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ABSTRACT

The theory of Boolean differential rings is a natural extension of the theory of Boolean
rings, that additionaly provides an abstract notion of differential. Boolean rings are im-
portant and extensively studied concepts arising naturally in many parts of mathematics,
especially logic, and computer science. One important result is that the theory of Boolean
rings has the unitary unification type. We show that the unification of Boolean differen-
tial rings can be reduced to the unification of Boolean rings and that the theory of Boolean
differential rings also has the unitary unification type, and we provide an algorithm that
calculates a most general unifier. We also show that terms of Boolean differential rings
have a flat normal form similar to the polynomial form of terms of Boolean rings and that
terms of Boolean differential rings correspond to terms of Boolean rings in a way that

respects both equivalences.
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Introduction

Boolean algebras are important mathematical structures that appear in many different
parts of mathematics, in particular logic, and theoretical computer science. They can be
equivalently characterized in the language of algebra as Boolean rings, which enables us
to use the more familiar definitions and techniques of ring theory.

One of the most important classes of Boolean algebras are the switching algebras S,
i.e. the sets of Boolean functions 2" — 2 forn € N, thatinherit their algebraic properties
from 2 which is isomorphic to the two-element field. Switching algebras arise naturally in
computer science as they represent logical circuits. Because of their importance, Switch-
ing functions in particular, as well as Boolean algebras and Boolean rings in general, have
been extensively studied.

A natural question that comes up when dealing with switching function is in which
sense some Boolean functions are independent from some of the input variables. E. g. the
function f(x;, x,) = x; is clearly independent from x,. There are, however, less obvious
examples like the function g(x;, x,) = x; V (x; A 71x;) which is essentially the function
f>but in order to check whether g depends on x, one already needs to know Boolean
arithmetic to see that x, A =1x, = 0 and therefore x; V 0 = x;.

A different angle on this question is to study whether the function value changes if
the input variables of interest are changed, i.e. whether f(x;,X;) has the same value as
f(x1, 7x,) and similarly for g. The language of Boolean differential algebras and Boolean
differential rings provides us with a way of talking about this question, and it leads to a
fruitful field of study that stands at the center of this thesis. The word differential is a
reference to the same concept in R, that also answers the question in which way a real-
valued function depends on the input variables.

An extensive study of the switching algebras and the concept of differential on them
has been covered in B. Steinbach and C. Posthoft [1] and particularly in B. Steinbach and
C. Posthoft [2]. Here, the authors introduce the notions of simple and vectorial deriva-
tives and extensively study the behaviour of these derivatives. Following F. Weitkimper
[3], in this thesis we will study arbitary Boolean differential rings.



Unification is a way of abstractly solving equations w.r.t. some theory. The differ-
ence to ordinary equation solving is that rather than plugging in values into variables, we
instead replace variables with other terms such that the terms (and not a priori the values)
are equal w.r.t. some theory. It has been shown that the unification theory of Boolean
rings is particularly simple in that it is #zztary. Unitary means that every unifiable system
of equations has some unifier that is most general, i. e. it generates all possible solutions.

In this thesis, we will show that we can reduce the unification theory of Boolean dif-
ferential rings to the unification theory of Boolean rings and we prove that the unification
theory of Boolean differential rings is unitary as well. We will also provide a unification
algorithm for single as well as systems of equations of Boolean difterential rings.

The algorithms in this work are given in pseudocode. The style of the code is
inspired by the one used by U. Martin and T. Nipkow [4] for specifying the unification
algorithm for Boolean rings. In order to avoid many nested if statements, we use a match
statement as found in many programming languages, especially functional ones, where
the individual cases follow the syntax S = T, where S is a constructor, in our cases mostly
x or &(x) involving variables, as well as S; + S,, S; - S, as well as 5(S) for sums and
product as well as terms enclosed by 8.

In Section 1, we will introduce the important prerequisites for the later study. In
Section 1.1, we will provide the basic logical definitions and in Section 1.2 we will intro-
duce the concept of unification. In Section 1.3, we will introduce the theory of Boolean
rings, in Section 1.4 the polynomial normal form of terms of Boolean rings and lastly
in Section 1.5 we will provide the most important results regarding the unification of
Boolean rings.

In Section 2, we will provide the results of our study of Boolean differential rings.
In Section 2.1, we will first introduce the theory of Boolean differential rings and explain
why the switching algebras constitute Boolean differential rings. In Section 2.2, we will
introduce the flat normal form of terms of Boolean differential rings and prove some
statements about it. In Section 2.3, we will show a way of translating terms of Boolean
differential rings into terms of Boolean rings in a way that respects both equalities. Here
we will also prove that the flat normal form has in fact similar properties to the polyno-
mial normal form of Boolean rings. In Section 2.4 we will introduce some important
lemmas which leads us to the final Section 2.5 in which we will state and prove our
main theorems regarding the unification of Boolean differential rings. Here we will also
specify a unification algorithm for single equations and systems of equations of Boolean
differential rings.



1 Basic Notions

1.1 Terms, Theories and Models

In the following section, we will introduce the basic definitions of mathematical logic
as can be found in H.-D. Ebbinghaus, J. Flum, and W. Thomas [5] or most other intro-
ductory books on logic. We will, however, limit ourselves to present only the parts that
are relevant to the later work and make slight adjustments to definitions and notation to
better suit our needs and cater to our (personal) aesthetic preferences.

DEFINITION I. In logic, a language £ is a tuple (F , P) where F is a set of function
symbols and P is a set of predicate symbols. £ is also equipped with a countable set V =
{x; | i € N} of variables, that is disjoint from F and P.

Even though V contains only the symbols x;, we will also use variable names like a; and
b; for the sake of clarity. In this case, we will simply view a; or b; as an abbreviation for
an actual variable x; € V for some j € N and generally assume that all the a; as well as all
the b; are mutually distinct.

A central notion in this thesis is the one of a term over £, also called £-term. The set
T of terms over £ is defined inductively:

DEFINITION 2. Every O-ary function symbol of F and every element of V is an £-
term. For every k-ary function symbol f € F, and all £-terms ty, ..., t), the expression
f(tl, e tk) is also an £-term. In this case we say that ¢y, ..., ) are proper subterms of
f(ty, ... tx) and f(ty, ..., ty) is a proper superterm of ti, ..., tx. An £-term s is a subterm
(resp. superterm) of an £-tem ¢ if it is either a proper subterm (resp. superterm), or s =
t. If a term ¢ contains at most the variables X := (X1, ..., x,,) for some n € N, then we say
that £ is a term of X and write ¢(X).

Note that J” is always at least countably infinite, since there are countably infinitely many
variables. It is exactly countably infinite if F and P are at most countable. The set F of



L-formulas can be defined inductively in a similar fashion using the predicate symbols
(plus a special binary relation “=") as well as the previously defined terms:

DEFINITION 3. If pisak-ary prediacte of P and t,, ..., t are £-terms, then p(ty, ..., tx)
is an £-formula. Similarly, if s and ¢ are £-terms, then s = ¢ is a £-formula. Finally, every
first-order formula built from these atomic £-formulas is an £-formula.

Similarly to 7, F is always at least countably infinite and exactly countably infinite if F
and P are at most countable. Next, we will introduce some notions of proof and model

theory:

DEFINITION 4. An L-theory T is a set of L-formulas (called axioms). If @ is a
formula, then we say that T proves ®, denoted T F @, iff there exists a finite subset T” :=
{¥,...¥,} QT T such that there is a finite derivation proving ® from T". For terms s and
t,wewrites=ttomean T F s =t.

DEFINITION 5. Let T be an £-theory. A set M is called a model of T, denoted M
T, if there is an interpretation of J” and F within M, and for every formula of T, its
interpretation in M is true. If ¢ is an £-term of X € V" and X € M ", then we denote by
t(X) the interpretation of t in M with X; plugged into all occurences of x;, for all 0 <
i<n.

The following theorem is an important result of logic. It states that the above notions of
deductive provability and model-theoretic truth are equivalent.

THEOREM 6 (Soundness and Completeness [5, Thm.IV.6.2, V.4.1]). Itholdsthat T -
@ if and only if for all models M of T it is true that M E ®.

1.2 Unification

The above notion of evaluating terms at (i.e. “plugging in”) elements of M has a syntac-
tic-deductive analogon. With substitution, the difference is that variables are evaluated at,
or in this case replaced by, other terms instead of directly by elements of M. This makes
sense, since these new terms in turn correspond to elements in models and T-equality is
preserved as shown in Lemma 8. In the following, we will vaguely follow F. Baader and
T. Nipkow [6], but we will, again, simplify or modify definitions and notation to better
suit our needs.

DEFINITION 7. Leto:V — J beafunction. We can recursively extend o to a function
6:7J — T:1f ¢ € Fis O-ary, then 5(c) := c. If x € V, then &(x) := o(x). If f € Fisk-ary



for some k € N and fy, ..., t) are L-terms, then 6(f(ty, ..., tx)) := f(&6(t), ..., (tx))- In
this case, we call o an £-substitution and for the sake of clarity, we denote the application
of 0 onaterm ¢ by ,[t] := o(¢).

In this thesis, we will not distinguish & from ¢ and, in particular, we will define a substi-
tution simply by specifying its values on V. Similarly, if o is defined on a subset X C V,
then we can extend it to the whole of V by letting o(x) := x forx € V \ X.

In the rest of this thesis, we will often specify a substitution (function) o by provid-
ing a set of ordered pairs V x J7, where a single ordered pair (x, t) means that a(x) =
t. Again for the sake of clarity, we will use the special notation x + ¢ for (x,t), which
means that e.g. the set {x; — t;,x, — t,} will correspond to the substitution sending x,
tothe term t; as well as x; to t,, and {x; — ;| 0 < i < n}to the substitution sending every
variable x;, 0 < i < n, to the term t;. As before, we assume that both of the substitutions
act like the identity on all of the variables that have not been mentioned explicitly.

If K C £ is another language and o is a K-substitution, we can also see o as an £-
substitution. We will use this fact without explicit mention in the case for Lz € Lppr
later on in this work.

Next, we will show that substitutions do, in fact, preserve T-equalities.

T
LEMMA 8. Letsandt be £-terms over £ with s = ¢ and ¢ an £-substitution. Then it
T
holds that ,[s] = 5[¢]-

PROOF. To show that ,[s] I o|t]; let M be any model of T. Assume that s and ¢ are £
-terms of X € V" and ,[s| as well as ,[¢] are terms of y € V™, X and y not necessarily
disjoint. Let Y € M™. We need to show that a[s]((f’)) = U[t]((f’)}. For that, define W :=
(W1, ... W) €M™ by W ; = G[xi]<(17>> for 0 < i < n. For all £-terms u it holds that
o[u]((?}) = u(W). We prove this by induction: For O-ary f € F,itholds that | f ]((17» =
f = f(WY. For 0 < i < nit holds that o[x;]J(Y) = W; = x,(W). Finally, if f € F is k-
ary and the hypothesis holds for the £-terms ¢y, ..., ty, then

o (11, s )Y = Floftr]s s o[ DAY
= F(o[6 ], -oer o[t ]CYD)
= f(6 W, .., i AWY)
= [ty oo W)

Together, this shows that it holds for all terms u. Then, using this as well as the fact that
s = t and therefore s(X) = t{(X)) for all X € M™, we have that



o[SIY) = (W) = (W) = S[t](¥)
Since this holds for all models M, we have that ,{s] z o[t]- |

In the following, we will make some more general definitions regarding substitutions.

DEFINITION 9. Let 0 and 7 be £-substitutions. Then the composition 07 := g o T is
simply the function composition, i.e. for all x € V we have that 4.[x] := ;[ [x]]-

DEFINITION I0. Let 0 and 7 be £- substltutlons We say that o and 7 are T-equal,
denoted o = 7, iff for all x € V it holds that o,[x] 7| x]- In this case it is clear that for all
L-terms t it holds that G[t] = [¢]-

This allows us to define a notion of generality between substitutions. A substitution is
more general if the other substitution is simply a specialization of it.

DEFINITION II. Let T be an £-theory. Then we define the partial order < by letting

o < T, for all £-substitutions o and 7, if and only if there exists an £-substitution § such
that T = 96 In this case we say that o is at least as general as 7 and we will usually just
T

write < instead of < if the theory is clear from the context. It is easy to verify that < is in
fact a preorder on the set of £-substitutions.

We now have all the necessary definitions to define the central subject of this thesis,
unification theory. (Equational) unification is a technique of solving equations both
syntactically and w.r.t. a theory. In a way, unification in relation to finding solutions of
an equation is what substitution is in relation to “plugging in” values.

DEFINITION 12. Letsy,...,s,andt, ..., t, be L-terms. A substitution o isa T-unifier of
the finite system of equations {s; = t,, ..., s, = t,,}, called a T-unification problem, if and
only if 4[s;] z o|ti] forall 0 < i < n. We say that a system of equations E is T-unifiable if
and only if there is a T-unifier of E. If s and ¢ are terms, we will often simply write s = ¢
instead of the singleton set {s = t}.

Unification can also be done purely syntactically. In this case, the equations ;] Z
o|ti] in Definition 12 would be replaced by the syntactic equations ,[s;| = ,|¢;]. In fact,
syntactic unification is simply equational unification with an empty theory T = @. In
the following, “unification” will always mean the more general notion of “equational
unification” in the sense of Definition 12.

Suppose that s and ¢ are £-terms and o is a T-unifier of s =t with 4[s] and ,[¢]
being terms of X. If M is a model of T, then we have, for all X € M™, that G[S]«)_() » =



a[t](()? » and therefore unification constitutes a powerful method of generating concrete
solutions of equations or showing that a given set of equations does not have any solution
otherwise. It is now clear to see that unifiers that are more general substitutions will also
generate more general concrete solutions. Due to this observation, it is in our interest to
characterize the unifiers that are the most general.

DEFINITION 13 ([6, Def. 10.1.4]). Let T be an £-theory and E a finite system of £-
equations. A set Q of T-unifiers of E is minimal complete (mcsu), if for all T-unifiers
of E, thereisac € Qsuchthato < r,andforallo,0’ € Q,ifoc < ¢/, thenog =0’ If Qis
the singleton {c}, then we call o a most general T-unifier (mgu) of E.

Note that @ is an mcsu if and only if E is not unifiable. Moreover, in general, mcsu, and,
in particular, mgu are not unique, but they can be transformed into each other w.r.t. T.

An mcsu allows us to generate all possible solutions for a system of equations with
as few unifiers as possible. Larger mcsu intuitively mean that finding solutions is more
difficult. It turns out that we can classify theories by how complex, or rather by how large,
their mcsu can be.

DEFINITION 14 ([6, Def. 10.1.7]). Let T be an £L-theory. T can have the following
unification types:
(i) umitary:If and only if every system of equations has a T-mcsu of cardinality < 1, 1i.e.

a T-mgu in case it is T-unifiable.

(ii) fimitary: If and only if every system of equations has a finite T-mcsu.

(ili) znfinitary: If and only if every system of equations has a T-mcsu and there is some
system of equations that has an infinite T-mcsu.

(iv) zero: If there is a system of equations that does not have a T-mcsu.

It turns out that many theories are actually unitary, or at least finitary. In particular, it
holds that the theory of Boolean rings and Boolean algebras is unitary. It is the aim of
this thesis to show that the theory of Boolean difterential rings and Boolean differential
algebras is unitary as well.

The next theorem states that if every single equation has an mcsu of size < 1, then
every (finite) system of equations has an mcsu of size < 1, i.e. the theory is unitary. This
allows us later to deduce the unification type while only ever having to deal with single
equation problems.

THEOREM 15. Let T bean £-theory such that for all L-terms s and ¢ the statement
Y(s, t) := either the equation s = t has a T-mgu or it is not T-unifiable

holds. Then T is unitary.



PROOF. Suppose that E := {5, = ty,...,s, = t,} is T-unifiable by some 9. We want to
show that E has a T-mgu. To show that, define 7, := id. We will prove by induction that

for every 0 < k < n the 7y := 0y T_1 where oy is a T-mgu of Tk_l[sk] = [t)] is well-

Tk—
defined and that 7y is a T-mgu of Ey := {8y = ty, ..., ¢ = t}. .

The case for k = 1is trivial: Since g[s;]| = g[t;], this means thats, = #, is T-unifiable
and by ¥(s,, t;) this means that there exists a T-mgu o; of

wlsi] =81 =1t =[t]

and 7y := 097 = 07 is by definition a T-mgu of E;.

Now suppose that the induction hypothesis holds for some 0 < k < n. Since 8 is a
T-unifier of E, it is also a T-unifier of Ej, and therefore there is some substitution ¢ such

T
that § = ¢ty Since § is a T-unifier of s, = tj41, it holds that

olelsen]] = slsea] = sltin] = oleltisn]]
which means that , [s41] = ¢, [tk+1] is T-unifiable. By W(;, [Sk41], « [ t+1])s this means
that there exists a T-mgu o, of this equation. This lets us define 7y, = 047 Clearly
by construction, T is a T-unifier of Ey;. It remains to show that is also most general.
To show this, suppose that & is another T-unifier of Ey;. Since it is also a T-unifier
of Ey, there exists some substitution ¢@ such that 9 = @ry. Since

T
oleelsitr]] = slskn] = slten] = gle[tin]]

and 04 is most general for the equation rk[sk+1] = ,k[tkﬂ], it holds that there exists

some substitution ¢ such that ¢ = $oy;. Together we have that

32

I

Tk = POk41Tk = PThy1
i.e. T4 is most general.
By induction, it follows that for all 0 < k < n the substitution 7 is a T-mgu of Ej.

In particular, 7, is a T-mgu of E,, = E, which concludes the proof. |

The proof of Theorem 15 suggests a way of specifying an algorithm for finding the mgu

of a system of equations given an algorithm for finding the mgu of a single equation.

ALGORITHM 16. Let T be a unitary £-theory and unifyr a function, specified, for all
L-terms s and ¢, by a finitary algorithm, with unify(s = t) either a T-mgu of s = ¢ in
case the equation is T-unifable and L in case the equation is not T-unifiable. We will
recursively specify the function unify7 for all n € N, 1 < n, that calculates the T-mgu of
the system of £-equations {8, = ¢y, ..., s, = t,} in case it is T-unifiable, and returns L in
case it is not T-unifiable. For the base case we define unify% := unifyy. For the recursive



case, suppose unify7 has already been defined for some n € N, 1 < n. Let sy, ..., 8,41 as
n+1

well as t, ..., t, 41 be L-terms. We specify unify7 by the following algorithm:
unify7 (s =ty ooy Sppr = tpg) =
let 7, == unify}(s; = t1,...,8, = t,)
inifr, = 1
then L

elselet gy, = unifYT(rn[Sn+l] = rn[tn+1])
il‘l if0n+1 == J_
then L

else 0,17,

The correctness of Algorithm 16 follows from the induction part of the proof of
Theorem 15.

1.3 Boolean Rings and Algebras

We will now proceed to define Boolean rings and Boolean algebras. Boolean algebras are
important structures present in many parts of mathematics and computer science. The
notion of Boolean rings is equivalent to that of Boolean algebras, in the sense that every
Boolean ring can be equipped with a Boolean algebra structure and vice versa. While
the notion of Boolean algebras is convient to work with in set theory and some other
fields, using the notion of Boolean rings allows us to talk about algebraic properties using
notations and techniques from algebra. We will generally follow F. Baader and T. Nipkow
[6, Sec. 10.4], but will adapt it to better suit our needs.

DEFINITION 17. The language Lpr of Boolean rings consists of the 0-ary function
symbols “0” and “1”, as well as the binary function symbols “+” and “.”. As usual, we
will write a + b instead of +(a, b), a - b or simply ab instead of -(a, b) and we will use the
usual rules of precedence in order to avoid parentheses. The theory Tgg consists of the
following axioms:



(i) (a+b)+c=a+(b+c) (vi) a-a=a

(ii) (a-b)-c=a-(b-c) (vii) a+b=b+a

(i) 0O+a=a (viii) a-b=b-a

(iv) 1-a=a (ix) a-(b+c)=a-b+a-c
(v) a+a=0 (x) 0-a=0

We will use these axioms in the rest of the work without explicitly mentioning them.
For the sake of convenience, we will use “BR” to refer to both Ly and Tgg. E.g. we will
say that s S t, BR = ® and write “BR-term”. Furthermore, in anticipation of Boolean
differential rings later, we will avoid using the variable name z. The equalities in the next
Lemma follow immediately from BR, and will be used extensively in this thesis:

LEMMA 18.
(i) Forall xitholdsthatx-(x+1)=0
(ii) Forall x and y itholds that x = yifand onlyif x + y = 0.

PROOF. Itholdsthatx-(x+1)=x-x+x-1=x+4+1-x=x+x=0.Ifx =y, then

x4y =x+x=0.If conversely x + y = 0, then
x=x+Q+y)=x+y)+y=0+y=y

which concludes the proof. |

Next, we define Boolean algebras using the characterization of Boolean rings.

DEFINITION 19. The language £, of Boolean algebras consists of the 0-ary function
symbols “0” and “1”, as well as the unary function symbol “=” and the binary function
symbols “A” as well as “v”. The theory Ty, consists of the axioms of Tyg, with the
following replacements applied for all Lpg-terms s and ¢ [6, Sec. 10.4]:

BA BA
s+t (SATE)V(TsAL) St SAt

This gives the usual definition of a Boolean algebra. The following proposition supports
our claim that Tz, and Tyg are merely two different but interchangeable ways to talk
about the same objects.

PROPOSITION 20.

(1) Every model of Ty, is a model of Tyg with the substitutions . above.

(i) Every model of Ty is a model of Ty, with the following substitutions, defined for all
Lpa-terms s and ¢:



BR BR BR
s> s+ 1 SAtH S-t SVt s+t+s-t

(i) The two substitutions are mutually inverse w.r.t. the corresponding equational
theories.

PROOF. Part (i) is clear from the definition of Ty,. For part (ii), it suffices to see that s -
BA BR

t—>SAt— s-taswellas
S+t (sAD)V(ASAL)

B+ 1) +(s+1)-D+(-E+D)G+1)-0)
2 (st+5) + (st 4+ £) + (5t + $)(st + 1)
]ﬁ(st+s)+(st+t)+(stst+stt+sst+st)
]g(st+S)+(st+t)+(st+st+st+st)
BR
=(st+st)+(s+1)+0

BR
=S5+t
. . . . BR . . .
since Tgg consists of the axioms of Ty, with the replacements =, which in turn consists
BA
of the axioms of Tgg with the replacements .

Part (iii) is now merely a combined reformulation of parts (i) and (ii). |

We call the models of Tgg Boolean rings and the models of Tys Boolean algebras. In
the following, we will introduce some important examples of Boolean algebras/Boolean
rings.

Propositional logic. One of the arguably most important examples of a Boolean algebra
is 2, the set {0,1} interpreted as truth values and equipped with “=”, “A” and “v”
corresponding to the logical negation, conjunction and disjunction. 2 is a Boolean ring

« »

where “.” is the logical conjunction and “+” is the logical operation XOR. Incidentally,
2 is isomorphic to the field F,. The importance of 2 as the basic Boolean algebra stems

from the following theorem. It is even reflected by our choice of symbols of Lg,.

THEOREM 21 ([6, Thm. 10.4.3]). Let S and T be BR-terms. Then it holds that S Zr
ifandonlyif2E S =T.

Powersets. Another important class of examples of Boolean algebras are powersets. If
X is some set, then .’P(x), the powerset of x, is a Boolean algebra with “=7, “A” and “v”



being the set-theoretic complement (in x), intersection and union, i.e. for all y € x and
zZ C x, it holds that

y=y»=x\y yAz=ynz yvz=yuz
As aBoolean ring, “+” and “-” correspond to the set-theoretic symmetric difference and
union. Powersets are important, since, by Stone’s Theorem [1, Thm. 3.12], every finite
Boolean algebra is isomorphic to P(x) for some set x. Therefore all finite Boolean algebras
have cardinality 2" for some n € N. E.g. 2 is isomorphic to ?(@) = {@, {@}}

Algebras over F,. Every commutative algebra over F, already directly fulfils most of the
axioms, namely the ones that are related to commutativity, associativity and distributivity
hold, as well as the roles of 0 and 1. Additionally, it holds that

x+x=1gx+1gx = (1, + 15,)x = 0,x = 0
However, the last axiom, x - x = x, does not necessarily hold in all commutative algebras
over [y, since e.g. in [FZ[X], it holds that X - X = X? # X.

An example for where it holds is the F,-algebra ([FZ)X of all the functions from X to

F,, for any set X. The ring structure is taken to be pointwise, i.e.

(f + 9)(x) = f(x) + g(x) (f - 9(x) = f(x) - g(x)
aswell as O(x) := 0and l(x) := 1, and the scalar multiplication is given in the obvious way
by (Af)(x) = Af(x), forall f,g € ([FZ)X and x € X. Clearly it also holds that f - f = f,
since for all x € X, we have that (f - Q(x) = f(x)- f(x) = f(x), by application of the
same axiom inside [F,. Therefore, (F,)" is a Boolean ring.

An important instance of this are the finite Boolean functions. By the previous
argument, for every n € N, the set S, := 22" of n-dimensional Boolean functions is a
Boolean ring. Due to the obvious connection to logic gates, we also call S, the n-dimen-
sional switching algebra, and its elements n-dimensional switching functions.

1.4 The Polynomial Form of BR-Terms

As outlined in F. Baader and T. Nipkow [6, Ch. 10.4.1], terms of Boolean rings have a
normal form called the polynomial form.

DEFINITION 22. The BR-constants 0 and 1, as well as all variables x are BR-atoms.
A BR-monomial is a product of BR-atoms, and a BR-polynomial is a sum of BR-
monomials.

In order to define the polynomial form of a BR-term, we first need to introduce some
definitions. We assume some arbitrary but fixed ordering of BR-atoms and monomials,
the letter e.g. given by the lexicographic ordering.



DEFINITION 23.

(i)

(iii)

Let m; and m, be BR-monomials. If 0 is contained in either one of the monomials,
then we define m, % m, := 0. If m; and m, only contain BR-atoms that are 1, then
we define my * m, = 1. Otherwise, m; * m, is the (ordered) monomial that contains
all the BR-atoms of m; and m,, with all but one of any duplicate BR-atoms as well
as all occurences of 1 removed.

Let p; and p, be BR-polynomials that contain only monomials that are either 0 or
a product of pairwise difterent variables (i.e. reduced in the above sense). Then we
define p; @ p, to be the ordered polynomial that is the sum of the monomials p;
and p, with all pairs of BR-equal monomials as well as all occurences of 0 removed.
If this reduces to the empty sum, we set p; @ p, := 0.

Let p; and p, be BR-polynomials. If p; = Z?zl m; and p, = Zli=1 n; for BR-
monomials my, ..., my and ny, ..., n;. Then we define

ko1
p1®p2’=@@mi*n]’

i=1 j=1

From the definitions and by the axioms of Tgy, it is clear that m; % m, = my - my, as well
BR B

asp, ® p, = p; + prand p; © p, = p; - - Moreover, m; * m, = m; © m,, and m, *

m,, is clearly a BR-monomial while p; @ p, as well as p; ® p, are clearly BR-polynomials.

This lets us now define the polynomial form ¢| of a BR-term ¢.

ALGORITHM 24. LettbeaBR-term. We specify ¢] recursively as follows:

t| :=matcht
{0,1,x}=>1t
H+bH=>HlBHLI
H-tb=>tHl0OHL!

In other words, calculating the polynomial form of a BR-term consists in simplifying the
terms as much as possible using the rules in Definition 17. The polynomial form of a BR-
term is unique up to the choice of ordering of the BR-atoms and BR-monomials. The

polynomial form is normal in the following sense:

THEOREM 25 ([6, Thm. 10.4.3]). Let s and t be BR-terms. It holds that s L tifand
onlyifs| = t].



1.5 Unification of Boolean Rings

Unification of Boolean rings has already been extensively studied. An important result
is that the theory of Boolean rings has the unitary unification type. In this part, we will
discuss two approaches to this problem: Léwenheim’s Theorem and a recursive unifica-
tion algorithm. Léwenheim’s Theorem allows us to compute an mgu, if we already have
a unifier. This is technically enough to show that unification of Boolean rings is unitary,
however, the second approach provides us with a way of explicitly constructing an mgu
from scratch.

THEOREM 2.6 (Léwenheim’s Theorem [7]). Let s and t be BR-terms over X. Suppose
that 7 is a BR-unifier of s = t. Then the substitution

o={x; > x; +(s+0)(x; + [x])|0<i<n}
isa BR-mgu of s = .

This allows us to prove the following theorem.

THEOREM 27. Letsand t be BR-terms. Then the equation s = ¢ either has a BR-mgu
or it is not R-unifiable.

PROOF. Suppose that s = ¢ is BR-unifiable. This means that there exists a BR-unifier
of s = t. By Theorem 26 there is a BR-mgu o of s = ¢, which concludes the proof. |

Léwenheim’s Theorem shows us how to construct an mgu from any unifier. It does
not, however, help us find a unifier in the first place. Checking whether an equation is
unifiable and finding an explicit unifier in case it is unifiable is an entirely separate task.
E.g. one could first look for a particular solution, i.e. a substitution with t € {0, 1} for
every (x, t) € o, of the equation in the model 2, which, by Theorem 2.1, is then also a BR-
unifier. Applying Léwenheim’s Theorem to this unifier will result in a BR-mgu of the
original equation.

In the following we will introduce a recursive algorithm that directly computes the
mgu of an equation, if it exists. We will mainly follow the approach of U. Martin and
T. Nipkow [4], but adapt it to match our not}g{ion. First, we will simplify our problem
slightly. By the axioms of BR, it holds that s = ¢ if and only if s + ¢ = 0. Therefore, in
the following, we can consider only equations of the form u = 0, for some BR-term u,
instead. The algorithm is based on the fact that, if ¢ is a term of X = (xl, s xn), then
the equation ¢ = 0 is BR-unifiable if and only if {y,..}[t] - {x;~13[¢] = 0 is BR-unifiable.
Note that we then interpret gy, o} ¢] - {x,-13[¢] 252 term of (X3, ..., X,,), which is possible
since in both cases, the variable x; has been “eliminated” by either 0 or 1.



This fact allows us to successively eliminate variables from ¢ until we reach a closed
term that is either 0 or 1. If we reach 1, then the equation is not unifiable, and if we reach
0, then we propagate our solution (in the bottom case this is the identity substitution)

back up to the top.

ALGORITHM 28 ([4]). Letsand t be BR-terms in X. The following algorithm returns
aBR-mgu o of t = 0in case that it is BR-unifiable and L if it is not BR-unifiable.

unifypg (X)) :=
if x = ()
then if 1 = 0
then @
else L
else let o := unify(y, . opft] - (013 2])
in {x; = (tx-0juolt] + primnjuolt] +1) - %1 + yopuo] U@

Note that, in practice, we often know whether ¢ S Oort = 1 well before X = () If for
every recursgze call instead of some term we pass its polynomial form, then the checks
t = 0and t = 1simply become t = 0 and t = 1. Furthermore, since Algorithm 28 does
not simplify the output mgu at all, it might contain many complicated subterms that are
actually BR-equal to 0. Therefore, the following algorithm might be more efficient in
some cases and will return a simplified mgu.

ALGORITHM 29. Let s and t be BR-terms in X. Like Algorithm 28, this algorithm
returns a BR-mgu o of t = 0 in case that it is BR-unifiable and L if it is not BR-unifiable.

unifypg(¢(X)) =
ift=0
then @
elseift =1
then L
else let o == unify(((x, 03[ t] - px;-13[¢])1)
in {x; = ((g-0puolt] + ool t] +1) - X1 + g mopus| LU @

We could now use either Algorithm 28 or Algorithm 29 to prove Theorem 27 instead
of Lowenheim’s Theorem in order to prove Theorem 27. In any case, we can prove the
following theorem.



THEOREM 30. The unification of Boolean rings and Boolean algebras is unitary.

PROOF. The case for Boolean rings is an immediate consequence of Theorem 27 using
Theorem 15. The case for Boolean algebras follows from the fact that every BA-equation
is equivalent to the the BR-equation that is the same equation with — applied, and the
same holds for a system of BA-equations. “Equivalent” here means that they hold in the
same models, in the sense of Proposition 20. This means that, if an equation hoBlgs in all
Boolean rings, then it also holds in all Boolean algebras. Therefore, if we apply — to the
terms of a BR-unifier, this gives a BA-unifier and vice versa, and the mgu property is also

preserved. |

The function that returns the mgu of a system of n BR-equations {t; =0, ..., £, = 0}, in
case it is BR-unifiable, and L otherwise, is given by unifygy as specified in Algorithm 16.
Algorithm 28, Algorithm 29 or any other such algorithm, could be chosen for the base
case function.

Examples

In the following, we will look at four short examples in order to demonstrate how to
calculate the BR-mgu of single equations and systems of equations. For the sake of clarity,
we will simplify the returned unifier after every step. In the second example we will not,
however, simplify the terms in the recursive calls, in order to show how using unifygy
over unifygy can save some calculation effort.

EXAMPLE 31. Consider s(x,y) := x + y + 1. Then, first we calculate
S = roo)ls] eyls] = O+y+ D - A +y+1)

"

" = ool 8]+ et ]
=(0+0+1)-(1+0+1)-0+1+1)-1+1+1)

BR
=1-0-0-1

BR
=0

Therefore, we have that ¢” := @ is an mgu of s” = 0. Now, unwrapping the recursion,
we have that



o' ={y = (tymojuor[s T+ etjuor[ ]+ 1) - ¥ + eojuor[s TfU 0"
Z e (O+0+1) - A+0+D)+©0+1+1)-(1+1+1)+1)y
+(0+0+1)-(0+1+1D}UD

Xy (1-040-1+1)y+1-0}

§WHU+W

BR
={y~y}
BR
=g
Lastly, we receive the following substitution:
0 = {x & (xoojuor[5] + peonjuor[s] + 1) - X + reojuor[s[f U o
={xr ((O0+y+1)+A+y+1D)+Dx+O+y+1)}ud
BR
={x>Q+1+y+Dx+y+1}ug
BR
={x—~0x+y+1}

e y+1}

which is the mgu of s = 0 as expected.

EXAMPLE 32. The next example is not unifiable. Consider t(x, y) := xy(xy + x) + 1.
Then it holds that

t' = no)ft] - ent] = Oy +0) + 1) - Ay(ly + 1) + 1)
t" = ool ']+ o]
=(0-0-(0-0+0)+1)-(1-0-(1-04+1)+1)
-(0-1-(0-140)+1)-(1-1-(1-14+1)+1)
2{1.1.1.1
BR
=1

which means thatt”, and therefore t' as well as t are not unifiable. One could have noticed

already that

BDR BDR BDR
xy(xy+x)+1 = xy(x+1)+1 =0+1 =1

and therefore the algorithm unifygg would have immediately returned L without any
recursive call.

EXAMPLE 33. Now consider the system of BR-equations



E=={x+y+1=0,a+x =0}
By Example 32, it holds that 7; := {x  y + 1} is the mgu of the first equation. Since
ola+x]=a+y+1, this means that o, := {a —» y + 1} is a unifier of ;[a + x] =0.
Together, we have that
=0 ={x—y+l,ary+1}

is the unifier of the system of equations E.

EXAMPLE 34. All the individual equations of the system of BR-equations
F={x+y+1=0,xy+1=0}

are clearly unifiable. However, applying the unifier 7; := {x — y + 1} to the second

equation, wereceive o [xy + 1] = (y + 1)y + 1 2% 0 + 1 = 1 which is not unifiable with

0. Therefore F is not BR-unifiable.



2 Boolean Difterential Rings

2.1 Definitions and Characterizations

We will now define the language and theory of Boolean difterential rings and list some
important propositions. We will generally follow F. Weitkimper [3] but adapt it to our
needs.

DEFINITION 35 ([3, Def. 11]). The language Lppy of Boolean differential rings con-
tains all the function and predicate symbols of Lgy, as well as the 0-ary function symbol z
and the unary function symbol 8. The theory Tgpg of Boolean differential rings consists
of the axioms of Ty as well as the following (abbreviated) axioms:

(i') o:=1id+3 is an involution of Boolean rings.

(ii') Ker(6) F Tyr
(iii") &(z) =1
As with the axioms of Tgg, we will, for the sake of convenience, usually use the axioms
of Tgpr without explicitly mentioning them. Note that axioms (i’) and (ii’) are merely
abbreviations of respective sets of axioms. Axiom (i’) gives us the desired properties of
& and (ii’) states that Ker(8) is always a subring. The following two lemmas provide
alternative characterizations of axioms (i’) and (ii’).

LEMMA 36. Under the assumption of Tgy as well as axioms (ii”) and (iii’), axiom (i’) is
equivalent to the following axioms:
) 6(1)=0
) 8(a+b)=6(a)+8(b)
(c) 8(a-b)=6(a)-b+a-8(b)+d(a)-&(b)
(d) &(

(d) 6(8(a))=0



PROOF. Suppose thataxiom (i’) holds. First, we see that§(x) = 1+ 1 + &(x) = 1 + o(x)
for all x. Then, §(1) =1+ 0(1) =1+ 1 = 0. Furthermore, since ¢ is a ring homomor-
phism, it holds that
d(a+b)=(a+b)+o(a+b)

=a+ b+ o(a)+ a(b)

= (a+ o(a)) + (b + a(b))

= 8(a) + 6(b)
as well as

6(a-b)

a-b+ao(a-b)
a-b+o(a)- o)
=a-b+(a+3d(a))-(b+ (D))
—a-b+a-b+8@a)-b+a-8b)+8a)sb)
= 5(a)-b+a-8b)+8(a)-5(b)
and, since o is an involution (i.e. o o o = o), further
6(8(a)) = 6(a) + a(5(a))
=a+o(a) + o(a + o(a))
=a+o(a) + o(a) + o(o(a))
=a+0+a
=0
for all a and b. Now, conversely assume axioms (a)-(d). Then, first note that we have
o(1) =1+ 8(1) = 14 0 = 1. Furthermore, it holds that
ocla+b)=a+b+3d(a+b)
=a+b+5(a)+6(b)
= (a+6(a)) + (b+ (b))
= o(a) + o(b)

as well as
ola-b)=a-b+3d(a-b)
=a-b+d(a)-b+a-d8(b)+(a)-5(b)
=(a+58(a)) - (b+ (D))
= o(a) - a(b)
and finally



o(o(a)) = o(a) + 6(c(a))
=o(a) + d(a + 6(a))
= o(a) + é(a) + 6(6(a))
=o(a)+a+o(a)+0
=aqa
for all @ and b. This concludes the proof. |

LEMMA 37. Axiom (ii’) follows from Ty as well as axiom (i’).

PROOF. We need to show that Ker(§) isa Boolean subring, i. e. it is an additive subgroup,
closed under multiplication and contains 1. Clearly, the rest of the axioms of Tgg, i.e. a +
a =0,a - a = aaswell asassociativity, commutativity and distributivity, hold for Ker(é ),
since they already hold globally. The first part holds since by (i’), 6 is an additive group
homomorphism and therefore Ker(§) is a subgroup. Also by (i’), we have that 1 € Ker(8)
and for all a, b € Ker(6) it holds that
S(a-b)=6(a)-b+a-80b)+56(a)-8(b)=0+0+0=0

i.e. a- b € Ker(6). Together, axiom (ii’) holds. |

This shows that Tppg abbreviates a finite axiomatization of Boolean differential rings. As
with Boolean rings, we will often write “BDR” when we actually mean Lppg or Typg.
Moreover, we call models of Typr “Boolean differential rings”. Since Lypy, is an extension
of Ly, we can view every BR-term as a BDR-term. For the converse, consider first the
following definition.

DEFINITION 38. A term T is z-free, if z is not a subterm of T. T is &-free if it does not
contain a subterm of the form §(5).

In other words, a term is z-free if it does not contain z and S-free if it does not contain
8. We can view every z-free and 6-free BDR-term as a BR-term. In the rest of this thesis,
we will simply write “term” to mean BDR-term and specity that it is z-free and d-free
by stating that it is a BR-term, in the above sense. In contrast to general £-terms, we will
usually give upper case letter names to BDR-terms.

Next, we will define the syntactic analogon of Ker(5).

DEFINITION 39. A term T is §-vanishing if §(T) 2%0.

This allows us to consider the following specializations of the product rule.



LEMMA 40.

(i) If Sand T are terms and S is 5-vanishi1’1]jg[é then §(S - T) 2R, 8(T).
(ii) IfS isa &-vanishing term, then 5(Sz) =y
(iii) If A and B are 6-vanishing terms, then §(Az + B) R4

PROOF. The proofs follow immediately from the product rule. I.e. it holds that:

5(S-T) "= 8(S)- T+ - 8(T) + 8(S) - (T)

0. T+S-8(T)+0-8(T)
2 s.8(T)
Further we have that §(Sz) DRs.s (z) R g1 sand

5(Az +B) = 8(Az)+6(B) = A+0 = A

which completes the proof.

Part (ii) suggests that for all models of Typg, Ker(6) = Im(8). In the following, we will
give two ways to represent any term in the form Az + B for §-vanishing terms A and B.

LEMMBADEI . Let T be any term. The following equalities hold:
Q) T = §(T)z + (T +6(T)z)
(i) T = 8(T)z +8(T(z +1)).

PROOF. Part (i) is trivial as clearly 6(T) is §-vanishing, and also T + 8(T)z is §-vanishing,

since

5(T +8(T)z) = 8(T) + 8(8(T)z) ‘= 8(T)+8(T) = 0

Using this, as well as the abbreviations A := 5(T) and B:=T + 5(T)z, we get for Part

(ii) that
S(T)z +8(T(z+1)) = Az + 8(Az+ B) - (z + 1))
2% Az + 8(Az(z + 1) + Bz + 1))
BDR
= Az+6(0+Bz+ B)
= Az + 6(Bz) + 8(B)
BDR
= Az+B+0

BDR
=T



which completes the proof. [ |

The following theorem is the syntactic analogon to Proposition 1o of F. Weitkimper [3],
which states that every Boolean differential ring is a free module over its kernel generated

by 1 and z.

PROPOSITION 42.

BDR
(i) Forall terms T, there are §-vanishing terms A and Bsuch that T = Az + B.
BDR BDR
(ii) If A and B are 8-vanishing terms, then it holds that Az + B = Oifand onlyif A =
BDR
O0OandB = 0.

N : . o BDR
PROOF. Part (i) isimmediate from Lemma 41. For part (ii), the direction where A = 0
BDR . . BDR . . . . . .
and B = OimpliesAz + B = 0is trivial, since in this case we have that

BDR BDR
Az+B = 0z+0 =0
BDR
Now conversely suppose that Az + B = 0. Then clearly also

BDR BDR BDR
A = 6(Az+B) = §0) = 0
BDR BDR BDR
and therefore0 = Az +B = 0z+B = B, which concludes the proof. |

Boolean difterential algebras are defined through Boolean differential rings in the same
way Book:an algebras are defined through Boolean rings. For this, we define the replac-
BD.

ments — in the same way as —, by naturally extending the definition to all BDR-terms.
DEFINITION 43. The language Lgp, of Boolean differential algebras consists of all of
the symbols of L, as well as the 0-ary function symbol z and the unary function symbol
8. The theory Typs of Boolean c&}i}f{erential algebras consists of all the (expanded) axioms
of Typgr, with the replacements — .

The idea of Proposition 20, suggests that also Boolean differential rings and Boolean
differential algebras are essentially two ways of talking about the same objects. Again by

construction, the following proposition holds.

BDR BDA
PROPOSITION 44. Consider the replacements — and +, which are the natural

extensions of = and - to all Lppg and Lyps-terms respectively.
(1) Every model of Typ, is a model of Typy with the replacements BIE>A.
(ii) Every model of Typy is %Rmodel of Typa with the replacements BrRR, that are defined
by naturally extending -, to all BDA-terms.

(ili) The above replacements are mutually inverse.



Example

The canonical example and original motivation of Boolean differential rings are the
switching algebras S, that we introduced earlier. Next to computing the value of a
switching function for certain arguments, an important aspect in the study of switching
algebras is certainly the question whether changing the arguments of a function will
affect the function value. E.g. one could ask how the function value will change if we
change the first variable, or even the second and third variable simultaneously, from 0 to
1. This study naturally gives rise to what B. Steinbach and C. Posthoff [1] call a single
simple derivative and a single vectorial derivative. To be precise, the idea is to join the
value before and after the change of arguments with a logical exclusive or (i.e. “+” of S,),
since this will precisely give 0 if both are the same (i. e. nothing changes) and 1 if they are
different. In the following, we will define the vectorial derivative g where we look at the
change of value if all the i-th variables for i € S change.
Letn € Nand S C {1, ..., n}. Then we first define the function pg : 2" — 2" by

x;+1lifie s
(ps(¥); _{ i otherwise

which now lets us define the vectorial derivate w.r.t. S as the function dg : S,, = S,, and
Is(N)(X) = £(¥) + f(ps(%))

We further define the function zg € S,, by zg(X) = I, xi- It remains to show that this
actually constitutes a Boolean differential ring in the sense of Definition 3.

First, we will show that o := id +d is a Boolean ring involution. By definition, we
have that

os(N(X) = f(X) +3s(N(X) = f(X) + f(X) + f(e(X)) = f(e(X))

Therefore it is easy to see that

as(f + 9)(X) = (f + 9)(e(x)) = f(p(X)) + 9(p(¥)) = a5(f)(¥) + o5(9)(X)

as well as
as(f - 9(X) = (f - 9(p(X)) = f((X)) - 9(p(X)) = o5()(X) - 75(9)(X)
and o5(1)(X) = 1(p(X)) = 1. The involution property holds, since

ps(x)+1 ifieS | _|x+1+1 ifieS |_
(p(p (x))) { X; otherwise}_{l X; otherwise}_xl

and therefore og5(os(f))(X) = os(f)(e(X)) = f(e(p(X))) = f. Together, axiom (i’)
holds. Lastly, it holds that

as(Zs)(f) = Zs(-)_é) + o) = H X; + H(Xi +)=x+x;+1=1

seS seS



Since, by Lemma 37 axiom (ii’) follows from the other axioms, it holds that S,, together
with dg and zg is a Boolean differential ring.

2.2 On the Shape of BDR-Terms

In the following we will define some basic properties of BDR-terms as well as a normal
form of BDR-terms that is similar to the polynomial form of BR-terms. The analogon
of polynomials will be called flat terms and we will define the flattening function | in a
way that coincides with the polynomial form function | on BR-terms.

DEFINITION 45. Wesay thatasubterm S of T is enclosed (by ) if it occurs as a subterm
of asubterm of T of the form §(U). S is immediately enclosed (by 8) if the smallest proper
superterm of S inside T is 5(S).

Since dealing with arbitary BDR-terms is quite cumbersome, we want to mostly deal
with terms that are polynomial-like in the sense that they are sums of products of atoms.
We also call these terms flat since polynomial-like terms do not have any nested & and all
§ only apply directly to some variable. Luckily, it turns out that every BDR-term can be
rewritten as such a term.

DEFINITION 46. A BDR-atom is a BDR-term that is either a constant ¢ € {0, 1, z}, or
x or 8(x) for some variable x. Then a BDR-term is monomial-like if it is a product of
BDR-atoms and it is polynomial-like or faz, if it is a sum of monomials.

We can extend Definition 23 in a natural way to define for BDR-monomials M; and M,,
as well as BDR-polynomials B and P, the terms
M * M, R@&B ROB
BDR BDR BDR BDR
SO that Ml *M2 = Ml @Mz = MI'MZJ P1®P2 = .P1+P2 and. .P1®.P2 = PI'PZ
Note that, as before, we fix some arbitrary ordering of BDR-atoms and BDR-monomials.
Together, this lets us define a function that returns for every term T a unique flattened

term T .

ALGORITHM 47. Let T be any term. We define T recursively in the following way:

T|:=match T
{0,1,z,x}=>T
hL+TL=>Tle Ll
- T,=>THl0T
8(S) = match S



{0,1}=0

z=>1

x= 8(x)

S1+ S, = 6(S1)l ®8(S,))

S1+82= 8(S1)L © Syl @ S11 ©6(S,)l ®6(S1)l ©6(S,))
s(U)=0

The following two propositions show that this definition of T is sensible, in that T is
actually flat and equival to T, as well as minimal in the sense that applying | a second time
will not change anything.

BDR
PROPOSITION 48. Let T be any term. Then T is flatand itholds that T = T|.

PROOF. We will prove this by induction on the shape of T
(i) IfT =c€{0,1,z} or T = x for a variable x, then T is already flat.
(ii) If T = T, + T, for terms Tj and T; that satisfy the induction hypothesis. Then T| =
Tl @ T»| is clearly flat and
BDR BDR
T=NT+15L =Tl+L| = iIl®dLI=T|
(ili) Thecase T = T - T, works analogously.
(iv) Suppose that T = §(S) for a term S that satisfies the induction l%%othesis. We will
prove by induction on the shape of S that § (S)l is flat and 5(S) = 5(S)l:
(i) fS=ce {0, 1L0r S = 5(x) for a variable x, then T| = 0 which is flat, and also
BDR BD
T =6(Sl) = 0=T|. o
(ii) Similarly,if S =z,thenT| =1lisflatand T = 1=T|.
(iii) Likewise, if S = x, then T| = §(x)is flatand T = §(x) = T|.
(iv) Suppose S =S; + S, for flat terms S; and S, that satisfy the induction
hypothesis. Then T| = § (S 1)l @ 5(Sz)l which is flat since the summands are.
In addition, the following holds:

T=8(S,+5,) = 8(S)+8(Sy) = 8(S))) @ 8(S)) = 8(S)]

(v) The case S = S; - S, works similarly, with the only additional argumentation

step being the assumlg)tion of the outer induction hypothesis that S;| and S,
are flat and that S; = T) aswellas S, = T|. Then it holds that



6(S) = &(S1-52)

P2 5(S1) - Sy + Sy - 8(S3) + 8(Sy) - (S,)

2 5(51)1 © S, @ S11 O 8(S,)) @ 8(S1)) @ 8(S,)1

= 5(5)!
with the last term being clearly flat since all factors are flat by assumption.
(vi) IfU = 8(S), then T| = 0 which is flatand also T %0 =1y,
By induction, it holds that 5(S)L is flat and 5(8) PR ) (S)l. The statement now follows
by the outer induction. |

From the proof of Proposition 48, it is clear that | preserves variables, as well as BDR-
atoms and monomial-like terms, in the sense of the following lemma.

LEMMA 49.
(i) If T is a term of X, then T is a term of X as well.
(ii) IfAisa BDR-atom, then A] = A.
(iii) If M is a monomial-like term, then M| is a monomial-like term.

In addition, the following lemma holds.

LEMMA so. Let T beany term. Then T]] = T|.

PROOF. We will show this by induction on the shape of T|:
(i) Tl =ce€{0,1,z} or T| = x or T| = &(x) for a variable x, then T|| = T| holds
by definition.

(ii) SupposethatT| = Ty + T, for flat terms T; and T; that satisfy the induction hypoth-
esis. T and T, are, as a result of T, clearly do not contain 0 and their monomial-like
subterms are pairwise different. Therefore, it holds that

TI=TleLl=T1&L=Nh+1,=T|
(iii) If T} = T - T, for flat terms T; and T, that satisty the induction hypothesis. Since
T| is flat, this means that T} and T, are monomial-like. Furthermore, by the above
reasing, neither T; or T, contain 0 or 1 and their atoms are pairwise different.
Therefore Ty * T, = T - T, and further
TIl=Tl+Tl=T1*T,=T|

The statement now follows by induction. [ |

Next, we will define what it means for a term to be benign and we will see that benign
terms act very much like BR-terms in Ker(5).



DEFINITION 5. A term T is benign if it is z-free, flat and all occurences of variables
are immediately enclosed by 8.

LEMMA 52. Every benign term is §-vanishing.

PROOF. Let T be a benign term. We prove this by induction on the shape of T.
(i) If T = cfor ¢ € {0, 1}, then §(T) = 8(c) "= 0.
(ii) If T = 8(x) for some variable x, then §(T) = 6(8(x)) 2%0.
(ili) If T = S; + S, for S; and S, satistying the induction hypothesis. Since S; and S, are

clearly also benign, we have that

8(T) = 8(S; +S,) = 8(S)) +68(S,) = 040 =0

(iv) If T = S; - S, for S; and S, satisfying the induction hypothesis. Clearly S; and S,
are also benign, and therefore
8(T) = 6(S1-52)

P2 5(S)) - Sy + Sy - 8(S3) + 8(S1) - 8(Sy)

BDR
= 0'82+Sl'0+0'0

BDR
= 04+0+0

BDR

The statement now follows by induction. [ |

In the following, we work towards showing that a big class of terms can be presented as
Az + B for benign terms A and B.

PROPOSITION §3. Let T be a term that has all variable occurences immediately
enclosed by 6. Then T also has all variable occurences immediately enclosed by 8. If
furthermore all occurences of z are enclosed by &, then T is benign.

PROOF. We will prove this by induction on the shape of T:

(i) If T=c€{0,1,z}, then clearly T| = T contains no variables, and therefore the
statement holds trivially. The case T = z does not apply for the second part, and
since 0 and 1 do not contain z, the statement holds trivially.

(ii) If T = Ty + T, for terms T; and T; that satisfy the induction hypothesis. Since all
variable occurences of T are immediately enclosed by &, the same holds for T; and
T,. Similarly, all occurences of z in Tj and T, are enclosed by 6, if it already holds in



T. Therefore, by induction hypothesis, T| = T;| @ T, has all variable occurences
immediately enclosed by 6, and also all occurences of z enclosed by &, if T does.

(ili) The case T = T - T, works analogously.
(iv) If T = 8(z), then T| = 1 and 1 trivially satisfies both parts of the statement.
(v) Suppose that T = §(S) for a term S that satisfies the induction hypothesis. We will

prove by induction on the shape of S that 5(S)l has all variable occurences immedi-

ately enclosed by 8, and all occurences of z enclosed by 6, if S does.

(i)
(ii)

(iii)

(v)

IfS=ce {0, 1} orS=06 (x) for a variable x, then T| = 0 which trivially satis-
fies both parts of the statement.
Likewise, if S = x, then T| = 5(x) which has all variable occurences immedi-
ately enclosed by & and also does not contain z and therefore trivially satisfies
the second part of the statement.
Suppose S =S; + S, for flat terms S; and S, that satisty the outer and
inner induction hypotheses. Since T has all variable occurences immediately
enclosed, so do S; and S, since T = 5(S; + S, ). Therefore, by the inner induc-
tion hypothesis, T| = & (S l)l ) 5(S2)l has all variable occurences immediately
enclosed by &. Similarly, if T has all occurences of z enclosed by &, then so do
S; and S,, and therefore, by the inner induction hypothesis, so does T'|.
The case S = S; - S, works similarly, with the only additional argumentation
step being the assumption of the outer induction hypothesis, that S;| and S,
have all variable occurences immediately enclosed by &, and all occurences of z
enclosed by 6, if T does. Then

3(S)l =3d(S1I © 821 B S11 © (Sl @ 6(SI © 3(Sy))
satisfies both parts of the statement.
IfU = 5(S), then T| = 0 which trivially satisfies both parts of the statement.

By the inner induction, it holds that 5(S)l has all variable occurences immediately

enclosed by 8, and all occurences of z enclosed by 8, if S does. Both parts of the original

statement now follow by the outer induction. [ |

PROPOSITION 54. Let T be a term with all variable occurences immediately enclosed
. BDR
by 6. Then there are benign terms A and Bsuch that T = Az + B.

PROOF. ByLemma 41,itholds that T 2R 8(T)z+ 8(T(z+1)).5(T) as well as §(T(z +
1)) clearly have all variable occurences immediately enclosed by & and all occurences of



z enclosed by 8. Therefore, by Proposition 53, we have that both A := 5(T)l and B :=
5(T(z + 1))l are benign and it holds that

T 28 8(T)z + 8(T(z +1)) ‘= Az +B

concluding the proof. |

2.3 Making BDR-Terms Into BR-Terms

The idea behind flat terms is that they essentially behave like BR-terms in the sense that
the § only affect individual variable occurences and also there is no immediate way of
applying the only relevant additional property of z. Therefore, §(x;) and z behave like
ordinary variables and it makes intuitive sense that we should get the same resulting
equalities if we actually substitute them for ordinary variables. In the following, we will
make this intuition more precise, starting with the definition of an associated BR-term
| T|| for every flat term T. We will see that T and ||T|| behave essentially the same w.r.t.
equalities.

DEFINITION 55. Let T(X) be a flat term and % as well as Z variables not occuring in T.
Then we define the BR-term |T| as follows

(i) |c| = cforc € {0,1}

(i) |z|=Z2
(i) il = %
(iv) 16(x:)l = x;

(V) IS1+ S;] = S1] + S|
(vi) |81+ 82l = 1S1] - ISl
Furthermore, define the following substitutions:
g ={x;P xz2|0<i<n}

n}:z{xiHa(xi)’xi|—>xi|0<iﬁn}U{Z|—>Z}

The way that we defined |x;| as X; and 8(x;) as x;, and not the other way round, is due
to the fact that in the later part, we will apply || only to benign terms and it is more
convenient to have T as well as | T| be terms over the same variables. Next, we will show
that 75, is the syntactic inverse of || and the BDR-inverse of #;, for some terms with
specific properties.

LEMMA 56. For every flat term T(X) it holds that T = ,,_[|T]].



PROOF. We prove this by induction on the shape of T.
(i) If T = cwithc € {0,1}, then ’?}“C'] = ,7}[0] =c.
(ii) If T = z, then ’7}“2” = ’7}[2] =z.
(iii) If T = x;, for0 < i < n, then ,7}[|xi|] = ﬁ[xi] = X;.
(iv) If T = 8(x;), for 0 < i < n, then U}[|5(xl-)|] = 773C[xi] = 6(x;).
(v) Suppose T = S; + S,, for flat terms S; and S, that satisfy the induction hypothesis.
Then it holds that
n}[|51 + Sz|] = n}[|51| + |52|] = n}[|51|] + ;7}[|52|] =51+5;

(vi) And similarly, the statement holds for the case T = S; - S,.
The statement follows by induction. i

LEMMA 57. Forevery flat BR-term T(X, %, Z),itholds that T = |n}[T]|.

PROOF. We prove this by induction on the shape of T
(i) If T = c with ¢ € {0,1}, then |,]3C[c]| =|c|=c
(i) If T = Z, then |, [Z]l = Iz| = Z.
(iti) If T = x;, for 0 < i < n, then |,7}[xi]| = |8(x;)| = x;.
(iv) If T = x;, for 0 < i < n, then |,73C[>2i]| = |x;| = %;.
(v) Suppose T = S; + S,, for flat terms S; and S, that satisty the induction hypothesis.
Then it holds that
|7}3€[Sl +5,]l = |7)3€[Sl] + 7)}[52“ = |n}[51]| + |r;3€[52]| =51+5=T

(vi) And similarly, the statement holds for the case T = S; - S,.
The statement follows by induction. |

LEMMA 58. Let T(X) be a term with all variables immediately enclosed. Then
BDR
n;CE;C[T] =T

PROOF. We prove this by induction on the shape of T. The base cases T = c with c €
{0,1,2} and the inductive cases T = S; + S,, T = S; - S, for terms S; and S, as well as
the case T = S(S), for S not a single variable, are trivial. The only non-trivial case is the

onefor T = 5(x) for some variable x. Here we have that

e 8(0)] = 5, [6(x2)] = 8(6(0)2) =" 6(x)



since clearly 5(x) is §-vanishing. The statement now follows by induction. [ |

The following theorem and its corollaries make our previous intuition, that flat terms
behave like BR-terms, precise.

THEOREM 59. Let T(X)be aflat term. Then it holds that T 2% 0ifand only if |T| 0.

PROOF. SuppoDsg that |T]|3DT{ 0. Thg}gl it holds that |T| 2% 0 since BDR extends BR
and further T = [|T || = [0] = 0. We will prove the other direction by contra-
position. For that, suppose that %15 ¥ |T| = 0. By Theorem 21, that means that there is
already a counterexample of |T| = 0 within 2. If T is a term in X, then |T| is a term in X,
% and Z, but for clarity we will write y instead of X. We therefore have tuples Xand Y of
2 as well as Z € 2 such that |T| X.Y.2) =1.

Consider then the switching algebra S; of switching functions 2 — 2, equipped
with the non- -standard definition of z given by z(0) := Z, z(1) := Z + 1. We define the
elements f (f1, --» fn) as follows:

O TR T RS LA
We will show by induction on the shape of T that (T(f )))(O) |T| (X.Y,2):
(1) The case for T = ¢ where ¢ € {0,1} is clear and so are the inductive cases T = S, S,

aswellas T = S; + 52
(ii) IFT = z, then (z(f))(0) = 2(0) = Z = Z(X,Y.2) = |zl (X.Y.2).

(iii) If T = x;, then (x;(f)(0) = fl(O) Yi = yiXY.2) = x| (X.Y.2).
(iv) IfT = &(x;), then, by definition of the derlvatlve in switching algebras, we have that

(8Ce( ) = 8(f) = { S }
Therefore it follows that (T(f )))(0) =|T| «X.,Y,2), which now shows that T( f » #0,as
(T( £ »)(0) = |T| (X,Y,2) = 1. Therefore S, ¥ T = 0 which means that BDR ¥ T =0,
completing the proof. |

X; = x,(X,Y,2) = 18(x)| {X,Y,2))

We can restate Theorem 59 in an equivalent, but slightly more useful way.

COROLLARY 60. Let S and T be flat terms. Then it holds that S ‘= T if and only if
S| = |T].



PROOF. The proof follows from Theorem 59 due to the fact that § = Tifand only if

S+ T = 0aswell as |S| |T| 1fandonly1f|S|+|T| = 0 ie.

BDR BDR
S=T&S+T = 0©|S|+|T|=|S+T|=0 |S| |T|

Until now, |-| has only been defined for flat terms. Corollary 6o, together with the help
of Algorithm 47, now allows us to generalize the notion of |- to all terms in a natural way
by first applying |.

DEFINITION 61. Let T be any term. Then ||T| := |T||.

The next proposition states that this definition is natural in the sense that it also preserves
equalities. This is not a trivial result, since arbitrary terms with z and & can behave quite
differently than terms with Ty.

COROLLARY 62. Let S and T be any terms. Then it holds that S 2 T'ifand only if
BR
ISl =171

PROOF. Since S s land T g 1, it holds follows from Corollary 6o that

BDR BDR
S'2TesL 2 TLe|S|=[SI = Tl = |T]

An expected special case of this is that, for BR-terms, Tgpr does not allow for any
additional equalities over Tgg.

COROLLARY 63. Let Sand T be BR-terms. Then S 2 Tifand only if Zr

PROOF. If S = T then clearly also § "2° T since BDR extends BR. For the converse
BDR

direction, suppose that S = T and assume that S and T are terms of X. Recall that, by

Proposition 438, it holds that U= Ul for all BR-terms U. Consider then the self-inverse

substitution o := {x; ~ X,, X, » X; | 0 < i < n}for Whlch itholds that ,[ V] = ||V forall

flat BR terms V of X. By Corollary 62 it holds that ||S || = || T||, and therefore

S = 8L = oo[SL] = o[ISU] = o[IISI] Z G[ITI] = [ITU] = o[ TV = TV Z T
which completes the proof. |



Next, we will show that Lemma 56 and Lemma 57 still hold for HH in a weaker version,

with BR and BDR equality respectively instead of syntactic equality. However, we need
a short lemma first.

LEMMA 64. Let T bea BR-term of (¥, %, Z). Then it holds that n}[Tl] =, [T\

N
X

PROOF. We will show this by induction on the shape of T.
(i) If T = c with ¢ € {0,1}, then 77}[cl] =c= @[T]l'
(i) If T = Z, then, [Z] =z =, [T]\.
(iii) If T = x;, for 0 <i < n,then, [x;1] = 8(x;) = . [T|{.
(IV) IfT = )"cl-, for0 <i< n, then n}[xll] =X = n}[xi]l.
(v) Suppose T = S; + S, for terms S; and S, that satisfy the induction hypothesis.
Then it holds that
n;c[Tl] = r;}[Sll ® S, ]

= n;c[Sll] ® n}[SZl]

= ;’);C[Sl]l« S n}[sz]l
(,,}[Sl] + ,,}[Sz])l
= n;C[T]l

where the second equality holds since clearly 7;. and @ commute in the same way
7 and + do, assuming that the orderings of atoms and monomials of BR and BDR

are chosen to be compatible.
(vi) The statement for the case T = S; - S, holds similarly.
Together, the statement for every T now follows by induction. |

PROPOSITION 65.
. BDR
(i) Forevery term T of X it holds that T "= "&“'T” .
(ii) For every BR-term T of (X, X, Z)itholds that T = ||,7}[T]||

PROOF. (7):Itholds, by Lemma 56, that
BDR

nlITI = 5 [ITH] =T =T
(77): It holds, by Lemma 64 and Lemma 57, that

o [T1 = L [T = Ly [THI ZE TLE T



In the following, we will show that the flat form T| has properties analogous to
Theorem 2. This will follow from Corollary 63 and the following lemmas:

LEMMA 66.
(i) Let Ty and T, be flat terms. Then |T}| @ Tl| = | T1|| @ || T2 ]I-
(ii) Let M; and M, be monomial-like terms. Then [T} © Trl| = |Ti|| © | T2|-

PROOF. This follows immediately from the fact that |-| is substitution-like and we can

choose the atom and monomial orderings of BR and BDR in a compatible way.
[ |

LEMMA 67. Let T be any term. Then ||T|| = || T||!.

PROOF. Let T beaterm of X. We will first show the statement for flat terms by induction:
(i) T =ce{o,1}, then |T|| =T = |T|\.
(ii) IfT = z, then |T|| = Z = | T|lJ.
(iii) If T = x for a variable x, then ||T|| = x = ||T||J.
(iv) If T = 8(x) for a variable x, then | T|| = x = || T||{.
(v) Suppose that T = Ty + T, for flat terms T; and T, that satisfy the induction hypoth-
esis. Then, with Lemma 66 as well as the induction hypothesis, it holds that
ITII = 1T & Tl = Tl @ T2l = [T @ 1T = (T2l + 12D = (T4
(vi) Suppose that T = T - T, with T and T, as above. Since T is flat, this means that T
and T, are monomial-like. By Lemma 66 and the induction hypothesis, we have that
1T = 1T © LU = Tl O T2l = [T O 1T = Tl - |1 T2IDL = [IT]4
By induction the statement follows for all flat terms T. Now let T be any term. Then,
by definition | T|| = |T|, and together with Lemma 5o and the above argument, it holds
that
ITI = 1T =TI =TIV

i.e. the general statement holds. |

THEOREM 68. Let S and T be any terms. Then it holds that S 2 T if and only if

Sl=T|.



PROOF. Let S and T be terms of X. Suppose that S T Then, by Corollary 62, it
holds that ||S|| = ||T|| By Theorem 25, this means that ||S||| = ||| and it follows with
Lemma 67 that

Sb = [ISU] = 5. [ISI] = o [ISIV] = 5 IITI] = . [ITI] = 5 [ITH] = TY

BDR BDR
The converse holds, since in thiscase S = S| =T|] = |

2.4 Some Useful Substitutions

In this section, we will define some substitutions and state some propositions about
them, that will help us later.

DEFINITION 69. Let X be variables. We define the following substitutions:
{x, > 5( >z+5(bx)|0<l<n}

;5

A = {af X, b - (X +8(x;)2)z|0<i < n}
v, ={af o af +6(af),bf - b7 +5(bF) |0 <i < nf
where all of the af, b¥, & and b} are fresh variables different from the X.

In the following we will always omit the superscript X, and only use superscript y for the
variables introduced by x;, 4;, v5, etc, in case X#y.

Theidea behind #;, is that every element x of a Boolean ring can be presented as cz +
d with ¢, d € Ker(8). And since every element of Ker(8) is in the image of &, there are
a and b such that x = 6(a)z + &(b). Since our intuition tells us that x5, does not add or
remove any information, we naturally expect it to be reversible. And it turns out that 45,
is exactly the desired left-inverse of x,.

LEMMA 70. Itholds that A3 24,

BDR _ . :

PROOF. We need to show that 4, [x;] = x;forall0 < i < n.Fixsuchi. Then we have
X X

that



a[xi] = 2,[8(ai)z + o(by)]

= 8(x;)z + 8((x; + 8(x;)z)z)

2R S(x)z + x; + 8(x)z

BDR

Xi
Where the first BDR-equahty holds since x; + 8(x;)z is &-vanishing, and therefore
§((x; + 5(xl)z)z) = x; + 8(x;)z. [ |

BDR
LEMMA 71. Itholdsthatvii = x;

PROOF.
. [x:] = Vx[a( a;)z + &(b;)] = 8(a; + 8(a;))z + 8(b; + 8(b, )) = 5(a,)z +8(b) = [ il
|
Next, we will prove some more useful statements about the behaviour of our previously
defined substitutions.

LEMMA 72. Let o bea BR-substitution and let ;[x] be a term in y. Then it holds that

Iy e, [6C0)]I = o[x]

PROOF. We first prove the corresponding BDR-equality by induction on the shape of

[X]

i) 16 o] = cfor ¢ € (0,1}, then e [6(x)]1 "= o= [x]
11) If C,[x] = y for a variable y, then
lyoe, BN = Nl o[8Cx2)]
= |y, [8(2)]I
= 186l
=15l

= olx]
(iii) If ;[x] = S; + S, and suppose the hypothesis already holds for o, := {x — S} and
0y == {x > S,}. Then we have that



lygoe SN =l o[8Gx2)]

Iy 8051 + S )z

=l [8(512) 1@ ly [6(S22)I
= ”n—j)crls}[a(x)]” @ ”n}crzs}[a(x)]”

BDR

= Ul[x] ® Uz[x]

= S1®Sz

BDR
= Sl + Sz

= o[x]
(iv) If 5[x] = S; - S, and suppose the hypothesis already holds for o, and o; as defined
above. Then it holds that

GO

”77~[5(SIS2Z)]”

165 5115 S22
= g[S[S
= ||77~[Sl]”®”7)~[52]"
216 [3112 )l © 16( 5,522
= g S0 © g S5

BDR

= Ul[x] O Uz[x]
= Sl @Sz

By induction it follows that ||,7q o, [8()]I ey o| x] for all BR-substitutions o. Since this

is an equality between BR-terms, by Corollary 63 it follows that ”7)~ oe, [6(x)] || = G[x] |

LEMMA 73. Let T(X) be a benign term and o a BR-substitution such that ,[||T]] is a
term in y. Then it holds that 705, [T] = [||T||]



PROOF. We can prove this by induction on the shape of T. The base case T = cforc €
{0,1} and the induction cases T = S; + S, and T = S, S, are immediate. The only non-
trivial case is T = &(x). Here it holds by Proposition 65 and Lemma 72 that

e8] 2 g [SCOI 2 [o[x]] = o[ 1CON]

LEMMA 74. LetT ( x) be a BDR-term and ¢ as well as 7 BR-substitutions. Suppose that

TK}[T] isa term in y and am}[T] isa term in V. If w := (d, b), then it holds that:

BDR
77*0'8*773)‘[5" K = MOTEL K

PROOF. It suffices to show that it holds for T = x;. By induction it holds for all T(X).
Therefore, using Lemma 73 and Proposition 65:

13,0815 T€5, K5, [xl] BER 17,98, [77* e, [xl]]

BER %U[”n}rsmk}['xi] ”]

BDR
= %U[TE;UK}[xi]]

BER 15,07 165, [xi]

2.5 Unification of Boolean Differential Rings

In this chapter we will prove our main result that the theory of Boolean rings has the
unitary unification type. The proof is based on the fact that the BDR-equations T =
0 and . [T] = 0 are equivalent. Since . [T] has all occurences of variables immediately
enclosed by 8, there are benign terms A and B such that . [T ] Az +B. And since Az +
B 2 0ifand only if A 2% 0 and B "= 0 if and only 1f ||A|| 2 0and ||B|| = 0 this lets
us reduce the BDR-unification problem T = 0 to the BR-unification problem {||A| =
0, |B|| = 0} that we already know how to solve.

We will first prove that we can construct from any BR-unifier of the system of
BR-equations a BDR-unifier of the single BDR-equation, and vice versa. Then, we will
show that the two constructions are inverse to each other. Finally, we will show that the
first construction conserves the mgu-property, and therefore we can construct a BDR-



mgu for the single BDR-equation in case it is unifiable. In the following, for the sake of

convenience, we define w := (d, 5)
THEOREM 75. Let T(X) be any term, and A(w) and B(w) benign such that , [ T| =

Az + B.If o is a BR-unifier of {||A|| = 0, |B|| = 0} such that ,[||A]|] and ,[||B|] are terms
in y, then @ := 15,0¢;,¥;, is a BDR-unifier of T = 0.

PROOF. By Lemma 73 it holds that

BDR BDR BDR BDR
n}asa)x}[T] = n}osfu[Az + B] = n}o[”AZ + B”] = n}a[”A”]Z + n}a[”B”] =0
. BDR
since |[Az+B| = |[A|©Z® |B| = |All Z+|B|. n

THEOREM 76. Let T(X) be any term, and A(w) and B(W) benign such that ,[T| iR

Az + B.If t is a BDR-unifier of T = 0, then there is a BR-unifier ||z]| of {|JA| = 0, |B|| =

BDR —
0} such thatt = |z|.

PROOF. Let ) be variables such that ,[T] is a term in . For every i, we define the
substitution ||z|| as

eilwi] = lleagn, [wi]l
BDR
such that 7/1}7711, = 773, Izl To show that Izl is a unifier Of{”A” =0,|B| = O}, first note
that:

BDR

BDR

BDR
= K—}'JT[T]

BDR

L BDR
Since it holds that o izi[lAll z + IBll] = Ky iilllAll]z + o izi[1Bll] and by Propo-
sition §3, - izt 1Al as well as ;. - izi[IBII]{ are benign and therefore 8-vanishing, by

Proposition 42, this means that we have that

BDR BDR
s IIAN] =" g lIBI] =0

and therefore
BDR BDR

BDR
wy ellIAI] =" 2 ns w14l =" 2, [0] =0



which with Lemma 57 as well as Theorem 59 further gives us:

ilIAI] = lyg 14111 = 0

Similarly, we get that ”TﬁillB”] Zo,ie 7|l is a BR-unifier of {||4| = 0, |B|| = 0}.
To show that 7 = [z|l, first, define the substitution ¥ for all i by ¢[Wi] =
i, [w;](z + 1). Then, consider, by Lemma 41:
BDR
BDR
= wagng Wiz + 8(y[1i])
BDR .
= oyl wilz + y[0(w;)]

BDR .
= leleg, Wil + y[8(#1)]

BDR .
= ynyletes, [Wi] + pn eie, [5091)]

BDR .
= g lete; [Wi + ()]

BDR
= ¢n;||r||€*wv}[wi]

) BDR ..
i.e. we have thattd;, = 1,b773,||1' £, V5. Therefore, by the definitions as well as Lemma 70

and Lemma 71, we have that:

BDR BDR BDR BDR BDR ——
T = i = dplltllegvins = dmlltlegrs = mldegrs = il

which concludes the proof. |

THEOREM 77. Let T(X)beany BDR-term. The equation T = 0 has either no or exactly
one most general unifier.

PROOF. Let A(c_i, E) and B(c_i, 5) be benign such that K[T] PR Az + B and define w :=
(a, I;) Suppose T = 0 is BDR-unifiable. Then, by Theorem 76, it holds that {|A|| =
0, ||B|| = 0} is BR-unifiable. Since unification of Boolean rings is unitary, there exists a
BR-mgu o. If y is such that ,;[||A|] and ,[||B]|] are terms in ¥, then, by Theorem 7s, it
holds that & = 7;,0¢;, ;.. We claim that 7 is in fact the BDR-mgu of T = 0.

To prove this, let 7 be another BDR-unifier of T = 0. Then it holds by Theorem 76

BDR —
that ||7|| is a unifier of {||4| = 0, |B]| = 0} and 7 =" |z|. Since ¢ is an mgu, it holds that



BR > . .o
there is a BR-substitution ¢ such that ||7]| = go. If il are such that ;[T] is a term in i,
then it follows by Lemma 74 that
BDR —
T = ||

BDR

= Mllegxs
BDR

= MuPoEXs
BDR

= naqoa}n}asa)x}

BDR —
= 17,960

and therefore 7 is at least as general as 7, i.e. together 7 is the mgu of T = 0. |
COROLLARY 78. Unification of Boolean differential rings is unitary.

PROOF. Using Theorem 15, this is now an immediate consequence of Theorem 77. B

The construction of & in Theorem 75 provides a straightforward way to specify a unifi-
cation algorithm for Boolean differential rings.

ALGORITHM 79. Let T(xX) be a BDR-term. Suppose that unifygy, is a function return-
ing for every BR-term t a BR-mgu of t = 0 in case it is unifiable and L otherwise. Then
consider the function unifygg, defined using Algorithm 16 and the base case unifygg.
Then we specify the function unifygpg that returns for T a BDR-unifier of T = 0 in case
that it is unifiable, and L otherwise by

unifyBDR(T) =
lee "=, [T]
A= 5(T")|

B:=|5(T'(z+ 1))l

o := unifygg(A4, B)
inifo=1

then L

elsen @by



Lastly, the function unifygpg, specified in Algorithm 16 using unifygpg from Algo-
rithm 79 as the base case, provides, for Ay, ..., A, BDR-terms, either a BDR-mgu of the
system of equations {Al =0,..,A, = 0} in case it is BDR -unifiable, and 1 otherwise.

Example

As an example, consider the equation §(x) = y. The equation is clearly unifiable and we
expect the mgu to be 7 := {y > 8(x)}. To calculate the mgu according to Algorithm 79,
let T := §(x) + y be a term of X := (x, y). First we see that:

w[6(x) +¥] = 8(8(a)z + 6(b)) + (B(c)z + 8(d)) = 8(a) + 8(c)z + 8(d)
with x;, = {x — 8(a)z + 8(b),y — 8(c)z + 8(d)}. T]?SI?A := §(c) and B := 5(a) + §(d)
are benign terms of W := (a, b, ¢, d) such that 7636[T] = Az + B. Now it holds that 7; :=
{c —~ 0} is the BR-mgu of |A|| = 0, and further o := 7, := {c > 0, a ~ d} the BR-mgu of
{llA] = 0, |B|| = 0}. Then it holds that
T 3= N0k

= 13,0&{x = 8(a)z + 8(b),y = 6(c)z + 8(d)}

= n30ix = 8(az)z + 8(bz),y = &(cz)z + 8(dz)}

= nNpix > 8(dz)z + 8(bz),y — 6(02) + 6(dz)}

= {x = 8(8(d)2)z + 8(6(b)z),y = 6(0z) + 8(5(d)z)}

2% s 8(d)z + 8(b), y > 8(d)} = T

Clearly, 7 # %, but we have that 7’ < 7, since for the substitution 4’ := {d ~ x,b— (x +
8(x)z)z} we have that:
At = X{x - 8(d)z+ 8(b),y— 5(d)}
= {x = 8(x)z +5((x + 8(x)2)2), y = 6(x)}
2 8(X)z 4+ x + 8(xX)z,y = 8(x)}
BDR {x — x,y+ 8(x)}

= {y~(x)}
Conversely, it also holds that # < 7, since for the substitution ¥’ := {x — §(d)z + &(b)}
it holds that:
Kt = ¥'{y ~ 8(x)}
= {x 6(d)z+ 6(b),y — 8(6(d)z + &(b))

"2 x> 8(d)z + 8(b),y — 8(d)}

BDR
Since 7 = 7/, therefore Algorithm 79 indeed produces the expected mgu.



Conclusion

In this thesis we have shown that the unification theory of Boolean differential rings and
Boolean differential algebras can be reduced to the unification theory of Boolean rings
and Boolean algebras. While the possibility of such a reduction was expected by the
way Boolean differential rings are defined via Boolean rings, finding the reduction and
proving the relationship turned out to be non-trivial. The fact that the unification of
Boolean differential rings is unitary means practically that for every unifiable system of
equations there is a most general unifier that will generate all possible solutions.

Due to how the above reduction to Boolean rings works, we were able to provide
algorithms for finding the mgu of single BDR-equations as well as systems of BDR-equa-
tions. These algorithms are based on the respective algorithms of Boolean differential
rings. Having such a unification algorithm significantly simplifies the search for possible
solutions.

In addition to this, we have also shown that, in fact, terms of Boolean differential
rings and Boolean rings are more closely related than it seems. We showed that, like terms
of Boolean rings have a unique polynomial form, terms of Boolean differential rings have
a unique flat form that coincides with the polynomial form on z-free and &-free terms.
Moreover, we showed that terms of Boolean differential rings relate to terms of Boolean
rings by means of ”” in a way that respects the equalities of either theory.

A topic that has not been covered by this thesis is the theory of Boolean rings
with (finitely) many derivatives. Such a theory has been completely axiomatized by F.
Weitkdmper [3], and also B. Steinbach and C. Posthoff [1] who cover switching algebras
with multiple vectorial derivatives. Since they are defined via Boolean rings in a similar
way to Boolean differential rings, it would be natural, if the unification theory of such a
theory would behave in a similar way. However, this shall be the content of some future
work.
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