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Abstract
Pricing drives demand for service industries such as air transport, hotels, and car rentals. To optimise the price, firms have

to predict real-time customer demand at the micro level and optimise the price. This paper contributes to revenue

management by introducing a nonparametric statistical approach to predict price-sensitive demand and its application to

continuous pricing. Continuous pricing lets service companies maximise revenue by using customers’ willingness to pay.

However, it requires accurate demand estimations, particularly of customers’ price sensitivity. This paper introduces an

augmented generalised additive model to estimate price sensitivity, which identifies substantial variations in price sensi-

tivity, exceeds the predictive performance of state-of-the-art alternatives, and controls for price endogeneity. In addition,

the demand model has variable price derivatives enabling continuous pricing. The proposed approach offers a simple and

efficient way to implement continuous pricing with a closed-form solution. Our research also highlights the relevance of

considering the problem of price endogeneity when estimating price-sensitive demand based on observations from prior

pricing decisions. We demonstrate how continuous pricing is applied using empirical airline ticket data. We document a

field study, which shows a revenue increase of 6% on average, and outline how the approach applies to turbulent market

conditions caused by the COVID-19 pandemic, the surge in inflation since mid-2021, and the start of the Ukraine war in

April 2022.

Keywords Price-sensitivity � Dynamic pricing � Nonparametric demand forecasting � Poisson process � Price endogeneity �
Revenue management � COVID-19 � Turbulent market conditions

Introduction

Airlines want to reduce distribution costs and increase

control of the offered content (Bingemer 2018). In doing so

airlines have focused on revolutionizing how their products

are retailed and distributed (IATA 2018). From the pas-

sengers’ point of view, the airline initiative leads to a new

shopping experience with more personalized offers (Witt-

man and Belobaba 2017), increased accuracy in pric-

ing (Wittman and Belobaba 2019), and more convenient

customer touch points (Sankaranarayanan and Lalchandani

2019) to sell new and customized products.

For airlines to leverage the newfound flexibility to

increase their profitability, changes to the revenue man-

agement methodology (such as continuous pricing) are

required that can quickly adopted in practice. Particularly,

the past years highlight the airline’s need to quickly adapt

to changing market conditions. Since the beginning of

& Felix Meyer

fm1000@gmx.de

https://www.wisostat.statistik.uni-muenchen.de
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2020, the global COVID-19 pandemic has led to an

unprecedented crisis in the global aviation industry. In mid-

2021, the rapid surge in inflation caused huge concerns for

the global economy. Most recently, the Ukraine war in

April 2022 and the Isreal-Hamas-war in 2023 have added

additional complexity and uncertainty to the market. These

events underscore the need for alternative approaches and

careful consideration when analyzing current market con-

ditions. From an airline operations perspective, all the

revenue management systems depending on demand-fore-

casting models for price optimization need to be corrected

as they rely on data recorded before the start of market

turbulences.

This paper demonstrates to airline managers a

method to optimize revenue in a discrete (booking

class-based) and continuous pricing context that can be

easily applied using a closed-form optimal pricing

solution. Given that the proposed methodology offers

unique insights into how passenger demand and price

elasticity change by analyzing data gathered during

turbulent times, such as the COVID-19 pandemic, it

shows airline practitioners how their pricing can be

controlled during turbulent market conditions. Finally,

the paper shares a large field study with airline prac-

titioners, showing how the proposed method performed

in a real-world environment and its ability to increase

revenue by 6% on average.

From a technical point of view, our work contributes to

the literature on service demand estimation and pricing by

extending the class of nonparametric models by augment-

ing the generalised additive model framework (e.g. Wood

2017), combined with monotonicity constraints (Pya and

Wood 2014) and ANOVA type interactions (Lee and

Durbán 2011), which also corrects for price endogeneity.

Considering competing approaches, which include the

parametric model of Fiig et al. (2014), the nonparametric

model of Vulcano et al. (2012), and the heuristic

of Weatherford and Pölt (2002), we show that our

approach yields superior forecasting accuracy using

empirical airline data.

In the remainder of this paper, ‘‘Literature review on

demand estimation and dynamic pricing’’ section reviews

related literature on demand estimation and dynamic

pricing. ‘‘Statistical model and estimation’’ section out-

lines the model. ‘‘Empirical data’’ section discusses

applying the model to empirical airline data. ‘‘Dynamic

pricing’’ section presents a dynamic pricing algorithm.

The practical applicability of our approach within the

airline industry is highlighted within ‘‘Dynamic pricing’’

section. Finally, ‘‘Conclusion’’ section concludes the

paper.

Literature review on demand estimation
and dynamic pricing

The literature on demand estimation given functional

structures can be categorised into two groups. The first

group includes parametric and linear models, which

implicitly assume constant price sensitivity. An example is

the parametric, multiplicative, and non-linear forecast

model (FCST) of Fiig et al. (2014). In FCST, the upsell

probability captures price sensitivity and is assumed to be

independent of other confounders. To model a customer

choice, multinomial logit (MNL) models are proposed

by Vulcano et al. (2010), Newman et al. (2014), Dai et al.

(2014), and Xie et al. (2016). All these approaches assume

a linear relationship between covariates and the utility

defining the choice probability.

The second group represents nonparametric techniques

that allow for more complex concepts of price sensitivity.

Relaxing the linearity assumption, Vulcano et al. (2012)

introduces a nonparametric approach based on the expec-

tation maximisation (EM) algorithm. They employ a mix-

ture of a Poisson- and MNL distribution, where a

multinomial utility choice model links the booking deci-

sion to a choice probability. The model also differentiates

primary and secondary demand, i.e., assuming customers‘

first choice to be available.

Similar to related work of Arandia (2013) and Wu and

Akbarov (2012), we model customer arrivals by a nonho-

mogeneous Poisson process (NHPP). Thus, the Poisson

intensity defines the expected number of arrivals per day.

The Poisson intensity is modelled as a function of covari-

ates and accounts for variable price sensitivity. Already,

several contributions focus on NHPP and propose data-

driven techniques to capture a dynamic arrival rate while

abandoning pre-defined functional structures. To model the

NHPP’s cumulative intensity function nonparametri-

cally, Leemis (1991) proposes piecewise-linear interpola-

tion. Zhang and Kou (2010) analyse the doubly stochastic

Poisson process (or Cox process) and show that nonpara-

metric kernel functions improve the fit for high arrival

rates. Beyond parametric or nonparametric demand func-

tions, heuristics use imputation when demand observations

are censored. In revenue management, this challenge arises

when the product is not offered during part of the sales

horizon. In such situations, Weatherford and Pölt (2002)

proposed substituting demand with the mean number of

bookings.

The (dynamic) pricing literature also discusses para-

metric versus nonparametric demand estimation approa-

ches. Given Poisson-distributed customer arrivals, where a

Bernoulli variable defines the purchase probabil-

ity, Avramidis (2013) proposes a way to estimate arrival

154 F. Meyer et al.



rates and purchase probabilities. The authors show their

approach can outperform the estimator introduced in Bes-

bes and Zeevi (2009). Given a linear demand-price rela-

tionship, Keskin and Zeevi (2014) proposes the greedy

iterative least squares (GILS) approach. Extending this

work, Besbes and Zeevi (2015) shows that assuming a

linear price-demand relationship does not significantly

diminish revenue under reasonably general conditions.

Including additional covariates such as market expendi-

tures, geographical information, and socio-economic attri-

butes, Qiang and Bayati (2016) extend the GILS approach.

Also, assuming linearity for every covariate, the authors

show asymptotically optimal performance.

Abandoning the linearity assumption, Farias et al.

(2013) captures customers’ choice behaviour to predict

revenue gains. The authors conclude that nonparametric

techniques are better suited for large-scale automatization

as they rely on something other than expert information.

Proposing a nonparametric method that uses B-splines for

approximation, Chen et al. (2014) claims that nonpara-

metric techniques are asymptotically robust if the demand

function is sufficiently smooth. The authors also show that

misspecified parametric methods can cause substantial

revenue losses.

Here, we propose differentiating models based on their

demand function as seen in den Boer (2015). The demand

function may be static or dynamic. Unlike static demand

functions, where changes in pricing are motivated by limited

capacity, wemodel demandvia uni- and bivariate functions of

price and other covariates. This setting renders the demand

functiondynamics for confoundingvariables such as time.We

contribute to nonparametric dynamic pricing by non-linear

relationships of demand and price to confounding variables,

which can also influence price sensitivity. We achieve this

goal via a bivariate and penalized B-spline setting. The

resulting dynamic pricing algorithm relies on price deriva-

tives, which change dynamically over confounding variables.

To consider scarce capacity, we assume known opportunity

cost to evaluate the margin and cost component separately.

This assumption enables subsequent optimization steps to

consider separate capacity allocation and revenue maxi-

mization. Revenue maximization solves a Cournot-type price

optimization problem. Pölt et al. (2018) describes a similar

concept, concentrating on capacity allocation.

Our work also contributes to research on price endo-

geneity. Price endogeneity causes biased sensitivity esti-

mates: Mumbower et al. (2014), Lo et al. (2015), and

Petrin and Train (2010) show that ignoring price endo-

geneity means underestimating the price coefficient. Typ-

ically, instrument variables are suggested to cure

endogeneity. Usually, the instrument variable is a linear

combination of (presumably) exogenous variables. Given a

fitting instrument variable, unbiased estimates result from a

two-staged estimation procedure (Davidson and MacKin-

non 1999).

In recent times, driven by the COVID-19 pandemic, the

surge in inflation since mid-2021, and the start of the

Ukraine war in April 2022, the models’ capability to adjust

to changing market conditions has become an important

feature. As described by Yeoman (2021), airlines need to

accept COVID-19 as the new norm until the coronavirus

pandemic disappears from this planet. Yeoman (2022),

analyses the impact of the Ukraine war and inflation on

price sensitivity and demand. To adjust how revenue

management is performed, Vinod (2021) suggests moni-

toring key revenue management metrics and taking cor-

rective action with demand and supply levers to make the

revenue plan happen. To perform corrective actions using

the presented model framework of this paper, Bonciolini

(2022) presented a price elasticity monitoring method that

automatically adjusts price elasticity estimates. Similarly to

adjustments to price elasticity, Pinheiro et al. (2022)

introduced a shock detector to identify positive and nega-

tive shocks in demand volume and willingness-to-pay.

Besides applying adjustments as proposed by Bonciolini

(2022), our work shows that the changing market condi-

tions caused by the COVID-19 pandemic can be considered

by adding additional functions to the model.

Statistical model and estimation

This section outlines the statistical model class and intro-

duces parameter estimation based on a penalised likelihood

procedure (e.g. Eilers and Marx 1996). The proposed

approach considers multivariate functional dependencies

between price and additional covariates to capture the

unknown structure of price sensitivity. However, it does not

assume a known functional form but approximates func-

tional components via penalised splines. A penalised spline

approximates an unknown function by a linear combination

of basis functions. Common bases are B-splines (de Boor

1978), cubic (Gu 2002, p. 2) or, thin-plate splines (Wood

2017, p. 150). We refer toWood (2017) for technical details

and to Marx et al. (2016) for a general overview.

To improve the validity of price-sensitivity esti-

mates (Tutz and Leitenstorfer 2007) and to disentangle

changes in the volume of demand and related pricing

effects, the proposed method combines the penalised

smoothing spline ANOVA type interaction model of Lee

and Durbán (2011) with the shape-constrained generalised

additive model framework of Pya and Wood (2014).

Similar to Blundell et al. (2012) or Brezger and Steiner

(2008), a monotonicity constraint on functions that contain

price is imposed, ensuring that demand decreases when

price increases.
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Model development

Let index i ¼ 1; . . .;M describe a flight connection

between two cities, where M represents the total number of

flights to be analysed. Let NiðtÞ define the number of

accumulated bookings for flight i at the time

t 2 topeni ; tclosei

� �
, where the interval represents the sales

horizon during which flight i is offered. Indexing topeni and

tclosei of the sales horizon by i allows for individual sales

horizons per flight. We assume that Niðtopeni Þ � 0, i.e., there

are no observed bookings at the beginning of the sales

horizon.

We model the accumulated bookings NiðtÞ as a Poisson

process, such that the increments, NiðtÞ � Niðt � 1Þ are

Poisson-distributed with

P
��

NiðtÞ � Niðt � 1Þ
�
¼ yi;t

�
¼ kðtÞyi;t

yi;t!
exp

�
� kðtÞ

	
:

ð1Þ

Eq. (1), also includes the possibility of observing no

bookings (yi;t ¼ 0, referred to as non-bookings). The

Poisson intensity kðtÞ accounts for changes in booking

intensity and depends on price and additional observable

covariates. The covariates for flight i at time t with price pi;t
are given by a covariate vector xi;t ¼ x1;i;t; . . .;

�

xK2;i;t; pi;t; z1;i;t; . . .; zK1;i;tÞ. The index-sets I1 ¼ f1; . . .;K1g
and I2 ¼ f1; . . .;K2g give the positions of the categorical

covariates xk;i;t; ðk 2 I1Þ and continuous covariates

zk;i;t; ðk 2 I2Þ. For categorical covariates in I1, the kth

variable takes values from the set Jk ¼ f1; . . .;Gkg. This
leads to the model:

kðxi;t; tÞ ¼ k x1;i;t; . . .; xK2;i;t; pi;t; z1;i;t; . . .; zK1;i;t; t
� 	

: ð2Þ

The model aims to quantify the effect of price on booking

intensity given covariates zk;i;t; ðk 2 I2Þ and xk;i;t; ðk 2 I1Þ.
Thus, the effects of covariates on booking intensity need to

be specified. To this end, the model captures all bivariate

interaction effects of the continuous covariates by setting

log
�
kðxi;t; tÞ

�

¼ b0 þ
X

k2I1

X

j2Jk
1fxk;i;t¼jgbk;j

þ fp pi;t
� 	

þ fp;t pi;t; t
� 	

þ
X

k2I2
fp;k pi;t; zk;i;t
� 	

þ ft tð Þ þ
X

k2I2
fk zk;i;t
� 	

þ
X

k2I2
ft;k t; zk;i;t
� 	

þ
X

k1\k2

k1; k2 2 I2

fk1;k2 zk1;i;t; zk2;i;t
� 	

:

ð3Þ

Here, 1fxk;I;t¼jg is an indicator function that equals one if the

categorical covariate xk;i;t ¼ j 2 Jk. The coefficient-vector

bk2I1 ¼ ðbk;1; . . .; bk;Gk
Þ quantifies the effect of the kth cat-

egorical variable on the booking intensity. Similar to a full

factorial design, which analyses the effect of each covariate

as represented by the univariate function f ð�Þ, bivariate

function f ð�; �Þ captures all interactions between covariates.

For example, fp pi;t
� 	

determines the general level of price-

sensitivity, and ft tð Þ describes the dynamics in the arrival of

bookings. The interaction effect fp;t
�
pi;t; t

	
quantifies how

price sensitivity changes over the sales horizon.

To describe price sensitivity, we first isolate demand

components unrelated to price. These are captured by

price-independent functions ftð�Þ; fk2I2ð�Þ, and

ft;k2I2ð�; �Þ; f k1\k2
k1; k2 2 I2

ð�; �Þ. In contrast, fpð�Þ; fp;tð�; �Þ, and

fp;k2I2ð�; �Þ amend the slope of price, representing price-

sensitivity. When demand is price-sensitive, fewer book-

ings occur if the price is high, and more bookings occur if

the price is low. Monotonicity constraints as proposed

in Pya and Wood (2014) for functions fpð�Þ; fp;tð�; �Þ, and
fp;k2I2ð�; �Þ ensure this. Appendix 1 provides a detailed

description and a technical discussion of the penalty setup.

Furthermore, Appendix 2 outlines the implementation to

consider price endogeneity during the estimation process.

Empirical data

To demonstrate the proposed approach, we apply it to

airline booking data.

The empirical data set includes 1, 708, 236 bookings

(yi;t [ 0Þ for the economy compartment as offered on eight

European city pairs between April 1, 2012, and December

31, 2015. Eight pairs of origin and destination (OD) create

16 point-to-point (P2P) connections, as passengers can

travel each connection in two directions. Each flight i is

described by the continuous covariates departure day of the

year (YDAY, taking values from 1; . . .; 365) and departure

time (DTIME, taking values between 0 and 24). The

dataset also includes daily snapshots of the lowest available

fare (pi;t). Each booking is attributed to one of 16 P2P

connections and one of the 10 to 14 fares offered.

When the airline records no bookings for flight i on the

day t, a non-booking entry (yi;t ¼ 0) reports the offered

price. Entries are further described by the categorical

covariates booking weekday (BDAY, taking the values

Monday, . . ., Sunday), the departure weekday (DDAY,

taking the values Monday, . . ., Sunday), and the P2P

connection. Flight, booking, and availability data create a

complete record of available and booked fares for the entire

booking horizon. The daily snapshot only covers price
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changes within one booking day. Therefore, when multiple

bookings for different prices occur on the same day, pi;t is

observed at a finer resolution than per day t. Appendix 3

describes howan extensionofmodel (3) compensates for this.

We exclude flight departures on public or school holi-

days, major fairs, exhibitions, or conferences. If a flight is

cancelled or re-scheduled, we maintain data from before

the adjustment and treat data collected after the change as a

new flight. In consequence, we consider 70,283 flights and

3,225 departure days.

Our analysis excludes bookings of fares with fewer

restrictions than the lowest available fare. From a pricing

point of view, the revenue gain from such upselling could

be modelled separately. Here, we aim only to find the best

price for the basic fare, as ancillary features could com-

plicate the estimation of the price sensitivity.

The analysis only considers ticketed bookings. It focuses

on return tickets, which represent 95.5% of all bookings.

Finally, to reduce the number of non-bookings, it only

considers the slice of the sales horizon that captures 99% of

bookings. Table 1 summarises the analysed data set.

The first row lists the number of days in the sales

horizon considered. The second row describes the number

of daily services. Row three and four report the number of

bookings (yi;t [ 0) and non-bookings (yi;t ¼ 0).

The airline’s pricing model

As discussed in Appendix 2, a prediction model for the

airline’s pricing and a suitable instrument variable are

required to account for price endogeneity. As airline revenue

management assumes fixed and variable costs to be constant

across flights operating on the same route, these cost types

are unsuitable instruments. Instead, we propose to use the

opportunity cost of capacity as an instrument variable.

Airline revenue management often employs the oppor-

tunity cost of capacity as a bidprice for capacity allocation.

The bidprice is known for future departure days and varies

across bookings, as each booking increases the bidprice to

acknowledge scarce capacity. This mechanism introduces

simultaneity between demand and price, i.e., price influ-

ences demand and vice versa. Furthermore, when flights

are part of a transfer itinerary, the bidprice accounts for

network effects. Therefore, the bidprice is not entirely

determined by the demand for a single flight.

However, this instrument variable only varies if the

capacity is scarce. Therefore, it is only useful when

demand exceeds capacity. When the natural logarithm of

the bidprice is the instrument IVi;t, the functional structure

of the first-stage regression equation (16) is:

gi;t ¼ h0 þ h1 logð IVi;tÞ þ
X6

j¼1

1BDAYi;t¼jh1;j þ stðtÞ

þ s1ð DTIMEi;tÞ þ s2ð YDAYi;tÞ:

ð4Þ

The airline’s demand model

The empirical data set records three categorical covariates:

DDAY, BDAY, and P2P. Segmenting by the DDAY and

P2P induces a full interaction between these variables and

any other covariate that describes the demand model (2).

Therefore, we estimate 7� 16 ¼ 112 separate models at

this level. As the categorical variable BDAY is closely

associated with the booking time t, the model includes it to

capture potential changes in booking intensity over the

sales horizon. Including BDAY as the only categorical

variable (taking BDAY=Sunday as the reference category)

yields the first index set as I1 ¼ f1g with J1 ¼ f1; . . .; 6g,
where 1 represents Monday, 2, Tuesday,...,6 Saturday.

In addition to price pi;t and booking time t, the data records

continuous covariates DTIME and YDAY. I2 ¼ f1; 2g
defines the second index set. The covariate vector is, therefore

xi;t ¼ BDAYi;t; pi;t; DTIMEi;t; YDAYi;t; t
� 	

. Thus, a typi-

cal data row for flight iwith booking dayMonday (reported as

1), ticket price $50, departure time6:00am(reported as6), and

departure date on January 2 (reported as 2) at the day of

departure ðt ¼ 0Þ is xi;t ¼ 1; 50; 6; 2; 0ð Þ. The airline’s

demand model is as follows:

log
�
kðxi;t; tÞ

�
¼ b0þbbn

bni;tþ
X6

j¼1
1BDAYi;t¼jb1;jþ fp pi;t

� 	

þ fp;t
�
pi;t; t

	
þ fp;1 pi;t; DTIMEi;t

� 	

þ fp;2
�
pi;t; YDAYi;t

	

þ ft tð Þþ f1 DTIMEi;t

� 	
þ f2 YDAYi;t

� 	

þ ft;1 t; DTIMEi;t

� 	
þ ft;2

�
t; YDAYi;t

	

þ f1;2
�
DTIMEi;t; YDAYi;t

	
:

ð5Þ

Table 1 Summary of data for the origin–destination pairs OD1 to

OD8

Origin

destination pair

Booking

horizon

Daily

services

Bookings Non-

bookings

OD1 291 6 101,905 1,193,193

OD2 285 8 192,764 2,007,423

OD3 254 12 280,130 3,339,491

OD4 208 4 36,076 887,384

OD5 282 5 99,077 1,339,820

OD6 110 15 406,884 621,838

OD7 110 16 320,067 448,388

OD8 106 17 271,333 425,446

Modeling price-sensitive demand in turbulent times... 157



Here, coefficient-vector b1 ¼ ðb1;1; . . .; b1;6Þ quantifies the
effect of the booking day on the demand intensity.

Estimation results

We look at one route, OD8, and DDAY = Thursday, to

demonstrate the estimation results. Figure 1 shows the

smooth components stðtÞ; s1ð DTIMEi;tÞ, and s2ð YDAYi;tÞ
from the first-stage. The left panel shows the estimate of

stðtÞ, which indicates that prices increase over the sales

horizon. The estimate of s1ð DTIMEÞ (middle panel)

shows there exists a strong departure time pattern. Flights

departing around 8:00 am and 7:00 pm are the most

expensive. The right panel shows the estimate of

s2ð YDAYÞ. The lack of a strong pattern indicates little

price variation over the days of the year.

Figure 2 shows second-stage estimates of demand

model (5).

Our analysis concentrates on four aspects. All covariates

except the one indicated in the caption are fixed in each

panel. The panels on the left reveal how price and demand

vary over departure time (a) and year day (c). Panels

(b) and (d) show how demand varies independently of the

price. Panel (a) indicates that price sensitivity depends on

departure time. Peak flights at 7:00 am and 7:00 pm show a

smaller price slope than midday flights. Panel (c) accounts

for seasonal price sensitivity changes but only shows

moderate fluctuations. Panel (b) confirms that demand

varies along the time-to-departure axis by departure time.

The step-like pattern in panel (b) arises from the influence

of BDAY: fewer bookings occur on weekends than on

weekdays.

Table 2 reports the parameter estimates of the first (4)

and second-stage (5), as well as the estimated standard

errors (in brackets).

The parameter estimates for the second stage show

fewer bookings on weekends than on weekdays. When the

second stage considers price endogeneity, there are about

ten times more bookings for BDAY=Monday than on the

reference category BDAY=Sunday (expð�2:01Þ � 0:13 to

expð�2:01þ 2:29Þ � 1:32). For the first stage, BDAY

estimates are negative for weekdays and positive for the

weekend. Thus, weekdays combine high demand with low

prices, while weekends combine low demand with high

prices. Apart from the BDAY effect, we also report the

estimates of IV (only relevant for the first stage) and first-

stage residual bn (only suitable for the second stage). In the

first stage, IV is significantly different from zero (with t-

statistic ¼ 0:07=0:0004 ¼ 175), which satisfies one

requirement of the two-staged procedure. The parameter

estimate for the first-stage residual bn represents the work-

ing parameter of a univariate spline with one inner knot-

interval and a monotonicity restriction according to Pya

(2010 p. 45). The BDAY estimates show that considering

the first-stage residual bn does not change the parametric

coefficients of BDAY. As the second stage, which controls

for price endogeneity, shows smaller values for AIC and

Fig. 1 Estimate of the three smooth functions stðtÞ; s1ð DTIMEÞ, and s2ð YDAYÞ for the first-stage model (4). Solid line = estimate, dotted lines

= 99% confidence band
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BIC, the remainder of the paper focuses on the corre-

sponding model setup with endogeneity considered. In

Appendix 4, the models’ prediction accuracy assessment is

discussed.

Dynamic pricing

This section demonstrates the demand model’s applicabil-

ity to dynamic pricing. The resulting pricing leads to an

offered price that maximises the revenue gained from sales.

Continuous prices

This paper assumes dynamic pricing with support on Rþ is

possible. With revenue gain ri;t from selling a ticket at a

price pi;t, we calculate the total revenue as kðxi;t; tÞri;t. The
opportunity cost of selling capacity to kðxi;t; tÞ many

passengers is kðxi;t; tÞpi;t. When the capacity constraint is

irrelevant, we can set pi;t ¼ 0 8 i; t. According to Eq. (2),

the proposed demand model includes a multiplicatively

separable demand rate with exponential price sensitivity.

From this, we derive the optimal price pHi;t by solving

max
pi;t

n
kðxi;t; tÞri;t � kðxi;t; tÞpi;t

o

,
o
�
kðxi;t; tÞri;t � kðxi;t; tÞpi;t

�

opi;t
¼! 0:

ð6Þ

To efficiently calculate the derivative of kðxi;t; tÞ concern-
ing pi;t, we can take advantage of the fact that the deriva-

tive of a B-spline is a linear combination of lower order B-

splines (Marsh and Marshall 1999). Solving (6), i.e.,

maximising the total revenue gain over cost, yields the

optimal value for ri;t, say rHi;t. To calculate the corre-

sponding optimal price-value pHi;t, we have to derive the

Fig. 2 Estimates of the conditional demand intensity for OD8 and

DDAY = Thursday. The variables appearing in each panel’s title are

fixed to a specific value (e.g., t is fixed to 0 and YDAY to 15 for panel

(a). Every panel shows how the demand intensity (vertical axis)

changes within the covariates that are shown at the horizontal axis

(e.g., the demand intensity within the panel (a) changes in departure

time and peaks at 8:00 am and 7.00 pm)
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amount of variable cost (including fuel, onboard service,

and taxes) that has to be added to ri;t to achieve price pi;t
(the amount is defined by the difference pi;t � ri;t). We do

so by solving the regression problem

pi;t � ri;t ¼ a0 þ a1pi;t þ �i;t

ri;t ¼ �a0|{z}
�c0

�ð1� a1Þ|fflfflfflffl{zfflfflfflffl}
�c1

pi;t þ �i;t: ð7Þ

The difference between rHi;t and pHi;t is determined by c0 ¼
�a0 and c1 ¼ 1� a1. The parameter a0 represents the

constant variable cost amount that does not depend on the

ticket price, e.g., fuel or onboard service. The parameter a1
gives the variable cost factor that increases the price, e.g.,

taxes. If model (3) is linear in pi;t, the maximization

problem (6) has the closed-form solution

pHi;t ¼ � 1

12sbbn þ f 0p þ f 0p;tðtÞ þ
P

k2I2 f
0
p;kðzk;i;tÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
profit margin

þ a0
1� a1

þ pi;t
1� a1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

cost margin

:

ð8Þ

A detailed description of how to derive (8) by solving (6)

is found in Appendix 6. Here, f 0p; f
0
p;tðtÞ, and f 0p;kðzk;i;tÞ cor-

respond to the derivative of fp; fp;tðtÞ; fp;kðzk;i;tÞ; k 2 I2 with

respect to pi;t, e.g., f
0
p ¼

ofpðpi;tÞ
opi;t

. Assuming linearity of pi;t, f
0
p

is only a scalar. Factor bbn only appears in (8) if 12s indi-

cates that price endogeneity is considered, where 12s ¼ 1 if

the estimation is two-staged and 12s ¼ 0 otherwise. The

influence of bn is constrained such that bbn\0.

By monotonicity of (2) within pi;t, every derivative

f 0p; f
0
p;tðtÞ; f 0p;kðzk;i;tÞ is strictly negative, rendering the profit

margin positive. The smooth components

ft; fk; ft;k; fk1;k2 ; k; k1; k2 2 I2; k1\k2 and parametric parts

xk;i;t; ðk 2 I2Þ are not relevant to price-sensitivity and van-

ish when the derivative of pi;t is calculated. Thus

okðxi;t; tÞ
opi;t

¼ k0ðxi;t; tÞ ¼ 12 sbbn þ f 0p þ f 0p;tðtÞ þ
X

k2I2
f 0p;kðzk;i;tÞ\0

.

Figure 3 shows how each OD’s derivative k0ðxi;t; tÞ
evolves over DTIME for DDAY=Thursday, t ¼ 0, and

YDAY=15. Note that decreasing price-sensitivity goes

along with increasing k0ðxi;t; tÞ. Aside from the amplitude

of the pattern, every OD experiences a decline in price-

sensitivity during the morning and evening (jk0ðxi;t; tÞj
becomes smaller), meaning that passengers are willing to

pay more if travelling during these hours of the day.

As (8) shows, pHi;t is the sum of the profit margin and

cost. Whenever price-sensitivity decreases, the value of

k0ðxi;t; tÞ increases. Therefore, the optimal price pHi;t
increases by the increasing value of the profit margin.

Thus, the offered price pHi;t inversely depends on the esti-

mated price sensitivity. The lower bound of pHi;t is the cost

of production. Depending on the application, this bound is

also a function of opportunity cost pi;t.

Figure 4 shows pHi;t for t ¼ 0, DDAY=Thursday, and day

of the year 15 for OD6 and OD8 with opportunity cost

pi;t 2 f1; 20; 100g. Appendix 7 induces supplementary

illustrations for the other OD.

Table 2 Parameter estimates for OD8 and DDAY = Thursday

Stage

First Second

Endogeneity considered

Yes No

Intercept 4.8223(0.0022) �2:0104ð0:3877Þ �1:8381ð0:1084Þ
logð IVÞ 0.0700(0.0004) – –

bn – �0:0020ð0:0013Þ –

BDAY = Monday �0:0253ð0:0025Þ 2.2966(0.1123) 2.2946(0.0358)

BDAY = Tuesday �0:0293ð0:0025Þ 2.2116(0.1311) 2.2079(0.0452)

BDAY = Wednesday �0:0263ð0:0025Þ 2.2363(0.1406) 2.2326(0.0498)

BDAY = Thursday �0:0224ð0:0025Þ 2.1077(0.1366) 2.1019(0.0504)

BDAY = Friday �0:0129ð0:0025Þ 2.1083(0.1273) 2.1050(0.0460)

BDAY = Saturday 0.0064(0.0028) �0:3627ð0:1692Þ �0:3627ð0:0516Þ
AIC 1457362 106957.9 107131.0

BIC 4741586 107920.4 108034.5

Standard errors in brackets
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The general shape of each curve is defined by the

derivative function k0ðxi;t; tÞ as shown by Fig. 3. For OD6,

optimal price pHi;t increases if the value of the derivative

function k0ðxi;t; tÞ increases, indicating a decrease in price-

sensitivity. This mechanic leads to a pricing policy where

prices inversely depend on price sensitivity, i.e., the price

increases if the price sensitivity decreases and vice versa.

For OD8, this yields higher prices for peak flights, as an

increase within the derivative function k0ðxi;t; tÞ indicates a
decrease in price sensitivity. Additionally, a change in the

Fig. 3 Estimated derivative bk0ðxi;t; tÞ for DDAY=Thursday, t=0 and YDAY=15 for different DTIME values. Each line shows the changes of the

derivative bk0ðxi;t; tÞ for a specific OD

Fig. 4 Optimal price values for OD6, OD8 at DDAY=Thursday for opportunity cost pi;t ¼ 1; 20; 100
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opportunity cost p shifts the entire curve as the cost of

selling a seat increases, regardless of price sensitivity.

Discrete prices

For most airlines, technological hurdles still call for

offering prices from a countable and finite set of discrete

values Xp ¼ fp1; . . .; pJg with revenue gain

rj; j 2 f1; . . .; Jg (compare Fiig et al. 2015). As suggested

by Fiig et al. (2010), we also propose only to offer the

subset of prices X0
p � Xp for which the marginal revenue

gain exceeds the marginal cost (bid-price). As it turns out

(proof given in Appendix 5), the solution of the continuous

problem (8) also defines the boundary point for price points

that belong to the set X0
p. Therefore, it is optimal to offer

the next highest price point to the optimal price pHi;t.

Performance evaluation in a field study

In cooperation with a European network airline, we test our

model in a field study. To that end, we choose four OD to

reflect specific market characteristics, e.g., the dominance

of business vs. leisure travellers or high versus low com-

petition. OD1 and OD4 represent leisure routes, whereas

OD2 and OD3 represent business routes. Applying our

approach to every combination of OD, DDAY, and P2P

created 4� 7� 2 ¼ 56 separate model estimates. For

every model, we offer (given the bidprice) the next highest

price, the optimal price pHi;t.

The field study includes departure dates from 2016-05-

30 until 2016-06-26. For every flight within that departure

period and booking dates between 2016-04-04 and 2016-

05-29, the available price is chosen according to the opti-

mal price pHi;t (see 5.2). Table 3 describes the test pattern.

The checkerboard pattern aims to capture and control

systematic differences in DDAY and OD directions. The

airline’s regular revenue management system (non-influ-

enced) calculates the bidprices and lets market analysts set

the prices. Both the traditional approach and our model

relied on the same bidprice information. Thus, the observed

revenue difference originates from the passengers’ price

sensitivity estimates. The overall revenue gain is aggre-

gated separately for influenced and non-influenced depar-

ture days for each OD. The difference is given in percent of

the regular system’s performance. As the results in Table 4

show, our approach successfully increased the revenue

between 1.64% to 8.03% and the margin by 11.08% to

36.39% across markets. The margin defines the gaps

between revenue earned and opportunity cost p. Due to the

positive outcome, the airline plans to apply our approach to

every OD of the European network by the end of 2017.

Model adjustments due to market
turbulences

Since 2017 and due to the success of the field study, see

‘‘Performance evaluation in a field study’’ section, AirABC

decided to increase the models’ scope to about 360 ODs. In

May 2019, an intervention analysis examining the revenue

impact of the models’ rollout resulted in an average

Table 3 Layout of the test pattern

OD1,OD2, and OD4 OD3

Outbound direction

CW Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

25 o x o x o x o x o x o x o x

24 x o x o x o x o x o x o x o

23 o x o x o x o x o x o x o x

22 x o x o x o x o x o x o x o

Inbound direction

25 x o x o x o x o x o x o x o

24 o x o x o x o x o x o x o x

23 x o x o x o x o x o x o x o

22 o x o x o x o x o x o x o x

Abbreviations: x = influenced, o = non-influenced

Table 4 Results of the live test in percent

Market OD1 OD2 OD3 OD4 overall

Revenue 1.64% 6.31% 8.44% 8.03% 6.37%

Margin 36.39% 18.96% 13.91% 11.08% 15.36%
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revenue increase of ?2.37%, confirming the field study’s

positive result. Since the models’ rollout, the price elas-

ticity estimates are regularly updated using the past two

departure years. Even though frequent updates of the

demand model would eventually catch up with a changing

market environment, due to the functional structure of the

predictor (5), the price-elasticity estimates for the next

selling date only differ from the previous selling date by

variables that describe the flight (DTIME, YDAY) and the

time to departure t. Specifically, structural changes within

the market happening from one selling date to another

cannot be captured accurately. To allow for more flexibility

for demand- and price-elasticity predictions to describe

changes in the market environment, four additional

covariates are introduced:

1. Booking day of the year (BYDAY), taking values from

1; . . .; 365

2. Selling Date Index (SDI) as

(a) SDI = -630 for April 12, 2019

(b) ...

(c) SDI = -2 for December 30, 2019

(d) SDI = -1 for December 31, 2019

(e) SDI = 0 (ease of interpretation) for the selling

date January 1, 2020

(f) SDI = 1 for January 2, 2020

(g) SDI = 2 for January 3, 2020

(h) ...

(i) SDI = 100 for April 11, 2021

3. Daily new cases of COVID-19 within the country of

the origin airport (OCOV)

4. Daily new cases of COVID-19 within the country of

the destination airport (DCOV)

The data for daily new cases of COVID-19 is gathered

from OWID (2021). Figure 5 shows how the daily new

cases of COVID-19 evolved over the period 2020-01-24 to

2021-04-11. For every country, the first wave of COVID-

19 cases occurred from 2020-03-01 to 2020-05-01 and was

followed by another wave starting between 2020-08-01 and

2020-10-01. Within 2021-05-01 and 2021-08-01, the

number of cases was reduced by severe lock-down mea-

sures, which were (depending on the country) partially

lifted during the summer months, i.e., between 2020-06-01

Fig. 5 Daily new cases of COVID-19 for the countries Germany(DE), Spain (ES), France (ES), United Kingdom (GB), Italy (IT), and Sweden

(SE) from 2020-01-24 to 2021-04-11
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to 2020-08-01 and re-implemented afterward. The adjust-

ment of model (5), including the additional covariates (in

black), is defined by Eq. (9). Table 5 describes the nine

functions in more detail.

log
�
kðxi;t; tÞ

�adj
¼ log

�
kðxi;t; tÞ

�

þ f3 BYDAYi;t

� 	
þ f4 SDIi;t

� 	

þ f5 OCOVi;t

� 	
þ f6 DCOVi;t

� 	

þ fp;3 pi;t; BYDAYi;t

� 	
þ fp;4 pi;t; SDIi;t

� 	

þ fp;5 pi;t; OCOVi;t

� 	

þ fp;6 pi;t; DCOVi;t

� 	

þ ft;5 t; SDIi;t
� 	

:

ð9Þ

where log
�
kðxi;t; tÞ

�
corresponds to the (unadjusted)

model (3). Note that the adjusted model (9) is different

from the full factorial design of the (general) model (3). As

the research goal of this section focuses on an aggregated

level, all bivariate functions between the covariates

DTIME, YDAY, OCOV, DCOV, and SDI are omitted. Not

all combinations of continuous covariates are included, as

the adjustment intends to answer the following questions:

Q1: Does the impact of COVID-19 on passenger demand

change over time, i.e., is it different from one

COVID-19 wave to another?

Q2: Does the impact of COVID-19 on passenger price

elasticity change over time, i.e., is it different from

one COVID-19 wave to another?

Q3: Do passengers book more spontaneously, i.e., closer

to departure than pre-COVID-19 times?

The two functions f3 BYDAYi;t

� 	
and fp;3 pi;t; BYDAYi;t

� 	

are added to ensure that the impact of the selling-date-

index (SDI) on passenger demand and price elasticity may

not be affected by a booking seasonality.

Data Adjustments:

To ensure that the estimations for the departure date

seasonality are unbiased, the results of ‘‘Estimation

results’’ section depend on data where the entire booking

period is observable for every flight. Suppose data for

flights with an incomplete booking period is considered. In

that case, demand estimates for future departure months

can be lower, which may give a wrong impression of how

demand changes during the departure year.

The models’ demand predictions using post-COVID-19

data no longer apply to the market environment of COVID-

19 times. As the models’ ability to react to recent changes

in previous selling dates depends on the input data, the data

scope changes from a departure-date view to a selling-date

view. The departure-date view (the dotted area within the

top graph of Fig. 6) defines the data history of flights with

complete selling-date history. The selling-date view (dotted

area of the bottom graph of Fig. 6) describes the data set,

where every selling date contains the entire (future)

departure-date history. Assuming today’s estimation date is

7/11/21, Fig. 6 shows that the data for departure date 7/11/

22 is not available for the departure-date view until the

models’ estimation date reaches 7/11/22, whereas the

selling-date view includes already all future fights until 7/

11/22. Therefore, the benefit of having more up-to-date

data and an accurate booking-behaviour representation (as

captured by the functions f3 BYDAYi;t

� 	
; fp;3

pi;t; BYDAYi;t

� 	
; f4 SDIi;t
� 	

; fp;4 pi;t; SDIi;t
� 	

, and

ft;5 t; SDIi;t
� 	

) outweighs the risk of having a biased sea-

sonality estimate for departure dates.

Results:

To answer the questions Q1, Q2, and Q3, the expðÞ is

applied to both sides of the adjusted equation of model (9),

which gives

kðxi;t; tÞadj ¼ kðxi;t; tÞ

� exp
�
f3 BYDAYi;t

� 	
þ f4 SDIi;t

� 	
þ f5 OCOVi;t

� 	
þ f6 DCOVi;t

� 	�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q1f

� exp
�
fp;3 pi;t; BYDAYi;t

� 	
þ fp;4 pi;t; SDIi;t

� 	
þ fp;5 pi;t; OCOVi;t

� 	
þ fp;6 pi;t; DCOVi;t

� 	�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q2f

� exp
�
ft;5 t; SDIi;t
� 	�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q3f

:

ð10Þ

The underlined elements Q1f ; Q2f , and Q3f decrease

or increase the unadjusted demand model (3), i.e.,

Table 5 Additional model functions and covariates allowing for more

flexibility for demand- and price-elasticity predictions

Function Description

fp;3 pi;t; BYDAYi;t

� 	
Booking yearday seasonality of price elastictiy

f3 BYDAYi;t

� 	
Booking yearday seasonality of demand

fp;4 pi;t; SDIi;t
� 	

Daily change in price elasticity

f4 SDIi;t
� 	

Daily demand changes

fp;5 pi;t; OCOVi;t

� 	
Change of price elasticity by daily new

COVID19 cases at the origin airport

f5 OCOVi;t

� 	
Demand changes by daily new COVID19

cases at the origin airport

fp;6 pi;t; DCOVi;t

� 	
Change of price elasticity by daily new

COVID19 cases at the destination airport

f6 DCOVi;t

� 	
Demand changes by daily new COVID19

cases at the destination airport

ft;5 t; SDIi;t
� 	

Daily change of the demand booking curve
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log
�
kðxi;t; tÞ

�
by a factor that depends on the additional

covariates BYDAY, SDI, OCOV, and DCOV. Figure 7

shows how the factor Q1f changes the demand over the

selling dates ranging from 2019-02-01 to 2021-04-11. As

for the model (3), we segment the data by DDAY and P2P.

Every line shows the Q1f estimate for a specific DDAY

and P2P value. To answer the research question Q1, a steep

drop in demand starting 2020-03-01, shortly before the first

wave of COVID-19, is observed for every country. For

some countries, specifically DE and GB, there is an

increase in demand during the summer months between

2020-05-01 and 2020-09-01. For GB, we can observe a

demand increase during the winter period. Therefore,

depending on regulations and restrictions, every country

reacts differently, highlighting the importance of capturing

these effects within the demand model.

Figure 8 describes how the factor
o logðQ2f Þ

opi;t
, i.e., the price

derivative of the logarithm of the factor Q2f changes the

price elasticity over the selling dates ranging from

2019-02-01 to 2021-04-1. Suppose the adjusted demand

model is used to derive optimal price values described in

‘‘Dynamic pricing’’ section. In that case, the factor appears

within the denominator of the Eq. (8) and makes the profit

margin depend on the additional covariates BYDAY, SDI,

OCOV, and DCOV. The graph shows no significant

changes in price elasticity, i.e., there is no visible trend and

no change of price elasticity during the periods of first

wave 2020-03-01 to 2021-05-01 (first wave) and 2020-08-

01 and 2020-10-01 (second wave) implying that there is no

connection to the number of new cases of COVID-19.

Particularly for the countries DE and GB that show an

increase in demand during the summer months between

2020-05-01 and 2020-09-01, no visible change in price

elasticity is observed. Therefore, there is no evidence that

the passengers’ price elasticity has changed over time

between the two waves of COVID-19. Moreover, these

results imply that travel will likely not recover by offering

cheaper tickets but by conditions that ensure travel safety.

Fig. 6 Assuming today’s estimation date is 7/11/21, the top graph

describes the available data history for the departure date view. The

departure dates range from 7/11/18 until 7/11/19, each with a 365-day

selling date history. The dotted area of the bottom graph describes the

data for the selling date view, where each selling date includes the

booking history of past and future departure dates
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Finally, Fig. 9 describes the change in the booking

behaviour over a 100-day booking period before departure

from January 2021 to April 2021 for DE. The countries’

ES, FR, GB, IT, and SE figures are in Appendix 7. Every

graph shows that the booking behaviour of passengers has

drastically changed for every country since the beginning

of 2020. Whereas passenger demand steadily increased

towards the day of departure, the booking curve is flat from

2020 until the end of the observed data range of April

2021. With the observations for 7 where a demand increase

is observed for a certain period during the COVID-19

pandemic, airlines can no longer assume that passengers

booking behaviour follows pre-COVID-19 patterns. Pas-

senger demand arrives not necessarily spontaneously, with

a booking curve only increasing shortly before departure

and otherwise flat but sporadically throughout the booking

period. This effect may be emphasised by the airlines’

offering cheap tickets together with a waiver of cancella-

tion and rebooking constraints to counter the increased

uncertainty of passengers.

Conclusion

This paper introduces an innovative demand model that

allows airline managers to deploy a controllable and

interpretable pricing function to support the decision-

making process of their revenue management department.

The proposed method fulfills many important requirements

of analysts and managers to have a demand estimation and

pricing method, which is

flexible as there is no need to pre-

define a functional form, the

method can be applied at scale

(to various markets and

conditions),

dynamic as it captures differences in the

customer’s willingness to pay

across various dimensions,

ensuring optimal pricing

policies,

Fig. 7 For the countries DE, ES, FR, GB, IT, and SE, every line corresponds to an estimate of the factor Q1f from the adjusted model (3) for a

specific DDAY and P2P value for selling dates ranging from 2019-02-01 to 2021-04-11
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Fig. 8 For the countries DE, ES, FR, GB, IT, and SE, every line corresponds to an estimate of the factor Q2f from the adjusted model (3) for a

specific DDAY and P2P value for selling dates ranging from 2019-02-01 to 2021-04-11

Fig. 9 For the country DE, the graph shows how the factor Q3f changes for different days to departure, ranging from 100 days pre-departure to

the day of departure and over the selling dates from January 2019 to April 2021
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easy to implement and

computationally cheap

because the method offers a

closed-form solution to the

discrete and continuous pricing

problem that determines the

optimal price as the sum of

costs and profit margin

easily to adopt as most airlines organize their

revenue management

departments by separating

pricing analysts (in control of

the optimal profit margin) and

steering analysts (in control of

optimal ’costs’, i.e., the

bidprice)

considers of

price-endogeneity

since the proposed

instrumental variable is readily

available in practical

applications.

To achieve this, the proposed method extends the class

of generalized additive models by combining smoothing

spline ANOVA interaction components and monotonicity

constraints, which shows superior forecasting performance

if compared to other demand estimation techniques.

To validate the effectiveness of our approach, this paper

shows practitioners the model’s potential to significantly

increase the revenue (?1.64% to ?8.44%) and margin

(?11.08% to ?36.39%) but also showcases the flexibility

of our approach by adapting the model’s structure to

changing market conditions such as the COVID-19 pan-

demic, where various unique insights could be revealed

such as (1) the evidence that the impact of COVID-19 on-

demand changes over time, (2) No evidence exists that the

passengers’ price elasticity has changed, which implies that

travel will likely not recover by offering cheaper tickets but

by conditions that ensure travel safety, and (3) as demand

has increased for a certain period during the COVID-19

pandemic, airlines can no longer assume that passengers

booking behavior follows pre-COVID-19 patterns.

As the following steps, we recommend investigating

whether possible dependencies among customer segments

could improve prediction accuracy. For segmentation, one

could examine model-based partitioning (e.g. Zeileis et al.

2008). On another note, we explicitly excluded bookings of

fares with fewer restrictions than the lowest available fare.

As such features imply upsell, considering upsell-related

passenger behaviour may further improve the revenue gain

from dynamic pricing.

Appendix 1: Penalized likelihood estimation
approach

We approximate each of the unknown function fpð�Þ; ftð�Þ,
and fkð�Þ by a weighted sum of local P-spline (penalised B-

spline) basis functions (e.g. Eilers and Marx 1996). For

example, the representation of fkð�Þ is represented by a B-

spline basis function given by the column vectors

bk;jð�Þ; j ¼ 1; . . .m. The n� m matrix of basis functions

bkð�Þ ¼
�
bk;1ð�Þ; bk;2ð�Þ; . . .; bk;mð�Þ

	
is subsequently multi-

plied by a m� 1 vector of weighting coefficients ck.

Therefore, function fkð�Þ is approximated by bkð�Þck. The
column dimension m depends on the number of knots and

degree of the B-spline functions (see, e.g. Marsh and

Marshall 1999, Ch. 8, p. 187). The bivariate functions

fp;tð�; �Þ; fp;k2I2ð�; �Þ, and ft;k2I2ð�; �Þ; f k1\k2
k1; k2 2 I2

ð�; �Þ are also

replaced in this manner. For example, fk1;k2ð�; �Þ is replaced
by bk1;k2ð�; �Þck1;k2 , where the matrix of basis functions

bk1;k2ð�; �Þ is built from their univariate marginal basis terms

as bk1;k2ð�; �Þ ¼ bk1ð�Þ � bk2ð�Þ. The Kronecker product � is

calculated in a row-wise fashion.

Estimating the parameters in Eq. (3), requires identifi-

ability constraints on the spline representations of the

functions. Following Hastie and Tibshirani (1987) and

Wood (2017), we require that the univariate functions

fpð�Þ; ftð�Þ, and fkð�Þ integrate out to zero. For the bivariate

functions ft;k2I2ð�; �Þ and f k1\k2
k1; k2 2 I2

ð�; �Þ, we follow Lee

and Durbán (2011), by applying the mixed model frame-

work for smoothing. Lee and Durbán (2011) prove that the

imposed constraints are equal to a classical factorial

design. For the functions fp;tð�; �Þ and fp;k2I2ð�; �Þ, we exclude
the first column of each marginal B-spline basis to achieve

identifiability. For example, fp;tð�; �Þ is replaced by

bp;tð�; �Þcp;t, where the matrix of basis functions bp;tð�; �Þ is
built from bp;tð�; �Þ ¼

�
bp;2ð�Þ; . . .; bp;mp

ð�Þ
	
�

�
bt;2ð�Þ; . . .; bt;mt

ð�Þ
	
.

Having achieved identifiability, we compute parameter

values by penalised maximum likelihood estimation. The

penalty balances model flexibility and parsimony. The

parameters of model (3) are given by h ¼ b; cð ÞT . Here,
b ¼ b0; b1; . . .; bp;I1

� 	T
concerns parametric covariates and

the coefficient vector for the unknown functions is c ¼
cp; ct; c1; . . .; cI2 ; cp;t; cp;1; . . .; cp;I2 ; ct;1; . . .; ct;I2 ; c1;2; . . .;
�

cI2�1;I2Þ
T
.

This creates a feasible semi-parametric model,

employing a high-dimensional basis and smoothed by

imposing a penalty on c. The optimal values of the

smoothing parameters are selected using the Bayesian
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Information Criterion (BIC) (see also Claeskens and Hjort

2008, pp. 100–102).

The (unpenalized) log-likelihood ‘ðhÞ arising from

Eqs. (1) and (2) is

‘ðhÞ ¼
XM

i¼1

Xt
open

i

t¼tclosei

yi;t log
�
kðbi;t; t; hÞ

	
� kðbi;t; t; hÞ; ð11Þ

where the intensity kðxi;t; t; hÞ in Eq. (3) is written as a

function of the covariates and the model parameters.

We maximize Eq. (11) with an additive penalty to reg-

ulate the degree of smoothness for every function of (3).

The structure of (11) allows us to analytically calculate the

first and second-order derivatives. Thereby, the derivatives

are quickly evaluated and maximizing the likelihood

proves straightforward by quasi Newton-Methods, such as

the Broyden-Fletcher-Goldfarb-Shanno algorithm (e.g.

Broyden 1970). The penalization is based on the ideas of

Eilers and Marx (1996). We impose a penalty on the

coefficients relating to all functional effects that define the

demand model (3). We use linear B-splines for the mar-

ginals that concern pi;t and take quadratic B-splines

otherwise. For the functions that have no shape constraint,

i.e., ft; fk; ft;k; fk1;k2 ; k; k1; k2 2 I2; k1\k2, we penalize

neighbouring coefficients of second order.

For example, let btð tÞ be the quadratic B-spline bases

for the main effect ftðtÞ with column dimension mt and ct as

the vector of weights. By penalizing second order differ-

ences, i.e., D2ct;l ¼ ct;l � 2ct;l�1 þ ct;l�2; l ¼ mt; . . .; 3.

With the ðmt � 2Þ � mt matrix

Pt ¼

1 � 2 1 0 . . . 0

0 1 � 2 1 . . . 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 . . . 1

2

66664

3

77775
; ð12Þ

the quadratic penalty for ftðtÞ is defined by cTt Stct, where

St ¼ PT
t Pt. Two penalty matrices S exist for bivariate

effects, one for each dimension.

For the constrained functions fp; fp;t and fp;k; k 2 I2, we

follow Pya (2010), who discusses uni- and bi-variate as

well as single and double constraint functions. However,

building the bivariate functions fp;t and fp;k; k 2 I2 without

the intercept values requires some adjustments. The first

concerns the function fp;t, which has a double monotonicity

constraint. Here, we remove the first row and column

vector from the matrices Rj; j ¼ 1; 2 (Pya 2010, p. 58). For

the functions fp;k; k 2 I2 with a monotonicity constraint

along the first dimension pi;t, we remove the first row and

column vector of R1 and I2 (Pya 2010, p. 58). Secondly,

for every bivariate function with monotonicity constraint,

the penalty matrix Sj ¼ PT
j Pj; j 2 f1; 2g is built from Pj

without the first diagonal block element Puj (Pya 2010, p.

60). The penalty matrix adjustments for fk1;k2 are discussed

by Lee and Durbán (2011).

The penalised likelihood ‘pð:::Þ is defined by the unpe-

nalised version (11) plus the sum of the weighted quadratic

penalties. Thus, for every function of model (3), the pen-

alty matrix S is multiplied by a weighting factor q. For
example, the weighted penalty term for ftðtÞ is defined by

qtc
T
t Stct. Collecting all weighted penalty matrices for every

function finally leads to the expression:

‘pðh;qÞ¼ ‘ðhÞþqpc
T
pSpcp

þ cTp;t

�
qp;t;1Sp;t;1þqp;t;2Sp;t;2

	
cp;t

þ
X

k2I2
cTp;k

�
qp;k;1Sp;k;1þqp;k;2Sp;k;2

�
cp;k

þqtc
T
t Stctþ

X

k2I2
qkc

T
k Skck

þ
X

k2I2
cTt;k

�
qt;k;1St;k;1þqt;k;2St;k;2

�
ct;k

þ
X

k1\k2

k1;k2 2 I2

cTk1;k2

�
qk1;k2;1Sk1;k2;1þqk1;k2;2Sk1;k2;2

�
ck1;k2 ;

ð13Þ

where q ¼ qp; qp;t; qp;1; . . .; qp;I2 ;qt; q1; . . .; qI2 ; qt;1; . . .;
�

qt;I2 ; q1;2; . . .; qI2�1;I2Þ
T

refers to the vector of penalty
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parameters, weighting the quadratic penalties. Penalty

parameters in bold correspond to column vectors. The first

row gives the penalty of the first and the second row for the

second dimension. For q ¼ 0, one obtains unpenalized

estimations.

The penalty parameters are selected using the Bayesian

Information Criterion defined through

BICcðqÞ ¼ �2‘pðh; qÞ þ c logðnÞ df ðqÞ; ð14Þ

where n is the number of observations (� number of flights

multiplied by the number of considered days to departure)

and c inflates the influence of df to increase the

smoothness of the fit. The model degree of freedom df ðqÞ
can be calculated through Fisher Matrices. Thus, let Fðh; qÞ
denote the penalized Fisher matrix, i.e.

Fðh; qÞ ¼ E � o‘pðh; qÞ
ohohT

� �
: ð15Þ

Then, the model degree can be approximated as

df ðqÞ ¼ trace fF�1ðbh; qÞFðbh; q ¼ 0Þg;

see e.g. Krivobokova and Kauermann (2007). To esti-

mate (5), we first maximise (13) for q ¼ 0. Secondly,

given the estimate bh, we estimate q by minimising

BICcðqÞ. The corresponding estimate bq is subsequently

used to maximize (13) once more. We alternate the max-

imisation of (13) and minimisation of BICcðqÞ until

oBICcðqÞ
oq








, as calculated after the maximisation of (13), falls

below a fixed threshold � ¼ 10�4.

Appendix 2: Two-staged estimation
by residual inclusion

Treating price as an exogenous variable in a consumer

demand model can lead to biased estimates of price elas-

ticity; see discussions in Davidson and MacKinnon

(1999, 1993), Wooldridge (2002), Petrin and Train (2010)

and references therein. For example, Mumbower et al.

(2014) show the importance of controlling for price

endogeneity in a linear model for flight bookings using a

two-stage least squares linear regression estimator, whereas

Lurkin et al. (2017) do so for a choice model. For gener-

alized nonlinear models, Marra and Radice (2011) suggest

an extension of such two-stage estimators, similar to the

control function approach of Petrin and Train (2010). We

follow these authors and first build a nonlinear model for

price based on an instrumental variable, and then include

the price residual as a covariate in our model of passenger

demand. To do so, we model the logarithm of prices at the

daily and flight levels as

logðpi;tÞ ¼h0 þ h1 IVi;t þ
X

k2I1

X

j2Jk
1fxk;i;t¼jghk;j

þ st tð Þ þ
X

k2I2
sk zk;i;t
� 	

þ ui;t

¼gi;t þ ui;t;

ð16Þ

where ui;t 	Nð0; r2Þ 8 i; t. The effects of t and zk;i;t; k 2 I2
are captured by unknown smooth functions stðÞ and

skðÞ; k 2 I2 modelled by penalized splines, while IVi;t is an

instrumental variable.

Mumbower et al. (2014) discusses possible choices for IV

and suitable candidates. Li et al. (2014) describes that almost

all of these choices are invalid as the researcher needs to

observe both the IV and booking data at the same level of

aggregation to control for price endogeneity effectively.

Supply shifters—for example, airport fees, transportation

taxes and fuel costs—are constant over daily bookings.

Hausman-style instruments at the firm level do not match a

model at the market level. Stern-type instruments that mea-

sure competition and market share do not vary on the

booking level. Last, IVs that impact marginal costs remain a

feasible option. Similar to (Meyer et al. 2022), we use (the

logarithm of) a variable that is popular in the revenue man-

agement literature called the ‘bidprice’ (Talluri and van

Ryzin 2005, p. 31). The bidprice is a measure of the (mar-

ginal) cost of offering a seat, taking into account that it

cannot be sold again. Crucially, it varies between bookings

because the airline updates its assessment frequently. The

bidprice is available for all flights in the database and all time

points and for prediction purposes for flights that have yet to

depart.

Fig. 10 Description of two Airline-network scenarios. On the left-

hand side, the airline controls for capacity constraints only taking

passenger demand from the origin (BBB) to the destination (AAA)

into account. Low-cost carriers typically use this setup. On the right-

hand side, the airline controls for the capacity constraint on the BBB

to AAA route by taking all possible passenger demand streams

coming from other origins than BBB (arrows going into BBB) to

different destinations than AAA (arrows going out of AAA) into

account. Network carriers typically use this setup
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To ensure the validity of our choice, the IV needs to

fulfil the properties of relevance and exogeneity (Guevara

2018). Whereas (strong) relevance can easily be demon-

strated by the strong nonlinear dependence between the IV

and the endogenous variable price, exogeneity needs to be

addressed by a statistical (over-identification) test. Unfor-

tunately, this test requires the availability of at least two

instruments, so exogeneity can only be established defi-

nitely. From a qualitative perspective, the bidprice mea-

sures displacement cost, ensuring that revenue gain for the

available airlines’ network capacity is maximized. As

pointed out by Li et al. (2014), the exogeneity (and hence

the validity of the bid-price IV) means that a demand shock

for flight i at the time to departure t (i.e.

eiðtÞ ¼ YiðtÞ � kðxi;t; tÞ, where YiðtÞ ¼ NiðtÞ � Niðt � 1Þ) is
uncorrelated with the IV. Figure 10 describes two possible

revenue management setups, where an airline only controls

displacement cost on the route level (left-hand side) or

incorporates all potential demand streams into the dis-

placement cost calculation (right-hand side). AirABC is a

network carrier considering every demand stream when

calculating the bidprice value. Therefore, the bidprice

defines the distribution of network demand on the route

level. In our study, the share of transfer passengers, i.e.,

passengers not travelling solely between BBB and AAA, is

approximately 50%. Thus, the bid-price value is primarily

determined by factors exogenous to the route under study.

Hence, we conclude that the demand shock eiðtÞ and the

bidprice are uncorrelated.

After the parameters of the model (4) are estimated

using maximum likelihood, the error

ni;t ¼pi;t � E pi;t j IVi;t; z1;i;t; . . .; zI2;i;t
� 	

¼pi;t � exp gi;t þ r̂2=2
� 	

is estimated for each flight and booking day combination,

where the squared residual standard error is calculated as

r̂2 ¼ 1

n� df ðbhÞ

XM

i¼1

Xt
open

i

t¼tclosei

bu2i;t; ð17Þ

The resulting residuals values are observations on the

covariate n̂i;t, which is included in the demand model (3) as

an additional regressor.

Appendix 3: Model adjustments for price
data on booking level

The ticket price pi;t can change during booking day t, but

covariates BDAY, DTIME, YDAY, and t are fixed.

Therefore, the price is observed per booking, but BDAY,

DTIME, YDAY, and t are given daily. The likelihood of

model (5) is augmented to incorporate different resolution

levels for the observations, specifically price variation on

booking level. The augmentation aims to maintain the price

information pi;t per booking.

Suppose three bookings are observed on a single day for

model (5) with likelihood (11). In that case, we assume an

aggregation level of 1
3
day. To specify this here, let

xi;t;l ¼ BDAYi;t; pi;t;l; DTIMEi;t; YDAYi;t; t
� 	

be the covariate vector for the lth booking observed t days

to departure for flight i, where l ¼ 1; :::;maxð1; yi;tÞ. On
days without bookings of flight i (i.e. when yi;t ¼ 0), let

xi;t;1 be the vector of covariate values, and set yi;t;1 ¼ 0.

Similarly, let yi;t;l ¼ 1 for l ¼ 1; :::;maxð1; yi;tÞ for days

with observed bookings (yi;t 
 1). Then, the (unpenalized)

log-likelihood is:

‘ðhÞ ¼
XM

i¼1

Xt
open

i

t¼tclosei

Xmaxð1;yi;tÞ

l¼1

yi;t;llog
�
kðxi;t;l; t; hÞ

�

� kðxi;t;l; t; hÞ
maxð1; yi;tÞ

:

ð18Þ

The additional inner summation in Eq. (18) runs over all

observed bookings (yi;t;l ¼ 1) during one booking day t and

flight i. This summation drops out for days without book-

ings (yi;t;l ¼ 0).

Appendix 4: Benchmarking

We benchmark our approach against a heuristic, a para-

metric and a nonparametric model. As a representative

heuristic, we select the model proposed by Weatherford

and Pölt (2002) (WP). WP imputed the mean number of

bookings as a demand estimate for days where the airline

did not offer a fare. As a parametric approach, we select

FCST of Fiig et al. (2014). This approach models demand

depending on BDAY, DTIME, YDAY, t, and pi;t. As a

nonparametric approach, we select EM by Vulcano et al.

(2012). EM requires price variation for all flights i and

values of t. However, for the analysed data set, this is only

sometimes given. So, instead of using the observed book-

ings with prices pi;t, we calculate the average number of

bookings for all observable prices. This logic imposes price

variation for fixed values of t by dropping the flight index

i. Therefore, EM predicts the average demand level per

flight without considering season or departure time effects.

Hence, we expect EM to perform best when demand does

not depend on season or departure time and worse

otherwise.

Table 6 lists the benchmarked models per represented

family. The second column assesses model flexibility:
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nonparametric models provide more flexibility than para-

metric models. WP is rated as less flexible than all alter-

natives, as it ignores the information contributed by the

covariates BDAY, DTIME, YDAY, and t.

We measure the prediction error by K-fold cross-vali-

dation to quantify the forecasting accuracy. The smallest

prediction error indicates the best demand estimate. We

evaluate the prediction error per flight i. To that end, we

aggregate observed bookings yi;t and demand estimates

bkðxi;t; tÞ � bki;t over t: yi ¼
Pt

open

i

t¼tclosei

yi;t and

bki ¼
Ptopeni

t¼tclosei

bki;t. To create K roughly equal-sized folds of

data (indexed by k 2 f1; . . .;Kg) from M flights

(K\\M), we randomly draw m ¼ bMKc flights, K-times

without replacement. Finally, for each competing model,

the cross-validation estimate of the prediction error

CV bk
� �

is

CV bk
� �

¼ 1

K

XK

k¼1

1

Mk

XMk

i¼1

L yi; bk
�k ið Þ
i

� �
; ð19Þ

where prediction bk�k ið Þ
i is created by excluding the data of

fold k. The loss L yi; bk�k ið Þ
� �

results by forecasting bk�k ið Þ
i

and observing yi.

As loss functions Lð�Þ, we consider a selection of

absolute and relative measures. We measure absolute

deviations by the root mean squared error (RMSE) and the

mean absolute deviation (MAD). Relative deviations are

evaluated by the root mean squared logarithmic error

(RMSLE) and the symmetric mean absolute percentage

error (SMAPE), which are feasible if the target attains a

value of zero (if no demand is observed). The definitions

for RMSE, MAD, RMSLE, and SMAPE are

RMSE ¼
XM

i¼1

yi � bk�k ið Þ
i

� �2
ð20Þ

MAD ¼
XM

i¼1

yi � bk�k ið Þ
i

���
��� ð21Þ

RMSLE ¼
XM

i¼1

log
bk�k ið Þ
i þ 1

yi þ 1

 !2

ð22Þ

SMAPE ¼

PM
i¼1 yi � bk�k ið Þ

i

���
���

PM
i¼1 yi þ bk

�k ið Þ
i

ð23Þ

Figure 11 reports the resulting average cross-validation

estimates CV ðbkÞ per benchmarked approach and sample

size. Two P2P connections and seven departure days yield

14 combinations per OD. Thus, the average cross-valida-

tion estimate for prediction bk is calculated as

CV ðbkÞ ¼ 1
14

P14
j¼1 CVj. Figure 11 shows that the two

absolute measures tend to increase in the sample size,

whereas the relative measures RMSLE and SMAPE

decrease. Our approach ranges at the top independent of

the sample size, even though FCST performs almost as

well. The weak performance of EM originates from not

considering seasonal or departure time dependencies but

being dependent on aggregated data. The relative measures

of RMSLE and SMAPE highlight the superior performance

of our model. As Bartke (2014) point out, small observa-

tions result if disaggregated booking data is used for

demand estimation. Therefore, the final judgment should

focus on relative forecasting performance as quantified by

RMSLE and SMAPE.

Appendix 5: Proof of the discrete pricing
problem

Given a discrete set of price points Xp ¼ fp1; . . .; pJg, the
optimal price pHi;t (8) defines the lower boundary point of

the subset X0
p � Xp of prices that are profitable to be

offered. To show that pHi;t defines the boundary point of the

set X0
p, every price below (pk\pHi;t) has to have a marginal

revenue contribution that is smaller than pi;t (bid-price) and

a price above or equal (pj 
 pHi;t) has to have a marginal

revenue contribution that is greater than p.

Proof for simplicity all indices are dropped For pk\pH:

kðpkÞrk � kðpkÞp\kðpHÞrH � kðpHÞp

() kðpkÞrk � kðpHÞrH � p kðpkÞ � kðpHÞ
� 	

\0

() kðpkÞrk � kðpHÞrH
kðpkÞ � kðpHÞ \p

ð24Þ

For pj [ pH:

Table 6 Properties of forecasting models for benchmarking

Label Flexibility References

WP Low Weatherford and Pölt (2002)

FCST Medium Fiig et al. (2014)

EM High Vulcano et al. (2012)

Our model High Eqs. (4) and (5)
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kðpjÞrj � kðpjÞp\kðpHÞrH � kðpHÞp

() kðpjÞrj � kðpHÞrH � p kðpjÞ � kðpHÞ
� 	

\0

() kðpHÞrH � kðpjÞrj
kðpHÞ � kðpjÞ

[ p

ð25Þ

We conclude that prices below the optimal price (pk\pH)

have a marginal revenue contribution smaller than the

bidprice and are therefore not included in the offer-set X0
p.

In contrast, prices equal to or greater than the optimal price

pH have a marginal revenue contribution greater than the

bidprice and are therefore included in X0
p. Note that the first

inequality of each case results as pH is the optimal price

that maximises (6).

Fig. 11 Estimates of the average prediction error CV ðbkÞ versus the
ODs sample size calculated by the criteria RMSE (1st row), MAD

(2nd row), RMSLE (3rd row), and SMAPE (4th row). The model with

the lowest prediction error among all other models (our model, EM,

FCST, and WP) has the best forecasting performance for every

criterion
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Appendix 6: Calculation of the optimal
continuous price

o
�
kðxi;t; tÞðri;t � pi;tÞ

�

opi;t
¼! 0

() ðbrHi;t � pi;tÞ
okðxi;t; tÞ

opi;t
þ kðxi;t; tÞ

oðbrHi;t � pi;tÞ
opi;t

¼ 0

() �ba0 þ ð1� ba1ÞpHi;t � pi;t
� � okðxi;t; tÞ

opi;t

þ kðxi;t; tÞð1� ba1Þ ¼ 0

() �ba0 þ ð1� ba1ÞpHi;t � pi;t
� �

kðxi;t; tÞ
o log kðxi;t; tÞ

� 	

opi;t

þ kðxi;t; tÞð1� ba1Þ ¼ 0

() �ba0 þ ð1� ba1ÞpHi;t � pi;t
� �

12sbbn þ f 0p þ f 0p;tðtÞ þ
X

k2I2
f 0p;kðzk;i;tÞ

 !

¼ � 1� ba1ð Þ

() � 1� ba1
12sbbn þ f 0p þ f 0p;tðtÞ þ

P
k2I2 f

0
p;kðzk;i;tÞ

þ ba0 þ pi;t ¼ ð1� ba1ÞpHi;t

() � 1

12sbbn þ f 0p þ f 0p;tðtÞ þ
P

k2I2 f
0
p;kðzk;i;tÞ

þ ba0
1� ba1

þ pi;t
1� ba1

¼ pHi;t

ð26Þ

In line two, we use the fact that the estimated regression

model (7) gives bri;t ¼ �ba0 þ ð1� ba1Þpi;t. Thus, for pi;t ¼
pHi;t we get the corresponding revenue gain brHi;t. The model

for log kðxi;t; tÞ
� 	

is defined by Eq. (3). Specifically, Eq. (5)

describes the model applied to airline data. In line 5, we

used the structure of the airline model, where f 0 corre-

sponds to o
opi;t

f .

Appendix 7: Supplementary plots

Figure 12 shows the offered price per departure time and

three values of bidprice p for OD1-5 and OD7. Figure 13

shows how the factor Q3 of p changes for the countries ES,

FR, GB, IT, and SE.

Fig. 12 Optimal price values for OD1-5 and OD7 at DDAY=Thursday
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Fig. 13 For the countries ES, FR, GB, IT, and SE, the graph shows how the factor Q3f changes for different days to departure, ranging from 100

days pre-departure to the day of departure and over the selling dates from January 2019 to April 2021
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Weatherford, L., and S. Pölt. 2002. Better unconstraining of airline

demand data in revenue management systems for improved

forecast accuracy and greater revenues. Journal of Revenue and
Pricing Management 1: 234–254.

Wittman, M.D., and P.P. Belobaba. 2017. Personalization in airline

revenue management—Heuristics for real-time adjustment of

availability and fares. Journal of Revenue and Pricing Manage-
ment 16 (4): 376–396. https://doi.org/10.1057/s41272-016-0002-

z.

Wittman, M.D., and P.P. Belobaba. 2019. Dynamic pricing mecha-

nisms for the airline industry: A definitional framework. Journal
of Revenue and Pricing Management 18 (2): 100–106. https://

doi.org/10.1057/s41272-018-00162-6.

Wood, S. 2017. Generalized additive models: An introduction with R.
CRC texts in statistical science. Boca Raton: CRC Press.

Wooldridge, J. 2002. Introductory econometrics: A modern approach,
2nd ed. East Lansing: Michigan State University.

Wu, S., and A. Akbarov. 2012. Forecasting warranty claims for

recently launched products. Reliability Engineering & System
Safety 106: 160–164.

Xie, X., R. Verma, and C.K. Anderson. 2016. Demand growth in

services: A discrete choice analysis of customer preferences and

online selling. Decision Sciences 47 (3): 473–491. https://doi.

org/10.1111/deci.12177.

Yeoman, I. 2021. Q. Can we manage demand in COVID-19 world?

A. I don’t know. Journal of Revenue and Pricing Management
20 (1): 1–2. https://doi.org/10.1057/s41272-021-00280-8.

Yeoman, Ian. 2022. Ukraine, price and inflation. Journal of Revenue
and Pricing Management 21 (3): 253–254. https://doi.org/10.

1057/s41272-022-00378-7.

Zeileis, A., T. Hothorn, and K. Hornik. 2008. Model-based recursive

partitioning. Journal of Computational and Graphical Statistics
17 (2): 492–514.

Zhang, T., and S.C. Kou. 2010. Nonparametric inference of doubly

stochastic Poisson process data via the kernel method. The
Annals of Applied Statistics 4 (4): 1913–1941. https://doi.org/10.

1214/10-AOAS352.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Modeling price-sensitive demand in turbulent times... 177

https://doi.org/10.1177/1471082X221083343
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data
https://doi.org/10.1057/s41272-022-00385-8
https://doi.org/10.1057/s41272-022-00385-8
http://opus.bath.ac.uk/27546/
https://doi.org/10.1007/s11222-013-9448-7
https://doi.org/10.1007/s11222-013-9448-7
https://doi.org/10.2139/ssrn.2765257
https://doi.org/10.1093/biostatistics/kxl036
https://doi.org/10.1093/biostatistics/kxl036
https://doi.org/10.1057/s41272-020-00269-9
https://doi.org/10.1057/s41272-016-0002-z
https://doi.org/10.1057/s41272-016-0002-z
https://doi.org/10.1057/s41272-018-00162-6
https://doi.org/10.1057/s41272-018-00162-6
https://doi.org/10.1111/deci.12177
https://doi.org/10.1111/deci.12177
https://doi.org/10.1057/s41272-021-00280-8
https://doi.org/10.1057/s41272-022-00378-7
https://doi.org/10.1057/s41272-022-00378-7
https://doi.org/10.1214/10-AOAS352
https://doi.org/10.1214/10-AOAS352

	Modeling price-sensitive demand in turbulent times: an application to continuous pricing
	Abstract
	Introduction
	Literature review on demand estimation and dynamic pricing
	Statistical model and estimation
	Model development

	Empirical data
	The airline’s pricing model
	The airline’s demand model
	Estimation results

	Dynamic pricing
	Continuous prices
	Discrete prices
	Performance evaluation in a field study

	Model adjustments due to market turbulences
	Conclusion
	Appendix 1: Penalized likelihood estimation approach
	Appendix 2: Two-staged estimation by residual inclusion
	Appendix 3: Model adjustments for price data on booking level
	Appendix 4: Benchmarking
	Appendix 5: Proof of the discrete pricing problem
	Appendix 6: Calculation of the optimal continuous price
	Appendix 7: Supplementary plots
	Data availability
	References




