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Abstract

The theory of Boolean differential rings is a natural extension of the theory of Boolean 

rings, that additionaly provides an abstract notion of differential. Boolean rings are im­

portant and extensively studied concepts arising naturally in many parts of mathematics, 

especially logic, and computer science. One important result is that the theory of Boolean 

rings has the unitary unification type. We show that the unification of Boolean differen­

tial rings can be reduced to the unification of Boolean rings and that the theory of Boolean 

differential rings also has the unitary unification type, and we provide an algorithm that 

calculates a most general unifier. We also show that terms of Boolean differential rings 

have a flat normal form similar to the polynomial form of terms of Boolean rings and that 

terms of Boolean differential rings correspond to terms of Boolean rings in a way that 

respects both equivalences.
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Introduction

Boolean algebras are important mathematical structures that appear in many different 

parts of mathematics, in particular logic, and theoretical computer science. They can be 

equivalently characterized in the language of algebra as Boolean rings, which enables us 

to use the more familiar definitions and techniques of ring theory.

One of the most important classes of Boolean algebras are the switching algebras 𝕊𝑛, 

i. e. the sets of Boolean functions 𝟚𝑛 → 𝟚 for 𝑛 ∈ ℕ, that inherit their algebraic properties 

from 𝟚 which is isomorphic to the two-element field. Switching algebras arise naturally in 

computer science as they represent logical circuits. Because of their importance, Switch­

ing functions in particular, as well as Boolean algebras and Boolean rings in general, have 

been extensively studied.

A natural question that comes up when dealing with switching function is in which 

sense some Boolean functions are independent from some of the input variables. E. g. the 

function 𝑓(𝑥1, 𝑥2) ≔ 𝑥1 is clearly independent from 𝑥2. There are, however, less obvious 

examples like the function 𝑔(𝑥1, 𝑥2) ≔ 𝑥1 ∨ (𝑥2 ∧ ¬𝑥2) which is essentially the function 

𝑓, but in order to check whether 𝑔 depends on 𝑥2 one already needs to know Boolean 

arithmetic to see that 𝑥2 ∧ ¬𝑥2 = 0 and therefore 𝑥1 ∨ 0 = 𝑥1.

A different angle on this question is to study whether the function value changes if 

the input variables of interest are changed, i. e. whether 𝑓(𝑥1, 𝑥2) has the same value as 

𝑓(𝑥1, ¬𝑥2) and similarly for 𝑔. The language of Boolean differential algebras and Boolean 

differential rings provides us with a way of talking about this question, and it leads to a 

fruitful field of study that stands at the center of this thesis. The word differential is a 

reference to the same concept in ℝ, that also answers the question in which way a real-

valued function depends on the input variables.

An extensive study of the switching algebras and the concept of differential on them 

has been covered in B. Steinbach and C. Posthoff [1] and particularly in B. Steinbach and 

C. Posthoff [2]. Here, the authors introduce the notions of simple and vectorial deriva­

tives and extensively study the behaviour of these derivatives. Following F. Weitkämper 

[3], in this thesis we will study arbitary Boolean differential rings.



Unification is a way of abstractly solving equations w. r. t. some theory. The differ­

ence to ordinary equation solving is that rather than plugging in values into variables, we 

instead replace variables with other terms such that the terms (and not a priori the values) 

are equal w. r. t. some theory. It has been shown that the unification theory of Boolean 

rings is particularly simple in that it is unitary. Unitary means that every unifiable system 

of equations has some unifier that is most general, i. e. it generates all possible solutions.

In this thesis, we will show that we can reduce the unification theory of Boolean dif­

ferential rings to the unification theory of Boolean rings and we prove that the unification 

theory of Boolean differential rings is unitary as well. We will also provide a unification 

algorithm for single as well as systems of equations of Boolean differential rings.

The algorithms in this work are given in pseudocode. The style of the code is 

inspired by the one used by U. Martin and T. Nipkow [4] for specifying the unification 

algorithm for Boolean rings. In order to avoid many nested if statements, we use a match 

statement as found in many programming languages, especially functional ones, where 

the individual cases follow the syntax 𝑆 ⇒ 𝑇, where 𝑆 is a constructor, in our cases mostly 

𝑥 or 𝛿(𝑥) involving variables, as well as 𝑆1 + 𝑆2, 𝑆1 ⋅ 𝑆2 as well as 𝛿(𝑆) for sums and 

product as well as terms enclosed by 𝛿.

In Section 1, we will introduce the important prerequisites for the later study. In 

Section 1.1, we will provide the basic logical definitions and in Section 1.2 we will intro­

duce the concept of unification. In Section 1.3, we will introduce the theory of Boolean 

rings, in Section 1.4 the polynomial normal form of terms of Boolean rings and lastly 

in Section 1.5 we will provide the most important results regarding the unification of 

Boolean rings.

In Section 2, we will provide the results of our study of Boolean differential rings. 

In Section 2.1, we will first introduce the theory of Boolean differential rings and explain 

why the switching algebras constitute Boolean differential rings. In Section 2.2, we will 

introduce the flat normal form of terms of Boolean differential rings and prove some 

statements about it. In Section 2.3, we will show a way of translating terms of Boolean 

differential rings into terms of Boolean rings in a way that respects both equalities. Here 

we will also prove that the flat normal form has in fact similar properties to the polyno­

mial normal form of Boolean rings. In Section 2.4 we will introduce some important 

lemmas which leads us to the final Section  2.5 in which we will state and prove our 

main theorems regarding the unification of Boolean differential rings. Here we will also 

specify a unification algorithm for single equations and systems of equations of Boolean 

differential rings.



1 Basic Notions

1.1 Terms, Theories and Models

In the following section, we will introduce the basic definitions of mathematical logic 

as can be found in H.-D. Ebbinghaus, J. Flum, and W. Thomas [5] or most other intro­

ductory books on logic. We will, however, limit ourselves to present only the parts that 

are relevant to the later work and make slight adjustments to definitions and notation to 

better suit our needs and cater to our (personal) aesthetic preferences.

definition 1.  In logic, a language ℒ︀ is a tuple (𝐹, 𝑃) where 𝐹 is a set of function 

symbols and 𝑃 is a set of predicate symbols. ℒ︀ is also equipped with a countable set 𝒱︀ =
{𝑥𝑖 | 𝑖 ∈ ℕ} of variables, that is disjoint from 𝐹 and 𝑃.

Even though 𝒱︀  contains only the symbols 𝑥𝑖, we will also use variable names like 𝑎𝑖 and 

𝑏𝑖 for the sake of clarity. In this case, we will simply view 𝑎𝑖 or 𝑏𝑖 as an abbreviation for 

an actual variable 𝑥𝑗 ∈ 𝒱︀  for some 𝑗 ∈ ℕ and generally assume that all the 𝑎𝑖 as well as all 

the 𝑏𝑖 are mutually distinct.

A central notion in this thesis is the one of a term over ℒ︀, also called ℒ︀-term. The set 

𝒯︀ of terms over ℒ︀ is defined inductively:

definition 2.  Every 0-ary function symbol of 𝐹 and every element of 𝒱︀  is an ℒ︀-

term. For every 𝑘-ary function symbol 𝑓 ∈ 𝐹, and all ℒ︀-terms 𝑡1, …, 𝑡𝑘, the expression 

𝑓(𝑡1, …, 𝑡𝑘) is also an ℒ︀-term. In this case we say that 𝑡1, …, 𝑡𝑘 are proper subterms of 

𝑓(𝑡1, …, 𝑡𝑘) and 𝑓(𝑡1, …, 𝑡𝑘) is a proper superterm of 𝑡1, …, 𝑡𝑘. An ℒ︀-term 𝑠 is a subterm 

(resp. superterm) of an ℒ︀-tem 𝑡 if it is either a proper subterm (resp. superterm), or 𝑠 =
𝑡. If a term 𝑡 contains at most the variables ⃗𝑥 ≔ (𝑥1, …, 𝑥𝑛) for some 𝑛 ∈ ℕ, then we say 

that 𝑡 is a term of ⃗𝑥 and write 𝑡( ⃗𝑥).

Note that 𝒯︀ is always at least countably infinite, since there are countably infinitely many 

variables. It is exactly countably infinite if 𝐹 and 𝑃 are at most countable. The set ℱ︀ of 



ℒ︀-formulas can be defined inductively in a similar fashion using the predicate symbols 

(plus a special binary relation “=”) as well as the previously defined terms:

definition 3.  If 𝑝 is a 𝑘-ary prediacte of 𝑃 and 𝑡1, …, 𝑡𝑘 are ℒ︀-terms, then 𝑝(𝑡1, …, 𝑡𝑘) 

is an ℒ︀-formula. Similarly, if 𝑠 and 𝑡 are ℒ︀-terms, then 𝑠 = 𝑡 is a ℒ︀-formula. Finally, every 

first-order formula built from these atomic ℒ︀-formulas is an ℒ︀-formula.

Similarly to 𝒯︀, ℱ︀ is always at least countably infinite and exactly countably infinite if 𝐹 

and 𝑃 are at most countable. Next, we will introduce some notions of proof and model 

theory:

definition 4.  An ℒ︀-theory 𝑇 is a set of ℒ︀-formulas (called axioms). If Φ is a 

formula, then we say that 𝑇 proves Φ, denoted 𝑇 ⊢ Φ, iff there exists a finite subset 𝑇 ′ ≔
{Ψ1, …, Ψ𝑛} ⊆ 𝑇 such that there is a finite derivation proving Φ from 𝑇 ′. For terms 𝑠 and 

𝑡, we write 𝑠 =
𝑇

𝑡 to mean 𝑇 ⊢ 𝑠 = 𝑡.

definition 5.  Let 𝑇 be an ℒ︀-theory. A set ℳ︀ is called a model of 𝑇, denoted ℳ︀ ⊨
𝑇, if there is an interpretation of 𝒯︀ and ℱ︀ within ℳ︀, and for every formula of 𝑇, its 

interpretation in ℳ︀ is true. If 𝑡 is an ℒ︀-term of ⃗𝑥 ∈ 𝒱︀𝑛 and ⃗𝑋 ∈ ℳ︀𝑛, then we denote by 

𝑡⟪ ⃗𝑋⟫ the interpretation of 𝑡 in ℳ︀ with 𝑋𝑖 plugged into all occurences of 𝑥𝑖, for all 0 <
𝑖 ≤ 𝑛.

The following theorem is an important result of logic. It states that the above notions of 

deductive provability and model-theoretic truth are equivalent.

theorem 6 (Soundness and Completeness [5, Thm. IV.6.2, V.4.1]) .  It holds that 𝑇 ⊢
Φ if and only if for all models ℳ︀ of 𝑇 it is true that ℳ︀ ⊨ Φ.

1.2 Unification

The above notion of evaluating terms at (i. e. “plugging in”) elements of ℳ︀ has a syntac­

tic-deductive analogon. With substitution, the difference is that variables are evaluated at, 

or in this case replaced by, other terms instead of directly by elements of ℳ︀. This makes 

sense, since these new terms in turn correspond to elements in models and 𝑇-equality is 

preserved as shown in Lemma 8. In the following, we will vaguely follow F. Baader and 

T. Nipkow [6], but we will, again, simplify or modify definitions and notation to better 

suit our needs.

definition 7.  Let 𝜎 : 𝒱︀ → 𝒯︀ be a function. We can recursively extend 𝜎 to a function 

𝜎̄ : 𝒯︀ → 𝒯︀: If 𝑐 ∈ 𝐹 is 0-ary, then 𝜎̄(𝑐) ≔ 𝑐. If 𝑥 ∈ 𝒱︀, then 𝜎̄(𝑥) ≔ 𝜎(𝑥). If 𝑓 ∈ 𝐹 is 𝑘-ary 



for some 𝑘 ∈ ℕ and 𝑡1, …, 𝑡𝑘 are ℒ︀-terms, then 𝜎̄(𝑓(𝑡1, …, 𝑡𝑘)) ≔ 𝑓(𝜎̄(𝑡1), …, 𝜎̄(𝑡𝑘)). In 

this case, we call 𝜎 an ℒ︀-substitution and for the sake of clarity, we denote the application 

of 𝜎 on a term 𝑡 by [𝑡]𝜎 ≔ 𝜎(𝑡).

In this thesis, we will not distinguish 𝜎̄ from 𝜎 and, in particular, we will define a substi­

tution simply by specifying its values on 𝒱︀. Similarly, if 𝜎 is defined on a subset 𝑋 ⊆ 𝒱︀, 

then we can extend it to the whole of 𝒱︀  by letting 𝜎(𝑥) ≔ 𝑥 for 𝑥 ∈ 𝒱︀ ∖ 𝑋 .

In the rest of this thesis, we will often specify a substitution (function) 𝜎 by provid­

ing a set of ordered pairs 𝒱︀ × 𝒯︀, where a single ordered pair (𝑥, 𝑡) means that 𝜎(𝑥) =
𝑡. Again for the sake of clarity, we will use the special notation 𝑥 ↦ 𝑡 for (𝑥, 𝑡), which 

means that e. g. the set {𝑥1 ↦ 𝑡1, 𝑥2 ↦ 𝑡2} will correspond to the substitution sending 𝑥1 

to the term 𝑡1 as well as 𝑥2 to 𝑡2, and {𝑥𝑖 ↦ 𝑡𝑖 | 0 < 𝑖 ≤ 𝑛} to the substitution sending every 

variable 𝑥𝑖, 0 < 𝑖 ≤ 𝑛, to the term 𝑡𝑖. As before, we assume that both of the substitutions 

act like the identity on all of the variables that have not been mentioned explicitly.

If 𝒦︀ ⊆ ℒ︀ is another language and 𝜎 is a 𝒦︀-substitution, we can also see 𝜎 as an ℒ︀-

substitution. We will use this fact without explicit mention in the case for ℒ︀BR ⊆ ℒ︀BDR 

later on in this work.

Next, we will show that substitutions do, in fact, preserve 𝑇-equalities.

lemma 8.  Let 𝑠 and 𝑡 be ℒ︀-terms over ℒ︀ with 𝑠 =
𝑇

𝑡 and 𝜎 an ℒ︀-substitution. Then it 

holds that [𝑠]𝜎 =
𝑇

[𝑡]𝜎 .

proof .  To show that [𝑠]𝜎 =
𝑇

[𝑡]𝜎 , let ℳ︀ be any model of 𝑇. Assume that 𝑠 and 𝑡 are ℒ︀
-terms of ⃗𝑥 ∈ 𝒱︀𝑛 and [𝑠]𝜎  as well as [𝑡]𝜎  are terms of ⃗𝑦 ∈ 𝒱︀𝑚, ⃗𝑥 and ⃗𝑦 not necessarily 

disjoint. Let ⃗𝑌 ∈ ℳ︀𝑚. We need to show that [𝑠]𝜎 ⟪ ⃗𝑌⟫ = [𝑡]𝜎 ⟪ ⃗𝑌⟫. For that, define 𝑊 ≔
(𝑊1, …, 𝑊𝑛) ∈ ℳ︀𝑛 by 𝑊 𝑖 ≔ [𝑥𝑖]𝜎 ⟪ ⃗𝑌⟫ for 0 < 𝑖 ≤ 𝑛. For all ℒ︀-terms 𝑢 it holds that 

[𝑢]𝜎 ⟪ ⃗𝑌⟫ = 𝑢⟪𝑊⟫. We prove this by induction: For 0-ary 𝑓 ∈ ℱ︀, it holds that [𝑓]𝜎 ⟪ ⃗𝑌⟫ =
𝑓 = 𝑓⟪𝑊⟫. For 0 < 𝑖 ≤ 𝑛 it holds that [𝑥𝑖]𝜎 ⟪ ⃗𝑌⟫ = 𝑊 𝑖 = 𝑥𝑖⟪𝑊⟫. Finally, if 𝑓 ∈ ℱ︀ is 𝑘-

ary and the hypothesis holds for the ℒ︀-terms 𝑡1, …, 𝑡𝑘, then

[𝑓(𝑡1, …, 𝑡𝑘)]𝜎 ⟪ ⃗𝑌⟫ = 𝑓( [𝑡1]𝜎 , …, [𝑡𝑘]𝜎 )⟪ ⃗𝑌⟫

= 𝑓( [𝑡1]𝜎 ⟪ ⃗𝑌⟫, …, [𝑡𝑘]𝜎 ⟪ ⃗𝑌⟫)

= 𝑓(𝑡1⟪𝑊⟫, …, 𝑡𝑘⟪𝑊⟫)

= 𝑓(𝑡1, …, 𝑡𝑘)⟪𝑊⟫
Together, this shows that it holds for all terms 𝑢. Then, using this as well as the fact that 

𝑠 =
𝑇

𝑡 and therefore 𝑠⟪ ⃗𝑋⟫ = 𝑡⟪ ⃗𝑋⟫ for all ⃗𝑋 ∈ ℳ︀𝑛, we have that



[𝑠]𝜎 ⟪ ⃗𝑌⟫ = 𝑠⟪𝑊⟫ = 𝑡⟪𝑊⟫ = [𝑡]𝜎 ⟪ ⃗𝑌⟫

Since this holds for all models ℳ︀, we have that [𝑠]𝜎 =
𝑇

[𝑡]𝜎 . ∎

In the following, we will make some more general definitions regarding substitutions.

definition 9.  Let 𝜎 and 𝜏 be ℒ︀-substitutions. Then the composition 𝜎𝜏 ≔ 𝜎 ∘ 𝜏 is 

simply the function composition, i. e. for all 𝑥 ∈ 𝒱︀  we have that [𝑥]𝜎𝜏 ≔ [ [𝑥]𝜏 ]𝜎 .

definition 10.  Let 𝜎 and 𝜏 be ℒ︀-substitutions. We say that 𝜎 and 𝜏 are 𝑇-equal, 

denoted 𝜎 =
𝑇

𝜏, iff for all 𝑥 ∈ 𝒱︀  it holds that [𝑥]𝜎 =
𝑇

[𝑥]𝜏 . In this case it is clear that for all 

ℒ︀-terms 𝑡 it holds that [𝑡]𝜎 =
𝑇

[𝑡]𝜏 .

This allows us to define a notion of generality between substitutions. A substitution is 

more general if the other substitution is simply a specialization of it.

definition 11.  Let 𝑇 be an ℒ︀-theory. Then we define the partial order ≤
𝑇

 by letting 

𝜎 ≤
𝑇

𝜏, for all ℒ︀-substitutions 𝜎 and 𝜏, if and only if there exists an ℒ︀-substitution 𝜗 such 

that 𝜏 =
𝑇

𝜗𝜎. In this case we say that 𝜎 is at least as general as 𝜏 and we will usually just 

write ≤ instead of ≤
𝑇

 if the theory is clear from the context. It is easy to verify that ≤ is in 

fact a preorder on the set of ℒ︀-substitutions.

We now have all the necessary definitions to define the central subject of this thesis, 

unification theory. (Equational) unification is a technique of solving equations both 

syntactically and w. r. t. a theory. In a way, unification in relation to finding solutions of 

an equation is what substitution is in relation to “plugging in” values.

definition 12.  Let 𝑠1, …, 𝑠𝑛 and 𝑡1, …, 𝑡𝑛 be ℒ︀-terms. A substitution 𝜎 is a 𝑇-unifier of 

the finite system of equations {𝑠1 = 𝑡1, …, 𝑠𝑛 = 𝑡𝑛}, called a 𝑇-unification problem, if and 

only if [𝑠𝑖]𝜎 =
𝑇

[𝑡𝑖]𝜎  for all 0 < 𝑖 ≤ 𝑛. We say that a system of equations 𝐸 is 𝑇-unifiable if 

and only if there is a 𝑇-unifier of 𝐸. If 𝑠 and 𝑡 are terms, we will often simply write 𝑠 = 𝑡 

instead of the singleton set {𝑠 = 𝑡}.

Unification can also be done purely syntactically. In this case, the equations [𝑠𝑖]𝜎 =
𝑇

[𝑡𝑖]𝜎  in Definition 12 would be replaced by the syntactic equations [𝑠𝑖]𝜎 = [𝑡𝑖]𝜎 . In fact, 

syntactic unification is simply equational unification with an empty theory 𝑇 = ∅. In 

the following, “unification” will always mean the more general notion of “equational 

unification” in the sense of Definition 12.

Suppose that 𝑠 and 𝑡 are ℒ︀-terms and 𝜎 is a 𝑇-unifier of 𝑠 = 𝑡 with [𝑠]𝜎  and [𝑡]𝜎  

being terms of ⃗𝑥. If ℳ︀ is a model of 𝑇, then we have, for all ⃗𝑋 ∈ ℳ︀𝑛, that [𝑠]𝜎 ⟪ ⃗𝑋⟫ =



[𝑡]𝜎 ⟪ ⃗𝑋⟫ and therefore unification constitutes a powerful method of generating concrete 

solutions of equations or showing that a given set of equations does not have any solution 

otherwise. It is now clear to see that unifiers that are more general substitutions will also 

generate more general concrete solutions. Due to this observation, it is in our interest to 

characterize the unifiers that are the most general.

definition 13 ([6, Def. 10.1.4]) .  Let 𝑇 be an ℒ︀-theory and 𝐸 a finite system of ℒ︀-

equations. A set Ω of 𝑇-unifiers of 𝐸 is minimal complete (mcsu), if for all 𝑇-unifiers 𝜏 

of 𝐸, there is a 𝜎 ∈ Ω such that 𝜎 ≤ 𝜏, and for all 𝜎, 𝜎′ ∈ Ω, if 𝜎 ≤ 𝜎′, then 𝜎 = 𝜎′. If Ω is 

the singleton {𝜎}, then we call 𝜎 a most general 𝑇-unifier (mgu) of 𝐸.

Note that ∅ is an mcsu if and only if 𝐸 is not unifiable. Moreover, in general, mcsu, and, 

in particular, mgu are not unique, but they can be transformed into each other w. r. t. 𝑇.

An mcsu allows us to generate all possible solutions for a system of equations with 

as few unifiers as possible. Larger mcsu intuitively mean that finding solutions is more 

difficult. It turns out that we can classify theories by how complex, or rather by how large, 

their mcsu can be.

definition 14 ([6, Def. 10.1.7]) .  Let 𝑇 be an ℒ︀-theory. 𝑇 can have the following 

unification types:

(i) unitary: If and only if every system of equations has a 𝑇-mcsu of cardinality ≤ 1, i. e. 

a 𝑇-mgu in case it is 𝑇-unifiable.

(ii) finitary: If and only if every system of equations has a finite 𝑇-mcsu.

(iii) infinitary: If and only if every system of equations has a 𝑇-mcsu and there is some 

system of equations that has an infinite 𝑇-mcsu.

(iv) zero: If there is a system of equations that does not have a 𝑇-mcsu.

It turns out that many theories are actually unitary, or at least finitary. In particular, it 

holds that the theory of Boolean rings and Boolean algebras is unitary. It is the aim of 

this thesis to show that the theory of Boolean differential rings and Boolean differential 

algebras is unitary as well.

The next theorem states that if every single equation has an mcsu of size ≤ 1, then 

every (finite) system of equations has an mcsu of size ≤ 1, i. e. the theory is unitary. This 

allows us later to deduce the unification type while only ever having to deal with single 

equation problems.

theorem 15.  Let 𝑇 be an ℒ︀-theory such that for all 𝐿-terms 𝑠 and 𝑡 the statement

Ψ(𝑠, 𝑡) ≔ either the equation 𝑠 = 𝑡 has a 𝑇-mgu or it is not 𝑇-unifiable
holds. Then 𝑇 is unitary.



proof .  Suppose that 𝐸 ≔ {𝑠1 = 𝑡1, …, 𝑠𝑛 = 𝑡𝑛} is 𝑇-unifiable by some 𝜗. We want to 

show that 𝐸 has a 𝑇-mgu. To show that, define 𝜏0 ≔ id. We will prove by induction that 

for every 0 < 𝑘 ≤ 𝑛 the 𝜏𝑘 ≔ 𝜎𝑘𝜏𝑘−1 where 𝜎𝑘 is a 𝑇-mgu of [𝑠𝑘]𝜏𝑘−1
= [𝑡𝑘]𝜏𝑘−1

 is well-

defined and that 𝜏𝑘 is a 𝑇-mgu of 𝐸𝑘 ≔ {𝑠1 = 𝑡1, …, 𝑠𝑘 = 𝑡𝑘}.

The case for 𝑘 = 1 is trivial: Since [𝑠1]𝜗 =
𝑇

[𝑡1]𝜗 , this means that 𝑠1 = 𝑡1 is 𝑇-unifiable 

and by Ψ(𝑠1, 𝑡1) this means that there exists a 𝑇-mgu 𝜎1 of
[𝑠1]𝜏0 = 𝑠1 = 𝑡1 = [𝑡1]𝜏0

and 𝜏1 ≔ 𝜎1𝜏0 = 𝜎1 is by definition a 𝑇-mgu of 𝐸1.

Now suppose that the induction hypothesis holds for some 0 < 𝑘 < 𝑛. Since 𝜗 is a 

𝑇-unifier of 𝐸, it is also a 𝑇-unifier of 𝐸𝑘 and therefore there is some substitution 𝜑 such 

that 𝜗 =
𝑇

𝜑𝜏𝑘. Since 𝜗 is a 𝑇-unifier of 𝑠𝑘+1 = 𝑡𝑘+1, it holds that

[ [𝑠𝑘+1]𝜏𝑘
]𝜑 = [𝑠𝑘+1]𝜗 =

𝑇
[𝑡𝑘+1]𝜗 = [ [𝑡𝑘+1]𝜏𝑘

]𝜑

which means that [𝑠𝑘+1]𝜏𝑘
= [𝑡𝑘+1]𝜏𝑘

 is 𝑇-unifiable. By Ψ( [𝑠𝑘+1]𝜏𝑘
, [𝑡𝑘+1]𝜏𝑘

), this means 

that there exists a 𝑇-mgu 𝜎𝑘+1 of this equation. This lets us define 𝜏𝑘+1 ≔ 𝜎𝑘+1𝜏𝑘. Clearly 

by construction, 𝜏𝑘+1 is a 𝑇-unifier of 𝐸𝑘+1. It remains to show that is also most general.

To show this, suppose that ̃𝜗 is another 𝑇-unifier of 𝐸𝑘+1. Since it is also a 𝑇-unifier 

of 𝐸𝑘, there exists some substitution ̃𝜑 such that ̃𝜗 =
𝑇

̃𝜑𝜏𝑘. Since

[ [𝑠𝑘+1]𝜏𝑘
]𝜑̃ = [𝑠𝑘+1]̃𝜗 =

𝑇
[𝑡𝑘+1]̃𝜗 = [ [𝑡𝑘+1]𝜏𝑘

]𝜑̃

and 𝜎𝑘+1 is most general for the equation [𝑠𝑘+1]𝜏𝑘
= [𝑡𝑘+1]𝜏𝑘

, it holds that there exists 

some substitution ̃𝜓 such that ̃𝜑 =
𝑇 ̃𝜓𝜎𝑘+1. Together we have that

̃𝜗 =
𝑇

̃𝜑𝜏𝑘 =
𝑇 ̃𝜓𝜎𝑘+1𝜏𝑘 = ̃𝜓𝜏𝑘+1

i. e. 𝜏𝑘+1 is most general.

By induction, it follows that for all 0 < 𝑘 ≤ 𝑛 the substitution 𝜏𝑘 is a 𝑇-mgu of 𝐸𝑘. 

In particular, 𝜏𝑛 is a 𝑇-mgu of 𝐸𝑛 = 𝐸, which concludes the proof. ∎

The proof of Theorem 15 suggests a way of specifying an algorithm for finding the mgu 

of a system of equations given an algorithm for finding the mgu of a single equation.

algorithm 16.  Let 𝑇 be a unitary ℒ︀-theory and unify𝑇  a function, specified, for all 

ℒ︀-terms 𝑠 and 𝑡, by a finitary algorithm, with unify𝑇(𝑠 = 𝑡) either a 𝑇-mgu of 𝑠 = 𝑡 in 

case the equation is 𝑇-unifable and ⊥ in case the equation is not 𝑇-unifiable. We will 

recursively specify the function unify𝑛
𝑇  for all 𝑛 ∈ ℕ, 1 ≤ 𝑛, that calculates the 𝑇-mgu of 

the system of ℒ︀-equations {𝑠1 = 𝑡1, …, 𝑠𝑛 = 𝑡𝑛} in case it is 𝑇-unifiable, and returns ⊥ in 

case it is not 𝑇-unifiable. For the base case we define unify1
𝑇 ≔ unify𝑇 . For the recursive 



case, suppose unify𝑛
𝑇  has already been defined for some 𝑛 ∈ ℕ, 1 ≤ 𝑛. Let 𝑠1, …, 𝑠𝑛+1 as 

well as 𝑡1, …, 𝑡𝑛+1 be ℒ︀-terms. We specify unify𝑛+1
𝑇  by the following algorithm:

unify𝑛+1
𝑇 (𝑠1 = 𝑡1, …, 𝑠𝑛+1 = 𝑡𝑛+1) ≔

let 𝜏𝑛 ≔ unify𝑛
𝑇(𝑠1 = 𝑡1, …, 𝑠𝑛 = 𝑡𝑛)

in if 𝜏𝑛 = ⊥
then ⊥
else let 𝜎𝑛+1 ≔ unify𝑇( [𝑠𝑛+1]𝜏𝑛 = [𝑡𝑛+1]𝜏𝑛 )

in if 𝜎𝑛+1 = ⊥
then ⊥
else 𝜎𝑛+1𝜏𝑛

The correctness of Algorithm  16 follows from the induction part of the proof of 

Theorem 15.

1.3 Boolean Rings and Algebras

We will now proceed to define Boolean rings and Boolean algebras. Boolean algebras are 

important structures present in many parts of mathematics and computer science. The 

notion of Boolean rings is equivalent to that of Boolean algebras, in the sense that every 

Boolean ring can be equipped with a Boolean algebra structure and vice versa. While 

the notion of Boolean algebras is convient to work with in set theory and some other 

fields, using the notion of Boolean rings allows us to talk about algebraic properties using 

notations and techniques from algebra. We will generally follow F. Baader and T. Nipkow 

[6, Sec. 10.4], but will adapt it to better suit our needs.

definition 17.  The language ℒ︀BR of Boolean rings consists of the 0-ary function 

symbols “0” and “1”, as well as the binary function symbols “+” and “⋅”. As usual, we 

will write 𝑎 + 𝑏 instead of +(𝑎, 𝑏), 𝑎 ⋅ 𝑏 or simply 𝑎𝑏 instead of ⋅(𝑎, 𝑏) and we will use the 

usual rules of precedence in order to avoid parentheses. The theory 𝑇BR consists of the 

following axioms:



(i) (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)
(ii) (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐)

(iii) 0 + 𝑎 = 𝑎
(iv) 1 ⋅ 𝑎 = 𝑎
(v) 𝑎 + 𝑎 = 0

(vi) 𝑎 ⋅ 𝑎 = 𝑎
(vii) 𝑎 + 𝑏 = 𝑏 + 𝑎

(viii) 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎
(ix) 𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐
(x) 0 ⋅ 𝑎 = 0

We will use these axioms in the rest of the work without explicitly mentioning them. 

For the sake of convenience, we will use “BR” to refer to both ℒ︀BR and 𝑇BR. E. g. we will 

say that 𝑠 =
BR

𝑡, BR ⊢ Φ and write “BR-term”. Furthermore, in anticipation of Boolean 

differential rings later, we will avoid using the variable name 𝑧. The equalities in the next 

Lemma follow immediately from BR, and will be used extensively in this thesis:

lemma 18.

(i) For all 𝑥 it holds that 𝑥 ⋅ (𝑥 + 1) = 0
(ii) For all 𝑥 and 𝑦 it holds that 𝑥 = 𝑦 if and only if 𝑥 + 𝑦 = 0.

proof .  It holds that 𝑥 ⋅ (𝑥 + 1) = 𝑥 ⋅ 𝑥 + 𝑥 ⋅ 1 = 𝑥 + 1 ⋅ 𝑥 = 𝑥 + 𝑥 = 0. If 𝑥 = 𝑦, then 

𝑥 + 𝑦 = 𝑥 + 𝑥 = 0. If conversely 𝑥 + 𝑦 = 0, then

𝑥 = 𝑥 + (𝑦 + 𝑦) = (𝑥 + 𝑦) + 𝑦 = 0 + 𝑦 = 𝑦
which concludes the proof. ∎

Next, we define Boolean algebras using the characterization of Boolean rings.

definition 19.  The language ℒ︀BA of Boolean algebras consists of the 0-ary function 

symbols “0” and “1”, as well as the unary function symbol “¬” and the binary function 

symbols “∧” as well as “∨”. The theory 𝑇BA consists of the axioms of 𝑇BR, with the 

following replacements applied for all ℒ︀BR-terms 𝑠 and 𝑡 [6, Sec. 10.4]:

𝑠 + 𝑡 ↦
BA

(𝑠 ∧ ¬𝑡) ∨ (¬𝑠 ∧ 𝑡) 𝑠 ⋅ 𝑡 ↦
BA

𝑠 ∧ 𝑡

This gives the usual definition of a Boolean algebra. The following proposition supports 

our claim that 𝑇BA and 𝑇BR are merely two different but interchangeable ways to talk 

about the same objects.

proposition 20.

(i) Every model of 𝑇BA is a model of 𝑇BR with the substitutions ↦
BA

 above.

(ii) Every model of 𝑇BR is a model of 𝑇BA with the following substitutions, defined for all 

ℒ︀BA-terms 𝑠 and 𝑡:



¬𝑠 ↦
BR

𝑠 + 1 𝑠 ∧ 𝑡 ↦
BR

𝑠 ⋅ 𝑡 𝑠 ∨ 𝑡 ↦
BR

𝑠 + 𝑡 + 𝑠 ⋅ 𝑡
(i) The two substitutions are mutually inverse w. r. t. the corresponding equational 

theories.

proof .  Part (i) is clear from the definition of 𝑇BA. For part (ii), it suffices to see that 𝑠 ⋅
𝑡 ↦

BA
𝑠 ∧ 𝑡 ↦

BR
𝑠 ⋅ 𝑡 as well as

𝑠 + 𝑡 ↦
BA

(𝑠 ∧ ¬𝑡) ∨ (¬𝑠 ∧ 𝑡)

↦
BR

(𝑠 ⋅ (𝑡 + 1)) + ((𝑠 + 1) ⋅ 𝑡) + (𝑠 ⋅ (𝑡 + 1))((𝑠 + 1) ⋅ 𝑡)

=
BR

(𝑠𝑡 + 𝑠) + (𝑠𝑡 + 𝑡) + (𝑠𝑡 + 𝑠)(𝑠𝑡 + 𝑡)

=
BR

(𝑠𝑡 + 𝑠) + (𝑠𝑡 + 𝑡) + (𝑠𝑡𝑠𝑡 + 𝑠𝑡𝑡 + 𝑠𝑠𝑡 + 𝑠𝑡)

=
BR

(𝑠𝑡 + 𝑠) + (𝑠𝑡 + 𝑡) + (𝑠𝑡 + 𝑠𝑡 + 𝑠𝑡 + 𝑠𝑡)

=
BR

(𝑠𝑡 + 𝑠𝑡) + (𝑠 + 𝑡) + 0

=
BR

𝑠 + 𝑡
since 𝑇BR consists of the axioms of 𝑇BA with the replacements ↦

BR
, which in turn consists 

of the axioms of 𝑇BR with the replacements ↦
BA

.

Part (iii) is now merely a combined reformulation of parts (i) and (ii). ∎

We call the models of 𝑇BR Boolean rings and the models of 𝑇BA Boolean algebras. In 

the following, we will introduce some important examples of Boolean algebras/Boolean 

rings.

Propositional logic. One of the arguably most important examples of a Boolean algebra 

is 𝟚, the set {0, 1} interpreted as truth values and equipped with “¬”, “∧” and “∨” 

corresponding to the logical negation, conjunction and disjunction. 𝟚 is a Boolean ring 

where “⋅” is the logical conjunction and “+” is the logical operation XOR. Incidentally, 

𝟚 is isomorphic to the field 𝔽2. The importance of 𝟚 as the basic Boolean algebra stems 

from the following theorem. It is even reflected by our choice of symbols of ℒ︀BA.

theorem 21 ([6, Thm. 10.4.3]) .  Let 𝑆 and 𝑇 be BR-terms. Then it holds that 𝑆 =
BR

𝑇 

if and only if 𝟚 ⊨ 𝑆 = 𝑇.

Powersets. Another important class of examples of Boolean algebras are powersets. If 

𝑥 is some set, then 𝒫︀(𝑥), the powerset of 𝑥, is a Boolean algebra with “¬”, “∧” and “∨” 



being the set-theoretic complement (in 𝑥), intersection and union, i. e. for all 𝑦 ⊆ 𝑥 and 

𝑧 ⊆ 𝑥, it holds that

¬𝑦 = 𝑦∁ = 𝑥 ∖ 𝑦 𝑦 ∧ 𝑧 = 𝑦 ∩ 𝑧 𝑦 ∨ 𝑧 = 𝑦 ∪ 𝑧
As a Boolean ring, “+” and “⋅” correspond to the set-theoretic symmetric difference and 

union. Powersets are important, since, by Stone’s Theorem [1, Thm. 3.12], every finite 

Boolean algebra is isomorphic to 𝒫︀(𝑥) for some set 𝑥. Therefore all finite Boolean algebras 

have cardinality 2𝑛 for some 𝑛 ∈ ℕ. E. g. 𝟚 is isomorphic to 𝒫︀(∅) = {∅, {∅}}.

Algebras over 𝔽2. Every commutative algebra over 𝔽2 already directly fulfils most of the 

axioms, namely the ones that are related to commutativity, associativity and distributivity 

hold, as well as the roles of 0 and 1. Additionally, it holds that

𝑥 + 𝑥 = 1𝔽2𝑥 + 1𝔽2𝑥 = (1𝔽2 + 1𝔽2)𝑥 = 0𝔽2𝑥 = 0

However, the last axiom, 𝑥 ⋅ 𝑥 = 𝑥, does not necessarily hold in all commutative algebras 

over 𝔽2, since e. g. in 𝔽2[𝑋], it holds that 𝑋 ⋅ 𝑋 = 𝑋2 ≠ 𝑋 .

An example for where it holds is the 𝔽2-algebra (𝔽2)𝑋
 of all the functions from 𝑋  to 

𝔽2, for any set 𝑋 . The ring structure is taken to be pointwise, i. e.

(𝑓 + 𝑔)(𝑥) ≔ 𝑓(𝑥) + 𝑔(𝑥) (𝑓 ⋅ 𝑔)(𝑥) ≔ 𝑓(𝑥) ⋅ 𝑔(𝑥)
as well as 0(𝑥) ≔ 0 and 1(𝑥) ≔ 1, and the scalar multiplication is given in the obvious way 

by (𝜆𝑓)(𝑥) ≔ 𝜆𝑓(𝑥), for all 𝑓, 𝑔 ∈ (𝔽2)𝑋
 and 𝑥 ∈ 𝑋 . Clearly it also holds that 𝑓 ⋅ 𝑓 = 𝑓, 

since for all 𝑥 ∈ 𝑋 , we have that (𝑓 ⋅ 𝑓)(𝑥) = 𝑓(𝑥) ⋅ 𝑓(𝑥) = 𝑓(𝑥), by application of the 

same axiom inside 𝔽2. Therefore, (𝔽2)𝑋
 is a Boolean ring.

An important instance of this are the finite Boolean functions. By the previous 

argument, for every 𝑛 ∈ ℕ, the set 𝕊𝑛 ≔ 𝟚𝟚𝑛
 of 𝑛-dimensional Boolean functions is a 

Boolean ring. Due to the obvious connection to logic gates, we also call 𝕊𝑛 the 𝑛-dimen­

sional switching algebra, and its elements 𝑛-dimensional switching functions.

1.4 The Polynomial Form of BR-Terms

As outlined in F. Baader and T. Nipkow [6, Ch. 10.4.1], terms of Boolean rings have a 

normal form called the polynomial form.

definition 22.  The BR-constants 0 and 1, as well as all variables 𝑥 are BR-atoms. 

A BR-monomial is a product of BR-atoms, and a BR-polynomial is a sum of BR-

monomials.

In order to define the polynomial form of a BR-term, we first need to introduce some 

definitions. We assume some arbitrary but fixed ordering of BR-atoms and monomials, 

the letter e. g. given by the lexicographic ordering.



definition 23.

(i) Let 𝑚1 and 𝑚2 be BR-monomials. If 0 is contained in either one of the monomials, 

then we define 𝑚1 ∗ 𝑚2 ≔ 0. If 𝑚1 and 𝑚2 only contain BR-atoms that are 1, then 

we define 𝑚1 ∗ 𝑚2 = 1. Otherwise, 𝑚1 ∗ 𝑚2 is the (ordered) monomial that contains 

all the BR-atoms of 𝑚1 and 𝑚2, with all but one of any duplicate BR-atoms as well 

as all occurences of 1 removed.

(ii) Let 𝑝1 and 𝑝2 be BR-polynomials that contain only monomials that are either 0 or 

a product of pairwise different variables (i. e. reduced in the above sense). Then we 

define 𝑝1 ⊕ 𝑝2 to be the ordered polynomial that is the sum of the monomials 𝑝1 

and 𝑝2 with all pairs of BR-equal monomials as well as all occurences of 0 removed. 

If this reduces to the empty sum, we set 𝑝1 ⊕ 𝑝2 ≔ 0.

(iii) Let 𝑝1 and 𝑝2 be BR-polynomials. If 𝑝1 = ∑𝑘
𝑖=1 𝑚𝑖 and 𝑝2 = ∑𝑙

𝑖=1 𝑛𝑖 for BR-

monomials 𝑚1, …, 𝑚𝑘 and 𝑛1, …, 𝑛𝑙. Then we define

𝑝1 ⊙ 𝑝2 ≔ ⨁

𝑘

𝑖=1
⨁

𝑙

𝑗=1
𝑚𝑖 ∗ 𝑛𝑗

From the definitions and by the axioms of 𝑇BR, it is clear that 𝑚1 ∗ 𝑚2 =
BR

𝑚1 ⋅ 𝑚2, as well 

as 𝑝1 ⊕ 𝑝2 =
BR

𝑝1 + 𝑝2 and 𝑝1 ⊙ 𝑝2 =
BR

𝑝1 ⋅ 𝑝2. Moreover, 𝑚1 ∗ 𝑚2 = 𝑚1 ⊙ 𝑚2, and 𝑚1 ∗
𝑚2 is clearly a BR-monomial while 𝑝1 ⊕ 𝑝2 as well as 𝑝1 ⊙ 𝑝2 are clearly BR-polynomials.

This lets us now define the polynomial form 𝑡↓ of a BR-term 𝑡.

algorithm 24.  Let 𝑡 be a BR-term. We specify 𝑡↓ recursively as follows:

𝑡↓ ≔ match 𝑡
{0, 1, 𝑥} ⇒ 𝑡
𝑡1 + 𝑡2 ⇒ 𝑡1↓ ⊕ 𝑡2↓
𝑡1 ⋅ 𝑡2 ⇒ 𝑡1↓ ⊙ 𝑡2↓

In other words, calculating the polynomial form of a BR-term consists in simplifying the 

terms as much as possible using the rules in Definition 17. The polynomial form of a BR-

term is unique up to the choice of ordering of the BR-atoms and BR-monomials. The 

polynomial form is normal in the following sense:

theorem 25 ([6, Thm. 10.4.3]) .  Let 𝑠 and 𝑡 be BR-terms. It holds that 𝑠 =
BR

𝑡 if and 

only if 𝑠↓ = 𝑡↓.



1.5 Unification of Boolean Rings

Unification of Boolean rings has already been extensively studied. An important result 

is that the theory of Boolean rings has the unitary unification type. In this part, we will 

discuss two approaches to this problem: Löwenheim’s Theorem and a recursive unifica­

tion algorithm. Löwenheim’s Theorem allows us to compute an mgu, if we already have 

a unifier. This is technically enough to show that unification of Boolean rings is unitary, 

however, the second approach provides us with a way of explicitly constructing an mgu 

from scratch.

theorem 26 (Löwenheim’s Theorem [7]) .  Let 𝑠 and 𝑡 be BR-terms over ⃗𝑥. Suppose 

that 𝜏 is a BR-unifier of 𝑠 = 𝑡. Then the substitution

𝜎 ≔ {𝑥𝑖 ↦ 𝑥𝑖 + (𝑠 + 𝑡)(𝑥𝑖 + [𝑥𝑖]𝜏 ) | 0 < 𝑖 ≤ 𝑛}
is a BR-mgu of 𝑠 = 𝑡.

This allows us to prove the following theorem.

theorem 27.  Let 𝑠 and 𝑡 be BR-terms. Then the equation 𝑠 = 𝑡 either has a BR-mgu 

or it is not 𝑅-unifiable.

proof .  Suppose that 𝑠 = 𝑡 is BR-unifiable. This means that there exists a BR-unifier 𝜏 

of 𝑠 = 𝑡. By Theorem 26 there is a BR-mgu 𝜎 of 𝑠 = 𝑡, which concludes the proof. ∎

Löwenheim’s Theorem shows us how to construct an mgu from any unifier. It does 

not, however, help us find a unifier in the first place. Checking whether an equation is 

unifiable and finding an explicit unifier in case it is unifiable is an entirely separate task. 

E. g. one could first look for a particular solution, i. e. a substitution with 𝑡 ∈ {0, 1} for 

every (𝑥, 𝑡) ∈ 𝜎, of the equation in the model 𝟚, which, by Theorem 21, is then also a BR-

unifier. Applying Löwenheim’s Theorem to this unifier will result in a BR-mgu of the 

original equation.

In the following we will introduce a recursive algorithm that directly computes the 

mgu of an equation, if it exists. We will mainly follow the approach of U. Martin and 

T. Nipkow [4], but adapt it to match our notation. First, we will simplify our problem 

slightly. By the axioms of BR, it holds that 𝑠 =
BR

𝑡 if and only if 𝑠 + 𝑡 = 0. Therefore, in 

the following, we can consider only equations of the form 𝑢 = 0, for some BR-term 𝑢, 

instead. The algorithm is based on the fact that, if 𝑡 is a term of ⃗𝑥 = (𝑥1, …, 𝑥𝑛), then 

the equation 𝑡 = 0 is BR-unifiable if and only if [𝑡]{𝑥1↦0} ⋅ [𝑡]{𝑥1↦1} = 0 is BR-unifiable. 

Note that we then interpret [𝑡]{𝑥1↦0} ⋅ [𝑡]{𝑥1↦1}  as a term of (𝑥2, …, 𝑥𝑛), which is possible 

since in both cases, the variable 𝑥1 has been “eliminated” by either 0 or 1.



This fact allows us to successively eliminate variables from 𝑡 until we reach a closed 

term that is either 0 or 1. If we reach 1, then the equation is not unifiable, and if we reach 

0, then we propagate our solution (in the bottom case this is the identity substitution) 

back up to the top.

algorithm 28 ([4]) .  Let 𝑠 and 𝑡 be BR-terms in ⃗𝑥. The following algorithm returns 

a BR-mgu 𝜎 of 𝑡 = 0 in case that it is BR-unifiable and ⊥ if it is not BR-unifiable.

unifyBR(𝑡( ⃗𝑥)) ≔
if ⃗𝑥 = ()
then if 𝑡 =

BR
0

then ∅
else ⊥

else let 𝜎 ≔ unify( [𝑡]{𝑥1↦0} ⋅ [𝑡]{𝑥1↦1} )
in {𝑥1 ↦ ( [𝑡]{𝑥1↦0}∪𝜎 + [𝑡]{𝑥1↦1}∪𝜎 + 1) ⋅ 𝑥1 + [𝑡]{𝑥1↦0}∪𝜎 } ∪ 𝜎

Note that, in practice, we often know whether 𝑡 =
BR

0 or 𝑡 =
BR

1 well before ⃗𝑥 = (). If for 

every recursive call instead of some term we pass its polynomial form, then the checks 

𝑡 =
BR

0 and 𝑡 =
BR

1 simply become 𝑡 = 0 and 𝑡 = 1. Furthermore, since Algorithm 28 does 

not simplify the output mgu at all, it might contain many complicated subterms that are 

actually BR-equal to 0. Therefore, the following algorithm might be more efficient in 

some cases and will return a simplified mgu.

algorithm 29.  Let 𝑠 and 𝑡 be BR-terms in ⃗𝑥. Like Algorithm  28, this algorithm 

returns a BR-mgu 𝜎 of 𝑡 = 0 in case that it is BR-unifiable and ⊥ if it is not BR-unifiable.

unify′
BR(𝑡( ⃗𝑥)) ≔

if 𝑡 = 0
then ∅
else if 𝑡 = 1

then ⊥
else let 𝜎 ≔ unify(( [𝑡]{𝑥1↦0} ⋅ [𝑡]{𝑥1↦1} )↓)

in {𝑥1 ↦ (( [𝑡]{𝑥1↦0}∪𝜎 + [𝑡]{𝑥1↦1}∪𝜎 + 1) ⋅ 𝑥1 + [𝑡]{𝑥1↦0}∪𝜎 )↓} ∪ 𝜎

We could now use either Algorithm 28 or Algorithm 29 to prove Theorem 27 instead 

of Löwenheim’s Theorem in order to prove Theorem 27. In any case, we can prove the 

following theorem.



theorem 30.  The unification of Boolean rings and Boolean algebras is unitary.

proof .  The case for Boolean rings is an immediate consequence of Theorem 27 using 

Theorem 15. The case for Boolean algebras follows from the fact that every BA-equation 

is equivalent to the the BR-equation that is the same equation with ↦
BR

 applied, and the 

same holds for a system of BA-equations. “Equivalent” here means that they hold in the 

same models, in the sense of Proposition 20. This means that, if an equation holds in all 

Boolean rings, then it also holds in all Boolean algebras. Therefore, if we apply ↦
BA

 to the 

terms of a BR-unifier, this gives a BA-unifier and vice versa, and the mgu property is also 

preserved. ∎

The function that returns the mgu of a system of 𝑛 BR-equations {𝑡1 = 0, …, 𝑡𝑛 = 0}, in 

case it is BR-unifiable, and ⊥ otherwise, is given by unify𝑛
BR as specified in Algorithm 16. 

Algorithm 28, Algorithm 29 or any other such algorithm, could be chosen for the base 

case function.

Examples

In the following, we will look at four short examples in order to demonstrate how to 

calculate the BR-mgu of single equations and systems of equations. For the sake of clarity, 

we will simplify the returned unifier after every step. In the second example we will not, 

however, simplify the terms in the recursive calls, in order to show how using unify′
BR 

over unifyBR can save some calculation effort.

example 31.  Consider 𝑠(𝑥, 𝑦) ≔ 𝑥 + 𝑦 + 1. Then, first we calculate

𝑠′ ≔ [𝑠]{𝑥↦0} ⋅ [𝑠]{𝑥↦1} = (0 + 𝑦 + 1) ⋅ (1 + 𝑦 + 1)

𝑠″ ≔ [𝑠′]{𝑥↦0} ⋅ [𝑠′]{𝑥↦1}

= (0 + 0 + 1) ⋅ (1 + 0 + 1) ⋅ (0 + 1 + 1) ⋅ (1 + 1 + 1)

=
BR

1 ⋅ 0 ⋅ 0 ⋅ 1

=
BR

0
Therefore, we have that 𝜎″ ≔ ∅ is an mgu of 𝑠″ = 0. Now, unwrapping the recursion, 

we have that



𝜎′ ≔ {𝑦 ↦ ( [𝑠′]{𝑦↦0}∪𝜎″ + [𝑠′]{𝑦↦1}∪𝜎″ + 1) ⋅ 𝑦 + [𝑠′]{𝑦↦0}∪𝜎″ } ∪ 𝜎″

=
BR

{𝑦 ↦ ((0 + 0 + 1) ⋅ (1 + 0 + 1) + (0 + 1 + 1) ⋅ (1 + 1 + 1) + 1)𝑦
+(0 + 0 + 1) ⋅ (0 + 1 + 1)} ∪ ∅

=
BR

{𝑦 ↦ (1 ⋅ 0 + 0 ⋅ 1 + 1)𝑦 + 1 ⋅ 0}

=
BR

{𝑦 ↦ 1𝑦 + 0}

=
BR

{𝑦 ↦ 𝑦}

=
BR

∅
Lastly, we receive the following substitution:

𝜎 ≔ {𝑥 ↦ ( [𝑠]{𝑥↦0}∪𝜎′ + [𝑠]{𝑥↦1}∪𝜎′ + 1) ⋅ 𝑥 + [𝑠]{𝑥↦0}∪𝜎′ } ∪ 𝜎′

= {𝑥 ↦ ((0 + 𝑦 + 1) + (1 + 𝑦 + 1) + 1)𝑥 + (0 + 𝑦 + 1)} ∪ 𝜎′

=
BR

{𝑥 ↦ (𝑦 + 1 + 𝑦 + 1)𝑥 + 𝑦 + 1} ∪ ∅

=
BR

{𝑥 ↦ 0𝑥 + 𝑦 + 1}

=
BR

{𝑥 ↦ 𝑦 + 1}
which is the mgu of 𝑠 = 0 as expected.

example 32.  The next example is not unifiable. Consider 𝑡(𝑥, 𝑦) ≔ 𝑥𝑦(𝑥𝑦 + 𝑥) + 1. 

Then it holds that

𝑡′ ≔ [𝑡]{𝑥↦0} ⋅ [𝑡]{𝑥↦1} = (0𝑦(0𝑦 + 0) + 1) ⋅ (1𝑦(1𝑦 + 1) + 1)

𝑡″ ≔ [𝑡′]{𝑥↦0} ⋅ [𝑡′]{𝑥↦1}

= (0 ⋅ 0 ⋅ (0 ⋅ 0 + 0) + 1) ⋅ (1 ⋅ 0 ⋅ (1 ⋅ 0 + 1) + 1)
⋅ (0 ⋅ 1 ⋅ (0 ⋅ 1 + 0) + 1) ⋅ (1 ⋅ 1 ⋅ (1 ⋅ 1 + 1) + 1)

=
BR

1 ⋅ 1 ⋅ 1 ⋅ 1

=
BR

1
which means that 𝑡″, and therefore 𝑡′ as well as 𝑡 are not unifiable. One could have noticed 

already that

𝑥𝑦(𝑥𝑦 + 𝑥) + 1 =
BDR

𝑥𝑦(𝑥 + 1) + 1 =
BDR

0 + 1 =
BDR

1
and therefore the algorithm unify′

BR would have immediately returned ⊥ without any 

recursive call.

example 33.  Now consider the system of BR-equations



𝐸 ≔ {𝑥 + 𝑦 + 1 = 0, 𝑎 + 𝑥 = 0}
By Example 32, it holds that 𝜏1 ≔ {𝑥 ↦ 𝑦 + 1} is the mgu of the first equation. Since 

[𝑎 + 𝑥]𝜏1 = 𝑎 + 𝑦 + 1, this means that 𝜎2 ≔ {𝑎 ↦ 𝑦 + 1} is a unifier of [𝑎 + 𝑥]𝜏1 = 0. 

Together, we have that

𝜏2 ≔ 𝜎2𝜏1 = {𝑥 ↦ 𝑦 + 1, 𝑎 ↦ 𝑦 + 1}
is the unifier of the system of equations 𝐸.

example 34.  All the individual equations of the system of BR-equations

𝐹 ≔ {𝑥 + 𝑦 + 1 = 0, 𝑥𝑦 + 1 = 0}
are clearly unifiable. However, applying the unifier 𝜏1 ≔ {𝑥 ↦ 𝑦 + 1} to the second 

equation, we receive [𝑥𝑦 + 1]𝜏1 = (𝑦 + 1)𝑦 + 1 =
BDR

0 + 1 = 1 which is not unifiable with 

0. Therefore 𝐹 is not BR-unifiable.



2 Boolean Differential Rings

2.1 Definitions and Characterizations

We will now define the language and theory of Boolean differential rings and list some 

important propositions. We will generally follow F. Weitkämper [3] but adapt it to our 

needs.

definition 35 ([3, Def. 11]) .  The language ℒ︀BDR of Boolean differential rings con­

tains all the function and predicate symbols of ℒ︀BR, as well as the 0-ary function symbol 𝑧 

and the unary function symbol 𝛿. The theory 𝑇BDR of Boolean differential rings consists 

of the axioms of 𝑇BR as well as the following (abbreviated) axioms:

(i') 𝜎 ≔ id +𝛿 is an involution of Boolean rings.

(ii') Ker(𝛿) ⊨ 𝑇BR

(iii') 𝛿(𝑧) = 1

As with the axioms of 𝑇BR, we will, for the sake of convenience, usually use the axioms 

of 𝑇BDR without explicitly mentioning them. Note that axioms (i’) and (ii’) are merely 

abbreviations of respective sets of axioms. Axiom (i’) gives us the desired properties of 

𝛿 and (ii’) states that Ker(𝛿) is always a subring. The following two lemmas provide 

alternative characterizations of axioms (i’) and (ii’).

lemma 36.  Under the assumption of 𝑇BR as well as axioms (ii’) and (iii’), axiom (i’) is 

equivalent to the following axioms:

(a) 𝛿(1) = 0
(b) 𝛿(𝑎 + 𝑏) = 𝛿(𝑎) + 𝛿(𝑏)
(c) 𝛿(𝑎 ⋅ 𝑏) = 𝛿(𝑎) ⋅ 𝑏 + 𝑎 ⋅ 𝛿(𝑏) + 𝛿(𝑎) ⋅ 𝛿(𝑏)
(d) 𝛿(𝛿(𝑎)) = 0



proof .  Suppose that axiom (i’) holds. First, we see that 𝛿(𝑥) = 1 + 1 + 𝛿(𝑥) = 1 + 𝜎(𝑥) 

for all 𝑥. Then, 𝛿(1) = 1 + 𝜎(1) = 1 + 1 = 0. Furthermore, since 𝜎 is a ring homomor­

phism, it holds that

𝛿(𝑎 + 𝑏) = (𝑎 + 𝑏) + 𝜎(𝑎 + 𝑏)
= 𝑎 + 𝑏 + 𝜎(𝑎) + 𝜎(𝑏)
= (𝑎 + 𝜎(𝑎)) + (𝑏 + 𝜎(𝑏))
= 𝛿(𝑎) + 𝛿(𝑏)

as well as

𝛿(𝑎 ⋅ 𝑏) = 𝑎 ⋅ 𝑏 + 𝜎(𝑎 ⋅ 𝑏)
= 𝑎 ⋅ 𝑏 + 𝜎(𝑎) ⋅ 𝜎(𝑏)
= 𝑎 ⋅ 𝑏 + (𝑎 + 𝛿(𝑎)) ⋅ (𝑏 + 𝛿(𝑏))
= 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏 + 𝛿(𝑎) ⋅ 𝑏 + 𝑎 ⋅ 𝛿(𝑏) + 𝛿(𝑎)𝛿(𝑏)
= 𝛿(𝑎) ⋅ 𝑏 + 𝑎 ⋅ 𝛿(𝑏) + 𝛿(𝑎) ⋅ 𝛿(𝑏)

and, since 𝜎 is an involution (i. e. 𝜎 ∘ 𝜎 = 𝜎), further

𝛿(𝛿(𝑎)) = 𝛿(𝑎) + 𝜎(𝛿(𝑎))
= 𝑎 + 𝜎(𝑎) + 𝜎(𝑎 + 𝜎(𝑎))
= 𝑎 + 𝜎(𝑎) + 𝜎(𝑎) + 𝜎(𝜎(𝑎))
= 𝑎 + 0 + 𝑎
= 0

for all 𝑎 and 𝑏. Now, conversely assume axioms (a)-(d). Then, first note that we have 

𝜎(1) = 1 + 𝛿(1) = 1 + 0 = 1. Furthermore, it holds that

𝜎(𝑎 + 𝑏) = 𝑎 + 𝑏 + 𝛿(𝑎 + 𝑏)
= 𝑎 + 𝑏 + 𝛿(𝑎) + 𝛿(𝑏)
= (𝑎 + 𝛿(𝑎)) + (𝑏 + 𝛿(𝑏))
= 𝜎(𝑎) + 𝜎(𝑏)

as well as

𝜎(𝑎 ⋅ 𝑏) = 𝑎 ⋅ 𝑏 + 𝛿(𝑎 ⋅ 𝑏)
= 𝑎 ⋅ 𝑏 + 𝛿(𝑎) ⋅ 𝑏 + 𝑎 ⋅ 𝛿(𝑏) + 𝛿(𝑎) ⋅ 𝛿(𝑏)
= (𝑎 + 𝛿(𝑎)) ⋅ (𝑏 + 𝛿(𝑏))
= 𝜎(𝑎) ⋅ 𝜎(𝑏)

and finally



𝜎(𝜎(𝑎)) = 𝜎(𝑎) + 𝛿(𝜎(𝑎))
= 𝜎(𝑎) + 𝛿(𝑎 + 𝛿(𝑎))
= 𝜎(𝑎) + 𝛿(𝑎) + 𝛿(𝛿(𝑎))
= 𝜎(𝑎) + 𝑎 + 𝜎(𝑎) + 0
= 𝑎

for all 𝑎 and 𝑏. This concludes the proof. ∎

lemma 37.  Axiom (ii’) follows from 𝑇BR as well as axiom (i’).

proof .  We need to show that Ker(𝛿) is a Boolean subring, i. e. it is an additive subgroup, 

closed under multiplication and contains 1. Clearly, the rest of the axioms of 𝑇BR, i. e. 𝑎 +
𝑎 = 0, 𝑎 ⋅ 𝑎 = 𝑎 as well as associativity, commutativity and distributivity, hold for Ker(𝛿), 

since they already hold globally. The first part holds since by (i’), 𝛿 is an additive group 

homomorphism and therefore Ker(𝛿) is a subgroup. Also by (i’), we have that 1 ∈ Ker(𝛿) 

and for all 𝑎, 𝑏 ∈ Ker(𝛿) it holds that

𝛿(𝑎 ⋅ 𝑏) = 𝛿(𝑎) ⋅ 𝑏 + 𝑎 ⋅ 𝛿(𝑏) + 𝛿(𝑎) ⋅ 𝛿(𝑏) = 0 + 0 + 0 = 0
i. e. 𝑎 ⋅ 𝑏 ∈ Ker(𝛿). Together, axiom (ii’) holds. ∎

This shows that 𝑇BDR abbreviates a finite axiomatization of Boolean differential rings. As 

with Boolean rings, we will often write “BDR” when we actually mean ℒ︀BDR or 𝑇BDR. 

Moreover, we call models of 𝑇BDR “Boolean differential rings”. Since ℒ︀BDR is an extension 

of ℒ︀BR, we can view every BR-term as a BDR-term. For the converse, consider first the 

following definition.

definition 38.  A term 𝑇 is 𝑧-free, if 𝑧 is not a subterm of 𝑇. 𝑇 is 𝛿-free if it does not 

contain a subterm of the form 𝛿(𝑆).

In other words, a term is 𝑧-free if it does not contain 𝑧 and 𝛿-free if it does not contain 

𝛿. We can view every 𝑧-free and 𝛿-free BDR-term as a BR-term. In the rest of this thesis, 

we will simply write “term” to mean BDR-term and specify that it is 𝑧-free and 𝛿-free 

by stating that it is a BR-term, in the above sense. In contrast to general ℒ︀-terms, we will 

usually give upper case letter names to BDR-terms.

Next, we will define the syntactic analogon of Ker(𝛿).

definition 39.  A term 𝑇 is 𝛿-vanishing if 𝛿(𝑇) =
BDR

0.

This allows us to consider the following specializations of the product rule.



lemma 40.

(i) If 𝑆 and 𝑇 are terms and 𝑆 is 𝛿-vanishing, then 𝛿(𝑆 ⋅ 𝑇) =
BDR

𝑆 ⋅ 𝛿(𝑇).

(ii) If 𝑆 is a 𝛿-vanishing term, then 𝛿(𝑆𝑧) =
BDR

𝑆.

(iii) If 𝐴 and 𝐵 are 𝛿-vanishing terms, then 𝛿(𝐴𝑧 + 𝐵) =
BDR

𝐴.

proof .  The proofs follow immediately from the product rule. I. e. it holds that:

𝛿(𝑆 ⋅ 𝑇) =
BDR

𝛿(𝑆) ⋅ 𝑇 + 𝑆 ⋅ 𝛿(𝑇) + 𝛿(𝑆) ⋅ 𝛿(𝑇)

=
BDR

0 ⋅ 𝑇 + 𝑆 ⋅ 𝛿(𝑇) + 0 ⋅ 𝛿(𝑇)

=
BDR

𝑆 ⋅ 𝛿(𝑇)
Further we have that 𝛿(𝑆𝑧) =

BDR
𝑆 ⋅ 𝛿(𝑧) =

BDR
𝑆 ⋅ 1 =

BDR
𝑆 and

𝛿(𝐴𝑧 + 𝐵) =
BDR

𝛿(𝐴𝑧) + 𝛿(𝐵) =
BDR

𝐴 + 0 =
BDR

𝐴
which completes the proof. ∎

Part (ii) suggests that for all models of 𝑇BDR, Ker(𝛿) = Im(𝛿). In the following, we will 

give two ways to represent any term in the form 𝐴𝑧 + 𝐵 for 𝛿-vanishing terms 𝐴 and 𝐵.

lemma 41.  Let 𝑇 be any term. The following equalities hold:

(i) 𝑇 =
BDR

𝛿(𝑇)𝑧 + (𝑇 + 𝛿(𝑇)𝑧)
(ii) 𝑇 =

BDR
𝛿(𝑇)𝑧 + 𝛿(𝑇(𝑧 + 1)).

proof .  Part (i) is trivial as clearly 𝛿(𝑇) is 𝛿-vanishing, and also 𝑇 + 𝛿(𝑇)𝑧 is 𝛿-vanishing, 

since

𝛿(𝑇 + 𝛿(𝑇)𝑧) =
BDR

𝛿(𝑇) + 𝛿(𝛿(𝑇)𝑧) =
BDR

𝛿(𝑇) + 𝛿(𝑇) =
BDR

0
Using this, as well as the abbreviations 𝐴 ≔ 𝛿(𝑇) and 𝐵 ≔ 𝑇 + 𝛿(𝑇)𝑧, we get for Part 

(ii) that

𝛿(𝑇)𝑧 + 𝛿(𝑇(𝑧 + 1)) =
BDR

𝐴𝑧 + 𝛿((𝐴𝑧 + 𝐵) ⋅ (𝑧 + 1))

=
BDR

𝐴𝑧 + 𝛿(𝐴𝑧(𝑧 + 1) + 𝐵(𝑧 + 1))

=
BDR

𝐴𝑧 + 𝛿(0 + 𝐵𝑧 + 𝐵)

=
BDR

𝐴𝑧 + 𝛿(𝐵𝑧) + 𝛿(𝐵)

=
BDR

𝐴𝑧 + 𝐵 + 0

=
BDR

𝑇



which completes the proof. ∎

The following theorem is the syntactic analogon to Proposition 10 of F. Weitkämper [3], 

which states that every Boolean differential ring is a free module over its kernel generated 

by 1 and 𝑧.

proposition 42.

(i) For all terms 𝑇, there are 𝛿-vanishing terms 𝐴 and 𝐵 such that 𝑇 =
BDR

𝐴𝑧 + 𝐵.

(ii) If 𝐴 and 𝐵 are 𝛿-vanishing terms, then it holds that 𝐴𝑧 + 𝐵 =
BDR

0 if and only if 𝐴 =
BDR

0 and 𝐵 =
BDR

0.

proof .  Part (i) is immediate from Lemma 41. For part (ii), the direction where 𝐴 =
BDR

0 

and 𝐵 =
BDR

0 implies 𝐴𝑧 + 𝐵 =
BDR

0 is trivial, since in this case we have that

𝐴𝑧 + 𝐵 =
BDR

0𝑧 + 0 =
BDR

0
Now conversely suppose that 𝐴𝑧 + 𝐵 =

BDR
0. Then clearly also

𝐴 =
BDR

𝛿(𝐴𝑧 + 𝐵) =
BDR

𝛿(0) =
BDR

0
and therefore 0 =

BDR
𝐴𝑧 + 𝐵 =

BDR
0𝑧 + 𝐵 =

BDR
𝐵, which concludes the proof. ∎

Boolean differential algebras are defined through Boolean differential rings in the same 

way Boolean algebras are defined through Boolean rings. For this, we define the replac­

ments ↦
BDA

 in the same way as ↦
BA

, by naturally extending the definition to all BDR-terms.

definition 43.  The language ℒ︀BDA of Boolean differential algebras consists of all of 

the symbols of ℒ︀BA as well as the 0-ary function symbol 𝑧 and the unary function symbol 

𝛿. The theory 𝑇BDA of Boolean differential algebras consists of all the (expanded) axioms 

of 𝑇BDR, with the replacements ↦
BDA

.

The idea of Proposition  20, suggests that also Boolean differential rings and Boolean 

differential algebras are essentially two ways of talking about the same objects. Again by 

construction, the following proposition holds.

proposition 44.  Consider the replacements ↦
BDR

 and ↦
BDA

, which are the natural 

extensions of ↦
BR

 and ↦
BA

 to all ℒ︀BDR and ℒ︀BDA-terms respectively.

(i) Every model of 𝑇BDA is a model of 𝑇BDR with the replacements ↦
BDA

.

(ii) Every model of 𝑇BDR is a model of 𝑇BDA with the replacements ↦
BDR

, that are defined 

by naturally extending ↦
BR

, to all BDA-terms.

(iii) The above replacements are mutually inverse.



Example

The canonical example and original motivation of Boolean differential rings are the 

switching algebras 𝕊𝑛 that we introduced earlier. Next to computing the value of a 

switching function for certain arguments, an important aspect in the study of switching 

algebras is certainly the question whether changing the arguments of a function will 

affect the function value. E. g. one could ask how the function value will change if we 

change the first variable, or even the second and third variable simultaneously, from 0 to 

1. This study naturally gives rise to what B. Steinbach and C. Posthoff [1] call a single 

simple derivative and a single vectorial derivative. To be precise, the idea is to join the 

value before and after the change of arguments with a logical exclusive or (i. e. “+” of 𝕊𝑛), 

since this will precisely give 0 if both are the same (i. e. nothing changes) and 1 if they are 

different. In the following, we will define the vectorial derivative 𝜕𝑆 where we look at the 

change of value if all the 𝑖-th variables for 𝑖 ∈ 𝑆 change.

Let 𝑛 ∈ ℕ and 𝑆 ⊆ {1, …, 𝑛}. Then we first define the function 𝜌𝑆 : 𝟚𝑛 → 𝟚𝑛 by

(𝜌𝑆( ⃗𝑥))
𝑖

≔ {𝑥𝑖 + 1 if 𝑖 ∈ 𝑆
𝑥𝑖 otherwise

which now lets us define the vectorial derivate w. r. t. 𝑆 as the function 𝜕𝑆 : 𝕊𝑛 → 𝕊𝑛 and

𝜕𝑆(𝑓)( ⃗𝑥) = 𝑓( ⃗𝑥) + 𝑓(𝜌𝑆( ⃗𝑥))

We further define the function 𝑧𝑆 ∈ 𝕊𝑛 by 𝑧𝑆( ⃗𝑥) ≔ ∏𝑖∈𝑆 𝑥𝑖. It remains to show that this 

actually constitutes a Boolean differential ring in the sense of Definition 35.

First, we will show that 𝜎𝑆 ≔ id +𝜕𝑆 is a Boolean ring involution. By definition, we 

have that

𝜎𝑆(𝑓)( ⃗𝑥) = 𝑓( ⃗𝑥) + 𝜕𝑆(𝑓)( ⃗𝑥) = 𝑓( ⃗𝑥) + 𝑓( ⃗𝑥) + 𝑓(𝜌( ⃗𝑥)) = 𝑓(𝜌( ⃗𝑥))

Therefore it is easy to see that

𝜎𝑆(𝑓 + 𝑔)( ⃗𝑥) = (𝑓 + 𝑔)(𝜌( ⃗𝑥)) = 𝑓(𝜌( ⃗𝑥)) + 𝑔(𝜌( ⃗𝑥)) = 𝜎𝑆(𝑓)( ⃗𝑥) + 𝜎𝑆(𝑔)( ⃗𝑥)

as well as

𝜎𝑆(𝑓 ⋅ 𝑔)( ⃗𝑥) = (𝑓 ⋅ 𝑔)(𝜌( ⃗𝑥)) = 𝑓(𝜌( ⃗𝑥)) ⋅ 𝑔(𝜌( ⃗𝑥)) = 𝜎𝑆(𝑓)( ⃗𝑥) ⋅ 𝜎𝑆(𝑔)( ⃗𝑥)

and 𝜎𝑆(1)( ⃗𝑥) = 1(𝜌( ⃗𝑥)) = 1. The involution property holds, since

(𝜌(𝜌( ⃗𝑥)))
𝑖

= {𝜌𝑆(𝑥𝑖) + 1
𝑥𝑖

if 𝑖 ∈ 𝑆 
otherwise } = {𝑥𝑖 + 1 + 1

𝑥𝑖

if 𝑖 ∈ 𝑆 
otherwise } = 𝑥𝑖

and therefore 𝜎𝑆(𝜎𝑆(𝑓))( ⃗𝑥) = 𝜎𝑆(𝑓)(𝜌( ⃗𝑥)) = 𝑓(𝜌(𝜌( ⃗𝑥))) = 𝑓. Together, axiom (i’) 

holds. Lastly, it holds that

𝜕𝑆(𝑧𝑆)( ⃗𝑥) = 𝑧𝑆( ⃗𝑥) + 𝑧𝜌(𝑥⃗) = ∏
𝑠∈𝑆

𝑥𝑖 + ∏
𝑠∈𝑆

(𝑥𝑖 + 1) = 𝑥𝑖 + 𝑥𝑖 + 1 = 1



Since, by Lemma 37 axiom (ii’) follows from the other axioms, it holds that 𝕊𝑛 together 

with 𝜕𝑆 and 𝑧𝑆 is a Boolean differential ring.

2.2 On the Shape of BDR-Terms

In the following we will define some basic properties of BDR-terms as well as a normal 

form of BDR-terms that is similar to the polynomial form of BR-terms. The analogon 

of polynomials will be called flat terms and we will define the flattening function ↓ in a 

way that coincides with the polynomial form function ↓ on BR-terms.

definition 45.  We say that a subterm 𝑆 of 𝑇 is enclosed (by 𝛿) if it occurs as a subterm 

of a subterm of 𝑇 of the form 𝛿(𝑈). 𝑆 is immediately enclosed (by 𝛿) if the smallest proper 

superterm of 𝑆 inside 𝑇 is 𝛿(𝑆).

Since dealing with arbitary BDR-terms is quite cumbersome, we want to mostly deal 

with terms that are polynomial-like in the sense that they are sums of products of atoms. 

We also call these terms flat since polynomial-like terms do not have any nested 𝛿 and all 

𝛿 only apply directly to some variable. Luckily, it turns out that every BDR-term can be 

rewritten as such a term.

definition 46.  A BDR-atom is a BDR-term that is either a constant 𝑐 ∈ {0, 1, 𝑧}, or 

𝑥 or 𝛿(𝑥) for some variable 𝑥. Then a BDR-term is monomial-like if it is a product of 

BDR-atoms and it is polynomial-like or flat, if it is a sum of monomials.

We can extend Definition 23 in a natural way to define for BDR-monomials 𝑀1 and 𝑀2, 

as well as BDR-polynomials 𝑃1 and 𝑃2 the terms
𝑀1 ∗ 𝑀2 𝑃1 ⊕ 𝑃2 𝑃1 ⊙ 𝑃2

so that 𝑀1 ∗ 𝑀2 =
BDR

𝑀1 ⊙ 𝑀2 =
BDR

𝑀1 ⋅ 𝑀2, 𝑃1 ⊕ 𝑃2 =
BDR

𝑃1 + 𝑃2 and 𝑃1 ⊙ 𝑃2 =
BDR

𝑃1 ⋅ 𝑃2. 

Note that, as before, we fix some arbitrary ordering of BDR-atoms and BDR-monomials. 

Together, this lets us define a function that returns for every term 𝑇 a unique flattened 

term 𝑇↓.

algorithm 47.  Let 𝑇 be any term. We define 𝑇↓ recursively in the following way:

𝑇↓ ≔ match 𝑇
{0, 1, 𝑧, 𝑥} ⇒ 𝑇
𝑇1 + 𝑇2 ⇒ 𝑇1↓ ⊕ 𝑇2↓
𝑇1 ⋅ 𝑇2 ⇒ 𝑇1↓ ⊙ 𝑇2↓
𝛿(𝑆) ⇒ match 𝑆



{0, 1} ⇒ 0
𝑧 ⇒ 1
𝑥 ⇒ 𝛿(𝑥)
𝑆1 + 𝑆2 ⇒ 𝛿(𝑆1)↓ ⊕ 𝛿(𝑆2)↓
𝑆1 ⋅ 𝑆2 ⇒ 𝛿(𝑆1)↓ ⊙ 𝑆2↓ ⊕ 𝑆1↓ ⊙ 𝛿(𝑆2)↓ ⊕ 𝛿(𝑆1)↓ ⊙ 𝛿(𝑆2)↓
𝛿(𝑈) ⇒ 0

The following two propositions show that this definition of 𝑇↓ is sensible, in that 𝑇↓ is 

actually flat and equival to 𝑇, as well as minimal in the sense that applying ↓ a second time 

will not change anything.

proposition 48.  Let 𝑇 be any term. Then 𝑇↓ is flat and it holds that 𝑇 =
BDR

𝑇↓.

proof .  We will prove this by induction on the shape of 𝑇.

(i) If 𝑇 = 𝑐 ∈ {0, 1, 𝑧} or 𝑇 = 𝑥 for a variable 𝑥, then 𝑇 is already flat.

(ii) If 𝑇 = 𝑇1 + 𝑇2 for terms 𝑇1 and 𝑇2 that satisfy the induction hypothesis. Then 𝑇↓ =
𝑇1↓ ⊕ 𝑇2↓ is clearly flat and

𝑇 = 𝑇1 + 𝑇2 =
BDR

𝑇1↓ + 𝑇2↓ =
BDR

𝑇1↓ ⊕ 𝑇2↓ = 𝑇↓
(iii) The case 𝑇 = 𝑇1 ⋅ 𝑇2 works analogously.

(iv) Suppose that 𝑇 = 𝛿(𝑆) for a term 𝑆 that satisfies the induction hypothesis. We will 

prove by induction on the shape of 𝑆 that 𝛿(𝑆)↓ is flat and 𝛿(𝑆) =
BDR

𝛿(𝑆)↓:

(i) If 𝑆 = 𝑐 ∈ {0, 1} or 𝑆 = 𝛿(𝑥) for a variable 𝑥, then 𝑇↓ = 0 which is flat, and also 

𝑇 =
BDR

𝛿(𝑆↓) =
BDR

0 = 𝑇↓.

(ii) Similarly, if 𝑆 = 𝑧, then 𝑇↓ = 1 is flat and 𝑇 =
BDR

1 = 𝑇↓.

(iii) Likewise, if 𝑆 = 𝑥, then 𝑇↓ = 𝛿(𝑥) is flat and 𝑇 = 𝛿(𝑥) = 𝑇↓.

(iv) Suppose 𝑆 = 𝑆1 + 𝑆2 for flat terms 𝑆1 and 𝑆2 that satisfy the induction 

hypothesis. Then 𝑇↓ = 𝛿(𝑆1)↓ ⊕ 𝛿(𝑆2)↓ which is flat since the summands are. 

In addition, the following holds:

𝑇 = 𝛿(𝑆1 + 𝑆2) =
BDR

𝛿(𝑆1) + 𝛿(𝑆2) =
BDR

𝛿(𝑆1)↓ ⊕ 𝛿(𝑆2)↓ = 𝛿(𝑆)↓
(v) The case 𝑆 = 𝑆1 ⋅ 𝑆2 works similarly, with the only additional argumentation 

step being the assumption of the outer induction hypothesis that 𝑆1↓ and 𝑆2↓ 

are flat and that 𝑆1 =
BDR

𝑇↓ as well as 𝑆2 =
BDR

𝑇↓. Then it holds that



𝛿(𝑆) = 𝛿(𝑆1 ⋅ 𝑆2)

=
BDR

𝛿(𝑆1) ⋅ 𝑆2 + 𝑆1 ⋅ 𝛿(𝑆2) + 𝛿(𝑆1) ⋅ 𝛿(𝑆2)

=
BDR

𝛿(𝑆1)↓ ⊙ 𝑆2↓ ⊕ 𝑆1↓ ⊙ 𝛿(𝑆2)↓ ⊕ 𝛿(𝑆1)↓ ⊙ 𝛿(𝑆2)↓
= 𝛿(𝑆)↓

with the last term being clearly flat since all factors are flat by assumption.

(vi) If 𝑈 = 𝛿(𝑆), then 𝑇↓ = 0 which is flat and also 𝑇 =
BDR

0 = 𝑇↓.

By induction, it holds that 𝛿(𝑆)↓ is flat and 𝛿(𝑆) =
BDR

𝛿(𝑆)↓. The statement now follows 

by the outer induction. ∎

From the proof of Proposition 48, it is clear that ↓ preserves variables, as well as BDR-

atoms and monomial-like terms, in the sense of the following lemma.

lemma 49.

(i) If 𝑇 is a term of ⃗𝑥, then 𝑇↓ is a term of ⃗𝑥 as well.

(ii) If 𝐴 is a BDR-atom, then 𝐴↓ = 𝐴.

(iii) If 𝑀 is a monomial-like term, then 𝑀↓ is a monomial-like term.

In addition, the following lemma holds.

lemma 50.  Let 𝑇 be any term. Then 𝑇↓↓ = 𝑇↓.

proof .  We will show this by induction on the shape of 𝑇↓:

(i) If 𝑇↓ = 𝑐 ∈ {0, 1, 𝑧} or 𝑇↓ = 𝑥 or 𝑇↓ = 𝛿(𝑥) for a variable 𝑥, then 𝑇↓↓ = 𝑇↓ holds 

by definition.

(ii) Suppose that 𝑇↓ = 𝑇1 + 𝑇2 for flat terms 𝑇1 and 𝑇2 that satisfy the induction hypoth­

esis. 𝑇1 and 𝑇2 are, as a result of 𝑇↓, clearly do not contain 0 and their monomial-like 

subterms are pairwise different. Therefore, it holds that
𝑇↓↓ = 𝑇1↓ ⊕ 𝑇2↓ = 𝑇1 ⊕ 𝑇2 = 𝑇1 + 𝑇2 = 𝑇↓

(iii) If 𝑇↓ = 𝑇1 ⋅ 𝑇2 for flat terms 𝑇1 and 𝑇2 that satisfy the induction hypothesis. Since 

𝑇↓ is flat, this means that 𝑇1 and 𝑇2 are monomial-like. Furthermore, by the above 

reasing, neither 𝑇1 or 𝑇2 contain 0 or 1 and their atoms are pairwise different. 

Therefore 𝑇1 ∗ 𝑇2 = 𝑇1 ⋅ 𝑇2 and further
𝑇↓↓ = 𝑇1↓ ∗ 𝑇1↓ = 𝑇1 ∗ 𝑇2 = 𝑇↓

The statement now follows by induction. ∎

Next, we will define what it means for a term to be benign and we will see that benign 

terms act very much like BR-terms in Ker(𝛿).



definition 51.  A term 𝑇 is benign if it is 𝑧-free, flat and all occurences of variables 

are immediately enclosed by 𝛿.

lemma 52.  Every benign term is 𝛿-vanishing.

proof .  Let 𝑇 be a benign term. We prove this by induction on the shape of 𝑇.

(i) If 𝑇 = 𝑐 for 𝑐 ∈ {0, 1}, then 𝛿(𝑇) = 𝛿(𝑐) =
BDR

0.

(ii) If 𝑇 = 𝛿(𝑥) for some variable 𝑥, then 𝛿(𝑇) = 𝛿(𝛿(𝑥)) =
BDR

0.

(iii) If 𝑇 = 𝑆1 + 𝑆2 for 𝑆1 and 𝑆2 satisfying the induction hypothesis. Since 𝑆1 and 𝑆2 are 

clearly also benign, we have that

𝛿(𝑇) = 𝛿(𝑆1 + 𝑆2) =
BDR

𝛿(𝑆1) + 𝛿(𝑆2) =
BDR

0 + 0 =
BDR

0
(iv) If 𝑇 = 𝑆1 ⋅ 𝑆2 for 𝑆1 and 𝑆2 satisfying the induction hypothesis. Clearly 𝑆1 and 𝑆2 

are also benign, and therefore

𝛿(𝑇) = 𝛿(𝑆1 ⋅ 𝑆2)

=
BDR

𝛿(𝑆1) ⋅ 𝑆2 + 𝑆1 ⋅ 𝛿(𝑆2) + 𝛿(𝑆1) ⋅ 𝛿(𝑆2)

=
BDR

0 ⋅ 𝑆2 + 𝑆1 ⋅ 0 + 0 ⋅ 0

=
BDR

0 + 0 + 0

=
BDR

0
The statement now follows by induction. ∎

In the following, we work towards showing that a big class of terms can be presented as 

𝐴𝑧 + 𝐵 for benign terms 𝐴 and 𝐵.

proposition 53.  Let 𝑇 be a term that has all variable occurences immediately 

enclosed by 𝛿. Then 𝑇↓ also has all variable occurences immediately enclosed by 𝛿. If 

furthermore all occurences of 𝑧 are enclosed by 𝛿, then 𝑇↓ is benign.

proof .  We will prove this by induction on the shape of 𝑇:

(i) If 𝑇 = 𝑐 ∈ {0, 1, 𝑧}, then clearly 𝑇↓ = 𝑇 contains no variables, and therefore the 

statement holds trivially. The case 𝑇 = 𝑧 does not apply for the second part, and 

since 0 and 1 do not contain 𝑧, the statement holds trivially.

(ii) If 𝑇 = 𝑇1 + 𝑇2 for terms 𝑇1 and 𝑇2 that satisfy the induction hypothesis. Since all 

variable occurences of 𝑇 are immediately enclosed by 𝛿, the same holds for 𝑇1 and 

𝑇2. Similarly, all occurences of 𝑧 in 𝑇1 and 𝑇2 are enclosed by 𝛿, if it already holds in 



𝑇. Therefore, by induction hypothesis, 𝑇↓ = 𝑇1↓ ⊕ 𝑇2↓ has all variable occurences 

immediately enclosed by 𝛿, and also all occurences of 𝑧 enclosed by 𝛿, if 𝑇 does.

(iii) The case 𝑇 = 𝑇1 ⋅ 𝑇2 works analogously.

(iv) If 𝑇 = 𝛿(𝑧), then 𝑇↓ = 1 and 1 trivially satisfies both parts of the statement.

(v) Suppose that 𝑇 = 𝛿(𝑆) for a term 𝑆 that satisfies the induction hypothesis. We will 

prove by induction on the shape of 𝑆 that 𝛿(𝑆)↓ has all variable occurences immedi­

ately enclosed by 𝛿, and all occurences of 𝑧 enclosed by 𝛿, if 𝑆 does.

(i) If 𝑆 = 𝑐 ∈ {0, 1} or 𝑆 = 𝛿(𝑥) for a variable 𝑥, then 𝑇↓ = 0 which trivially satis­

fies both parts of the statement.

(ii) Likewise, if 𝑆 = 𝑥, then 𝑇↓ = 𝛿(𝑥) which has all variable occurences immedi­

ately enclosed by 𝛿 and also does not contain 𝑧 and therefore trivially satisfies 

the second part of the statement.

(iii) Suppose 𝑆 = 𝑆1 + 𝑆2 for flat terms 𝑆1 and 𝑆2 that satisfy the outer and 

inner induction hypotheses. Since 𝑇 has all variable occurences immediately 

enclosed, so do 𝑆1 and 𝑆2, since 𝑇 = 𝛿(𝑆1 + 𝑆2). Therefore, by the inner induc­

tion hypothesis, 𝑇↓ = 𝛿(𝑆1)↓ ⊕ 𝛿(𝑆2)↓ has all variable occurences immediately 

enclosed by 𝛿. Similarly, if 𝑇 has all occurences of 𝑧 enclosed by 𝛿, then so do 

𝑆1 and 𝑆2, and therefore, by the inner induction hypothesis, so does 𝑇↓.

(iv) The case 𝑆 = 𝑆1 ⋅ 𝑆2 works similarly, with the only additional argumentation 

step being the assumption of the outer induction hypothesis, that 𝑆1↓ and 𝑆2↓ 

have all variable occurences immediately enclosed by 𝛿, and all occurences of 𝑧 

enclosed by 𝛿, if 𝑇 does. Then

𝛿(𝑆)↓ = 𝛿(𝑆1)↓ ⊙ 𝑆2↓ ⊕ 𝑆1↓ ⊙ 𝛿(𝑆2)↓ ⊕ 𝛿(𝑆1)↓ ⊙ 𝛿(𝑆2)↓
satisfies both parts of the statement.

(v) If 𝑈 = 𝛿(𝑆), then 𝑇↓ = 0 which trivially satisfies both parts of the statement.

By the inner induction, it holds that 𝛿(𝑆)↓ has all variable occurences immediately 

enclosed by 𝛿, and all occurences of 𝑧 enclosed by 𝛿, if 𝑆 does. Both parts of the original 

statement now follow by the outer induction. ∎

proposition 54.  Let 𝑇 be a term with all variable occurences immediately enclosed 

by 𝛿. Then there are benign terms 𝐴 and 𝐵 such that 𝑇 =
BDR

𝐴𝑧 + 𝐵.

proof .  By Lemma 41, it holds that 𝑇 =
BDR

𝛿(𝑇)𝑧 + 𝛿(𝑇(𝑧 + 1)). 𝛿(𝑇) as well as 𝛿(𝑇(𝑧 +
1)) clearly have all variable occurences immediately enclosed by 𝛿 and all occurences of 



𝑧 enclosed by 𝛿. Therefore, by Proposition 53, we have that both 𝐴 ≔ 𝛿(𝑇)↓ and 𝐵 ≔
𝛿(𝑇(𝑧 + 1))↓ are benign and it holds that

𝑇 =
BDR

𝛿(𝑇)𝑧 + 𝛿(𝑇(𝑧 + 1)) =
BDR

𝐴𝑧 + 𝐵
concluding the proof. ∎

2.3 Making BDR-Terms Into BR-Terms

The idea behind flat terms is that they essentially behave like BR-terms in the sense that 

the 𝛿 only affect individual variable occurences and also there is no immediate way of 

applying the only relevant additional property of 𝑧. Therefore, 𝛿(𝑥𝑖) and 𝑧 behave like 

ordinary variables and it makes intuitive sense that we should get the same resulting 

equalities if we actually substitute them for ordinary variables. In the following, we will 

make this intuition more precise, starting with the definition of an associated BR-term 

‖𝑇‖ for every flat term 𝑇. We will see that 𝑇 and ‖𝑇‖ behave essentially the same w. r. t. 

equalities.

definition 55.  Let 𝑇( ⃗𝑥) be a flat term and ⃗̄𝑥 as well as 𝑍 variables not occuring in 𝑇. 

Then we define the BR-term |𝑇| as follows

(i) |𝑐| ≔ 𝑐 for 𝑐 ∈ {0, 1}
(ii) |𝑧| ≔ 𝑍

(iii) |𝑥𝑖| ≔ ̄𝑥𝑖

(iv) |𝛿(𝑥𝑖)| ≔ 𝑥𝑖

(v) |𝑆1 + 𝑆2| ≔ |𝑆1| + |𝑆2|
(vi) |𝑆1 ⋅ 𝑆2| ≔ |𝑆1| ⋅ |𝑆2|
Furthermore, define the following substitutions:

𝜀𝑥⃗ ≔ {𝑥𝑖 ↦ 𝑥𝑖𝑧 | 0 < 𝑖 ≤ 𝑛}

𝜂𝑥⃗ ≔ {𝑥𝑖 ↦ 𝛿(𝑥𝑖), ̄𝑥𝑖 ↦ 𝑥𝑖 | 0 < 𝑖 ≤ 𝑛} ∪ {𝑍 ↦ 𝑧}

The way that we defined |𝑥𝑖| as ̄𝑥𝑖 and 𝛿(𝑥𝑖) as 𝑥𝑖, and not the other way round, is due 

to the fact that in the later part, we will apply |⋅| only to benign terms and it is more 

convenient to have 𝑇 as well as |𝑇| be terms over the same variables. Next, we will show 

that 𝜂𝑥⃗ is the syntactic inverse of |⋅| and the BDR-inverse of 𝜂𝑥⃗ for some terms with 

specific properties.

lemma 56.  For every flat term 𝑇( ⃗𝑥) it holds that 𝑇 = [|𝑇|]𝜂𝑥⃗
.



proof .  We prove this by induction on the shape of 𝑇.

(i) If 𝑇 = 𝑐 with 𝑐 ∈ {0, 1}, then [|𝑐|]𝜂𝑥⃗
= [𝑐]𝜂𝑥⃗

= 𝑐.

(ii) If 𝑇 = 𝑧, then [|𝑧|]𝜂𝑥⃗
= [𝑍]𝜂𝑥⃗

= 𝑧.

(iii) If 𝑇 = 𝑥𝑖, for 0 < 𝑖 ≤ 𝑛, then [|𝑥𝑖|]𝜂𝑥⃗
= [ ̄𝑥𝑖]𝜂𝑥⃗

= 𝑥𝑖.

(iv) If 𝑇 = 𝛿(𝑥𝑖), for 0 < 𝑖 ≤ 𝑛, then [|𝛿(𝑥𝑖)|]𝜂𝑥⃗
= [𝑥𝑖]𝜂𝑥⃗

= 𝛿(𝑥𝑖).

(v) Suppose 𝑇 = 𝑆1 + 𝑆2, for flat terms 𝑆1 and 𝑆2 that satisfy the induction hypothesis. 

Then it holds that
[|𝑆1 + 𝑆2|]𝜂𝑥⃗

= [|𝑆1| + |𝑆2|]𝜂𝑥⃗
= [|𝑆1|]𝜂𝑥⃗

+ [|𝑆2|]𝜂𝑥⃗
= 𝑆1 + 𝑆2

(vi) And similarly, the statement holds for the case 𝑇 = 𝑆1 ⋅ 𝑆2.

The statement follows by induction. ∎

lemma 57.  For every flat BR-term 𝑇( ⃗𝑥, ⃗̄𝑥, 𝑍), it holds that 𝑇 = | [𝑇]𝜂𝑥⃗
|.

proof .  We prove this by induction on the shape of 𝑇.

(i) If 𝑇 = 𝑐 with 𝑐 ∈ {0, 1}, then | [𝑐]𝜂𝑥⃗
| = |𝑐| = 𝑐.

(ii) If 𝑇 = 𝑍, then | [𝑍]𝜂𝑥⃗
| = |𝑧| = 𝑍.

(iii) If 𝑇 = 𝑥𝑖, for 0 < 𝑖 ≤ 𝑛, then | [𝑥𝑖]𝜂𝑥⃗
| = |𝛿(𝑥𝑖)| = 𝑥𝑖.

(iv) If 𝑇 = ̄𝑥𝑖, for 0 < 𝑖 ≤ 𝑛, then | [ ̄𝑥𝑖]𝜂𝑥⃗
| = |𝑥𝑖| = ̄𝑥𝑖.

(v) Suppose 𝑇 = 𝑆1 + 𝑆2, for flat terms 𝑆1 and 𝑆2 that satisfy the induction hypothesis. 

Then it holds that

| [𝑆1 + 𝑆2]𝜂𝑥⃗
| = | [𝑆1]𝜂𝑥⃗

+ [𝑆2]𝜂𝑥⃗
| = | [𝑆1]𝜂𝑥⃗

| + | [𝑆2]𝜂𝑥⃗
| = 𝑆1 + 𝑆2 = 𝑇

(vi) And similarly, the statement holds for the case 𝑇 = 𝑆1 ⋅ 𝑆2.

The statement follows by induction. ∎

lemma 58.  Let 𝑇( ⃗𝑥) be a term with all variables immediately enclosed. Then 

[𝑇]𝜂𝑥⃗𝜀𝑥⃗
=

BDR
𝑇.

proof .  We prove this by induction on the shape of 𝑇. The base cases 𝑇 = 𝑐 with 𝑐 ∈
{0, 1, 𝑧} and the inductive cases 𝑇 = 𝑆1 + 𝑆2, 𝑇 = 𝑆1 ⋅ 𝑆2 for terms 𝑆1 and 𝑆2, as well as 

the case 𝑇 = 𝛿(𝑆), for 𝑆 not a single variable, are trivial. The only non-trivial case is the 

one for 𝑇 = 𝛿(𝑥) for some variable 𝑥. Here we have that

[𝛿(𝑥)]𝜂𝑥⃗𝜀𝑥⃗
= [𝛿(𝑥𝑧)]𝜂𝑥⃗

= 𝛿(𝛿(𝑥)𝑧) =
BDR

𝛿(𝑥)



since clearly 𝛿(𝑥) is 𝛿-vanishing. The statement now follows by induction. ∎

The following theorem and its corollaries make our previous intuition, that flat terms 

behave like BR-terms, precise.

theorem 59.  Let 𝑇( ⃗𝑥) be a flat term. Then it holds that 𝑇 =
BDR

0 if and only if |𝑇| =
BR

0.

proof .  Suppose that |𝑇| =
BR

0. Then it holds that |𝑇| =
BDR

0 since BDR extends BR 

and further 𝑇 =
BDR

[|𝑇|]𝜂𝑥⃗
=

BDR
[0]𝜂𝑥⃗

=
BDR

0. We will prove the other direction by contra­

position. For that, suppose that BR ⊬ |𝑇| =
BR

0. By Theorem 21, that means that there is 

already a counterexample of |𝑇| =
BR

0 within 𝟚. If 𝑇 is a term in ⃗𝑥, then |𝑇| is a term in ⃗𝑥, 
⃗̄𝑥 and 𝑍, but for clarity we will write ⃗𝑦 instead of ⃗̄𝑥. We therefore have tuples ⃗𝑋  and ⃗𝑌  of 

𝟚 as well as ̂𝑍 ∈ 𝟚 such that |𝑇| ⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫ = 1.

Consider then the switching algebra 𝕊1 of switching functions 𝟚 → 𝟚, equipped 

with the non-standard definition of 𝑧 given by 𝑧(0) ≔ ̂𝑍, 𝑧(1) ≔ ̂𝑍 + 1. We define the 

elements ⃗𝑓 ≔ (𝑓1, …, 𝑓𝑛) as follows:

𝑓𝑖(0) ≔ 𝑌 𝑖 𝑓𝑖(1) ≔ {𝑌 𝑖 if 𝑋𝑖 = 0
𝑌 𝑖 + 1 if 𝑋𝑖 = 1

We will show by induction on the shape of 𝑇 that (𝑇⟪ ⃗𝑓⟫)(0) = |𝑇| ⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫:

(i) The case for 𝑇 = 𝑐 where 𝑐 ∈ {0, 1} is clear and so are the inductive cases 𝑇 = 𝑆1𝑆2 

as well as 𝑇 = 𝑆1 + 𝑆2.

(ii) If 𝑇 = 𝑧, then (𝑧⟪ ⃗𝑓⟫)(0) = 𝑧(0) = ̂𝑍 = 𝑍⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫ = |𝑧| ⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫.

(iii) If 𝑇 = 𝑥𝑖, then (𝑥𝑖⟪ ⃗𝑓⟫)(0) = 𝑓𝑖(0) = 𝑌 𝑖 = 𝑦𝑖⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫ = |𝑥𝑖| ⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫.

(iv) If 𝑇 = 𝛿(𝑥𝑖), then, by definition of the derivative in switching algebras, we have that

(𝛿(𝑥𝑖)⟪ ⃗𝑓⟫)(0) = 𝛿(𝑓𝑖) = { 0 if 𝑋𝑖 = 0 
 1 if 𝑋𝑖 = 1 } = 𝑋𝑖 = 𝑥𝑖⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫ = |𝛿(𝑥𝑖)| ⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫

Therefore it follows that (𝑇⟪ ⃗𝑓⟫)(0) = |𝑇| ⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫, which now shows that 𝑇⟪ ⃗𝑓⟫ ≠ 0, as 

(𝑇⟪ ⃗𝑓⟫)(0) = |𝑇| ⟪ ⃗𝑋, ⃗𝑌 , ̂𝑍⟫ = 1. Therefore 𝕊1 ⊭ 𝑇 = 0 which means that BDR ⊬ 𝑇 = 0, 

completing the proof. ∎

We can restate Theorem 59 in an equivalent, but slightly more useful way.

corollary 60.  Let 𝑆 and 𝑇 be flat terms. Then it holds that 𝑆 =
BDR

𝑇 if and only if 

|𝑆| =
BR

|𝑇|.



proof .  The proof follows from Theorem 59 due to the fact that 𝑆 =
BDR

𝑇 if and only if 

𝑆 + 𝑇 =
BDR

0 as well as |𝑆| =
BR

|𝑇| if and only if |𝑆| + |𝑇| =
BR

0, i. e.

𝑆 =
BDR

𝑇 ⇔ 𝑆 + 𝑇 =
BDR

0 ⇔ |𝑆| + |𝑇| = |𝑆 + 𝑇| =
BR

0 ⇔ |𝑆| =
BR

|𝑇|
∎

Until now, |⋅| has only been defined for flat terms. Corollary 60, together with the help 

of Algorithm 47, now allows us to generalize the notion of |⋅| to all terms in a natural way 

by first applying ↓.

definition 61.  Let 𝑇 be any term. Then ‖𝑇‖ ≔ |𝑇↓|.

The next proposition states that this definition is natural in the sense that it also preserves 

equalities. This is not a trivial result, since arbitrary terms with 𝑧 and 𝛿 can behave quite 

differently than terms with 𝑇BR.

corollary 62.  Let 𝑆 and 𝑇 be any terms. Then it holds that 𝑆 =
BDR

𝑇 if and only if 

‖𝑆‖ =
BR

‖𝑇‖.

proof .  Since 𝑆 =
BDR

𝑆↓ and 𝑇 =
BDR

𝑆↓, it holds follows from Corollary 60 that

𝑆 =
BDR

𝑇 ⇔ 𝑆↓ =
BDR

𝑇↓ ⇔ ‖𝑆‖ = |𝑆↓| =
BR

|𝑇↓| = ‖𝑇‖
∎

An expected special case of this is that, for BR-terms, 𝑇BDR does not allow for any 

additional equalities over 𝑇BR.

corollary 63.  Let 𝑆 and 𝑇 be BR-terms. Then 𝑆 =
BDR

𝑇 if and only if 𝑆 =
BR

𝑇.

proof .  If 𝑆 =
BR

𝑇, then clearly also 𝑆 =
BDR

𝑇 since BDR extends BR. For the converse 

direction, suppose that 𝑆 =
BDR

𝑇 and assume that 𝑆 and 𝑇 are terms of ⃗𝑥. Recall that, by 

Proposition 48, it holds that 𝑈 =
BR

𝑈↓ for all BR-terms 𝑈. Consider then the self-inverse 

substitution 𝜎 ≔ {𝑥𝑖 ↦ ̄𝑥𝑖, ̄𝑥𝑖 ↦ 𝑥𝑖 | 0 < 𝑖 ≤ 𝑛} for which it holds that [𝑉]𝜎 = ‖𝑉‖ for all 

flat BR-terms 𝑉  of ⃗𝑥. By Corollary 62 it holds that ‖𝑆‖ =
BR

‖𝑇‖, and therefore

𝑆 =
BR

𝑆↓ = [𝑆↓]𝜎𝜎 = [|𝑆↓|]𝜎 = [‖𝑆‖]𝜎 =
BR

[‖𝑇‖]𝜎 = [|𝑇↓|]𝜎 = [𝑇↓]𝜎𝜎 = 𝑇↓ =
BR

𝑇
which completes the proof. ∎



Next, we will show that Lemma 56 and Lemma 57 still hold for ‖
⋅‖

 in a weaker version, 

with BR and BDR equality respectively instead of syntactic equality. However, we need 

a short lemma first.

lemma 64.  Let 𝑇 be a BR-term of ( ⃗𝑥, ⃗̄𝑥, 𝑍). Then it holds that [𝑇↓]𝜂𝑥⃗
= [𝑇]𝜂𝑥⃗

↓.

proof .  We will show this by induction on the shape of 𝑇.

(i) If 𝑇 = 𝑐 with 𝑐 ∈ {0, 1}, then [𝑐↓]𝜂𝑥⃗
= 𝑐 = [𝑇]𝜂𝑥⃗

↓.

(ii) If 𝑇 = 𝑍, then [𝑍↓]𝜂𝑥⃗
= 𝑧 = [𝑇]𝜂𝑥⃗

↓.

(iii) If 𝑇 = 𝑥𝑖, for 0 < 𝑖 ≤ 𝑛, then [𝑥𝑖↓]𝜂𝑥⃗
= 𝛿(𝑥𝑖) = [𝑇]𝜂𝑥⃗

↓.

(iv) If 𝑇 = ̄𝑥𝑖, for 0 < 𝑖 ≤ 𝑛, then [ ̄𝑥𝑖↓]𝜂𝑥⃗
= 𝑥𝑖 = [ ̄𝑥𝑖]𝜂𝑥⃗

↓.

(v) Suppose 𝑇 = 𝑆1 + 𝑆2, for terms 𝑆1 and 𝑆2 that satisfy the induction hypothesis. 

Then it holds that
[𝑇↓]𝜂𝑥⃗

= [𝑆1↓ ⊕ 𝑆2↓]𝜂𝑥⃗

= [𝑆1↓]𝜂𝑥⃗
⊕ [𝑆2↓]𝜂𝑥⃗

= [𝑆1]𝜂𝑥⃗
↓ ⊕ [𝑆2]𝜂𝑥⃗

↓

= ( [𝑆1]𝜂𝑥⃗
+ [𝑆2]𝜂𝑥⃗

)↓

= [𝑇]𝜂𝑥⃗
↓

where the second equality holds since clearly 𝜂𝑥⃗ and ⊕ commute in the same way 

𝜂𝑥⃗ and + do, assuming that the orderings of atoms and monomials of BR and BDR 

are chosen to be compatible.

(vi) The statement for the case 𝑇 = 𝑆1 ⋅ 𝑆2 holds similarly.

Together, the statement for every 𝑇 now follows by induction. ∎

proposition 65.

(i) For every term 𝑇 of ⃗𝑥 it holds that 𝑇 =
BDR

[‖𝑇‖]𝜂𝑥⃗
.

(ii) For every BR-term 𝑇 of ( ⃗𝑥, ⃗̄𝑥, 𝑍) it holds that 𝑇 =
BR

‖ [𝑇]𝜂𝑥⃗
‖.

proof .  (i): It holds, by Lemma 56, that

[‖𝑇‖]𝜂𝑥⃗
= [|𝑇↓|]𝜂𝑥⃗

= 𝑇↓ =
BDR

𝑇

(ii): It holds, by Lemma 64 and Lemma 57, that

‖ [𝑇]𝜂𝑥⃗
‖ = | [𝑇]𝜂𝑥⃗

↓| = | [𝑇↓]𝜂𝑥⃗
| =

BR
𝑇↓ =

BR
𝑇



∎

In the following, we will show that the flat form 𝑇↓ has properties analogous to 

Theorem 25. This will follow from Corollary 63 and the following lemmas:

lemma 66.

(i) Let 𝑇1 and 𝑇2 be flat terms. Then |𝑇1↓ ⊕ 𝑇2↓| = ‖𝑇1‖ ⊕ ‖𝑇2‖.

(ii) Let 𝑀1 and 𝑀2 be monomial-like terms. Then |𝑇1↓ ⊙ 𝑇2↓| = ‖𝑇1‖ ⊙ ‖𝑇2‖.

proof .  This follows immediately from the fact that |⋅| is substitution-like and we can 

choose the atom and monomial orderings of BR and BDR in a compatible way.
∎

lemma 67.  Let 𝑇 be any term. Then ‖𝑇‖ = ‖𝑇‖↓.

proof .  Let 𝑇 be a term of ⃗𝑥. We will first show the statement for flat terms by induction:

(i) If 𝑇 = 𝑐 ∈ {0, 1}, then ‖𝑇‖ = 𝑇 = ‖𝑇‖↓.

(ii) If 𝑇 = 𝑧, then ‖𝑇‖ = 𝑍 = ‖𝑇‖↓.

(iii) If 𝑇 = 𝑥 for a variable 𝑥, then ‖𝑇‖ = ̄𝑥 = ‖𝑇‖↓.

(iv) If 𝑇 = 𝛿(𝑥) for a variable 𝑥, then ‖𝑇‖ = 𝑥 = ‖𝑇‖↓.

(v) Suppose that 𝑇 = 𝑇1 + 𝑇2 for flat terms 𝑇1 and 𝑇2 that satisfy the induction hypoth­

esis. Then, with Lemma 66 as well as the induction hypothesis, it holds that

‖𝑇‖ = |𝑇1↓ ⊕ 𝑇2↓| = ‖𝑇1‖ ⊕ ‖𝑇2‖ = ‖𝑇1‖↓ ⊕ ‖𝑇2‖↓ = (‖𝑇1‖ + ‖𝑇2‖)↓ = ‖𝑇‖↓
(vi) Suppose that 𝑇 = 𝑇1 ⋅ 𝑇2 with 𝑇1 and 𝑇2 as above. Since 𝑇 is flat, this means that 𝑇1 

and 𝑇2 are monomial-like. By Lemma 66 and the induction hypothesis, we have that

‖𝑇‖ = |𝑇1↓ ⊙ 𝑇2↓| = ‖𝑇1‖ ⊙ ‖𝑇2‖ = ‖𝑇1‖↓ ⊙ ‖𝑇2‖↓ = (‖𝑇1‖ ⋅ ‖𝑇2‖)↓ = ‖𝑇‖↓
By induction the statement follows for all flat terms 𝑇. Now let 𝑇 be any term. Then, 

by definition ‖𝑇‖ = |𝑇↓|, and together with Lemma 50 and the above argument, it holds 

that

‖𝑇‖ = ‖𝑇↓‖ = ‖𝑇↓‖↓ = ‖𝑇‖↓
i. e. the general statement holds. ∎

theorem 68.  Let 𝑆 and 𝑇 be any terms. Then it holds that 𝑆 =
BDR

𝑇 if and only if 

𝑆↓ = 𝑇↓.



proof .  Let 𝑆 and 𝑇 be terms of ⃗𝑥. Suppose that 𝑆 =
BDR

𝑇. Then, by Corollary 62, it 

holds that ‖𝑆‖ =
BR

‖𝑇‖. By Theorem 25, this means that ‖𝑆‖↓ = ‖𝑇‖↓ and it follows with 

Lemma 67 that
𝑆↓ = [|𝑆↓|]𝜂𝑥⃗

= [‖𝑆‖]𝜂𝑥⃗
= [‖𝑆‖↓]𝜂𝑥⃗

= [‖𝑇‖↓]𝜂𝑥⃗
= [‖𝑇‖]𝜂𝑥⃗

= [|𝑇↓|]𝜂𝑥⃗
= 𝑇↓

The converse holds, since in this case 𝑆 =
BDR

𝑆↓ = 𝑇↓ =
BDR

𝑇. ∎

2.4 Some Useful Substitutions

In this section, we will define some substitutions and state some propositions about 

them, that will help us later.

definition 69.  Let ⃗𝑥 be variables. We define the following substitutions:

𝜅𝑥⃗ ≔ {𝑥𝑖 ↦ 𝛿(𝑎𝑥⃗
𝑖 )𝑧 + 𝛿(𝑏𝑥⃗

𝑖 ) | 0 < 𝑖 ≤ 𝑛}

𝜆𝑥⃗ ≔ {𝑎𝑥⃗
𝑖 ↦ 𝑥𝑖, 𝑏𝑥⃗

𝑖 ↦ (𝑥𝑖 + 𝛿(𝑥𝑖)𝑧)𝑧 | 0 < 𝑖 ≤ 𝑛}

𝜈𝑥⃗ ≔ {𝑎𝑥⃗
𝑖 ↦ 𝑎𝑥⃗

𝑖 + 𝛿( ̂𝑎𝑥⃗
𝑖 ), 𝑏𝑥⃗

𝑖 ↦ 𝑏𝑥⃗
𝑖 + 𝛿( ̂𝑏𝑥⃗

𝑖 ) | 0 < 𝑖 ≤ 𝑛}

where all of the 𝑎𝑥⃗
𝑖 , 𝑏𝑥⃗

𝑖 , ̂𝑎𝑥⃗
𝑖  and ̂𝑏𝑥⃗

𝑖  are fresh variables different from the ⃗𝑥.

In the following we will always omit the superscript ⃗𝑥, and only use superscript ⃗𝑦 for the 

variables introduced by 𝜅𝑦⃗, 𝜆𝑦⃗, 𝜈𝑦⃗, etc, in case ⃗𝑥 ≠ ⃗𝑦.

The idea behind 𝜅𝑥⃗ is that every element 𝑥 of a Boolean ring can be presented as 𝑐𝑧 +
𝑑 with 𝑐, 𝑑 ∈ Ker(𝛿). And since every element of Ker(𝛿) is in the image of 𝛿, there are 

𝑎 and 𝑏 such that 𝑥 = 𝛿(𝑎)𝑧 + 𝛿(𝑏). Since our intuition tells us that 𝜅𝑥⃗ does not add or 

remove any information, we naturally expect it to be reversible. And it turns out that 𝜆𝑥⃗ 

is exactly the desired left-inverse of 𝜅𝑥⃗.

lemma 70.  It holds that 𝜆𝑥⃗𝜅𝑥⃗ =
BDR

id.

proof .  We need to show that [𝑥𝑖]𝜆𝑥⃗𝜅𝑥⃗
=

BDR
𝑥𝑖 for all 0 < 𝑖 ≤ 𝑛. Fix such 𝑖. Then we have 

that



[𝑥𝑖]𝜆𝑥⃗𝜅𝑥⃗
= [𝛿(𝑎𝑖)𝑧 + 𝛿(𝑏𝑖)]𝜆𝑥⃗

= 𝛿(𝑥𝑖)𝑧 + 𝛿((𝑥𝑖 + 𝛿(𝑥𝑖)𝑧)𝑧)

=
BDR

𝛿(𝑥𝑖)𝑧 + 𝑥𝑖 + 𝛿(𝑥𝑖)𝑧

=
BDR

𝑥𝑖

Where the first BDR-equality holds since 𝑥𝑖 + 𝛿(𝑥𝑖)𝑧 is 𝛿-vanishing, and therefore 

𝛿((𝑥𝑖 + 𝛿(𝑥𝑖)𝑧)𝑧) =
BDR

𝑥𝑖 + 𝛿(𝑥𝑖)𝑧. ∎

lemma 71.  It holds that 𝜈𝑥⃗𝜅𝑥⃗ =
BDR

𝜅𝑥⃗

proof .

[𝑥𝑖]𝜈𝑤⃗𝜅𝑥⃗
= [𝛿(𝑎𝑖)𝑧 + 𝛿(𝑏𝑖)]𝜈𝑥⃗

= 𝛿(𝑎𝑖 + 𝛿( ̂𝑎𝑖))𝑧 + 𝛿(𝑏𝑖 + 𝛿( ̂𝑏𝑖)) =
BDR

𝛿(𝑎𝑖)𝑧 + 𝛿(𝑏𝑖) = [𝑥𝑖]𝜅𝑥⃗

∎

Next, we will prove some more useful statements about the behaviour of our previously 

defined substitutions.

lemma 72.  Let 𝜎 be a BR-substitution and let [𝑥]𝜎  be a term in ⃗𝑦. Then it holds that

‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎𝜀𝑥⃗
‖ =

BR
[𝑥]𝜎

proof .  We first prove the corresponding BDR-equality by induction on the shape of 

[𝑥]𝜎 .

(i) If [𝑥]𝜎 = 𝑐 for 𝑐 ∈ {0, 1}, then ‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎𝜀𝑥⃗
‖ =

BDR
𝑐 = [𝑥]𝜎 .

(ii) If [𝑥]𝜎 =
BR

𝑦 for a variable 𝑦, then

‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎𝜀𝑥⃗
‖ = ‖ [𝛿(𝑥𝑧)]𝜂𝑦⃗𝜎 ‖

= ‖ [𝛿(𝑦𝑧)]𝜂𝑦⃗
‖

= ‖𝛿(𝛿(𝑦)𝑧)‖

=
BDR

‖𝛿(𝑦)‖
= 𝑦
= [𝑥]𝜎

(iii) If [𝑥]𝜎 = 𝑆1 + 𝑆2 and suppose the hypothesis already holds for 𝜎1 ≔ {𝑥 ↦ 𝑆1} and 

𝜎2 ≔ {𝑥 ↦ 𝑆2}. Then we have that



‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎𝜀𝑥⃗
‖ = ‖ [𝛿(𝑥𝑧)]𝜂𝑦⃗𝜎 ‖

= ‖ [𝛿(𝑆1 + 𝑆2)𝑧]𝜂𝑦⃗
‖

=
BDR

‖ [𝛿(𝑆1𝑧)]𝜂𝑦⃗
‖ ⊕ ‖ [𝛿(𝑆2𝑧)]𝜂𝑦⃗

‖

= ‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎1𝜀𝑥⃗
‖ ⊕ ‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎2𝜀𝑥⃗

‖

=
BDR

[𝑥]𝜎1 ⊕ [𝑥]𝜎2

= 𝑆1 ⊕ 𝑆2

=
BDR

𝑆1 + 𝑆2

= [𝑥]𝜎

(iv) If [𝑥]𝜎 = 𝑆1 ⋅ 𝑆2 and suppose the hypothesis already holds for 𝜎1 and 𝜎2 as defined 

above. Then it holds that

‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎𝜀𝑥⃗
‖ = ‖ [𝛿(𝑆1𝑆2𝑧)]𝜂𝑦⃗

‖

= ‖𝛿( [𝑆1]𝜂𝑦⃗
[𝑆2]𝜂𝑦⃗

𝑧)‖

=
BDR

‖ [𝑆1]𝜂𝑦⃗
[𝑆2]𝜂𝑦⃗

‖

= ‖ [𝑆1]𝜂𝑦⃗
‖ ⊙ ‖ [𝑆2]𝜂𝑦⃗

‖

=
BDR

‖𝛿( [𝑆1]𝜂𝑦⃗
𝑧)‖ ⊙ ‖𝛿( [𝑆2]𝜂𝑦⃗

𝑧)‖

= ‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎1𝜀 ‖ ⊙ ‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎2𝜀 ‖

=
BDR

[𝑥]𝜎1 ⊙ [𝑥]𝜎2

= 𝑆1 ⊙ 𝑆2

=
BDR

𝑆1 ⋅ 𝑆2

= [𝑥]𝜎

By induction it follows that ‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎𝜀𝑥⃗
‖ =

BDR
[𝑥]𝜎  for all BR-substitutions 𝜎. Since this 

is an equality between BR-terms, by Corollary 63 it follows that ‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎𝜀𝑥⃗
‖ =

BR
[𝑥]𝜎 .∎

lemma 73.  Let 𝑇( ⃗𝑥) be a benign term and 𝜎 a BR-substitution such that [‖𝑇‖]𝜎  is a 

term in ⃗𝑦. Then it holds that [𝑇]𝜂𝑦⃗𝜎𝜀𝑥⃗
=

BDR
[‖𝑇‖]𝜂𝑦⃗𝜎 .



proof .  We can prove this by induction on the shape of 𝑇. The base case 𝑇 = 𝑐 for 𝑐 ∈
{0, 1} and the induction cases 𝑇 = 𝑆1 + 𝑆2 and 𝑇 = 𝑆1𝑆2 are immediate. The only non-

trivial case is 𝑇 = 𝛿(𝑥). Here it holds by Proposition 65 and Lemma 72 that

[𝛿(𝑥)]𝜂𝑦⃗𝜎𝜀𝑥⃗
=

BDR [‖ [𝛿(𝑥)]𝜂𝑦⃗𝜎𝜀𝑥⃗
‖]𝜂𝑦⃗

=
BDR

[ [𝑥]𝜎 ]𝜂𝑦⃗
= [‖𝛿(𝑥)‖]𝜂𝑦⃗𝜎

∎

lemma 74.  Let 𝑇( ⃗𝑥) be a BDR-term and 𝜎 as well as 𝜏 BR-substitutions. Suppose that 

[𝑇]𝜏𝜅𝑥⃗
 is a term in ⃗𝑦 and [𝑇]𝜎𝜏𝜅𝑥⃗

 is a term in ⃗𝑣. If 𝑤⃗ ≔ ( ⃗𝑎, ⃗𝑏), then it holds that:

𝜂𝑣⃗𝜎𝜀𝑦⃗𝜂𝑦⃗𝜏𝜀𝑤⃗𝜅𝑥⃗ =
BDR

𝜂𝑣⃗𝜎𝜏𝜀𝑤⃗𝜅𝑥⃗

proof .  It suffices to show that it holds for 𝑇 = 𝑥𝑖. By induction it holds for all 𝑇( ⃗𝑥). 

Therefore, using Lemma 73 and Proposition 65:

[𝑥𝑖]𝜂𝑣⃗𝜎𝜀𝑦⃗𝜂𝑦⃗𝜏𝜀𝑤⃗𝜅𝑥⃗
=

BDR [ [𝑥𝑖]𝜂𝑦⃗𝜏𝜀𝑤⃗𝜅𝑥⃗
]𝜂𝑣⃗𝜎𝜀𝑦⃗

=
BDR [‖ [𝑥𝑖]𝜂𝑦⃗𝜏𝜀𝑤⃗𝜅𝑥⃗

‖]𝜂𝑣⃗𝜎

=
BDR [ [𝑥𝑖]𝜏𝜀𝑤⃗𝜅𝑥⃗

]𝜂𝑣⃗𝜎

=
BDR

[𝑥𝑖]𝜂𝑣⃗𝜎𝜏𝜀𝑤⃗𝜅𝑥⃗

∎

2.5 Unification of Boolean Differential Rings

In this chapter we will prove our main result that the theory of Boolean rings has the 

unitary unification type. The proof is based on the fact that the BDR-equations 𝑇 =
0 and [𝑇]𝜅𝑥⃗

= 0 are equivalent. Since [𝑇]𝜅𝑥⃗
 has all occurences of variables immediately 

enclosed by 𝛿, there are benign terms 𝐴 and 𝐵 such that [𝑇]𝜅𝑥⃗
= 𝐴𝑧 + 𝐵. And since 𝐴𝑧 +

𝐵 =
BDR

0 if and only if 𝐴 =
BDR

0 and 𝐵 =
BDR

0 if and only if ‖𝐴‖ =
BR

0 and ‖𝐵‖ =
BR

0, this lets 

us reduce the BDR-unification problem 𝑇 = 0 to the BR-unification problem {‖𝐴‖ =
0, ‖𝐵‖ = 0} that we already know how to solve.

We will first prove that we can construct from any BR-unifier of the system of 

BR-equations a BDR-unifier of the single BDR-equation, and vice versa. Then, we will 

show that the two constructions are inverse to each other. Finally, we will show that the 

first construction conserves the mgu-property, and therefore we can construct a BDR-



mgu for the single BDR-equation in case it is unifiable. In the following, for the sake of 

convenience, we define 𝑤⃗ ≔ ( ⃗𝑎, ⃗𝑏).

theorem 75.  Let 𝑇( ⃗𝑥) be any term, and 𝐴(𝑤⃗) and 𝐵(𝑤⃗) benign such that [𝑇]𝜅 =
BDR

𝐴𝑧 + 𝐵. If 𝜎 is a BR-unifier of {‖𝐴‖ = 0, ‖𝐵‖ = 0} such that [‖𝐴‖]𝜎  and [‖𝐵‖]𝜎  are terms 

in ⃗𝑦, then 𝜎 ≔ 𝜂𝑦⃗𝜎𝜀𝑤⃗𝜅𝑥⃗ is a BDR-unifier of 𝑇 = 0.

proof .  By Lemma 73 it holds that

[𝑇]𝜂𝑦⃗𝜎𝜀𝑤⃗𝜅𝑥⃗
=

BDR
[𝐴𝑧 + 𝐵]𝜂𝑦⃗𝜎𝜀𝑤⃗

=
BDR

[‖𝐴𝑧 + 𝐵‖]𝜂𝑦⃗𝜎 =
BDR

[‖𝐴‖]𝜂𝑦⃗𝜎 𝑍 + [‖𝐵‖]𝜂𝑦⃗𝜎 =
BDR

0

since ‖𝐴𝑧 + 𝐵‖ = ‖𝐴‖ ⊙ 𝑍 ⊕ ‖𝐵‖ =
BDR

‖𝐴‖ 𝑍 + ‖𝐵‖. ∎

theorem 76.  Let 𝑇( ⃗𝑥) be any term, and 𝐴(𝑤⃗) and 𝐵(𝑤⃗) benign such that [𝑇]𝜅 =
BDR

𝐴𝑧 + 𝐵. If 𝜏 is a BDR-unifier of 𝑇 = 0, then there is a BR-unifier ‖𝜏‖ of {‖𝐴‖ = 0, ‖𝐵‖ =
0} such that 𝜏 =

BDR
‖𝜏‖.

proof .  Let ⃗𝑦 be variables such that [𝑇]𝜏  is a term in ⃗𝑦. For every 𝑖, we define the 

substitution ‖𝜏‖ as

[𝑤𝑖]‖𝜏‖ ≔ ‖ [𝑤𝑖]𝜏𝜆𝑥⃗𝜂𝑤⃗
‖

such that 𝜏𝜆𝑥⃗𝜂𝑤⃗ =
BDR

𝜂𝑦⃗ ‖𝜏‖. To show that ‖𝜏‖ is a unifier of {‖𝐴‖ = 0, ‖𝐵‖ = 0}, first note 

that:

[‖𝐴‖ 𝑧 + ‖𝐵‖]𝜅𝑦⃗𝜂𝑦⃗ ‖𝜏‖ =
BDR

[‖𝐴‖ 𝑧 + ‖𝐵‖]𝜅𝑦⃗𝜏𝜆𝑥⃗𝜂𝑤⃗

=
BDR

[𝐴𝑧 + 𝐵]𝜅𝑦⃗𝜏𝜆𝑥⃗

=
BDR

[𝑇]𝜅𝑦⃗𝜏

=
BDR

0
Since it holds that [‖𝐴‖ 𝑧 + ‖𝐵‖]𝜅𝑦⃗𝜂𝑦⃗ ‖𝜏‖ =

BDR
[‖𝐴‖]𝜅𝑦⃗𝜂𝑦⃗ ‖𝜏‖ 𝑧 + [‖𝐵‖]𝜅𝑦⃗𝜂𝑦⃗ ‖𝜏‖  and by Propo­

sition 53, [‖𝐴‖]𝜅𝑦⃗𝜂𝑦⃗ ‖𝜏‖ ↓ as well as [‖𝐵‖]𝜅𝑦⃗𝜂𝑦⃗ ‖𝜏‖ ↓ are benign and therefore 𝛿-vanishing, by 

Proposition 42, this means that we have that

[‖𝐴‖]𝜅𝑦⃗𝜂𝑦⃗ ‖𝜏‖ =
BDR

[‖𝐵‖]𝜅𝑦⃗𝜂𝑦⃗ ‖𝜏‖ =
BDR

0

and therefore

[‖𝐴‖]𝜂𝑦⃗ ‖𝜏‖ =
BDR

[‖𝐴‖]𝜆𝑦⃗𝜅𝑦⃗𝜂𝑦⃗ ‖𝜏‖ =
BDR

[0]𝜆𝑦⃗
=

BDR
0



which with Lemma 57 as well as Theorem 59 further gives us:

[‖𝐴‖]‖𝜏‖ =
BR

‖ [‖𝐴‖]𝜂𝑦⃗ ‖𝜏‖ ‖ =
BR

0

Similarly, we get that [‖𝐵‖]‖𝜏‖ =
BR

0, i. e. ‖𝜏‖ is a BR-unifier of {‖𝐴‖ = 0, ‖𝐵‖ = 0}.

To show that 𝜏 =
BDR

‖𝜏‖, first, define the substitution 𝜓 for all 𝑖 by [𝑤̂𝑖]𝜓 ≔
[𝑤𝑖]𝜏𝜆𝑥⃗

(𝑧 + 1). Then, consider, by Lemma 41:

[𝑤𝑖]𝜏𝜆𝑥⃗
=

BDR
𝛿( [𝑤𝑖]𝜏𝜆𝑥⃗

)𝑧 + 𝛿( [𝑤𝑖]𝜏𝜆𝑥⃗
(𝑧 + 1))

=
BDR

[𝑤𝑖]𝜏𝜆𝑥⃗𝜂𝑤⃗
𝑧 + 𝛿( [𝑤̂𝑖]𝜓 )

=
BDR

[𝑤𝑖]𝜂𝑦⃗‖𝜏‖ 𝑧 + [𝛿(𝑤̂𝑖)]𝜓

=
BDR

[𝑤𝑖]𝜂𝑦⃗‖𝜏‖𝜀𝑤⃗
+ [𝛿(𝑤̂𝑖)]𝜓

=
BDR

[𝑤𝑖]𝜓𝜂𝑦⃗‖𝜏‖𝜀𝑤⃗
+ [𝛿(𝑤̂𝑖)]𝜓𝜂𝑦⃗‖𝜏‖𝜀𝑤⃗

=
BDR

[𝑤𝑖 + 𝛿(𝑤̂𝑖)]𝜓𝜂𝑦⃗‖𝜏‖𝜀𝑤⃗

=
BDR

[𝑤𝑖]𝜓𝜂𝑦⃗‖𝜏‖𝜀𝑤⃗𝜈𝑥⃗

i. e. we have that 𝜏𝜆𝑥⃗ =
BDR

𝜓𝜂𝑦⃗‖
𝜏‖

𝜀𝑤⃗𝜈𝑥⃗. Therefore, by the definitions as well as Lemma 70 

and Lemma 71, we have that:

𝜏 =
BDR

𝜏𝜆𝑥⃗𝜅𝑥⃗ =
BDR

𝜓𝜂𝑦⃗‖𝜏‖𝜀𝑤⃗𝜈𝑥⃗𝜅𝑥⃗ =
BDR

𝜓𝜂𝑦⃗‖𝜏‖𝜀𝑤⃗𝜅𝑥⃗ =
BDR

𝜂𝑦⃗‖𝜏‖𝜀𝑤⃗𝜅𝑥⃗ =
BDR

‖𝜏‖

which concludes the proof. ∎

theorem 77.  Let 𝑇( ⃗𝑥) be any BDR-term. The equation 𝑇 = 0 has either no or exactly 

one most general unifier.

proof .  Let 𝐴( ⃗𝑎, ⃗𝑏) and 𝐵( ⃗𝑎, ⃗𝑏) be benign such that [𝑇]𝜅 =
BDR

𝐴𝑧 + 𝐵 and define 𝑤⃗ ≔
( ⃗𝑎, ⃗𝑏). Suppose 𝑇 = 0 is BDR-unifiable. Then, by Theorem  76, it holds that {‖𝐴‖ =
0, ‖𝐵‖ = 0} is BR-unifiable. Since unification of Boolean rings is unitary, there exists a 

BR-mgu 𝜎. If ⃗𝑦 is such that [‖𝐴‖]𝜎  and [‖𝐵‖]𝜎  are terms in ⃗𝑦, then, by Theorem 75, it 

holds that 𝜎 = 𝜂𝑦⃗𝜎𝜀𝑤⃗𝜅𝑥⃗. We claim that 𝜎 is in fact the BDR-mgu of 𝑇 = 0.

To prove this, let 𝜏 be another BDR-unifier of 𝑇 = 0. Then it holds by Theorem 76 

that ‖𝜏‖ is a unifier of {‖𝐴‖ = 0, ‖𝐵‖ = 0} and 𝜏 =
BDR

‖𝜏‖. Since 𝜎 is an mgu, it holds that 



there is a BR-substitution 𝜑 such that ‖𝜏‖ =
BR

𝜑𝜎. If ⃗𝑢 are such that [𝑇]𝜏  is a term in ⃗𝑢, 

then it follows by Lemma 74 that

𝜏 =
BDR

‖𝜏‖

=
BDR

𝜂𝑢⃗‖𝜏‖𝜀𝑤⃗𝜅𝑥⃗

=
BDR

𝜂𝑢⃗𝜑𝜎𝜀𝑤⃗𝜅𝑥⃗

=
BDR

𝜂𝑢⃗𝜑𝜀𝑦⃗𝜂𝑦⃗𝜎𝜀𝑤⃗𝜅𝑥⃗

=
BDR

𝜂𝑢⃗𝜑𝜀𝑦⃗𝜎

and therefore 𝜎 is at least as general as 𝜏, i. e. together 𝜎 is the mgu of 𝑇 = 0. ∎

corollary 78.  Unification of Boolean differential rings is unitary.

proof .  Using Theorem 15, this is now an immediate consequence of Theorem 77. ∎

The construction of 𝜎 in Theorem 75 provides a straightforward way to specify a unifi­

cation algorithm for Boolean differential rings.

algorithm 79.  Let 𝑇( ⃗𝑥) be a BDR-term. Suppose that unifyBR is a function return­

ing for every BR-term 𝑡 a BR-mgu of 𝑡 = 0 in case it is unifiable and ⊥ otherwise. Then 

consider the function unify2
BR, defined using Algorithm 16 and the base case unifyBR. 

Then we specify the function unifyBDR that returns for 𝑇 a BDR-unifier of 𝑇 = 0 in case 

that it is unifiable, and ⊥ otherwise by

unifyBDR(𝑇) ≔
let 𝑇 ′ ≔ [𝑇]𝜅𝑥⃗

 𝐴 ≔ ‖𝛿(𝑇 ′)‖
 𝐵 ≔ ‖𝛿(𝑇 ′(𝑧 + 1))‖
 𝜎 ≔ unify2

BR(𝐴, 𝐵)
in if 𝜎 = ⊥

then ⊥
else 𝜂

(𝑎⃗,𝑏⃗)
𝜎𝜀

(𝑎⃗,𝑏⃗)
𝜅𝑥⃗



Lastly, the function unify𝑛
BDR, specified in Algorithm  16 using unifyBDR from Algo­

rithm 79 as the base case, provides, for 𝐴1, …, 𝐴𝑛 BDR-terms, either a BDR-mgu of the 

system of equations {𝐴1 = 0, …, 𝐴𝑛 = 0} in case it is BDR-unifiable, and ⊥ otherwise.

Example

As an example, consider the equation 𝛿(𝑥) = 𝑦. The equation is clearly unifiable and we 

expect the mgu to be ̃𝜏 ≔ {𝑦 ↦ 𝛿(𝑥)}. To calculate the mgu according to Algorithm 79, 

let 𝑇 ≔ 𝛿(𝑥) + 𝑦 be a term of ⃗𝑥 ≔ (𝑥, 𝑦). First we see that:

[𝛿(𝑥) + 𝑦]𝜅𝑥⃗
= 𝛿(𝛿(𝑎)𝑧 + 𝛿(𝑏)) + (𝛿(𝑐)𝑧 + 𝛿(𝑑)) =

BDR
𝛿(𝑎) + 𝛿(𝑐)𝑧 + 𝛿(𝑑)

with 𝜅𝑥⃗ = {𝑥 ↦ 𝛿(𝑎)𝑧 + 𝛿(𝑏), 𝑦 ↦ 𝛿(𝑐)𝑧 + 𝛿(𝑑)}. Then 𝐴 ≔ 𝛿(𝑐) and 𝐵 ≔ 𝛿(𝑎) + 𝛿(𝑑) 

are benign terms of 𝑤⃗ ≔ (𝑎, 𝑏, 𝑐, 𝑑) such that [𝑇]𝜅𝑥⃗
=

BDR
𝐴𝑧 + 𝐵. Now it holds that 𝜏1 ≔

{𝑐 ↦ 0} is the BR-mgu of ‖𝐴‖ = 0, and further 𝜎 ≔ 𝜏2 ≔ {𝑐 ↦ 0, 𝑎 ↦ 𝑑} the BR-mgu of 

{‖𝐴‖ = 0, ‖𝐵‖ = 0}. Then it holds that
𝜏 ≔ 𝜂𝑤⃗𝜎𝜀𝑤⃗𝜅𝑥⃗

= 𝜂𝑤⃗𝜎𝜀𝑤⃗{𝑥 ↦ 𝛿(𝑎)𝑧 + 𝛿(𝑏), 𝑦 ↦ 𝛿(𝑐)𝑧 + 𝛿(𝑑)}

= 𝜂𝑤⃗𝜎{𝑥 ↦ 𝛿(𝑎𝑧)𝑧 + 𝛿(𝑏𝑧), 𝑦 ↦ 𝛿(𝑐𝑧)𝑧 + 𝛿(𝑑𝑧)}

= 𝜂𝑤⃗{𝑥 ↦ 𝛿(𝑑𝑧)𝑧 + 𝛿(𝑏𝑧), 𝑦 ↦ 𝛿(0𝑧) + 𝛿(𝑑𝑧)}

= {𝑥 ↦ 𝛿(𝛿(𝑑)𝑧)𝑧 + 𝛿(𝛿(𝑏)𝑧), 𝑦 ↦ 𝛿(0𝑧) + 𝛿(𝛿(𝑑)𝑧)}

=
BDR

{𝑥 ↦ 𝛿(𝑑)𝑧 + 𝛿(𝑏), 𝑦 ↦ 𝛿(𝑑)} ≕ 𝜏′

Clearly, 𝜏′ ≠ ̃𝜏, but we have that 𝜏′ ≤ ̃𝜏, since for the substitution 𝜆′ ≔ {𝑑 ↦ 𝑥, 𝑏 ↦ (𝑥 +
𝛿(𝑥)𝑧)𝑧} we have that:

𝜆′𝜏′ = 𝜆′{𝑥 ↦ 𝛿(𝑑)𝑧 + 𝛿(𝑏), 𝑦 ↦ 𝛿(𝑑)}
= {𝑥 ↦ 𝛿(𝑥)𝑧 + 𝛿((𝑥 + 𝛿(𝑥)𝑧)𝑧), 𝑦 ↦ 𝛿(𝑥)}

=
BDR

{𝑥 ↦ 𝛿(𝑥)𝑧 + 𝑥 + 𝛿(𝑥)𝑧, 𝑦 ↦ 𝛿(𝑥)}

=
BDR

{𝑥 ↦ 𝑥, 𝑦 ↦ 𝛿(𝑥)}
= {𝑦 ↦ 𝛿(𝑥)}

Conversely, it also holds that ̃𝜏 ≤ 𝜏′, since for the substitution 𝜅′ ≔ {𝑥 ↦ 𝛿(𝑑)𝑧 + 𝛿(𝑏)} 

it holds that:

𝜅′ ̃𝜏 = 𝜅′{𝑦 ↦ 𝛿(𝑥)}
= {𝑥 ↦ 𝛿(𝑑)𝑧 + 𝛿(𝑏), 𝑦 ↦ 𝛿(𝛿(𝑑)𝑧 + 𝛿(𝑏))

=
BDR

{𝑥 ↦ 𝛿(𝑑)𝑧 + 𝛿(𝑏), 𝑦 ↦ 𝛿(𝑑)}
Since 𝜏 =

BDR
𝜏′, therefore Algorithm 79 indeed produces the expected mgu.



Conclusion

In this thesis we have shown that the unification theory of Boolean differential rings and 

Boolean differential algebras can be reduced to the unification theory of Boolean rings 

and Boolean algebras. While the possibility of such a reduction was expected by the 

way Boolean differential rings are defined via Boolean rings, finding the reduction and 

proving the relationship turned out to be non-trivial. The fact that the unification of 

Boolean differential rings is unitary means practically that for every unifiable system of 

equations there is a most general unifier that will generate all possible solutions.

Due to how the above reduction to Boolean rings works, we were able to provide 

algorithms for finding the mgu of single BDR-equations as well as systems of BDR-equa­

tions. These algorithms are based on the respective algorithms of Boolean differential 

rings. Having such a unification algorithm significantly simplifies the search for possible 

solutions.

In addition to this, we have also shown that, in fact, terms of Boolean differential 

rings and Boolean rings are more closely related than it seems. We showed that, like terms 

of Boolean rings have a unique polynomial form, terms of Boolean differential rings have 

a unique flat form that coincides with the polynomial form on 𝑧-free and 𝛿-free terms. 

Moreover, we showed that terms of Boolean differential rings relate to terms of Boolean 

rings by means of ‖
⋅‖

 in a way that respects the equalities of either theory.

A topic that has not been covered by this thesis is the theory of Boolean rings 

with (finitely) many derivatives. Such a theory has been completely axiomatized by F. 

Weitkämper [3], and also B. Steinbach and C. Posthoff [1] who cover switching algebras 

with multiple vectorial derivatives. Since they are defined via Boolean rings in a similar 

way to Boolean differential rings, it would be natural, if the unification theory of such a 

theory would behave in a similar way. However, this shall be the content of some future 

work.
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