciprocal Learning Converge?

Regularized Data Selection

Figure 4: Data regularization is symmetrical to classical model regularization, see illustration in "The Elements of Statistical Learning" Hastie, Tibshirani, and Friedman 2009, Figure 7.2.

LMU

Some Corollaries

Figure 5: Reciprocal Learning generalizes (left) machine learning algorithms. Corollaries (right) of convergence results give rise to theory-informed bandits, active learning, self-training etc. algorithms that shall converge.

LMU

Can Reciprocal Learning Converge?

References: Reciprocal Learning

Summary:

Julian Rodemann, Christoph Jansen, Georg Schollmeyer (2024). Reciprocal Learning, **First Workshop on Learning Under Weakly Structured Information (LUWSI)**, Munich.

Julian Rodemann, Christoph Jansen, Georg Schollmeyer (2024). Reciprocal Learning, Advances in Neural Information Processing Systems (NeurIPS), Vancouver.

Can Reciprocal Learning Converge?

Can Reciprocal Learning Generalize?

Summary

I MU

Can Reciprocal Learning Generalize?

Figure 6: Sample Space

LMU

Can Reciprocal Learning Generalize?

Figure 7: Bound on Wasserstein distance between law \mathbb{P} and *i.i.d.* sample $\hat{\mathbb{P}}_0$: $W_p(\mathbb{P}, \hat{\mathbb{P}}_0) \leq \beta_0$ (Fournier and Guillin 2015)

Julian Rodemann (LMU)

7 April 2025 (@LUWSI)

LMU

Can Reciprocal Learning Generalize?

Figure 8: Reciprocal distortion bound $W_p(\hat{\mathbb{P}}_0, \hat{\mathbb{P}}_T) \leq \beta_T$

Julian Rodemann (LMU)

7 April 2025 (@LUWSI)

Lemma (Reciprocal Distortion Bound)

Let $\hat{\mathbb{P}}_T$ be the empirical distribution of training data at iteration T in reciprocal learning and $\hat{\mathbb{P}}_0$ the initial one. Denote by $W_p(\cdot, \cdot)$ the p-Wasserstein distance and by $\sup_{z,z'} d_{\mathcal{I}}(z,z')^p < \infty$ the diameter bound. It holds

$$W_p(\hat{\mathbb{P}}_0, \hat{\mathbb{P}}_T) \leq \frac{L_s^T - 1}{L_s - 1} \frac{\sup_{z, z'} d_{\mathcal{Z}}(z, z')^p}{n} := \beta_T,$$

where $0 < L_s < 1$ is the Lipschitz constant of the sample adaptation function f_s .

Observe
$$\beta_{\infty} = \frac{\sup_{z,z'} d_{\mathcal{Z}}(z,z')^p}{(1-L_s)n}$$
.

Julian Rodemann (LMU)

Can Reciprocal Learning Generalize?

Figure 9: Wasserstein Ball for Reciprocal Learning

LMU

Julian Rodemann (LMU)

7 April 2025 (@LUWSI)

Can Reciprocal Learning Generalize?

Figure 10: Wasserstein Ball for Reciprocal Learning

LMU

Julian Rodemann (LMU)

7 April 2025 (@LUWSI)

Generalization Bounds for Reciprocal Learning

Theorem (Generalization Gap)

Assume Θ is compact. Let $\hat{\theta}_c$ be the solution of reciprocal learning with corresponding $\hat{\mathbb{P}}_c$. It holds

$$\mathscr{R}(\mathbb{P}, \hat{\theta}_c) \le \mathscr{R}(\hat{\mathbb{P}}_c, \hat{\theta}_c) + L_{\ell} \underbrace{\left(\frac{\log\left(4C_a/\delta\right)}{C_b n}\right)^{p/d}}_{\beta_0} + L_{\ell} \underbrace{\frac{\sup_{z, z'} d_{\mathcal{Z}}(z, z')^p}{(1 - L_s)n}}_{\beta_{\infty}}$$

with probability of at least $1 - \delta$ and Lipschitz-constant L_{ℓ} of the loss. Constants C_a, C_b and dimension d are properties of \mathcal{Z} .

Generalization Bounds for Reciprocal Learning

Theorem (Excess Risk Bound, Informal)

Assume Θ is compact. The excess risk $\mathscr{R}(\mathbb{P}, \hat{\theta}_c) - \inf_{\theta \in \Theta} \mathscr{R}(\mathbb{P}, \theta)$ of reciprocal learning is upper bounded with high probabiliy

Proof Idea:

- Bound $\mathcal{R}(\mathbb{P},\hat{\theta}_c)-\mathcal{R}(\hat{\mathbb{P}}_0,\hat{\theta}_c)$ via Kantorovich-Rubinstein lemma
- Tricky part: bound $\mathcal{R}(\hat{\mathbb{P}}_0,\hat{\theta}_c) \mathcal{R}(\hat{\mathbb{P}}_0,\hat{\theta}_0)$
- Bound $\mathscr{R}(\hat{\mathbb{P}}_0, \hat{\bar{\theta}}_0) \inf_{\theta \in \Theta} \mathscr{R}(\mathbb{P}, \theta)$ via a standard symmetrization argument

Generalization Bounds for Reciprocal Learning

Theorem (Excess Risk Bound)

Assume Θ is compact. The excess risk $\mathcal{R}(\mathbb{P}, \hat{\theta}_c) - \mathcal{R}_{\Theta}$ of reciprocal learning is upper bounded by

$$L_{\ell} \left(\frac{\log \left(4C_a/\delta\right)}{C_b n} \right)^{p/d} + \frac{(1+L_a)L_{\ell} \sup_{z,z'} d_{\mathcal{I}}(z,z')^p}{n(1-L_s \max\{1,\frac{\kappa}{\gamma}\})} + \frac{1}{\sqrt{n}} \left(24\mathfrak{C}(\mathcal{F}) + \sqrt{2\ln(1/\delta)} \right),$$

with probability greater or equal than $1 - \frac{\delta}{2}$, where C_a, C_b are again constants depending on p, d, and $\sup_{z,z'} d_{\mathcal{Z}}(z,z')$, L_ℓ is the Lipschitz-constant of the loss, κ and γ are from conditions 2 and 3. L_a shall denote the Lipschitz-constant of $\mathcal{P} \to \Theta : P \mapsto \arg\min_{\theta \in \Theta} \mathscr{R}(P, \theta)$. $\mathfrak{C}_{L_2}(\mathcal{F})$ is the covering entropy integral of a hypothesis class $\mathcal{F} := \{f_\theta : \mathcal{X} \to \mathcal{Y} \mid \theta \in \Theta\}$ with $f_\theta \neq f_{\theta'}$ for $\theta \neq \theta'$.

Anytime Valid Bounds

- What if we stop earlier?
- Good news: Bounds still hold for compact Θ if data selection is regularized (strong convexity of loss not required)

Contents

Recap: Reciprocal Learning

Can Reciprocal Learning Converge?

Can Reciprocal Learning Generalize?

I MU

Summary

- Reciprocal learning fruitfully generalizes active learning, self-training, multi-armed bandits, Bayesian optimization, superset learning, etc.
- Reciprocal learning converges, if change in sample is bounded by the change in model (Lipschitz)
- This can be achieved through *data regularization*
- Generalization requires "good" initial sample and "smooth"/"very continuous" sample adaptation
- Anytime valid bounds allow for stopping criteria with generalization guarantee

Summary

GENERALIZATION BOUNDS FOR RECIPROCAL LEARNING	
PROS	CONS
Holds for many learning (active learning, bandits, self- training, boosting etc.)	Holds for many learning paradigms (active learning, bandits, self- training, boosting etc.)

LMU

Assume $\mathcal{Y} = \{0, 1\}$ and only one data point being added to a sample of size n.

$$\hat{\mathbb{P}}_{t+1}(Y=1, X=x)$$

$$= \frac{1(x = \boldsymbol{v}(\theta)) \cdot \boldsymbol{\Sigma}(\boldsymbol{v}(\theta), \theta) + n \,\hat{\mathbb{P}}_t(Y=1, X=x)}{n+1}$$

where $\mathbf{\mathfrak{U}}: \mathcal{X} \times \Theta \to \{0, 1\}$ is any function that assigns a label y, potentially based on the model θ , to selected x. Let $\mathbf{\mathfrak{U}}$ be any function that selects features x given a model θ .

Reciprocal Learning: Examples

■ label assignment $\mathfrak{L} : \mathcal{X} \times \Theta \to \{0, 1\}$

- Active Learning: Query function $q_y : \mathcal{X} \to \{0, 1\}$
- Self-Training (SSL): prediction function $\hat{y} : \mathcal{X} \times \Theta \rightarrow \{0, 1\}$
- \blacksquare Bandits: $R:\mathcal{A}\to\{0,1\}$ reward function

• criterion $c: \mathcal{X} \times \Theta \to \mathbb{R}$

- Active Learning: acquisition function
- Self-Training (SSL): confidence measures
- Bandits: policy function³

• selection $\boldsymbol{w}: \boldsymbol{\Theta} \to \mathcal{X}$

- Active Learning: $\arg \max_x$
- **Self-Training** (SSL): $\operatorname{arg} \max_x$
- Bandits: Thompson sampling, epsilon-greedy (stochastic); upper confidence bound (deterministic)

back

Julian Rodemann (LMU)

³It is often directly defined in terms of action selection probabilities.

- self-training (semi-supervised learning) (Arazo et al. 2020;
 Dietrich, Rodemann, and Christoph Jansen 2024; Lee et al. 2013;
 Li et al. 2020; Rizve et al. 2020; Rodemann, Goschenhofer, et al. 2023; Rodemann, Christoph Jansen, et al. 2023)
- active learning
- multi-armed bandits
- Bayesian optimization (Rodemann 2023; Rodemann and Augustin 2024; Rodemann and Thomas Augustin 2021, 2022; Rodemann, Croppi, et al. 2024)
- superset learning (Hüllermeier and Cheng 2015; Rodemann, Kreiss, et al. 2022)

Reciprocal Learning Through a Decision-Theoretic Lense

Think of reciprocal learning as sequential decision-making⁴:

- $t = 1 \ \theta_1$ solves decision problem $(\Theta, \mathbb{A}_{\Theta}, \ell)$
 - a_1 solves decision problem $(\Theta, \mathbb{A}_{\mathcal{X}}, \ell_{\theta_1})$
- $t = 2 \ \theta_2 \text{ solves decision problem } (\Theta, \mathbb{A}_{\Theta}, \ell_{a_1(\theta_1)})$ $a_2 \text{ solves decision problem } (\Theta, \mathbb{A}_{\mathcal{X}}, \ell_{\theta_2})$

$t = 3 \dots$

with Θ the set of states of nature (parameter space) as well as action spaces $\mathbb{A}_{\Theta} = \Theta$ and $\mathbb{A}_{\mathcal{X}} = \mathcal{X}$ (feature space) for parameter and data selection, respectively.

⁴Notably, addressing machine learning problems from a decision-theoretic point of view has received considerable interest recently C. Jansen, M. Nalenz, et al. 2023; C. Jansen, Schollmeyer, and T. Augustin 2018, 2023; C. Jansen, Schollmeyer, H. Blocher, et al. 2023; Christoph Jansen et al. 2024; Rodemann and Hannah Blocher 2024

Julian Rodemann (LMU)

Convergence Won't Come For Free

Assumption (Continuous Differentiability in Features)

A loss function $\ell(Y, X, \theta)$ is said to be continuously differentiable with respect to features if the gradient $\nabla_X \ell(Y, X, \theta)$ exists and is α -Lipschitz continuous in θ , x, and y with respect to the L2-norm on domain and codomain.

Assumption (Continuous Differentiability in Parameters)

A loss function $\ell(Y, X, \theta)$ is continuously differentiable with respect to parameters if the gradient $\nabla_{\theta}\ell(Y, X, \theta)$ exists and is β -Lipschitz continuous in θ , x, and y with respect to the L2-norm on domain and codomain.

Convergence Won't Come For Free

Assumption (Strong Convexity)

A loss function $\ell(Y, X, \theta)$ is said to be γ -strongly convex if

$$\ell(y, x, \theta) \ge \ell(y, x, \theta') + \nabla_{\theta} \ell(y, x, \theta')^{\top} (\theta - \theta') + \frac{\gamma}{2} \|\theta - \theta'\|_{2}^{2},$$

for all θ, θ', y, x . If $\gamma = 0$, this assumption is equivalent to convexity. If $\ell(y, x, \theta) = \ell(z, \theta)$ with $z \in \mathbb{Z} = \mathcal{X} \times \mathcal{Y}$, then strong convexity is equivalently characterized by the existence of $\gamma > 0$ such that

$$\forall z \in \mathcal{Z} : \nabla^2_{\theta} \ell(Z, \theta) \ge \gamma.$$

For examples, see Shalev-Shwartz and Ben-David 2014, Chapter 12.

Julian Rodemann (LMU)

Conditions for Convergence (ctd.)

Condition (Stochastic Data Selection)

Data is selected stochastically by drawing from a normalized criterion $\frac{\exp(c(x,\theta_t))}{\int_{x'}\exp(c(x',\theta_t))d\mu(x)}.$

Conditions for Convergence II (ctd.)

Condition (Continuous Selection Criterion)

It holds for the decision criterion $c : \mathcal{X} \times \Theta \to \mathbb{R}$ in the decision problem $(\Theta, \mathbb{A}, \ell_{\theta_t})$ of selecting features to be added to the sample that $\nabla_x c(x, \theta)$ and $\nabla_\theta c(x, \theta)$ are bounded from above.

Condition (Linear Selection Criterion)

The decision criterion $c : \mathcal{X} \times \Theta \to \mathbb{R}$ in $(\Theta, \mathbb{A}, \ell_{\theta_t})$ is linear in x and Lipschitz-continuous in θ with a Lipschitz constant L_c that is independent of x.

Condition (Soft Labels Prediction)

The prediction function $\hat{y}: \mathcal{X} \times \Theta \to \{0, 1\}$ on bounded \mathcal{X} gives rise to a non-degenerate distribution of $Y \mid X$ for any θ such that we can consider soft label predictions $p: \mathcal{X} \times \Theta \to [0, 1]$ with $p(x, \theta) = \sigma(g(X, \theta))$ with $\sigma: \mathbb{R} \to [0, 1]$ a sigmoid function. Further assume that the loss is jointly smooth in these predictions. That is, $\nabla_p \ell(y, p(x, \theta))$ exists and is Lipschitz-continuous in x and θ .

We can interpret p as $P_{\theta}(Y \mid X = x)$. In other words, soft labels in the form of probability distributions are available.

Arazo, Eric et al. (2020). "Pseudo-labeling and confirmation bias in deep semi-supervised learning". In: 2020 International Joint Conference on Neural Networks. IEEE, pp. 1–8. Dietrich, Stefan, Julian Rodemann, and Christoph Jansen (2024). "Semi-Supervised Learning guided by the Generalized Bayes Rule under Soft Revision". In: arXiv preprint arXiv:2405.15294. Fournier, Nicolas and Arnaud Guillin (2015). "On the rate of convergence in Wasserstein distance of the empirical measure". In: Probability theory and related fields 162.3, pp. 707–738. Hastie, Trevor, Robert Tibshirani, and Jerome H Friedman (2009). The elements of statistical learning: data mining, inference, and prediction. Vol. 2. Springer.

Hüllermeier, Eyke and Weiwei Cheng (2015). "Superset learning based on generalized loss minimization". In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, pp. 260–275.

- Jansen, C., M. Nalenz, et al. (2023). "Statistical comparisons of classifiers by generalized stochastic dominance". In: *Journal of Machine Learning Research* 24, pp. 1–37.
- Jansen, C., G. Schollmeyer, and T. Augustin (2018). "Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences". In: *International Journal of Approximate Reasoning* 98, pp. 112–131.

 — (2023). "Multi-target decision making under conditions of severe uncertainty". In: *Modeling Decisions for Artificial Intelligence*.
 Ed. by V. Torra and Y. Narukawa. Springer, pp. 45–57.

MU

- Jansen, C., G. Schollmeyer, H. Blocher, et al. (2023). "Robust statistical comparison of random variables with locally varying scale of measurement". In: *Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence*. Ed. by R. Evans and I. Shpitser. Vol. 216. Proceedings of Machine Learning Research. PMLR, pp. 941–952.
- ☐ Jansen, Christoph et al. (2024). "Statistical Multicriteria Benchmarking via the GSD-Front". In: *arXiv preprint arXiv:2406.03924*.
- Lang, Hunter, Aravindan Vijayaraghavan, and David Sontag (2022). "Training subset selection for weak supervision". In: Advances in Neural Information Processing Systems 35, pp. 16023–16036.

Lee, Dong-Hyun et al. (2013). "Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks". In: Workshop on challenges in representation learning, International Conference on Machine Learning. Vol. 3, p. 896. Li, Shuangshuang et al. (2020). "Pseudo-label selection for deep semi-supervised learning". In: 2020 IEEE International Conference on Progress in Informatics and Computing (PIC). IEEE, pp. 1–5. Liu, Wei et al. (2023). "What makes good data for alignment? a comprehensive study of automatic data selection in instruction tuning". In: arXiv preprint arXiv:2312.15685. Nalenz, Malte, Julian Rodemann, and Thomas Augustin (2024). "Learning de-biased regression trees and forests from complex samples". In: Machine Learning, pp. 1–20.

- Pooladzandi, Omead, David Davini, and Baharan Mirzasoleiman (2022). "Adaptive second order coresets for data-efficient machine learning". In: *International Conference on Machine Learning*. PMLR, pp. 17848–17869.
- Rizve, Mamshad Nayeem et al. (2020). "In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning". In: International Conference on Learning Representations, 2020.
- Rodemann, Julian (2023). "Pseudo Label Selection is a Decision Problem". In: Proceedings of the 46th German Conference on Artificial Intelligence. Springer.
- (2024). "Bayesian Data Selection". In: arXiv preprint arXiv:2406.12560. 5th Workshop on Data-Centric Machine Learning Research (DMLR) at ICML 2024.

- Rodemann, Julian and Augustin (2024). "Imprecise Bayesian optimization". In: *Knowledge-Based Systems* 300, p. 112186. ISSN: 0950-7051. DOI:
 - https://doi.org/10.1016/j.knosys.2024.112186.
- Rodemann, Julian and Thomas Augustin (2021). "Accounting for imprecision of model specification in Bayesian optimization". In: *Poster presented at International Symposium on Imprecise Probabilities (ISIPTA).*
- (2022). "Accounting for Gaussian process imprecision in Bayesian optimization". In: International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM). Springer, pp. 92–104.
- Rodemann, Julian and Hannah Blocher (2024). "Partial Rankings of Optimizers". In: International Conference on Learning Representations (ICLR), Tiny Papers Track.

MU

- Rodemann, Julian, Federico Croppi, et al. (2024). "Explaining Bayesian Optimization by Shapley Values Facilitates Human-AI Collaboration". In: *arXiv preprint arXiv:2403.04629*.
- Rodemann, Julian, Sebastian Fischer, et al. (2022). "Not All Data Are Created Equal: Lessons From Sampling Theory For Adaptive Machine Learning". In: International Conference on Statistics and Data Science (ICSDS) by the Institute of Mathematical Statistics (IMS).

Rodemann, Julian, Jann Goschenhofer, et al. (2023).
"Approximately Bayes-optimal pseudo-label selection". In: Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI). Vol. 216. Proceedings of Machine Learning Research. PMLR, pp. 1762–1773.

 Rodemann, Julian, Christoph Jansen, et al. (2023). "In all likelihoods: Robust selection of pseudo-labeled data". In: International Symposium on Imprecise Probability: Theories and Applications. PMLR, pp. 412–425.

- Rodemann, Julian, Dominik Kreiss, et al. (2022). "Levelwise Data Disambiguation by Cautious Superset Classification". In: *International Conference on Scalable Uncertainty Management*. Springer, pp. 263–276.
- Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.
- Stolz, Bernadette J (2023). "Outlier-robust subsampling techniques for persistent homology". In: Journal of Machine Learning Research 24.90, pp. 1–35.

Yin, Zimo et al. (2024). "Embrace sustainable AI: Dynamic data subset selection for image classification". In: *Pattern Recognition*, p. 110392.

