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Abstract

We consider the regularized Landau-Pekar equations with positive speed of sound and prove
the existence of subsonic traveling waves. We provide a definition of the effective mass for
the regularized Landau-Pekar equations based on the energy-velocity expansion of subsonic
traveling waves. Moreover we show that this definition of the effective mass agrees with the
definition based on an energy-momentum expansion of low energy states.

Mathematics Subject Classification 35Q40 - 35Q55 - 35C07 - 35A15

1 Introduction and main results

The polaron is quasi-particle that models an electron moving through an ionic crystal
while interacting with its self-induced polarization field. The polarization field can be either
described as a quantum field by the Frohlich model [1] (called quantum polaron) or as a clas-
sical field by the Landau-Pekar equations [2—4] (called classical polaron). The Landau-Pekar
equations describe the polaron as a pair (Y, ¢) € H L(R3) x L%E(R3) where ¥ denotes the

L?-normalized wave function of the electron and ¢ the classical field which is for a positive
function ¢ > 0 an element of

L2 R := (g | [Vepl2 < oo} . (1.
The Landau-Pekar equations are given by the coupled system of differential equations

0y =h g, Y. ie” 00 = @ + Vaoy, (1.2)

where o > 0 denotes the coupling constant, m > 0 the electron’s mass,
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) 32V~ A . ik
oy = @07 By hy = =2tV with V() = 2Re [ &Fuikpdk (1.3)

and where gy, := w12,

1
e=1, and v(k) = m . (1.4)

The strong coupling limit is linked with a classical field approximation: For « — o0, the
classical Landau-Pekar equations can be derived from the quantum dynamics generated by
the Frohlich model [5-10].

Effective mass problem for the Landau-Pekar equations

The dynamics of the polaron is closely related to the outstanding problem of its effective
mass: Due to the interaction with the self-induced polarization field, the electron slows down.
In physics this phenomenon is described by the emergence of a quasi-particle, the polaron,
with an increased effective mass megr > 0.

Based on the classical polaron, Landau and Pekar [2—4] formulated a famous quantitative
prediction for the effective mass in the strong coupling limit. Their heuristic ideas (described
in more detail in [11]) rely on the existence of traveling waves of the Landau-Pekar equations,
i.e. solutions of (1.2) with initial data (v, @y) € H'(R?) x Lzﬁ(ﬂ@), ¥yl = 1 satisfying

W), (k) = (P (x = 1), g () (1.5)

with phase e, € R and velocity v € R3. Traveling waves were, however, conjectured to not
exists for v # 0 for the Landau-Pekar equations [11] due to a vanishing speed of sound.

Related to that, the corresponding energy functional to (1.2) does not dominate the total
momentum. Thus a computation of the energy as function of conserved total momentum
yields a constant function and therefore an infinite mass. Contrarily for the quantum Froh-
lich model such an energy-momentum expansion allows to approach the quantum polaron’s
effective mass (see [12—14] resp. [15—17] for recent progress based on different techniques).

However for the classical polaron, i.e. the Landau-Pekar equations, neither traveling wave
solutions nor an energy-momentum expansion serve for a mathematical rigorous definition of
the effective mass. To overcome these problems [11] provides a definition of the effective mass
that is based on a novel energy-velocity expansion and verifies the quantitative prediction by
Landau and Pekar for the classical polaron.

The goal of this paper is to verify Landau and Pekar’s heuristic approach for the effective
mass, originally formulated for the non-regularized classical polaron, mathematical rig-
orously for a regularized classical polaron model, namely the regularized Landau-Pekar
equations.

More precisely, we choose instead of (1.4) the functions &, v to be sufficiently regular
(see Assumptions 1.1, 1.2 below) and show that subsonic traveling wave solutions with non-
vanishing velocity v # 0 do exist (Theorem 1) and serve for a definition of the effective
mass (Theorem 2). Moreover, the resulting formula agrees with a definition of the effective
mass through an energy-momentum expansion (Theorem 3) and, furthermore, with results
obtained for the quantum regularized Frohlich model [18].
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Regularized Landau-Pekar equations

The regularized Landau-Pekar equations describe more generally a particle moving through
an excitable medium. We impose the following assumptions on the functions ¢, v and

g= (271)3/2(1)//8*\1/2) ) (1.6)

Assumption 1.1 (Regularity) Let &, v be radial with & > 0 and such that g € H*(R?) and
1g(k)| > (1 + [k|)=/2 for all k € R3.

Furthermore we consider underlying media of positive critical velocity v¢ri; > 0 formu-
lated in the assumption below. The critical velocity is often referred to as speed of sound of
the medium.

Assumption 1.2 Let ¢ > O satisfy inf; g3 % 1= Verit for a constant v > 0.

We remark that Assumptions 1.1 and 1.2 exclude the (non-regularized) Landau-Pekar
equations with ¢, v given by (1.4) that, in particular, have vanishing speed of sound with the
above definition.

The dynamical equations (1.2) for ¢, v satisfying Assumption 1.1, 1.2 are well defined
(see Lemma?2.1 below). Moreover the energy functional

Gu (V. @) = (Yl gz, ) + |20l with [[y]2 =1 (1.7)

where h, is given by (1.3) is preserved along the dynamics. For the regularized Landau-Pekar
equations we show that there exists subsonic traveling wave solutions with 0 < |v| < Vit

Theorem 1 Let &, v satisfy Assumptions 1.1 and 1.2 and |v| < Vuit. Then there exists a
traveling wave solution of the form (1.5) with v # 0.

Theorem 1 follows from Proposition 2.3 and is proven in Sect. 4.

We can not treat the case of supersonic traveling waves |v| > vi.. However we conjecture
that supersonic traveling waves do not exist. This conjecture is based on the observation that
for [v| > vgrit, the energy functional does not dominate the total momentum, similarly as for
the non-regularized model discussed before.

Effective mass problem for the regularized Landau-Pekar equations

We provide two definitions for the effective mass. The first definition (Theorem 2) is based on
an energy-velocity expansion of traveling wave solutions and inspired by ideas of Landau and
Pekar. The second (Theorem 3) is based on an energy-momentum expansion for low energy
states. Both definitions lead to the same formula for the effective mass and, in particular,
verify the physicists’ predictions.

Traveling waves approach

We derive an energy-velocity expansion of low-energy traveling wave solutions (1.5) with
small velocities. To be more precise we consider states (v, ¢) € H'(R3) x Lf/E(R3)

(i) with small energy, i.e. satisfying

Gou (¥, 9) < eq + K for sufficiently small « > 0 (independent of «) (1.8)
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(ii)y and which are traveling wave solutions of velocity v, i.e. let v < v¢i¢ (uniformly in
«), then (v, @y) solves (1.5) with velocity v and with phase ey, > —ey + V2/4.

The definition of the effective mass through traveling waves is based on their energy-velocity
expansion, i.e. for states of the set

T, = {(¥, 9) € H'R?) x LZﬁ(R3)| @), (ii) , are satisfied} (1.9)
we study the energy expansion

EyY = inf{Ga(¥, 9)| (¥, 9) € T} (1.10)
around the ground state energy ey .

Theorem 2 Let &, v satisfy Assumptions 1.1 and 1.2. Assume that for the pair of ground
states (Yo, o) Of Gy given by (1.7) where ¢4 = —\/aoy,, the minimizer Yy is unique up to
translations and changes of phase. There exists ag > 0 such that for all « > ag and av < 1,
we have

2027)3a - v2
E™W = ¢, + <m + %Hkve_yz Q%n%) S+ O(av?) . (1.11)

The energy expansion of Theorem?2 (i.e. (1.11)) is proven in Sect.5.
The coefficients of the energy expansion are well defined as

lkve ™% @y, I3 = lIkve "> 35 113 (1.12)
for any
Vo Vo € O(Wra) = (W) = €Yo (- — y)| y € R}, 0 € [0, 27)} . (1.13)

We define the effective mass as the second order coefficient of the expansion of EXY around
the ground state energy. It follows from the ground state’s approximation (see Proposition2.2
below) that gy, (k) — 1 point-wise in the limit « — oo. Therefore in the strong coupling

limit the leading order in « of the effective mass is given by

ETW _ 202 3
lim o~ 'mTY = lim o~ (lim v e") = 20T e 2 (1.14)

oa—>00 a— 00 v—0 V2/2 3

and agrees with the findings of for the quantum Fréhlich model [18].

Approach through energy-momentum-expansion

For the second approach we are interested in the infimum of G, w.r.t. to the set of states
(W, 9) € H'(R?) x L%/E(R3) with small energy (i.e. satisfy (i)) and

(ii), with mean momentum p € R3, ie.

(WIpI¥) + (@lplg) =p . (1.15)

Thus we consider states of the set
Iy = {(y, 9) € H'(R?) x Lf/g(RS) | such that (i),(ii), hold} . (1.16)
The definition of the effective mass then relies on an expansion of

Ep = inf(Gu (. )| (V. 9) € Tp)

stated in the following theorem.
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Theorem 3 Let ¢, v satisfy Assumptions 1.1 and 1.2. Assume that for the pair of ground
states (Yo, Pu) of Gy given by (1.7) where ¢, = — /a0y, the minimizer \y is unique up to
translations and changes of phase.

(a) There exists ag > 0 such that for all o« > ag and 05_1/4p <1
-1
273, 3 ’ _
Ep =eq + (m + =3 lkve 325,13 % + 0@ ). (1.17)

(b) There exists ag > 0 such that for all « > ag and ot_l/2p < 1, a pair of minimizers
(Yp, @p) of Ep is a traveling wave solution (', yr) to (4.1) with velocity v/ = me_fflp +
O (a™?p?) and

Ep = Gy(Yry, 9y) + O(@™%p?) . (1.18)

Theorem 3 (a), (b) are proven in Sect. 5.

We define the effective mass as the coefficient of the second order contribution of the
energy-momentum expansion and thus in leading order in « given in the strong coupling
limit by

Epy—eo\ ' 20n)3
lim o~ merr = lim o~ lim ("T;“> - %nkvs*ﬂn% (1.19)
oa—>00 oa—>00 p— p

which agrees with the effective mass m;rf\f’v defined in (1.14) and findings from the quantum
Frohlich model [18].

In particular Theorem 3 (b) shows that any minimizer of E), is given by a traveling wave
solution of velocity v/ = mgfflp, thus, by approximate elements of the set Z, considered in
Theorem 2.

We remark that traveling wave solutions for non-linear Schrédinger equations with non-
vanishing speed of sound were studied in various other settings (see for example [19] for
the Gross-Pitaevksi and [20] for pseudo-relativistic Hartree equation). We note that [19]
considers a variational approach to traveling waves in the spirit of Theorem 3 (b).

Structure of the paper

In Sect.2 we collect properties and approximations of the ground state, ground state energy
(Sect.2.1, Proposition2.1 resp. Proposition2.2) and traveling wave solutions (Sect.2.2,
Proposition2.3) that will be important to prove our main theorems. In Sect.3 we prove
Propositions 2.1, 2.2 on the ground state’s properties. For this we first show the existence
of ground states for all « > 0 in Sect. 3.1, then the approximation of the ground (state) by
the harmonic oscillator in Sect. 3.2 and finally the positivity of the Hessian for large o > g
yielding coercivity estimates. We combine those results in Sect.3.4 to finally prove Propo-
sitions2.1, 2.2. In Sect.4 we prove afterwards Proposition2.3 (yielding in Theorem 1) on
the properties of traveling waves. In Sect.5 we finally prove Theorems2 and 3 on the two
definitions of the effective mass bases on the results before.
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2 Properties of the ground state and traveling waves
2.1 Properties of the ground state

For the regularized polaron’s ground state
eq = inf Gy (Y, @) 2.1
V.9

the infimum can be taken first w.r.t. to the phonon field yielding by a completion of the square
to the choice

U
@q = —+Jaoy, where oy = (271)3/ng¢ 2.2

with gy = |¥|2. The resulting energy functional for € H'(R3) is

Eal) i=inf Qoo 9) = (W] =y — (hx [P P) 19) with h = @m)¥2(12/e1) .
2.3)

Thus if v is an element of the manifold of minimizers Mg, of the energy functional &,
defined by

Me, :={y e HH®R) Y2 =1, E(a) = ea) , 2.4)

then the pair (g, ¢o) With ¢, given by (2.2) is an element of the manifold of minimizers
Mg, of the energy functional G,

Mg, = (. 9) € H'RY) x L2(R?) | Gu (¥, 9) = ea). 2.5)

The energy functional &, is symmetric with respect to translations and changes of the phase
of the wave function. Thus for any minimizer ¥, of &, (i.e. ¥, € Mg,) it follows © (V) <
Mg, where

QW) = { Y = Yo (- — Y| y € R?, w € [0,27)} . (2.6)

For the (non-regularized) Pekar functional corresponding to (1.4), the existence of a unique
pair of ground states (Vpekar, ©Pekar) UP to phases and translations was proven [21] for all
o > 0. For the regularized model we prove the existence of a ground state for all & > 0.

Proposition 2.1 (Existence) Let ¢, v satisfy Assumption 1.1. For all « > 0 there exists a pair
of minimizers (Yo, ¢o) € Mg, With ¢4 = —\/50% and 0 < Y, € C®(R3) satisfying the
Euler-Lagrange equation

(g, — ) Yo =0, with 1y, = (Velh g, 1W0) @7

We remark that the ground state’s uniqueness for the regularized model is in general not
known. For technical reasons, we can not prove uniqueness up to translations and phases
for large o > «p. For that, a refined approximation of the ground state than the one in
Proposition 2.2 is needed to conclude ground state’s uniqueness up to translations and phase
by the local coercivity estimates in Corollary 3.1 for large o > «y.

Note that the first part of Theorems?2 and 3 immediately follow from Proposition2.1 that
is proven in Sect. 3.4.
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The ground state v, s properties for large coupling constants & > «q results from the
asymptotic behavior of the energy functional G, . In fact in the strong coupling limit &« — 0o
the ground state energy e, = G, (/o) is well described through the harmonic oscillator

A 2.2 \v4 2
hoge 1= —— + me X , with frequency w? = M . 2.8)
2m 2 3m
Furthermore its well known ground state
mw\3/4 _ 2
Yosc(x) = (7) e mex /2 (2.9)

approximates the true ground state of G, as the following Lemma shows.

Proposition 2.2 (Approximation of the ground state) Let ¢, v satisfy Assumption I.1. There
exists g > 0 and constants C, C > 0 (independent of o) such that

Cia'/? sea+a||g||§—‘/w <Cy forall a>ap. (2.10)
Furthermore let o, € Mg,. There exists C3 > 0 (independent of a) such that for all a > o
dist; 2 (O (W), Vose) < C3a~ /20, dist 1 (O (W), Yose) < C307/40 . (2.11)
Proposition2.2 is proven in Sect. 3.4.
Here we introduced the norm
distz2 (O (), Vose) i= inf [l 9 = Voscll (2.12)

(and similarly for the H'-norm) quantifying the distance of an element v/, of the manifold
of minimizers to the harmonic oscillator’s ground state.

We remark that the rate of convergence of (2.11) depends for technical reasons on
Assumption 1.1 namely the regularity of the function g.

2.2 Traveling waves

The dynamical equations corresponding to the energy functional G, in (1.7) are given for
s, @) € HY(R?) x Lf/g(R3) by the system of coupled partial differential equations (1.2).
The dynamical equations are well-posed as the following Lemma shows.

Lemma 2.1 Let ¢, v satisfy Assumption 1.1. For any (Yo, o) € H'(R3) x L%/E(R3) there

exists a unique global solution of (1.2). Furthermore,

Ga (Y0, 90) = Ga (Y1, 1), and (|[Yill2 = lI¥oll2 (2.13)
and there exists C > 0 such that for (Yo, wo) with G(Yo, o) < Ca we have for allt € R
IVYella < C/a and Ithllef <Cya. (2.14)

The proof of the Lemma follows similarly to [5, Lemma 2.1] considering the non-
regularized Landau-Pekar equations. The arguments presented in [5] apply for the regularized
case, too, so that we refer for the proof of Lemma?2.1 to [5, Lemma 2.1].

A traveling wave of velocity v € R? is a solution of (1.2) with initial data (Yy, @y) €
H'(R3) x L%/E(]R3), Iy ll2 = 1 satisfying (1.5). The existence of subsonic traveling waves

is given by the following Proposition.
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Proposition 2.3 Lete, v satisfy Assumptions 1.1 and 1.2. Furthermore assume that |V| < Vit

(a) There exists a traveling wave solution of the form (1.5).

(b) Furthermore assume that G(Yy, ¢y) — ey < k for sufficiently small k > 0 (independent
of a) and ey > —ey + V2 /4. Assume that the ground state Vo, of Ey is unique up to
translations and rotations. Then there exists ay > 0 and a constant C > 0 (independent
of o, v) such that

dist;2 (©(Ya), ¥v) = Clv| (2.15)

foralla > ap and |v| < 1.

Note that Theorem1 follows immediately from Proposition2.3 (a). The proof of
Proposition 2.3 is given in Sect.2.2.

Furthermore note that a similar approximation as in (2.15) holds for the field ¢y, too.
For this we remark that instead of minimizing w.r.t. to the field ¢ in (2.1) first (as explained
in Sect.2.1) we can take the infimum w.r.t. to the wave function  first, too yielding the
functional

Fal@) =inf Gu(V,9). Mz, =lp € Lz®) [Falpu) =ea} . (216)

We remark that by the energy functional’s symmetries for any ¢, € Mx, and
Q(pe) == ("ol z € RY) 2.17)

it follows that Q(¢y) € M £,. Then under the same assumption as in Proposition2.3 there
exists C > 0 (independent of «) such that

distyf (Q(@a), ¢v) < CValv]. (2.18)

We remark that Proposition 2.3 (a) shows that subsonic traveling waves exist for all o > 0.
However the approximations (2.15), (2.18) of the second part of the Theorem holds for
sufficiently large o« > o only. The restriction to sufficiently large « > 0 in part (b) ensures the
validity of the global coercivity estimates (see Corollary 3.2) that are proven for sufficiently
large o > ot only. Furthermore we notice that for v = 0 the pair of ground states (Y, ¢o)
provide a traveling wave solution with e, = e,. In particular the assumption on the phase
from part (b), made for technical reasons only, is satisfied for v = 0.

3 Properties of the energy functional £,

In this section, we prove Propositions2.1 and 2.2 on the properties of the energy functional
Ga.-

The proof of Proposition 2.1 relies on a comparison of properties of £, with the properties
of hyg in the limit @ — oo. Then existence and uniqueness (up to translations and changes
of the phase) for pairs of minimizers (4, ¢4) of Gy follow with the choice g = — /a0y, .

First, in Lemma 3.1, we prove the existence of a minimizer ¥, for all . Next we show the
ground state (energy) is well approximated through the harmonic oscillator (Lemma 3.2). This
approximations allows to show that the Hessian modulo its zero modes of &, is asymptotically
for « — oo characterized by the harmonic oscillator, and thus positive (Lemma 3.3). This
fact has several consequences: We infer first local (Corollary 3.1) and later global coercivity
estimates (Corollary 3.2) for sufficiently large @ > . For the latter we assume that the

@ Springer



Traveling waves and effective mass for the regularized... Page90of33 121

ground state 1, of Mg, is unique up to translations and phase. Furthermore we obtain that
the ground state energy e, is separated from the first excited eigenvalue by a gap of order

J/a (Corollary 3.3).

We remark that the strategy for the proofs in this section follow [6, Section 3] considering
the non-regularized Pekar functional on a Torus of length L. For sufficiently large L the
uniqueness of the ground state and coercivity estimates are proven based on a comparison
with the non-regular Pekar functional defined on the full space for which these properties are
well known.

3.1 Existence

First we show the existence of minimizers of &, for all @ > 0 in the subsequent Lemma.

Lemma 3.1 Let ¢, v satisfy Assumption 1.1. For all @ > 0, there exists a minimizer 0 < vy, €
C%°(R3) of the functional &, satisfying the Euler-Lagrange equation

(g, = ) Ve = 0, with g1y, = (Wlh gz, 1) - (3.1

Proof Since h = g * g, we have ||h| s < C||g||% and

Wiy 1y) < Clgl3lvis (3.2)
so that by Assumption 1.1 there exists C > 0 such that
Ea() = = |IVY 3 — Ca . (3.3)

From (3.3) we infer on one hand that ¢, > —Ca for all «. On the other hand, in order to
prove the existence of a minimizer, we remark that (3.3) shows that any minimizing sequence
(¥n)pen 1s bounded in H L uniformly in n € N. For this reason the sequence by [22, Lemma
6] resp. [23, Theorem 8.10], there exists a sequence (yn),eN € R3 such that the translated

y}’l i
Yn . J :
sequence ("), has a sub-sequence (v, j)n,-eN = (wn ; )n . that converges weakly in
J

H'(R?) to a non-zero function. It follows from the Sobolev inequality that this sub-sequence
converges strongly in L? for 2 < p < 6 to a non-zero limit. The limiting function v, € H'
is again L2-normalized and, moreover, satisfies

Vol = g lVa) < Tim (Y, | = 5 [¥n,) (3:4)

by semi-lower continuity of the H'-norm. Since
[ | (B 190, 12) 1W0m,) = (Wl (B a]?) W) |
< (W, | (B 19, 17) W = W, )]+ [l (B 1900 1?) [ — Yo, )|
+ (i, | (1 10al?) (Ve = )| + [l (B % (W) [0 = W))| 3.5)
and || (h  |¥11%) ¥2ll2 < ClIY1 1311212 for any 1, v, € L2, we find

[ | (B 19, 12) 1W0,) = (Wl (B % W) W) | < CllYa — Yl > 0 (3.6)

as n — oo. Therefore,

Ea (W) < liminf €, (Yi)) = e (3.7
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and with &, (¥y) > lim inf,,j_>Oo Ea(Yn;) = eq (as (Yn;In;eN is a minimizing sequence),
we conclude that &, (¥y) = e, and, thus, ¥, is a minimizer. By invariance of &, w.r.t.
to translations and phase, any element of ®(v,) defined in (2.6) is a minimizer, too. The
positivity and regularity properties of v, follows by standard bootstrap arguments (see for
example [6, Lemma 3.3]). m]

3.2 Approximation

Next we prove that in the strong coupling limit the spectrum of &, is well approximated
by the harmonic oscillator heg.’s spectrum. The idea is to use the Taylor expansion of the
potential given by Assumption 1.1 through

2 2
h(x):/l’g(gc))eik*dk:/l’g((kk)) cos(k - x)dk (3.8)

to show its asymptotic quadratic behavior. The ground state energy of hys. (as defined in
(2.8)) is well known

L Balvsl3
osc —
2m

and separated from the rest of the spectrum by a gap of order /. For this we compare the
Hessian of &, with

(3.9)

Hose := inf (fHoscl f),  with Hgse = hose — €osc (3.10)
feH ' ®),] fll2=1
fespan{]//osc}i

that is known to be positive, and thus, yielding coercivity estimates of the form

(flhosel £) — eose = Ca'’? inf e Yrose — £113
0e(0,27]

(Flhosel £) = eose = Ca'lind e Vose = Il g - 3.11)

Furthermore we compare the deviation of the ground state of v, with the one of the harmonic
oscillator that is known to be ||X2Wosc||2 = Ca~1/2 for some C > 0.

Lemma 3.2 Let ¢, v satisfy Assumption 1.1.

(a) Then there exists C1, Co, C3 > 0 (independent of o) such that

V3alVel3 _ .
— X~ — =02
2Jm

Cra'? < ey +algl? — (3.12)

and
[y = e | < C30/ 12 (3.13)

where we introduced the notation Ly, = (Vosc| — A + 2a(h * [Wosc|?) [ Wosc). Let
Yo € Mg, such that

diSth (®(‘//oz)7 WOSC) = ”’ﬁosc - WQHZ . (3-14)
Then there exists ag > 0 and C > 0 (independent of o) such that for all « > ag we have
Ix*Yall2 < Ca™'/? (3.15)
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(b) Let Yo € Mg,. Then there exists ag > 0 and C > 0 (independent of a) such that for all
o > ag we have

dist;2 (O (W), Yose) < Ca™ /20 (3.16)
(c) Let Yo € Mg, such that
dist;2(O(Va), Yosc) = IV — Yoscll2 - (3.17)

Then there exists ag > 0 and C > 0 (independent of o) such that for sufficiently large
o > oo we have

122 (Yo — Yose) 2 < Ca™ /20, (3.18)

(d) Under the same assumptions as in part (c) there exists ag > 0 and C1,C2,C3 > 0
(independent of o) such that for sufficiently large o > a9 we have

Cra'’* < |Vl < Cra'/? (3.19)
and furthermore

IV (Y — WYose) Il < C3a”/40. (3.20)

Proof First we remark that in the following proof we denote with C > 0 a constant
independent of «.

Proof of (a): For the upper bound of the ground state e, we pick the harmonic oscillator’s
ground state osc defined in (2.9) as trial state. Its energy serves as an upper bound for the
ground state energy

ey < Ey (Yosc) (3.21)

and can be explicitly computed with by the potential’s (3.8) Taylor expansion, Assumption 1.1
and cos(x) > 1 — %

eq < —allgl3 + eose + C (3.22)

for a constant C > 0 (independent of «).

For the lower bound we use the IMS localization technique to show that it suffices to
consider the problem on a ball of radius R, where we can use the potential’s Taylor expansion.
To this end, let ¥, denote a minimizer realizing

eg = inf E(Y) = Ea(Ya) (3.23)
YyeH!(R?)
and y € C®(R?) a function with support on the ball B; with radius one such that || x| = 1
and x(0) = 1. We define the rescaled function x X with | x ®||» = 1 supported on By and
denote with x®? = y®(- — 7) its shift. The idea is to choose R dependent on «. However
for simplicity we neglect the dependence of R on « in the notation. We observe that the
L*-normalized function

Bz = By xRl (3.24)

satisfies

e (0)|? = / X Byl A(x)dz = / [y B2 () P I x By 3dz (3.25)
Bgr Br

@ Springer



121 Page 12 of 33 S. Rademacher

and thus, by completing the square and standard techniques of IMS localization

Ea(Wa) + IVXFI3 = / (S + allve™ 2@y, —2,013) I Vali3dz .

Bg
(3.26)
Since x R 2 ||%dz denotes a probability measure, there exists z € Bg such that
Ea(Wa) + IVXRI3 = €Wy +allve™ 2@y, — 0I5 - (3.27)
By scaling, we furthermore find ||V x®||3 < CR~? yielding
EaVa) = Ea R + allve™ 2@y, =B r)I3 — CR72. (3.28)

We use (3.28) to prove both, the energy’s lower bound and the approximation of the ground
state. We start with the lower bound on the ground state energy first. For this, we observe
that (3.28) implies

EaWa) = Ea(W B — CRT?, (3.29)

i.e. it suffices to compute the energy &, for function wolf *Z supported on Bg, where we can
use the Taylor expansion of &

A
Ea(B?) = (B2 - 5, el [y &)y k)

A .
> —a|gl3 + (y &7 - o +allVell3e? # [pR Pyl — caR* . (3.30)

We observe that (3.27) is invariant w.r.t. translations and changes of phase of ¥, and %2
and thus, we can furthermore restrict to 1//5’Z such that

W& xyls =0 (3.31)

for which we find
Ea(Wa) = (Vg “Ihosel Y *) — eligll — CaR* — CR™2. (3.32)
where hog. denotes the harmonic oscillator hoge = —f‘m + mT“’zxz. By definition, 1/f§’z is

L2-normalized and thus a competitor for the ground state of heg, i.e.
Ea(Wa) = inf (Ylhoscl¥) —allgll5 — CaR* — CR™?
YeH!
2 4 )
> eosc —a|lgll; — CaR™ —CR™. (3.33)
Optimizing w.r.t. to the parameter R (yielding R = o~!/°), we arrive at
eq > eosc — a|gll; — Ca'/? (3.34)

proving part (a).

Properties of Y, 1/,(5,;. As a preliminary step to prove the remaining parts of this Propo-
sition we prove useful properties of the ground state v, and wf*z (constructed in (3.24),
satisfying (3.27) and by translational invariance of the problem (3.31)). We observe that
cos(x) <1 (and thus & < ||g||%) implies

W& — 2wl = & &) + a1+ B P EY) < ol +wligl
(3.35)
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With(3.28) and the ground state energy’s approximation (part (a)) we obtain
I il < Cva, andsimilarly ||y ll3,) < Cve, (3.36)

and in the same way

1/2~

allv/e"?oy, 13, allv/e'?0, k3 < Ca . (3.37)

With the upper bound (3.34) we furthermore deduce from (3.35) resp. the Euler-Lagrange
equation

AV} < CVa (3.38)

for all @ > «g. However for ¢§’Z we observe first that (3.28) resp. (3.32) together with the
harmonic oscillator’s coercivity property (3.11) show for R = =1/

Vein IR — e Yoscll3 < (VR hose[YE?) — eose
< Ea(P B — eose +aligll3 + Ca'/? (3.39)
With the upper bound on the energy (3.22) we find

inf Y% — e Yosell3 = Ca™ 0 nf [yt — P poselfy < Cal/2 L (3.40)

In particular for sufficiently large @ > o we have
Vs “lla < Ca % (3:41)

Approximation of Lagrange multipliers: We prove the approximation of the Lagrange
multiplier jiy, with fiy, . using the previous results. In particular by translational invariance
of the problem we choose v, such that xpo’f 'Z (as constructed in (3.24)) satisfies (3.27) and
(3.31)). We write

oy = Mg = Ea(Wa) — Ea(Wose) — ellv/e' 0y, I3 + allv/e oy, 5 (342)
yielding with (3.27) and (3.37) to
sy = Hpose| <10 (W) — Ea(Wrose)|
+a ([v/e oy ll2 + 1v/6 0y, l12) 1v/e"* (0, — 0ye) I12
<Ca' + Valv/e'? (0p, — 0pme) Il2 - (3.43)
Since

1/2

v/ 0y, — epu)ll2 < 10/ (0 e — 0yu)ll2 + lI0/e P rz — 0ol (3.44)

we find with (3.27), [[v/e'? (0, k= = 0yoc) 2 = CllYose — Yo% |12 and (3.40)
v/e'? (0yy — Oy) 2 < Ca™? + Ca™ /12 (3.45)
Thus we obtain from (3.43) for sufficiently large o > o
|y = Mg <Ca™'12. (3.46)

Scaling of the ground state: To show the ground state’s scaling (3.15) for v, satisfying (3.14)
we observe that by the Euler-Lagrange equation we have

(—A = sy,) Vo = 2a (b [Ya|*) Y - (3.47)
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The idea is now to use the properties of the resolvent (—A - p,,/,a)_l (that is well defined
sind from (3.46) we have py, > —Cua for sufficiently large o > ) to prove the desired
bound. The resolvent’s Green’s function is given in terms of the inverse Fourier transform
F~lof

_ —1
Gy, @) = 7 [(2/@m) = y,) ] @) (3.48)
and can by functional calculus explicitly computed. In fact we have
1 -1 % o PPt
Flsha =) e = [ @ (3.49)
0
which leads with (3.48) to

1
Gy, (2) = (2m )32 /H§3/()

and we arrive with Fubini’s theorem at

. L2
elz'petMWae 2m P dtdp (3.50)

t

mzz
o0 T
G iy, (2) = 2m)>/? /0 ettvn & /2' dt = (2m)3/2|7“/’|?e—~/—4’"“v/a'1' (3.51)

for |z] # 0. We plug this identity into (3.47) and find using assumption (3.14), and the
notation F := 2« (h * Yy |2) Yy (i.e. F denotes the right hand side of (3.47))

V) = [ Gy, =) FOy (3:52)
Thus the weighted L2-norm, we aim to find an upper bound for, becomes

1 Y2 = / G, (x = )Gy, (x — ) FQF() dxdydz  (3.53)

that we can estimate by Cauchy Schwarz with

I3 e ll3 < / x81Gp,, (x = MIPIF () Pdxdy

6
X
=2m)’n / | |2e*z«/ —Amiga X3 F () 2dydx (3.54)
X =Yy
We split the integral into several regions to find the desired bound: First we consider the case
|x| > 2|y| for which we have [x — y| > |x| — |y| > % By substitution we can therefore
estimate the integral in this region by

6
/ L W F(y) Pdyda
|

=2l 1x — yI?

C
< [ eI ) Paydx < o1 FIB (355)
where we used —uy, > Ca for sufficiently large o > arg. Now let |x| < 2|y| and |x — y| >
%, then we have %Jy‘ < 4 and it follows

6
/ ot e @Y E ) Py

2
P
xyimhiz Y
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' C
<4 / xtem VeV F(y) Pdydx < —5|IF 5 . (3.56)

ad/2
with similar arguments as before. Finally for |x| < 2|y| and |x — y| < % it follows
Ix| = |yl = |x — y| = |yl|/2. Hence

6
s T () Pdyd
xXI<2[y] |x — y|2
lx=yl<Iyl/2

6
<2 / YN F () Pdydx
|y

2<lx<2ly| | — yI?

¢ 6,—Cn/—4mpiyy1y| 2 ¢ 2
< W/y VT E()Pdy < S IFIE BST)

where we used that |y|6 e~V ~#mve Dl < 0% Summarizing the estimates we conclude by
e lla < Ca™ > F |2 (3.58)

where F denotes the r.h.s. of (3.47). Since ||h]loc < C,¥ is a L2-normalized function we
find that

I3l < Ca™3/4 (3.59)

for sufficiently large & > . In particular for n = 3 we find X3y ll2 < Ca3/* and thus,
in particular,

I3 Yell3 < Ca™'/2, (3.60)

Proof of (b): In order to prove the ground state v, ’s approximation we observe that by the

previous discussion it is enough to consider the problem on the ball Bg, (0) with Ry = a~!/3.
In fact (3.15) shows
inf [ ose — ¢ Vall2 < IWose = € Viall 2y, 0 + Co™ 2. (3.61)

We consider ¥, and w(f*z (constructed in (3.24)), satisfying (3.27) and by translational
invariance of the problem (3.31)). With these notations we in particular have from (3.40)

inf | Yose — ¢ Yall L2, ) = I1Wa = Vo 128y, o) + inf [ ose — Y L2 B, 0
< 1o = Va2 (g, 0y + Co /12 (3.62)

and thus it remains to show 1//5’Z is close to Y. To this end we control the L2-norm of the
difference oy, — 0 e first and deduce as a second step from this estimates for LZ-norm of

(f’z — . For this we write the L2-norm of Oy = Oy Rz in momentum space. We shall
show that for low momenta, we control the norm with Assumption 1.1 and (3.27) while for
high momenta the L2-norm is small by regularity properties of Oy Oy Rz For the latter one
we observe that from (3.38) we have

1K%0y, llso < ClIAYGII211Vall2 + ClIVYell3 < Ca'/? (3.63)
and thus there exists C > 0 such that
1/2
|§1ﬁa k)] < W s (3.64)
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To obtain a similar bound for 0, #.. we first have to derive a bound for the H2-norm of X%,
For this we remark that by definition (3.24) we have

I 2 Ya 2 AYS? = X3 (AYa) + 2V ®9) (Vi) + (AX )Y - (3.65)

With the Taylor expansion of x®Z% around z we find that || x®% Vel = [[Yel2 +
Rx(VxR2(w))yyll2 for w € Br(z) and thus with the ground state’s scaling proper-
ties (3.15) we have || x ®:2yry|l» > C for sufficiently large o« > «g. Hence we find with (3.19),

(3.38) and the scaling of x®% at | AyR?||, < C/a and thus
Call?
k>

From (3.64) and (3.66) we find that for high momenta, i.e. allk € B;z ={k eR3: k| > Ry}
we have

[0y (k)| < (3.66)

PO Call?
oy, — ng.zlle(B;Z) < Ak (3.67)
2
We remark that we choose Ry := Ra(a) = «l/3, however, for simplicity (as for R), we

neglect the dependence of « in its notation. For low momenta, i.e. k € Bg, we use that by
Assumption (1.1) we have |g(k)| > (1 + |k|)~%/2 and thus

0y, = 0yrelliz (e SCA+RD Il e~ 2@y, = 0yr)ll 1284y
<CU+[RD2 v e 2@y, —0yroll2 (3.68)
and we find with (3.27) (assuming Ry < '/%)
10y, = 0yrzllz <Ca™' (1 + |R22. (3.69)
Optimizing with respect to R, leads to Ry = &'/ and thus for sufficiently large o > g to
1y, —0yrella <Ca®?. (3.70)
In particular it follows as ¥ %% and v, have the same phase
Ve = Y ?ll3 = IWal = Va1 < 1@y, —0yr:l3 < Ca*?. (371

We recall that we need to estimate the L2-norm difference of /4, ¥ X% on the ball Bg,, i.e.

we have by Cauchy Schwarz’s inequality with Ry = a~!/3
1o = Va2, ) < CRY 0™ < Ca™!P2 (3.72)
and we arrive with (3.61) at
inf fle™ Yo — Yosell3 < Ca™ /10 (3.73)

Proof of part (c): In order to prove H'-norm convergence of ¥ to Vo5 We observe
that from the Euler-Lagrange equations of v/, resp. ¥osc, Assumption 1.1 and the scaling
properties of V¥osc

— 3 A (Yo — Vose) = (@ (h* [Wal?) + ye) Yo — (o (7% [Wosel?) + L) Yosc
+C (o] [* # [Wosel®) + 1) Yose (3.74)
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for a constant C > 0 independent of o. We recall that both ¥, and s are L?-normalized
functions. Hence introducing the notation 7 = h — ||g||% and

ﬁxp:(l/fl—ﬁ—a(z*llﬁlz)lllf) (3.75)
forany v € H L(R3) we arrive at

— A (Yo — Vose) = @ (7 % Vo (Vo — Yose)) Yo + & (B % (Yo — Yose) Vose) Ya
+ o (1% [Yosel?) Wose — W) — (B — Hopse) Y + Hopy (Wose — V)
+ Wpoge W — Pose) + Ca(] - |4 * |1/fosc|2)1/fosc (3.76)

From Assumption 1.1 we have |7z(x) | < Cx?and thus together with the ground state’s scaling
properties (part (c)) we find |y, | < Cal/?, Boee | < Cal’? and
By = Bosel = 1g, = e < Co/1 (3.77)

from part (part (a)). Therefore we find with the approximation of the ground state (part (b))
and the ground state’s scaling properties (part (¢)) that

| (Wosel |=A (W — Voso)) |, | (Wl |=A (Yo — Yose)) | < Ca®/® (3.78)
finally yielding
Vg — Viposcl3 < Ca”/40 (3.79)

and the desired lower and upper bound in (3.19).

Proof of (d): To prove convergence of ¥, to Wosc for ¥, satisfying (3.14) in the weighted
L?-norm, too, we proceed similarly as in part (d). From the Euler-Lagrange equation of
we get

(3 A = 1y,) Ve — Yosc)
=20 (h * W) Yo — 200 (( * |Wosel?) + (o — M) Vosc
=20 (h % Yo (Yoo — Yose)) Yo + 20 (1 % (Yoo — Yose) Yose) Ve
+ 20 (B [Yosel*) Wose — Va) = (i — Hpose) Wose + Car(] + [* % [Wosel ) Wosc -

(3.80)
By assumption resp. part (a) we have
disty2 (Yose: O (W) = [V — Yosclla < Ca ™/ (3.81)
and furthermore we have from (3.58) (using assumption (3.14)) the estimate
e (Yo = Yose)ll2 < Ca™ 2|1 F 2 . (3.82)

where F denotes the r.h.s. of (3.80). It follows from the approximation of the Lagrange
multiplier (part (a)) and the ground state (part (b)) that || Fl|; < C a 120 and we finally
arrive at the desired bound of part (c). O

3.3 Properties of the Hessian
The Hessian H, of &, is defined for any ¥, € Mg, by

R Vo +0f 1\ 13
Hey = ;gr%] 52 (&X <7”% +5f||2> ea> forall fe H (R’). (3.83)
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We can explicitly compute the Hessian and find

Hy = (Im f|Hg|Im f) 4 (Re f|Qu (Ha — 4Xy,) QulRe f) (3.84)
where Qy =1 — Py = 1 — [t4) (¥4 | and
Ho =h /5, =y, and Xy, (x;y) = Yo () h(x —y) Ya(y) . (3.85)
Positivity of the Hessian

We compare the Hessian’s components
HY == inf inf (fIHal f),
“« Va€Me, feH R, flla=1 ¢
fe(span{yaH*
HP = inf inf (fHy —4Xy, 1 f) (3.86)
* Va€Me, JeH ®).1Ifl2=1 ) ’
fe(span{vry, 01 Ve, 02w, 03 Ve )+

with Hosc (defined in (3.10)) known to satisfy Hose > C+/a foraconstant C > 0 independent
of a. We remark that by definition the Hessian H,, is defined modulo its zero modes namely

the ground state v, for the first component resp. ¥, and its partial derivatives d;, for
i =1, 2, 3 for the second component.

Lemma3.3 Let ¢, v satisfy Assumptionl.l. Then, there exists op > 0 and C > 0
(independent of «) such that

HD > call?, forall a>ap. (3.87)

Proof We present the proof of the Hessian’s component H((,,z) . The statement for H(!) then
follows with similar arguments.

For any ¥, € Mg, and f € H'(R?) we define the projection Q/, = 1 — P, P, =
Vo) (Yol + 2,3/':1 ‘8]- 1/fa><8j 1//0(‘ /119 Y ||% and furthermore the L2-normalized function

Qo f
8= oufls G59
Thus in the following we consider the expectation value
(8aHa — 4Xy,|8a) = (galHa — 4Xy,|8a) (3.89)
where we introduced the notation
Xy, (63 9) = Vo) Bx = 3) Yu(y) (3.90)

with i = h — ||g||% and used that the zero-th order term of the expansion of 4 in the above
expectation value vanishes as Q) f is orthogonal to . By translational invariance of the
problem we restrict to ¥, such that dist; 2 (® (Yg), Yosc) = [Yosc — Y ll2 (so that Lemma 3.2
(c), (d) apply). We recall that we want to compare H((,’) with Hosc that is of order /a. Thus
any term we can show to be o(y/a) will be dominated in the end by Hose and thus will be
considered to be sub-leading for sufficiently large o > «p.

We shall first show that g, is approximately orthogonal to the harmonic oscillator’s ground

and first excited state Ple. = |[Wose) (Vose| + Y 1—1 |8jWose) () Wosc| /18 Vosc 3. i.e. that it
is enough to consider

<Q2)SCga|Ha - 45‘(1//04 | Q;scg0l> . (391)
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This follows from the observation that the difference is given by

(8ulHo — 4Xy, |20} — (Qosc8alHa — 4Ky, | Qpscga)
= 2Re (Pl.8a| Ho — 4Xy, 18a) + (Plsc8a| Ha — 4 Xy, | Pisc8a) - (3.92)

On the one hand, since

| Pose Quallz < Cllvg — Yoscll2llgalla < Ca™ g2 (3.93)
and similarly denoting PY) =i |0jWosc)(djVosc| /19 Vosc} and P
|9 Wa) (8% /118 vall3,
1P 0 gally < Cllvosell; 118 ¥ose — Vall2llgallo < Ca™ /40 (3.94)

1/4

from Lemma3.2 (d) for sufficiently large &« > «p and || Viyosc|| = ca'/* for some ¢ > 0.

Thus we arrive at

Ca~ 140, (3.95)

IA

1Posesell2
On the other hand we have
H=h g, = Moe + py = ) (3.96)
so that with Lemma3.2 (d) we have |[Hy Pl fll2 < Ca'/? and we arrive at
(gaHa — 4Xy,180) — (Qise8alHa — 4Xy, | Qfseba) = —Ca™ /%0 (3.97)
As a next step, we shall replace Qoscgq With the L2-normalized function

ose Qo f

= —_— 3.98
104 O f 112 (3.98)

8osc

For this we first observe that

/ _ ”Qi)ch(/foQ
Qesa =01

and thus, we need to control the normalization constants’ ratio. For this we use (3.95) and
find that

100 FI3 =110 O f113 + I PLc Qb F1I5 < 100 O F1I5 + Ca™ /1211 QL fll2 - (3.100)

for a constant C > 0 independent in «. In particular we obtain

106 fll2 = €1 —a™ /¥ 00 0L fl2 (3.101)
for sufficiently large o > orp. Thus from (3.97) and (3.98) we get

8osc (3.99)

(gaHy — 4Xy, 1ga) = C(1 — a V402 (g0 [Hy — 4Xy, 1g0se) — Ca'?%0 . (3.102)

Next we show that the operator X v, contributes sub-leading (i.e. o(4/a)) only. For this
we write

Xy — Xy = Wa(¥) = Yosc () A — Y)Y (0) + Yosc (DA — ¥) (Y (¥) — Yosc(V)) -
(3.103)
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With |71(x)| < Cx? we find from Lemma3.2 (c) and ||gosc |2 = 1 that
(8osel Xy [8osc) = (osc| Xy 8ose) — Ca¥/?C. (3.104)

We recall that g is orthogonal to Vs and its partial derivatives. In particular, as Vi/osc =
XYosc, the function gesc is orthogonal to x s, too. Therefore not only the zero-th but also
the first-order term of the Taylor expansion of 4 in Xy, .. evaluated in gosc vanishes, i.e.

<gosc|§¢osc|gosc> = (gosc|§1//osc|gosc> (3.105)

where Xy, (¥, ) = a¥ose (¥) (h(x — y) = [1glI3 = I VI3 (x — ¥)?)Yose(y). Since [7i(x) —
Vg ||%x2| < Cx* by Assumption 1.1 we find with the harmonic oscillators scaling properties

that (gosc|)? Yose |8osc) = —C, and thus from (3.102)

(gaHy — 4Xy, 1ga) = C(1 — a V402 (g0 [Hylgose) — Cal?/40 (3.106)

for sufficiently large « > «p. Now it remains to compare the r.h.s. with the harmonic oscillator.
For this we split the operator H into one part that is localized on a ball Bg with R = o~ 1/®
(that we shall show is bounded from below by Hs thatis O (/«)) and a part outside By (that
we will show is bounded from below by a positive constant of O(w), i.e. trivially satisfying
the claim for sufficiently large o > «).

For the localization we consider a partition of unity 0 < n', n* < 1 with n' € C°(R?)

and
1 xe B
n'(x) = io g n?=\1—2. (3.107)
2

and define the rescaled version n%(x) = 5 (x/R) and the L?-normalized function

8k = Ngose/IINggoscll2 - (3.108)
With standard arguments of IMS localization we find

2

2
(osc[Halgose) = D I gose 3 {2k Halgk) — Z (oscl I Vg * gose) - (3.109)
i=1 i=1

By scaling the last summand is of order R=% = «!/3 yielding

2
(8osc|Ha |gosc) Zngn2 grlIHalgk) — Ca'/? (3.110)

and it remains to estimate the expectation value ( f 1"? Hy | f Iii’> fori =1,2.
We start with the expectation value w.r.t g%e supported on B§. Since cos(k - x) < 1, we
find

(8IHalgh) = — iy, — (8RIVAV /a0, I87)
>2e|gll3 + (SR IVaV /g, 18R) - (3.111)

To show that the remaining term contributes sub-leading (i.e. o(c)) only, we need to control
the L°°- norm of V /ag, o0 By, ie.

VeV g (0] < Ca/ lh(x = )l (DI*dy + Ca™/'? (3.112)
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for [x| > a~!/%. We split the integral in By and BI% where now we choose R = o~!/5. For

y € BI% we find by the scaling properties of v, that
1V ||iz(3%) < Ca2/5||xwa||iz(3%) <o 10 (3.113)

and we arrive with [|2]| oo (g3, < C for [x| = a™"/6 at

ValV gy, (0] < Ca/ G = e 0)Pdy + Ca?/10 (3.114)

[yl<a~

Now let |y| < «~1/ and |x| > a~1/°. Then we have |x — y| > |x| — |y| = Ca~Y/° for

sufficiently large o > «. Thus, with ||h||Loc(R3) <C

VeV g, ()] < Ca‘“/ﬁf lx = yl[Ya()*dy + Co/!? (3.115)

[yl<a~

for |x| > o~ !/6. With Cauchy Schwarz inequality and ||y [|ls < C|[Vgllg1 < Ca'/* (from
Lemma3.2 (d)) we find

«/&|Vﬁ¢u(x)| < Co\TV/OT1/A=1/2 L 00512 < cg11/12 (3.116)
Hence we deduce from (3.111)
(gkIHalgg) = 2allgl3 — C2a'/1? > Cra G.117)

for constant C1, C; independent of « and sufficiently large o > «p.
We recall that the goal for the expectation value

(ghIHalgk) (3.118)

with f ,% supported on Bg is a comparison with the Hessian of the harmonic oscillator Hosc
that is O(y/a). For this we observe that f,% is almost orthogonal to Y5 and its partial
derivatives as

IPoscgkll2 < Clloscllp2(pe) < Ca ™'/ (3.119)

by Lemma3.2 (¢)) and similarly for the partial derivatives. Thus (with similar arguments as
in the beginning of this proof (see Eq.(3.91) and subsequent)) instead of glle we consider in
the following the L2-normalized function

' / gl

~ 0SCO R

gpi=—7—"— (3.120)
1 Qpsc8kll2

paying a price sub-leading in & (i.e. o(y/a) and given by
(k| Ha | f) = (1 — V122 (g% | Hy [3) — Ca'/ . 3.121)
We use the Taylor expansion of &, ({4 |x|1y) = 0 and Lemma 3.2 (d) and find

(FkIHo|Zk) = @RIN ap, — My |ZTk) = (FRlIhose — (Yl hose [¥a) | f7) — Ca'/?
(3.122)

and thus (since (Y| hose [¥a) > (Yoscl hose [Vosc))
(Fk/Ha|ZR) = (TkIHosclZk) — Ca'/? . (3.123)
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By construction §1le is a L?-normalized function and orthogonal to the harmonic oscillator’s
ground state and its partial derivatives. Thus §11e is a competitor for a minimizer of the
harmonic oscillator’s Hessian and we conclude that

(8plHalgr) = (1 — o V402 — Ca40 (3.124)

Since H@ is a convex combination of (3.117) and (3.124), we find
HP > (1 — a0 e — Cal9/40 (3.125)
and conclude that there exists @ > &g such that HP > Ccal/? forall o« > . O

The Hessian’s positivity in the strong coupling limit « — oo leads to local coercivity
estimates summarized in the following Corollary.

Corollary 3.1 There exists ag > 0 and k, C > 0 (independent of o) such that for all @ > ag
and Yo € Mg, any L2-normalized ¥ € H'(R?) and ¢ € L*(R3) with

dist;2 (O(Yg), ¥) < ka™/? (3.126)
we have
G (Y, @) — eq > C/adist;2 (O(Y), ¥)* (3.127)
Cc .
Ga (V. @) — eq > ﬁdlStLZﬁ (Q(ga), 9)* . (3.128)

The proof is based on an expansion of G, around the ground state energy e,. In the
following, we provide an expansion of G(y, ¢) which will be useful for later proofs. For
this,let §; = ¥ — ¥y and 87 = ¢ — @,

G (V. 9) — ea =Go (¥, ) — (Valh sz, [Va) — lle" 00 ll3
=2Re (811 h gz, [Va) + Vo (Val Vs, Va)
+2VaRe (' 20y | |6'7282) + (811 g, 181)
+2VaRe (Yol Vs, [81) + [l€'282115 + O(Va 81113, 182112) . (3.129)

We observe that the sum of the second and third term vanish by the definition of the potential
(1.3) and ¢, = —+/aoy, . For the last two terms of the r.h.s., we complete the square

2J/aRe (Yol Vs, 181) + lle'/*Re &3
=[le'?Re 8, + 227)3 2 /a ve~ /2 (Re 81) e |3
—4a(Re81|X¢a|Re81) (3.130)

where Xy, is defined in (3.85) so that we arrive at
Gu (V. 9) — e =(Im81|h g, [Im &) + [le'/*Im 5, 3
+2Re (811 g, [Va) + (Redi| (hﬁ% - x%) IRe 8;)
+ le'?Re 8 +2(21)* 2@ ve ™12 (Re 81)voll3
+ O0Wal81113182112) - (3.131)
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The Euler-Lagrange equation of v, together with the notation (3.85), (3.85) and the
observation that by L?-normalization of v, and v/

=¥} = I¥e + 8115 = 1 + 18113 + 2Re (81] |va) (3.132)
and therefore
2Re (8111y) = —lI81ll3 (3.133)
we find with (3.85)
Go (¥, @) — eq =(QaIm 8 [Hy|QgIm 81) + [Ie'/*Im 8,13
+ (Re 81| Qu (Hy — 4Xy, ) QulRe 81)
+ ll£"/?Re 85 +22m) 2 V@ ve™ 2 (Re 81) v}
+ 0Vl 131182112) + OVall81113) + O l181113) - (3.134)

Proof of Corollary 3.1 In order to prove (3.127) first, we remark that it suffices to consider
Y oe HY(R?) such that

Im (e"(’ v

hold. In particular we assume w.l.o.g. that =0 and y = 0.
Furthermore, completing the square we get

Ga (Y, ) —ea 2Ea(Y) — € (3.136)

and thus it suffices to consider the case 8, = /' (oy — oy,). It follows from (3.134) and
(3.135)

ly) =0, and Re (aw’ V) =0 (3.135)

Ea() — eq = (Im 81 |Hy[Im 81) + (Re 8110y, (Ho — 4Xy, ) Q) [Red1) + O(@l|81]]3) -
(3.137)

We recover back the Hessian of &, which by Lemma3.3 is positive for sufficiently large
o > ap. Moreover, it follows from Lemma 3.3 that there exists C; > 0 (independent of «)
such that with ||81]2 < Sa~ 12 for sufficiently small § > 0 by assumption, we have

EaW) — ea = C1/a]|81]13 - (3.138)
Moreover, since cos(k - x) < 1 by Lemma 3.2 there exists a constants k1, k2 > 0 such that
h fap, = €a = —K1A —K1/a . (3.139)

Interpolating between (3.138) and (3.139), there exists a constant C» > 0 such that for
o > oo

Ea(Y) — e = Caa 181113, . (3.140)
By translational and rotational invariance of the energy, we conclude

Ea(W) — eq = Caa'*disty1 (O(Ya), V) . (3.141)

Second we prove (3.128): Completing the square leads to

Gu(, ) — eq =Eo(¥) — eq + |Re @ + Vaoy IIigf + IIIHNPIILzJE (3.142)
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so that we find from (3.138) that there exists y € R3 and x| > 0 such that
Ga (Y, 9) — ea =N/aki [ — Y31I5 + [Re g + Vaoy |3, + Im g2, L, (3.143)
By regularity of ¢, v, there exists k3 > 0 such that
G, 9) — ea ZK3v/a oy — oy ||izﬁ +lle + J&awnizﬁ (3.144)
and we find by completing the square

G, ¢) = ew ZI (1 + k3 /)2 (0 = 0y ) = (1 + k3 /N ™2 (0 + Vo) I3

|I<p+f%>|l +|I1ms0||

f +r
lp + Voo, 2, + [Imel|3 (3.145)
[ Va L2 sz
for a constant k4 > 0. We conclude that
GW,p) —eq > dlsth (©2(¢y), Reg) . (3.146)
[
O

Global coercivity estimates

The Hessian’s positivity shows the validity of global coercivity estimates of the energy. For
this, we additionally have to assume that the ground state v, is unique up to translations and
phase, i.e. that Mg, = ©O(1/y). We remark that to prove the ground states uniqueness up to
translations and phase by the local coercivity estimates Corollary 3.1, one needs an improved
approximation of the ground state than in comparison to Proposition2.2.

Corollary 3.2 Assume that the ground state Yo of €, is unique up to translations and rotations.
There exists universal constants ay > 0 and C > 0 (independent of o) such that for any
L2-normalized v € H'(R3) and ¢ € L*(R3) with we have for all @ > ag

Ga (W, 9) — € > cf adist;2 (O (W), ¥)*, (3.147)

Ga (¥, @) dlsth (Q(¢a), 9)° (3.148)

_e“—f

The proof follows the arguments presented in [24, Lemma 2.6].

Proof We first prove the global bound (3.147). Then the second bound (3.148) follows
similarly to the proof of Corollary 3.1.

In order to prove (3.147) we remark (similarly to the proof of Corollary 3.1) that is suffices
to consider i € H! (R3) such that

Im <ei9 (/4

W.l.o.g. we assume y = 0 and 6 = 0. By contradiction we assume that there does not exist a
universal constant C > 0 such that (3.147) holds. Then there exists a sequence of functions
Y € L2(R?) with ||y, || ;2g3) = 1 such that

l¥) =0, and Re <ei9wg'

IVy) =0. (3.149)

1 2
Ea(Yn) < eq + ;”wn — Yl < ;”wn”Hl —Ca. (3.150)
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It follows that & (¥,) > 3V [13 — Ca. Therefore v, is uniformly bounded in H' and
moreover a minimizing sequence. With similar arguments as in the proof of Lemma3.1
converges to an element of the set of minimizes ® () given by (3.149) through . This is
a contradiction since Corollary 3.1 shows that locally coercivity estimates hold true. O

Another consequence of the Hessian’s approximate behavior is the following property.

Corollary 3.3 There exists oy and a constant C > 0 (independent of o) such that for all
a > ap, we have Hy — ey > C/a.

Proof The existence of a spectral gap of Hy, of order 4/« follows immediately from the global
coervitiy estimates in Corollary 3.2. O

3.4 Proof of Propositions 2.1, 2.2

In this section we prove Proposition2.1,2.2 based on the results proven before.
Proof of Proposition 2.1 The proposition follows immediately from Lemma3.1. O

Proof of Proposition 2.2 The proposition follows from Lemma 3.2 and Corollary 3.2. O

4 Proof for traveling waves

In this section, we prove Proposition2.3 on existence of subsonic traveling waves of the
regularized Landau-Pekar equations.

For this, we remark that it follows from the regularized polaron’s dynamics that the
traveling wave (1.5) satisfies

—iv- Vi = (h‘,JV +ev) Yy, - ly. koy = @y + «/&O‘V,V . 4.1

Proof of Proposition 2.3 Proof of (a): First, we prove the existence of traveling waves for
sufficiently small velocities. Traveling wave solutions of (1.5) are stationary points of the
action functional Z, given by

T, @) = (Wlhyly) + 12013 +evl¥ 13 — v- (W1iVIY) + (@lple)) . (4.2)

In the following we show that there exists a minimizer (i, ¢y) of Jy, and thus a traveling
wave solution. Since

. 1 ,
VI VIV < SIVYIE+ 292115, vilielikie)| < VIllipl el @3)

and for arbitrary § > 0
(WIVely) < ClePolallvl3 < 8lle'*Re g3 + Csally 13 . 4.4)

the action functional is bounded from below by
1
T, @) > Euvwn% + (1= 8) le"20lI3 — VIl pI"@ll3 — Csax — CV? 4.5)

We remark that in the last step we used the L2-normalization of 1. By Assumption 1.2, we
have &(k) > vcrit|k| and thus,

1 2 1 sy 12, 12 _ )
T @) Z SVl + (Verie(1 = 8) =) lIplelly — Coor — €V (4.6)
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For |v| < vt — 8, it follows that any minimizing sequence (¥, ¢, )nen of Zy is uniformly
bounded in H'(R?) x Lfm(RS). Any minimizing sequence, thus, uniformly bounded and

weakly converging in H'(R3) x L ﬁ(R3) to a limiting functional that is possibly zero (by
translational invaria_nce of the action). With similar arguments as after Eq. (3.3), there exists
a sequence (P, ePrg)pen that converges strongly in L2 (R3) x Li/g(R3) to a pair of

non-zero limiting functions. By semi-lower continuity of the H!- and the L /&-horm, and
[V Ve, [¥m) = (v Ve, Y| = Cliym — Yyl + Cllgn — <.0v||L2ﬁ 4.7)

we conclude that the action functional 7y attains its infimum for (v, ¢y) which is a non-zero
traveling wave solution (4.1).

Proof of scaling properties: As a preliminary step towards proving Proposition2.3 (b)
we shall first prove that

Ix2yyll2 < Ca™ /2 4.8)

i.e. that the traveling wave satisfies similar scaling properties as the harmonic oscillator. We
proceed similarly as in the proof of Lemma3.2 (). For this let Hy := —A/(2m) +iv - V.
Then the traveling wave equation (4.1) implies

(Ho + ) ¥y = Vg U - (4.9)

Since Hg > —v2 /4and ey > —ey + v2 /4, the resolvent (Ho + ev)_1 is well defined and we
can write

Yy = (Ho+ )™ V gy, ¥y - (4.10)
The resolvent’s Green’s function is given in terms of the inverse Fourier transform F~! of
-1 2 -1
Ge,@ =F " [(P/@m) = v-p+e) @ @11

and can (by self-adjointness of Hy and functional calculus) explicitly computed. In fact by
functional calculus we have

[oe) t
(Ho+e,)" ! = / e~1Hote) gy f etev et (P?/Cm)=v-p) 44 (4.12)
0 0

which leads with (4.11) to

1 r.
Go@ = o5 /R fo et W) drdp @.13)

and we arrive with Fubini’s theorem at

2
o\ _mz= - 2
Ge,(2) = (2m)¥2e*" / I Cot ) L (2m)3/2ﬂ[\/‘mm
v H

0 3/2
4.14)
for |z| # 0. We plug this identity into (4.10) and find that
Yo = / Gy (¥ = MV /i () T (y) - (4.15)
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Thus the weighted L?-norm, we aim to find an upper bound for, becomes

/ Xy (1)) 2dx = / X0G e, (¥ = VIV fe ) Yv ()G, (x = 2)V s (DY (2)dxdydsz
(4.16)

that we can estimate by Cauchy Schwarz with

[ 3P = [ G = 2RIV, ) 0P dxdy

6 —2.[4m ev—ﬁ lx—y]

e
lx — y?
With
2 2 2
IV /@, ¥l = Callovly vl (4.18)
and |lgv|lL i = C./a from Lemma?2.1, we can use a similar splitting of the above integral

as in the proof of Lemma3.2 () to then conclude by e, — v2/4 > —e, > Ca with (4.8).

Proof of (b): We observe that for v = 0 a traveling wave solution is given by ¥ry—¢ =
Vo, oy=0 = @ with ey = Mgy for any y € R. To prove (2.15) it follows (similarly to the
proof of Corollary 3.1) that it suffices to consider the decomposition

Yv =3 +01, gv=eVgg +8, and ey =gy + py (4.19)

with (Re 81| |Vyy) = 0, (Im8;| [¢3) = 0. In particular it follows from Corollary 3.2 and
condition (i) that

181112 < a4, 120l ; < woat and py < k3va (4.20)

for sufficiently small k1, k2, k3 > O (independent of «). In the following we assume w.l.0.g.
that y = 0.

By definition of H,, (see (3.85)) and the decomposition (4.19), we can write the traveling
wave equations (4.1) as

iV Y (Y +81) = (vﬁRet82 + u) Y + (Ha + V. fares, + M) 51 “21)
eIV -k (0o + 82) =85 + 2(27)%2 Jarve™! (wﬁzﬁsl) + JVaos, (4.22)

and it follows that the phase uy is given through the identity

1
pv (1 — §|I31II%) =V (Yal IVIM81) — (Val V GRes, [Va) = (Val V jares, IRES1) -
(4.23)

Plugging this identity back into (4.21), we get
(Ha = )81 == Oy (Vyares ¥ — V- VI (4.24)
where we introduced the notation Qy = 1 — |¥) (Y| and the operator

2
181113

=2 (Ve (Wl IVIMB1) = (Yl Vyares, IReO1) — (Wl Viyares, 1)) -
2~ 18113

(4.25)
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With the decomposition’s properties (4.20) we find that
1A < ClI81 153 (VealiBallz + Vav) < Cla’* +v) . (4.26)

Thus by Corollary 3.3 there exists k4 > 0 such that by assumption Qy(Hy + A) Qy > k44/c,
i.e. we can write

Ov
= (Viaressthv = v Vi) - (4.27)

The second term of the r.h.s. leads with Proposition 3.2 to the desired bound. For the first
term we observe that by definition of the potential and radialilty of v

OV jas, v =QvV yasy ¥ (4.28)

where 85 denotes the symmetric part of 82, i.e. 85 (k) = 65(—k). We observe that splitting &,
into its symmetric 85 (k) = 83(—k) and anti-symmetric 85 (k) = —85(—k) we have from the
traveling wave Eq. (4.22)

s e 2(k - v)? Ja

= - 32, g
%= = e 22 " T 2(k-v)2 (2(271) v Rediya + ‘781) . 429

Here we used that e =2 (k - v)2 < V2/V(2:rit < 1 by Assumption 1.2. Hence

e 2(k - v)2
S¢a(k) dk Py

_ i & V)T
QvVﬁReész =2aQy / ¢ 1 —e2(k-v)

T 15 — "
— a0y [ s (2 (ReS) G0+ 2 0) dk v
(4.30)

We observe that due to the projection O, the first term of the Taylor expansion of cos(k-)

vanishes. Thus with ¢ 2(k - v)2 < V2/V(2:rit < 1 and (Re Yy | [¥y) = — 1161 ||% we arrive at

IV asgbill <Cv2a (I Yl + Ixvall2llx vy l)

+ Ca (1Y l1218113 + 181 2l ve 2 llx ¥yl + 181 12 1x81 12 lxyyllz) -
(4.31)

From the scaling properties of the traveling wave (4.8) and the ground state (see Corollary 3.3)
we conclude

IV yassdillz < C/ar (v + i 481 12) (4.32)
yielding for |v| < 1
(1 =) 181112 < CIv] (4.33)
and (2.18) follows from (4.22) resp. (4.23)

821l < C/alv| resp. py < a4V, (4.34)
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5 Proofs for definitions effective mass

In this section, we prove Theorems 2 and 3 on the definition of the effective mass.

We remark that the proofs presented in this Section follow ideas from [11] where the
non-regularized Landau-Pekar equations have been considered. For the non-regularized
Landau-Pekar equations traveling waves are conjectured to not exists. However assuming
their existence an energy expansion in the vein of the proof of Theorem?2 was sketched.
Furthermore a different approach for a definition of the mass through an energy-velocity
expansion was presented. The proof of Theorem 3 given below uses ideas presented there.

5.1 Effective mass through traveling waves

We consider the definition of the effective mass through subsonic traveling waves first (whose
existence follow from Proposition 2.3).

Proof of Theorem 2 Let o > w large enough and |v| < v¢ii. Then, by Proposition2.3 and
2.1, there exists y, z € R3and 6 € (0, 27 ] such that

1y = vl < €V, e g0 — @yl 2 < Cal G

with (Im Y| [e!6) = 0, (Re Vi | |e!?4y) = 0 and (' ¢ | [Vey) = 0 and ¥, is uniquely
given (up to translations and changes of phase). W.l.o.g. we assume in the following y =
0,6 = 0. Then, (3.145) shows (with similar arguments as used in [11]) that we it suffices to
consider z = 0, too. Thus, we decompose the traveling wave as

(v, ov) = (Yo + Vv, @o + VIy) (5.2)
with ||&y]l2 < C and ||ny]| sz < C./a. Note that Proposition2.3 moreover shows that

ey = [y, + O(a3/4v?) and the linearisation of the traveling wave Eq. (4.1) read

Vi) _ Ho Q)2 e [ dk vk (& 53
koo ) — \@r)32Ja [ dk v(k)e € w/) ©3)

In particular, it follows

HeImé&, = Vi, (5.4)
elmny = ko, (5.5)
Hy, Re &y + Vayy Vrey, =0 (5.6)
VaVy,rez, +€Reny =0. (5.7)

Combining (5.7) and (5.6), we find
(Hy —4Xy,)Re&, =0. (5.8)

As Hy, is invertible on the span of 91, we find from (3.131) with (5.4) and (5.5) for all
Iv] < Ca™!

227)3a IV v2
Gy, 9v) = eq + (m + =5 llkve 3/2 emﬁ) -+ o@vP). (59

m}
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5.2 Effective mass through energy-momentum expansion

Here, we consider the definition of the effective mass through the energy-momentum
expansion explained in Sect.5.

Proof of Theorem 3 We first pick a trial state to show an upper bound on infz, G(, ¢) which
we use later for the lower bound. For this, we choose ¢ > 0 sufficiently large, such that by
Proposition2.1 (b), there exists a unique (up to translations and phases) pair of minimizers

(Vo> Pa) Of Gy
Proof of the upper bound of (a): It is easy to check that the trial states

Yo =1 — up)hy, Wa +ikp - Hy'Vira,  @o(k) = ga (k) +i(1 = up)ip -k (k)™ g (k)
(5.10)
with the choice
P

(1 - Mp))\p = 3
m + 22 kve=32 By, |13

(5.11)

and (1—pp)®+45 = 1(i.e. u, = O(a~?p?)) satisfy constraint (1.15) (using that H; ' Vi, =
mxy,) and that for large o > g

1¥e — ol < Ca™'p and gy — @olla < Ca™/?p. (5.12)

With these observations, we plug the trail states into the expansion of G, in (3.134) and find

1
G (0. 90) — €a <(1 — 1) A2 ((VllfalH;,fIV%) + gns‘”zk%n%) +0@@™?p?)

(1 —pp)?A2 2070 e ~
= 2” P (m + =5 ke lel%) + 0. 2p?)
-1
2027)3a gy 2 _
= (m + = ke ™2 3y, 13 % +0@™?pY) . (5.13)

Proof of the lower bound of (a): For p < «!/%, it follows from the upper bound and

Corollary 3.2 that for any element (¥, ¢) € Z,, there exists y € R3 and 0, w € (0, 27] such
that

o« ey —vlz = 0@ ) = 'l pa = gl 2, - (5.14)
W.l.o.g. we assume y = 0,6 = 0 and, with (3.145) we consider furthermore w = 0. It
follows from the expansion (3.134) of the energy G,
Go (¥, 9) — €q =(Im 8 [Hose|Im 81) + [l *Im g3 + O (™) . (5.15)
Completing the square, we find with (5.11)
Gu (W, ) — € =(Im &) — ApH_ | Vijry [Hy, [Im 8 — ApH, ! Vijry)
+ (Imgp — )\ps’lk<pa|s|lmgo - Apefll«pa)
+ 2%p (VYa)Im &1 + (ko))
— M (Vi Hose ™ V) — A3 (kga le ™ 1k ga)
+ 0@ 4% . (5.16)
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For the lower bound, we can neglect the first two lines and obtain
G, @) —eq 22xp(1 — pp) ((Vihe)Im 81 + (kgy)Im @)
— A3 (1 = 1) (Vg |Hose ™ IVa) — Ap (k| kgpa)
+ 0@ 4 . (5.17)

For the first line, we use the constraint (ii)p, (5.14) together with Assumption 1.2 and the
trivial bound || V|| < C+/a.The second line, we compute explicitly and obtain

200y S\ P _5/4.3
G, @) —eq = | m+ fllkw oy, 15 X + O0@"p7) . (5.18)

Combining now the upper (5.18) and the lower bound (5.13), we arrive at Theorem 3.
Proof of (b): The corresponding Lagrange functional to the minimization problem is
given by

Lo, @, k) i= Ga (Y, ) = A (Y1iVIY) + (@liklp) —p) —pn (Y I1¥) . (5.19)

Thus any minimizer satisfies the traveling wave equations with velocity A, i.e.

—iddYp = (hy, — ) Vp.  Akigp = egp + 2m)Y 2 avDy, . (5.20)
By definition of the set Z;, in (1.16), Proposition2.3 shows that we can decompose
Vp = Vo + 2481, @p=¢a+1rd (5.21)

with [|81]l2 < Ca='/* and ||e1/285 ||, < Ca!/*. The coercivity estimates from Corollary 3.2
together with the upper bound of part (a) then show

il < Ca™p, and ille!/?82)l2 < Ca™p. (5.22)

Together with the traveling waves equation it follows from constraint (ii), for allp < 1
p = Amegr + O(a™'p?) = Amegr + O (™ 'p?) . (5.23)

Furthermore from the first part of the theorem and Theorem 2, we conclude

Ga (v 9) = Ey + 0@ ?p’) . (5.24)
where (Y, /) denotes a traveling wave with velocity v/ = me_fflp + 0@~ 'p?). O
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