
Vol:.(1234567890)

Psychonomic Bulletin & Review (2024) 31:2724–2736
https://doi.org/10.3758/s13423-024-02520-5

BRIEF REPORT

The neural implausibility of the diffusion decision model doesn’t 
matter for cognitive psychometrics, but the Ornstein‑Uhlenbeck 
model is better

Jia‑Shun Wang1,2 · Christopher Donkin1

Accepted: 25 April 2024 / Published online: 14 May 2024 
© The Author(s) 2024

Abstract
In cognitive psychometrics, the parameters of cognitive models are used as measurements of the processes underlying 
observed behavior. In decision making, the diffusion decision model (DDM) is by far the most commonly used cognitive 
psychometric tool. One concern when using this model is that more recent theoretical accounts of decision-making place 
more emphasis on neural plausibility, and thus incorporate many assumptions not found in the DDM. One such model is the 
Ising Decision Maker (IDM), which builds from the assumption that two pools of neurons with self-excitation and mutual 
inhibition receive perceptual input from external excitatory fields. In this study, we investigate whether the lack of such 
mechanisms in the DDM compromises its ability to measure the processes it does purport to measure. We cross-fit the DDM 
and IDM, and find that the conclusions of DDM would be mostly consistent with those from an analysis using a more neu-
rally plausible model. We also show that the Ornstein-Uhlenbeck Model (OUM) model, a variant of the DDM that includes 
the potential for leakage (or self-excitation), reaches similar conclusions to the DDM regarding the assumptions they share, 
while also sharing an interpretation with the IDM in terms of self-excitation (but not leakage). Since the OUM is relatively 
easy to fit to data, while being able to capture more neurally plausible mechanisms, we propose that it be considered an 
alternative cognitive psychometric tool to the DDM.
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Introduction

In the field of cognition, the study of decision-making pro-
cesses has been a topic of great importance. For relatively 
fast decisions during simple tasks, we typically use reaction 
time (RT) and accuracy (the probability of making a cor-
rect decision as measures of performance). Most successful 
models of such choice RTs and accuracy rates fall into the 
framework of evidence accumulation.

Many of the models within the evidence accumulation 
framework are variations of the diffusion decision model 
(DDM; Ratcliff, 1978; Ratcliff et al., 2016; Ratcliff & Rouder, 

1998). The DDM explains the decision-making process as one 
of accumulating evidence over time until a decision threshold 
is reached and a response is made. Over the years, DDMs have 
been used to understand choices made across a range of para-
digms, tasks, and conditions (Ratcliff, 2006; Ratcliff et al., 
2010; Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004).

One of the most common uses of the DDM is that called 
Cognitive Psychometrics, which refers to using cognitive 
process models as measurement tools to analyze the cogni-
tive processes underlying behavior (Batchelder, 1998). The 
parameters of most cognitive models are assumed to have 
some meaning or interpretation, and in cognitive psychomet-
rics they are used as measures of such things, replacing the 
more standard indicators of performance like mean accuracy 
or mean RT. The DDM has seen extensive use as a cogni-
tive psychometric tool because it has parameters with clear 
interpretations. For example, in perceptual discrimination 
tasks, the drift rate has been used to measure differences in 
sensitivity to visual stimuli among individuals (Batchelder, 
1998). In tasks involving speed-accuracy manipulation, the 
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decision threshold parameter has been employed to study the 
caution in the decision-making process (Ratcliff & Rouder, 
1998). The DDM has also been applied in studies on aging 
and clinical populations, helping to identify cognitive 
changes or impairments in decision-making (Ratcliff et al., 
2003; Wiecki et al., 2015). It is worth noting here that one of 
the main reasons for the widespread use of the DDM is that 
it is relatively easy to fit to behavioral data (a requirement 
for getting parameter estimates).

As the years have progressed, more complex variants 
of the basic DDM have been proposed, such as the Racing 
Diffusion Model, Urgency-Gating Models, DDM with col-
lapsing boundaries, and models that also capture confidence 
responses (Bogacz et al., 2006; Cisek et al., 2009; Ditterich, 
2006, 2006; Drugowitsch et al., 2012; Ratcliff et al., 2016; 
Tillman et al., 2020; Van Den Berg et al., 2016). Many of 
these more complex models were introduced to account for 
patterns of choices and response times that are reliably seen 
in experiments. For example, Ratcliff and Rouder (1998) pro-
posed that the start-point of evidence accumulation changes 
from trial-to-trial to explain the observation that incorrect 
responses are faster than correct responses when trying to 
answer quickly, and vice versa when trying to be accurate.

Our focus here is on another major reason for making 
decision-making models more complex, which is to intro-
duce assumptions that are consistent with the neural and 
biological processes that are thought to underlie decision 
making. It can make sense to include such assumptions, 
since a complete explanation of decision making should 
be consistent with what we have learned from other deci-
sion-making research, even though it is sometimes unclear 
whether such processes have implications for the behavioral 
data observed in decision-making experiments. Some of the 
earliest decision models to focus on being neurally plausi-
ble are the spiking neural network model (Wong & Wang, 
2006) and the Leaky Competing accumulator model (Usher 
& McClelland, 2001). While the spiking neural network 
model was built on the basis of realistic neural circuits, the 
Leaky Competing Accumulator model adds neurally plausi-
ble assumptions, like evidence decay and mutual inhibition, 
to a typical evidence-accumulation model framework.

In what follows we will explore the Ising Decision Maker 
(IDM), which is a more recently proposed neurobiologically 
inspired model of decision-making that draws from princi-
ples in statistical physics (Verdonck & Tuerlinckx, 2014). 
Verdonck and Tuerlinckx (2014) show that a biologically 
plausible decision process, built on self-excitative and mutu-
ally inhibitive neural populations, can be represented as a 
system state in a decision field, with responses being trig-
gered when that state crosses into one of the available detec-
tion boxes. Broadly speaking, the decision process involves 
minimizing energy until the state of the decision system 
corresponds to one of the final choices. These authors 

approximate such a system within a more typical diffusion-
like process, and show how it is related to the neurally plau-
sible models mentioned earlier (i.e., the models in Usher & 
McClelland, 2001, and Wong & Wang, 2006).

From a Cognitive Psychomterics perspective, there are 
two downsides to making our models more complex. The 
first is that the models can become very computationally 
costly, and so cannot be easily fit to data using conveni-
ent optimization algorithms (e.g., Wong & Wang, 2006). 
The second issue is that in any given Cognitive Psycho-
metrics analysis, the data will often not contain the kind 
of information that is necessary to constrain the estimation 
of the parameters of the model (Umakantha et al., 2022). 
This is especially true for something like neural plausibility, 
where the reasons for certain assumptions (e.g., the physi-
cal properties of neurons) may have only subtle and indirect 
consequences on the dependent variables that will be used 
to estimate the model parameters (e.g., response times and 
choices). These issues make such models inappropriate for 
Cognitive Psychometric applications, where we care about 
being able to estimate parameters robustly and with relative 
ease.

Having to rely on easy-to-use and simple models for 
Cognitive Psychometrics raises a potential problem, since 
models that can explain the relevant neural and biological 
data are likely more accurate reflections of the decision-
making process than those that ignore such factors. In other 
words, in an ideal world, our Cognitive Psychometric mod-
els would be equivalent to our best-known explanations of 
all the relevant phenomena (i.e., behavioral data patterns, 
neural plausibility, etc.). With sufficient data to constrain 
the parameters of our most complete models, we could be 
confident that we were drawing the best available inferences 
from a model-based analysis.

As it is, we are faced with a tradeoff, since more neu-
rally plausible assumptions in decision-making models will 
presumably make them more accurate but will often render 
such models useless as Cognitive Psychometric tools. This 
problem is a special case of the bias-variance tradeoff, and it 
leaves us preferring relatively simple models like the DDM 
when the goal is to estimate the parameters of our cogni-
tive models (van Ravenzwaaij et al., 2017). However, if we 
are going to settle for using the simpler models, we should 
worry whether we might make substantially different con-
clusions than had we used more complex models.

The aim of this paper was to address this issue by pro-
viding a systematic comparison between the IDM and the 
DDM. We seek to determine whether the increased neural 
plausibility in the IDM results can lead to significantly dif-
ferent conclusions about decision processes compared to the 
simplest DDM, which is just an unbiased Wiener diffusion 
model. To strike a balance between biological plausibility 
and practicality, we also consider the Ornstein-Uhlenbeck 
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Model (OUM) as a compromise (Busemeyer & Townsend, 
1993). The OUM incorporates some neurally inspired 
assumptions while remaining applicable to data and readily 
usable for cognitive psychometrics. Through this investiga-
tion, we aim to shed light on the trade-offs between model 
complexity, biological plausibility, and the capacity to 
explain decision-making behaviors.

Methods

We use the cross-fitting method using in Matzke and 
Wagenmakers (2009; see also Donkin et al., 2011) to inves-
tigate whether there is one-to-one correspondence between 
the core parameters of IDM and DDM and between that 
of IDM and OUM. Specifically, we will first simulate RT 
and accuracy data from one model, while allowing its core 
parameters to change freely, and fit those data with the other 
model, observing how the parameters of interest capture 
those manipulations. If the change of one core parameter 
in one model only has effect on the analogous parameter in 
the other model and not on the non-analogous parameters, 
we can conclude that there is convergent validity between 
the corresponding parameters in each model. However, if 
changes in one parameter are reflected in multiple param-
eters, then we may have caused to question the validity of 
certain analyses. The code is made available and can be 
accessed via https://​github.​com/​Jiash​un97/​IDM.

The outline of the models

Diffusion model

We are using the simple diffusion decision model in this 
study, shown in Fig. 1a, which assumes a single evidence 
accumulator that diffuses with a constant drift rate and 
Gaussian noise, eventually reaching one of the two bounda-
ries corresponding to the two possible choices in the two-
alternative forced-choice task. The model has an unbiased 
start point and assumes that none of its parameters varies 
across trials, unlike more complete DDM models (i.e., Rat-
cliff, 1978; Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 
2002). This simple DDM has three core parameters: drift 
rate (v), boundary separation (a), and non-decision time 
(Ter). It can be represented by this stochastic differential 
equation: dy = v*dt + c*dW, in which y is the current value 
of evidence accumulation, c is the diffusion constant and W 
is a Wiener process (i.e., the addition of Gaussian noise). 
The process begins at 0.5*a and terminates when y reaches 
either a or 0, and the RT from the model is obtained by add-
ing the non-decision time Ter to this first-passage time (see 
Fig. 1b for an example of the predicted RT distributions from 
the model). The evidence obtained by the DDM accumulator 

at each time step is proportional to the log likelihood ratio of 
the evidence, which corresponds to the drift rate. It can be 
thought of as an optimal decision maker because it imple-
ments the Neyman-Pearson procedure for the free-response 
paradigm (Bogacz et al., 2006).

Ornstein‑Uhlenbeck Model

The Ornstein–Uhlenbeck Model (OUM), shown in Fig. 1c, 
is a simple variation of the DDM that adds an effective leak-
age parameter k, such that the rate of evidence change is not 
constant, but depends on the current state of evidence. The 
OUM has the form dy = (v-k*y)*dt + c*dW. Depending on 
the sign of effective leakage, y can accelerate or decelerate 
toward the response boundary. This parameter is thought 
to be related to reward and punishment in decision making 
(Busemeyer & Townsend, 1993). In all other ways, the OUM 
is the same as the DDM (see Fig. 1d for an example of the 
predicted RT distributions from the OUM).

Ising Decision Maker

The Ising Decision Maker (IDM) assumes two pools of neu-
rons with self-excitation and mutual inhibition, both receiv-
ing external inputs from the stimulus being evaluated (Ver-
donck & Tuerlinckx, 2014). Before we go into the model 
and its parameters in more detail, it is worth noting that the 
IDM has three parameters that have direct analogues in the 
DDM: stimulus distinctness (C), detection box size (h), and 
non-decision time (Ter).

Model architecture  The IDM model consists of two neural 
pools and each pool has 1,000 neurons. One pool of neu-
rons is responsible for evidence accumulation for the first 
response option and the other pool for the second response. 
Each pool receives external inputs (B1 and B2) from the 
task stimulus, has a self-excitation connection to itself, and 
receives inhibitory connection from the other pool.

The dynamics of the activation of the neurons in the IDM 
can be described as a decision state (e.g., a position in a two-
dimensional space shown in Fig. 1e) that acts to minimize a 
third dimension (free energy), where the gradient of motion 
through that space is defined by a free-energy surface (i.e., 
the dotted contour lines in Fig. 1e). A decision is made once 
the decision state enters a certain region, shown as detection 
boxes in Fig. 1e, reflecting sufficient activation of one of the 
two pools of neurons.

Model input  To make the parameterization of the IDM as 
similar to that of the DDM, we can reformulate the two external 
fields (B1, B2) as follows: B1 = Bs(1+C) + Bns, and B2 = Bs(1-
C) + Bns. Then we have stimulus distinctiveness (C), selective 

https://github.com/Jiashun97/IDM
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stimulus strength (Bs), and non-selective stimulus strength (Bns). 
The stimulus distinctiveness is similar to the drift rate in DDM, 
which indicates stimulus quality. For instance, when C = 0, 
indicating an uninformative stimulus, then B1 = B2 = Bs + Bns. 
When the stimulus is absolutely informative (C = 1), we have 
B1 = 2Bs + Bns, and B2 = Bns. The stimulus distinctiveness (C) 
can also go negative, but we only consider the situation where 
C > 0 since the process is symmetric.

Starting position   The model needs to be initialized into a par-
ticular low free-energy state. Here, we always start the model 
at the position (0.2,0.2) since here the energy is low when the 
stimulus has not yet been introduced (see Fig. 2 in Verdonck & 
Tuerlinckx, 2014). The value of 0.2 indicates the proportion of 
correct (and incorrect) evidence that has been collected thus far, 
related to the proportion of neurons activated in the underlying 
network. The choice of value is based on previous applications 
of the model (Verdonck & Tuerlinckx, 2014). After stimulus 
onset, the external fields are activated and the free-energy sur-
face changes shape. At this point, the decision process begins 
and the decision state moves to seek out a newly defined low 
free-energy state.

Macroscopically defined dynamics  For small values 
of the time step parameter Δt and step size parameter σ, 
Verdonck and Tuerlinckx (2014) provide a set of stochastic 
diffusion equations that approximate the dynamics of the 
decision process (see Formula 19 and Appendix C in their 
paper). These equations, similar in form to those for the dif-
fusion decision model and its variants, incrementally update 
the decision state of the system in discrete time and space 
by approximating the gradient of the free-energy surface 
through which the model’s evidence state moves. At each 
time step, the “drift rate” of IDM is calculated based on the 
gradient of the free-energy surface at the current position of 
the system, and the system is updated based on this gradient 
combined with Wiener noise.

A typical decision trial  Before the onset of the stimulus, the 
system stays at the place where the free energy of the surface 
is low (i.e., the start point of evidence accumulation). Once the 
stimulus is on, the free energy surface of the model changes 
dramatically to a polarized landscape, which is shown in 
Fig. 1e. There are two locally stable spontaneous states where 
the decision state wants to reach because of their lower free 
energy, each of which corresponds to one of the two responses. 
A decision is made when the state of the system reaches one 
of the two detection boxes corresponding to the two possi-
ble choices. A non-decision time is added to this first-passage 
time to yield a predicted RT. The black wiggly line in Fig. 1e 
depicts the trajectory of the system and Fig. 1f shows an exam-
ple of correct and incorrect RT distribution of the IDM.

Simulating data from the models  Before we go into details 
on the specific methods for each model, the following was 
true for all models. For a given set of data, a set of parameter 
values must be chosen. For any parameter that varied across 
simulations, its value was drawn from a uniform distribution 
with a prespecified range (given in Tables 1, 2 and 3). When 
simulating data from a given model and a particular set of 
parameter values, we simulated 1,000 two-alternative forced-
choice decisions. This process yields two distributions of RTs, 
one for each response (when the proportion of choices for 
either response is not 1). Any data set in which the choice 
proportion of a response was 1 was excluded, because we do 
not expect any individuals to exhibit perfect performance in 
1,000 trials. In a similar attempt to restrict our analysis to data 
sets that are like what is usually done in practice, any simu-
lated RTs greater than 3 s were excluded before any fitting was 
performed. In the analyses in the main text, the proportion of 
valid trials above 95% for all simulated data sets.

DDM simulation

The DDM data were simulated using custom-made code. 
The DDM has three core parameters: drift rate (v), boundary 

Fig. 1   Illustrations of one decision trial in each of the three decision-
making models we consider. (a) Drift-Diffusion Model (DDM): The 
wiggly line shows the evidence accumulation process. The aver-
age rate of evidence accumulation is the drift rate (blue). A correct 
decision is made when the system reaches the boundary of the cor-
rect option (green), and an incorrect decision is made when it reaches 
the boundary of the incorrect option (red). (b) The simulated reac-
tion time (RT) distribution of DDM for correct (green) and incorrect 
responses (red). The smooth curve is obtained by applying a kernel 
density estimation method to data simulated from the model. We used 
the following parameter values:  v = 1, a = 0.5, ter = 0.3. (c) Orn-
stein-Uhlenbeck Model (OUM): All three parameters are the same as 
those in DDM, but there is another parameter called effective leakage 
(or self-excitation). Unlike the constant drift rate in DDM, evidence 
accumulation in the OUM changes according to the state of the evi-
dence accumulation. The drift rate (v) and the effective leakage (k) 
are combined into the effective drift rate (v-kx), which also depends 
on the evidence accumulated at that time step. The arrow (in brown) 
showing of the effect of effective leakage in the figure only serves for 
illustration purpose. (d) The simulated RT distribution of OUM for 
correct (green) and incorrect responses (red). We used the following 
parameter values: v = 1, a = 0.5, Ter = 0.3, k = 3. The difference 
between panels (b) and (d) is due to the introduction of effective leak-
age in the OUM. (e) Ising Decision Maker (IDM): Unlike DDM or 
OUM, the IDM decision variable has two dimensions. A decision 
is made when the system crosses one of the detection boxes (green 
for correct and red for incorrect). Grey dotted lines indicate the con-
tours of free energy of the system. The system tends to stay in an area 
where the free energy is low. There are two local minima in the fig-
ure: the upper left one and the lower right one. The lower right one 
is deeper because it stands for the correct choice. (f) The simulated 
RT distribution of IDM for correct (green) and incorrect responses 
(red). The parameters of the IDM were chosen to generate data like 
the DDM, based on the results of our cross-fitting analysis reported 
below (C = 0.1658, h = 0.5951, Ter = 0.2648, D = 0.0111, W+ and 
W- fixed to 52500 and 8400, respectively)

◂
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separation (a), and non-decision time (Ter). All core param-
eters were randomly generated from uniform distributions 
with certain ranges, and other parameters were fixed to the 
default values given in Table 1. We generated 100 sets of 
parameters from a uniform distribution in one simulation 

round. For each simulation round with one set of parameters, 
the data of 1,000 trials were generated from the model. If the 
decision was not made after 3 s, the state was recorded as 
unfinished and removed from subsequent analysis.

Fig. 2    Results of fitting the Drift-Decision Model (DDM) to Ising 
Decision Maker (IDM)   data. The horizontal axes show the core 
parameters in IDM and the   vertical axes shows the analogous 

parameters in DDM. Subplots in the diagonal show the relationship   
between the corresponding parameters. Off-diagonal subplots show 
the relationship between other noncorresponding parameters

Table 1   Parameter values of the Drift-Diffusion Model (DDM) used 
for simulation and model fitting

Parameter Description Simulation range Fitting range

v Drift Rate 0–4 0–6
a Boundary Separation 0.5–2 0.2–2
Ter Non-decision Time 0.2–0.5 0.1–1

Table 2   Parameter values of the Ornstein-Uhlenbeck Model (OUM) 
used for simulation and model fitting

Parameter Description Simulation range Fitting range

v Drift Rate 0–4 0–6
a Boundary Separation 0.5–2 0.2–2
Ter Non-decision Time 0.2–0.5 0.1–1
k Effective Inhibition -5–5 -15–15
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OUM simulation

The OUM data were also simulated using custom-made 
code. The OUM has four core parameters: drift rate (v), 
boundary separation (a), non-decision time (Ter), and effec-
tive leakage or self-excitation (k). All core parameters were 
randomly generated from uniform distributions with certain 
ranges and other parameters were fixed to the default values 
given in Table 2. We generated 100 sets of parameters from 
a uniform distribution.

IDM simulation

The IDM data were also simulated using the custom-made 
code. We used the IDM designed for two-alternative forced-
choice tasks, which has a number of parameters that are 
always fixed when fitting the model to data. The values of 
these fixed parameters were set at values given in Table 1 in 
Verdonck and Tuerlinckx (2014). The default parameters are 
chosen because they can give rise to a decision field that can 
generate common dynamics of decisional evidence in simple 
decision-making tasks. Other patterns of the decision field 
can be found in Verdonck and Tuerlinckx (2014), Fig. 6.

The IDM we used has six core parameters: stimulus dis-
tinctness (C), detection box size (h), non-decison time (Ter), 
diffusion constant (D), self-excitation (W+), and mutual 
inhibition (W-). For the first cross-fitting analysis of IDM 
and DDM, only the first three varied and the other three 
were fixed according to the values given in Table 3. We ini-
tially hoped that the diffusion constant would be fixed in all 
cross fitting; however, we found that when fitting the IDM to 
DDM data, changing this parameter affects the identification 
of the detection box parameter (as shown in Online Sup-
plementary Material (OSM) Figs. 2 and  3). Since we didn’t 
know what value to fix it to, we let the diffusion constant be 
free to vary parameter when fitting the IDM.

For the second cross-fitting analysis of IDM and OUM, 
all the six core parameters are free to vary in data simulation. 
Since the self-excitation and mutual inhibition parameters 
of the IDM could relate to effective leakage parameter in 
the OUM, they were free to vary. For each simulation round 
with one set of parameters, the data of 1,000 trials were gen-
erated from the model. Every simulated trial started from the 
same starting point (0.2, 0.2), once the system crosses one of 
the detection boxes, the decision will be made if the detec-
tion boxes do not overlap at that point. If overlapped, the 
system will remain in the state of undecided and continue 
until only one of the detection boxes is crossed.

If the decision was not made after 3 s, the state was 
recorded as unfinished and removed from subsequent anal-
ysis. Finally, the mean activity of the two neural popula-
tions were clamped to the range of 0.001 and 0.999 for 
numerical stability.

Model fitting

DDM and OUM fitting

To fit the DDM, we use the analytical method to obtain the 
likelihood of the full RT distribution using the Python pack-
age PyDDM (Shinn et al., 2020). We use differential evolu-
tion as the optimization algorithm, with robust BIC as the 
objective function. The robust BIC differs from BIC because 
it sets a minimal value (1e-20) for the likelihood to prevent 
infinite negative log likelihood (Shinn et al., 2020), which 
means if the likelihood is lower than this, it will be set to 
the minimum value. We estimated three DDM parameters: 
drift rate, boundary separation, and non-decision time. The 
ranges of the parameters we gave to the differential evolution 
optimizer are provided in Table 1.

To fit the OUM we use the approximation method imple-
mented in the Python package PyDDM (Shinn et al., 2020). 
We again use differential evolution to optimize robust BIC to 
fit the model to data. We estimated four OU model parame-
ters: input strength, boundary separation, non-decision time, 
and effective leakage. The ranges of these parameters used 
in the optimizer can be found in Table 2.

IDM fitting

We use the Mixed Neural Likelihood Estimation to fit the 
IDM to data (Boelts et al., 2022). This method uses a neural 
network to approximate the model likelihood, based on data 
simulated from the IDM. The training of this neural network 
has two steps: the aforementioned code is used to simulate 
training data sets that are used to train a conditional neural 
likelihood estimator that learns the relationship between the 
parameters of the IDM and the simulated data (i.e., RT and 
accuracy). After training, a joint density estimator can be used 
to give the likelihood of the model, so that parameter values 
can be inferred from empirical data using MCMC methods.

In the main body of the manuscript, we estimate four 
parameters of the IDM: stimulus distinctness (C), detec-
tion box size (h), non-decision time (Ter), and diffusion 
constant (D). The range of the parameters can be found 
in the Table 3. We chose to estimate D because fixing it 
led to much worse fits to data, as shown in OSM Fig. 6. 
The figure shows the detection box size of the IDM can 
only be mapped onto a small range (less than one-third of 
the specified range) of boundary separation in the DDM. 
Therefore, it is better to allow the diffusion constant free 
to vary as a scaling parameter. When fitting the IDM to 
DDM data, we present the results in which the leakage 
and inhibition parameters of the IDM are set at fixed val-
ues, but the results with all six parameters free to vary 
are also shown in OSM Fig. 7 (the same pattern emerges, 
albeit with more noise).
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Hyperparameters and training settings  When training the 
neural network(s) that are used for fitting, we use 106 simulated 
trials. Two neural networks are trained, both of which have of 
five layers and 200 neurons each. The neural network training 

was performed using the sbi package (Tejero-Cantero et al., 2020) 
with the following hyperparameters: learning rate 0.0005, training 
batch size 1000, 90%/10% training/validation split. The training 
converges if the validation loss does not improve after 20 epochs.

Fig. 3   Results of fitting Ising Decision Maker (IDM) to Drift-Deci-
sion Model (DDM)  data. The horizontal axes show the core param-
eters in the DDM, and the vertical axes shows the analogous param-

eters in IDM. Subplots in the diagonal show the relationship between 
the corresponding parameters. Off-diagonal subplots show the rela-
tionship between other parameters
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Results

Cross‑fitting of IDM and DDM

The simulated data from one model was then fit with the 
other model to investigate the correspondence relation-
ship between the two. First, since we are interested in the 
relationship between IDM and DDM, we fit DDM to the 
data generated by IDM and vice versa. The goal of this 
analysis is to determine whether the extra assumptions in 
the IDM influence the interpretation of the parameters 
that it shares with the simpler DDM. Second, we are also 
interested in the relationship between IDM and OUM, so 
fit OUM to data generated from IDM. Here, we are look-
ing at the convergent validity of the parameters that are 
absent from the simplest evidence-accumulation models, 
like the DDM. Namely, do the OUM and IDM agree in 
terms of the interpretation of the leakage parameter in 
both models.

Fitting DDM to IDM data

In the first part of our cross-fitting analysis, the DDM was 
fitted to data simulated from the IDM. Figure 4 shows the 
effect of changing the IDM parameters on the fitted DDM 
parameters. The three subplots on the diagonal of Fig. 4 
show the relationship between analogous parameters of 
IDM and DDM, and the other subplots show the relationship 
between non-analogous parameters of both models.

From the left and the right columns of Fig. 4 we can 
see the changes in stimulus distinctness and non-decision 

time in IDM correspond exclusively to the changes in drift 
rate and non-decision time in DDM. For example, when the 
stimulus distinctness in IDM increases from 0 to 1, the esti-
mated drift rate in DDM also linearly increases from 0 to 
5, while the other DDM parameters (boundary separation 
and non-decision time) do not change. The effect of chang-
ing non-decision time was even simpler, such that changes 
in the IDM value have an almost identical mapping to the 
estimated non-decision time in DDM.

The middle column of Fig. 4 shows the effect of changing 
the detection box size in IDM on the three core parameters in 
DDM. When the detection box size in IDM changes from 0.2 
to 0.6, the boundary separation parameter in DDM decreases 
from 0.4 to 0.3. Unlike the other parameters, however, the 
detection box size in the IDM has a nonlinear relationship 
with boundary separation in the DDM, with the relationship 
between the two parameters being much clearer for larger 
values of detection box size. Importantly, detection box size 
does not have any obvious effect on the other two DDM 
parameters.

Overall, we find that the core parameters of the DDM and 
IDM seem to correspond nicely. This result is encouraging, 
given that the DDM does not make the complex assump-
tions regarding the stimulus strength and the detection box 
in the IDM.

Fitting IDM to DDM data

We now fit the IDM to data simulated from the DDM. The pat-
tern was similar to the previous result, but was noisier. Presum-
ably, this is because the IDM has more complex assumptions 

Table 3   Parameter values of the Ising Decision Maker (IDM) used for simulation and model fitting

Fixed value indicates same parameter values in simulation and fitting. Numbers written in the form a–b reflect ranges, and single values reflect 
values that were fixed (for either simulation or fitting)
*These values are fixed for the three- and four-parameter version of the IDM

Parameter Description Fixed value Simulation Fitting

Θ Internal threshold 51450
N Total number of neurons 2000
β Inverse temperature 1/24
Δt Time step 1 ms
D Diffusion Constant 0.05 0.05 0.01-0.1
Bns Baseline Strength of the External Field 2000
Bs Input Strength 500 500 700
C Stimulus Distinctness 0.5 0–1 0–1
h Detection box size 0.4 0.2–0.6 0.2–0.6
Ter Non-decision time 0.4 0.2–0.5 0.1–1
W+ Self-excitation 52500* 51000–52500 51000–52500
W- Mutual inhibition 8400* 8200–8600 8000–8800
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and more parameters than the DDM, and so it is more difficult 
to identify its parameters (see OSM Figs. 3 and 5).

Figure 2 shows the relationship between the three core 
parameters in the DDM and three analogous parameters in the 
IDM (plus the diffusion coefficient). From the left column and 
the right column, we can see that the relationship between drift 
rate and non-decision time in the DDM and stimulus distinct-
ness and non-decision time in IDM, respectively, is linear but 
noisy. Importantly, these parameters in the DDM do not seem to 
systematically affect the non-analogues parameters in the IDM.

As for the boundary separation parameter in DDM, from the 
middle column in Fig. 2 we can see that there is a relationship 
with the detection box size parameter in IDM, but not stimu-
lus distinctness or non-decision time. Interestingly, the IDM’s 
diffusion constant parameter in the bottom row also decreases 
when the boundary separation parameter increases. That is, the 
diffusion coefficient seems to capture valid information from 

DDM’s boundary separation parameter. OSM Fig. 6 shows that 
if the diffusion coefficient is fixed, then the relationship between 
boundary separation and detection box size is much less clear.

To sum up, fitting the IDM to DDM data revealed a mostly 
similar pattern to what we saw in the preceding section. How-
ever, we again see that detection box size and boundary sepa-
ration have the least clearly equivalent relationship. That said, 
the degree of overlap is impressive given the vastly more com-
plex assumptions in IDM compared to the DDM.

Cross‑fitting of IDM and OUM

Fitting OUM to IDM data

Figure 4 plots the results of fitting OUM to data simulated 
from the IDM. Looking first at the “core” parameters of 

Fig. 4   Results of fitting Ornstein-Uhlenbeck Model (OUM) to 
Ising Decision Maker (IDM) data. The horizontal axes show the 
core parameters in IDM and the vertical axes shows the analogous 

parameters in OUM. Subplots in the diagonal show the relationship 
between the corresponding parameters. Off-diagonal subplots show 
the relationship between other parameters
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drift rate, boundary separation, and non-decision time, we 
see that there is a selective and linear relationship between 
stimulus distinctness in IDM and drift rate in OUM, as well 
as for non-decision time in both models. The relationship 
between detection box size in the IDM and boundary sepa-
ration in the OUM is mostly linear, and it is reassuring that 
changes in box size do not clearly map onto any other param-
eter of the OUM.

In terms of the more “complex” assumptions, we also see 
a relationship between self-excitation in the IDM and leak-
age in the OUM. We see that for values of self-excitation 
above the internal threshold value of 51450 (see Table 3), 
the effective leakage parameter k in OUM is negative. This 
result makes sense, since self-excitation values above thresh-
old (W+ > Θ) and negative effective leakage (k < 0) both 
ambiguously correspond to the idea of self-excitation. It is 
also worth noting that for this part of the simulated data (and 
fits), the relationship between the IDM and OUM parameters 
is clear, linear, and strong (r(54) = -.89, p < .001, if we focus 
on only the data where k < 0). If we now look at values of 
self-excitation below threshold, we see that values of k are 
now positive, since both parameters now reflect effective 
leakage of activation. However, surprisingly, we see that the 
relationship between the IDM and OUM parameters practi-
cally disappears. For example, the correlation between the 
two parameters shrinks to -0.29 (r(46) = -.29, p = .048) if 
we look at simulations where k > 0, and what relationship 
there is likely carried by one unusual data point. Indeed, if 
we instead split the data based on whether the self-excitation 
parameter is above or below the internal threshold, then the 
correlation between parameters is only -0.01 (r(39) = -.01, 
p = .951) when we focus on the “leakage” simulations (i.e., 
where W+ < Θ ).

To sum up, we find that the OUM leakage parameter cor-
responds to the IDM self-excitation parameter only when it 
reflects a self-excitation process. We return to the implica-
tions of this for cognitive psychometric applications of the 
OUM in the Discussion below. Finally, we see no noticeable 
relationship between mutual inhibition in the IDM and any 
of the parameters in the OUM.

In summary, the corresponding parameters related to 
stimulus strength, non-decision time, and self-excitation/
leakage have linear relationships between IDM and OUM. 
Interestingly, the relationship between boundary separation 
and detection box size appeared to be much clearer for the 
OUM and IDM than it was for the DDM. One possible rea-
son could be that the nonlinear relationship between detec-
tion box size in the IDM and boundary separation in the 
DDM was due to the influence of the mutual inhibition and 
self-excitation parameters in the IDM. Because the OUM 
could account for any effect of these parameters with its own 
leakage (self-excitation) parameter, it seemed more selec-
tively influenced by detection box size.

It was perhaps surprising to see no influence of the mutual 
inhibition parameter on any of the parameters of the OUM. 
However, we found in parameter recovery studies that the 
IDM was unable to recover its mutual inhibition parameter 
(see OSM Fig. 4). As such, it may not be a property of the 
role of mutual inhibition in the IDM theoretical framework, 
but more that this parameter has no systematic influence on 
RT and accuracy rates.

Finally, it is worth noting that OSM Fig. 8 shows the fit 
of IDM to OUM data. The IDM has six free parameters, 
and so the parameters are estimated rather noisily. We see 
a similar pattern of results that we saw when fitting IDM to 
DDM data, including the fact that both the diffusion coef-
ficient and detection box size are influenced by changes in 
boundary separation. We also see those changes in the leak-
age parameter of the OUM is captured by changes in the 
self-excitation parameter of the IDM, but also by the dif-
fusion coefficient. However, we again emphasize that the 
relationships between parameters are rather noisy, and we 
encourage that any attempt to use IDM in a cognitive psy-
chometric exercise be accompanied by rigorous parameter 
recovery studies.

Discussion

This study provides preliminary evidence that the simplifying 
assumptions of models like the DDM and OUM do not com-
promise their ability to estimate their core parameters. We see 
the parameters in IDM that share interpretations with those 
in the DDM also have a similar impact on their predictions 
for data. More specifically, the drift rate and non-decision-
time parameters in the DDM can be readily interpreted like 
stimulus distinctiveness and non-decision-time in the IDM. 
The results are a little less clear for boundary separation in 
the DDM and detection box size in the IDM. Though detec-
tion box size has no obvious relationship with the other DDM 
parameters, it has a non-linear relationship with boundary 
separation, and suggests that perhaps the latter is a less sensi-
tive measure to changes in caution (for want of a better term).

Interestingly, we found that the correspondence between 
OUM and IDM parameters was slightly better than between 
the DDM and IDM parameters. We see that the boundary 
separation parameter in the OUM has a more obviously lin-
ear relationship with detection box size in the IDM, and thus 
seems to offer a more sensitive measure of caution than in 
the DDM. One interesting conclusion of these results seems 
to be, therefore, that the OUM could be a better cognitive 
psychometric tool than the DDM – at least if we assume that 
more neurally plausible models such as the IDM are also 
more accurate models of decision-making.

Furthermore, we also see that the more complex assump-
tion of self-excitation also shares a kind of “convergent 
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validity” across the OUM and IDM, with the effective leak-
age parameter of the OUM and self-excitation parameter 
of the IDM having a similar influence on choices and RTs 
(indeed, this is foreshadowed in Figs. 1b, 1d, and 1f, compar-
ing the shapes of RT distributions across the three models). 
This correspondence between self-excitation and effective 
leakage may have an implication for how we interpret this 
parameter. Throughout, we have referred to the k parameter 
in the OUM as effective leakage, in line with its typical role 
as a parameter that reduces the effective drift rate, so that 
the RT distribution will have a longer tail (Busemeyer & 
Townsend, 1993). We have shown, however, that the effec-
tive leakage parameter in OUM has better correspondence to 
the self-excitation in IDM when the “leakage” parameter is 
negative, resulting in a “self-excitation” effect. This means 
that instead of a longer tail, OUM with self-excitation can 
accelerate the evidence accumulation, leading to an RT dis-
tribution with a shorter tail. Our results suggest a revised 
interpretation of the OUM’s leakage parameter in cognitive 
psychometric applications of the model.

One might worry about the fact that we used different 
methods for fitting the IDM (MNLE) and the DDM and 
OUM models (likelihood-based methods). We could have 
used MNLE for the DDM and OUM, but this yields noisier 
parameter estimates than the likelihood-based method we 
were able to use, because DDM and OUM have known 
approximations for their likelihood functions. Since we 
would use the best available fitting method in any cogni-
tive psychometric analysis, we thought it more important 
to reflect that aspect of reality than to control for fitting 
method and thus worsen our ability to measure DDM and 
OUM parameters. Similarly, it is likely possible to improve 
parameter estimation for the IDM by expending more com-
putational resources. For example, perhaps mutual inhibition 
could be recovered better with a better trained neural net-
work. However, it is important to note that in any evaluation 
of a model for use in Cognitive Psychometrics, the model 
and the fitting methods be evaluated together, since one of 
the reasons for using the simpler models in cognitive psy-
chometrics is the fact that the more complex models require 
less efficient and less ideal fitting methods.

Our results also suggest that more work is needed to 
understand the impact of the more complex assumptions 
made by more neurally plausible decision-making models. 
For example, the mutual inhibition parameter in IDM is hard 
to recover, just like the self-excitation and inhibition param-
eters in the LCA (Miletić et al., 2017). Mutual inhibition 
can be recovered if it is the only parameter that varies, as 
shown in OSM Fig. 1. However, when both mutual inhibi-
tion and self-excitation are varied, then the ability to recover 
the parameter vanishes (see OSM Fig. 4), suggesting that 
self-excitation masks the effect of mutual inhibition. Further 

investigation is needed to disentangle the two theoretical 
concepts.

Finally, it is worth noting that the results here also only 
speak to just two of the ways in which decision-making mod-
els have become more neurally plausible (i.e., self-excitation 
and inhibition). Other work has looked at the relationship 
between other neurally plausible models, such as the spik-
ing neural network model (Umakantha et al., 2022). Others 
still have proposed other theoretical mechanisms of deci-
sion making, such as urgency signals and collapsing bounds 
(Smith & Ratcliff, 2022). More work is needed to determine 
whether such factors can impact the appropriateness of the 
DDM or OUM as cognitive psychometric models.

In conclusion, this paper explores a critical issue in the 
realm of decision-making research, which is the balance 
between biological plausibility and practicality. The IDM, as 
a neurobiologically inspired model, aims for greater biologi-
cal plausibility but as a result faces pragmatic computational 
challenges. The OUM is offered as a compromise between 
biological plausibility and practicality, seeming to offer a 
valid cognitive psychometric tool while also capturing one 
of the more neurally plausible assumptions. That said, the 
equivalence between the parameters of the DDM and the 
IDM is rather impressive given their relatively large differ-
ences in theoretical assumptions.
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