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The field of brain organoids has experienced a period of rapid
and transformative growth, enabling researchers to investigate
complex human biological mechanisms that were previously
deemed intractable. This review provides an overview of the
current landscape of brain organoids, with a particular focus on
their relevance in the context of neurodevelopmental disorders.
It also emphasizes the crucial role these models play in
elucidating both cell-autonomous and non-cell-autonomous
mechanisms. We describe how these two mechanisms, often
considered to be independent, are intricately interconnected.
In conclusion, this review aims to highlight how the utilization of
brain organoids has considerably advanced our comprehen-
sion of neurodevelopmental disorders, while also delineating
prospective avenues for investigating these complex
conditions.
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Introduction
The notion of cell autonomy is central during devel-
opment, when cells undergo a series of intricated pro-
cesses that involve both cell-autonomous and non-
www.sciencedirect.com
autonomous mechanisms. The former refers to events

where genetic mutations and epigenetic changes
directly affect a cell’s behavior, independent of sur-
rounding signals. In contrast, non-cell-autonomous
mechanisms involve the influence of neighboring cells
or extracellular signals on a cell’s function. Under-
standing the balance between cell-autonomous and
non-autonomous processes is critical for many aspects
of developmental biology. Therefore, the interplay be-
tween these mechanisms is crucial to unravel the
complex etiology of neurodevelopmental disorders
(NDDs), such as autism spectrum disorder (ASD)

[1,2] (Box 1), and cortical malformations (CMs) [3].

Box 1: CHOOSE-seq - a scalable approach for studying multi-
factorial neurodevelopmental disorders

Traditional approaches to studying NDDs in organoid models often
focus on single-gene perturbations, limiting insight into how multiple
disease-associated genes interact within complex cellular ecosys-
tems. A recent breakthrough, CHOOSE-seq (CRISPR-human
organoid-single-cell RNA-sequencing), developed by Li et al., pro-
vides a scalable solution by enabling the simultaneous perturbation
of multiple ASD-related genes within the same organoid system
[34]. This approach combines CRISPR gene editing with single-cell
RNA sequencing, allowing researchers to systematically assess
how different genetic variants affect cell identity, fate and tran-
scriptomic profiles. Applying CHOOSE-seq to ASD, the study found
that specific progenitor and neuronal subpopulations, including
dorsal intermediate progenitors, ventral progenitors and upper layer
excitatory neurons, are particularly sensitive to disruptions in high-
risk ASD genes. Importantly, their findings suggest that ASD path-
ophysiology involves both convergent and divergent mechanisms,
emphasizing shared pathways between multiple genes as well as
gene-specific effects.
Limitations and considerations: While CHOOSE-seq represents
a major advance in high-throughput screening of disease-associ-
ated genes, its mosaic nature poses a significant challenge for the
study of non-autonomous cell effects. Because genetically modified
cells are interspersed in a mixed population of wild-type and mutant
cells, it remains difficult to track how mutations affect neighboring
cells or the extracellular environment. Future adaptations of this
technology - such as engineered microenvironments or spatially
controlled perturbations - may help to overcome this limitation.
Brain organoids have emerged as transformative tools in
disease and basic research, offering an unprecedented
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opportunity to study complex events that underlie
neurodevelopmental disorders and other conditions [4].
Brain organoids provide an ideal platform for modelling
human-specific phenotypes, enabling the dissection of
cell-autonomous and non-cell-autonomous mechanisms.
This has been possible thanks to recent advancements
in the field, which include assembloids - connected
organoids from distinct brain regions - and neuro-

immune organoids - organoids with incorporated
microglia - enabling researchers to study non-cell-
autonomous effects in region-specific and immune-
related aspects of brain disorders [5e7]. Additionally,
models such as mosaic cerebral organoids and chime-
roids are gaining attention for their ability to dissect
such interactions. Mosaic organoids incorporate cells
with distinct genetic backgrounds and allow direct
comparison of cell-autonomous effects (e.g., mutation-
specific cellular behavior) and non-cell-autonomous
impacts (e.g., altered secretion of extracellular vesicles

from mutant cells affecting neighboring wild-type cells)
[8e11]. Meanwhile, brain chimeroids, composed of
human induced pluripotent stem cell (iPSC)-derived
neural progenitor cells (NPCs) with multiple genetic
backgrounds, have been employed to investigate re-
sponses to neurotoxic stimuli, revealing how genetic
diversity shapes susceptibility to neurological disorders
[12]. Given the complexity of these models, rigorous
experimental design is essential to ensure accurate
interpretation of results. For best practices in organoid
handling, we refer the reader to recent guidelines in the

field [13].

Through this review, we aim to present the state of the
art in the field, highlighting the latest key achievements
and illustrating how brain organoids have advanced our
understanding of both cell-autonomous and non-cell-
autonomous mechanisms. Importantly, we highlight
how closely interconnected, yet essential, these mech-
anisms are in the context of brain development.
Cell-autonomous mechanisms in
neurodevelopmental disorders
Neurodevelopmental disorders (NDDs) result from the
interaction of multiple genetic and environmental fac-
tors, often involving both cell-autonomous and non-cell-
autonomous mechanisms. While some genes exert pre-
dominantly cell-intrinsic effects, others influence the

microenvironment, intercellular signaling or extracel-
lular matrix (ECM) composition, thereby contributing
to non-cell-autonomous disease mechanisms. A signifi-
cant subset of NDDs are cortical malformations (CMs) -
a heterogeneous group of developmental disorders
characterized by abnormalities of cortical structure such
as subcortical band heterotopia, lissencephaly, periven-
tricular heterotopia and polymicrogyria [3,14]. These
disorders often result from abnormalities in neuronal
Current Opinion in Neurobiology 2025, 92:103018
proliferation, migration or differentiation and are
frequently associated with epilepsy, intellectual
disability and motor dysfunction. The genetic basis of
CMs involves both cell-autonomous defects (e.g.
impaired progenitor behavior, disrupted cytoskeletal
dynamics) and non-cell-autonomous factors (e.g. altered
ECM composition, defective intercellular signaling).

Genes with predominantly cell-autonomous effects in
NDDs
Several genes associated with CMs are strongly linked to

cell-autonomous defects in progenitor proliferation,
differentiation, or neuronal migration, with little evi-
dence for cell-extrinsic contributions. Mutations in
FAT4 and DCHS1, which are associated with periven-
tricular heterotopia, primarily affect intrinsic neuronal
morphology and synaptic function [15] (Figure 1).
Transcriptomic and proteomic analyses of FAT4 and
DCHS1 mutant brain organoids identified changes in
gene ontology terms related to neuronal morphology and
synaptic activity. Electrophysiological recordings
revealed that these neurons have increased expression

of somatic voltage-gated sodium channels, contributing
to hyperactivity. In addition, morphological re-
constructions and immunostaining revealed increased
structural complexity in periventricular heterotopia
neurons. Importantly, the expression of wild-type
DCHS1 rescued the morphological phenotype,
supporting its role as a cell-autonomous regulator of
neuronal structure [15].

Beyond genes associated with cortical malformations,
other neurodevelopmental genes with cell-autonomous

roles have also been implicated in disease. One such
example is CHCHD2, a gene primarily associated with
mitochondrial function and stress responses [16e18]
but increasingly linked to neurodevelopmental disor-
ders, including Huntington’s disease (HD) [19]. While
CHCHD2 is primarily recognized for its role in mito-
chondrial dynamics, recent studies suggest a broader
function in neurodevelopmental processes, particularly
in axon guidance, mTOR signaling, and progenitor cell
behavior. This places CHCHD2 in a growing category of
genes with cell-autonomous effects that may contribute

to NDDs. Cerebral organoids harboring mutant
huntingtin exhibit disorganized and improperly speci-
fied NPCs, accompanied by immature ventricular zones.
Moreover, neuronal cultures from HD patients show
disorganized NPCs, immature ventricular zones and
impaired neurite outgrowth, which are associated with
CHCHD2 downregulation [20]. CHCHD2 has also been
identified as a key player in axon guidance, Hippo
signaling and mTOR pathways in HD models. Notably,
CHCHD2 expression is reduced in iPSC-derived neu-
rons from patients with the CM genes LIS1 or TUBA1A
mutations, suggesting a broader role in
www.sciencedirect.com
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Figure 1
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Overview of reviewed non-cell-autonomous and cell-autonomous mechanisms. Illustration of non-cell-autonomous and cell-autonomous mecha-
nisms. Non-cell-autonomous mechanisms encompass astrocytes and microglia that influence nearby neurons through interactions with the ECM, EVs,
and secreted proteins. Cell-autonomous mechanisms comprise intrinsic mechanisms, such as cell division, cell migration, and cell specification. Created
with BioRender.com.
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neurodevelopment [21]. Given its function in regulating
intracellular processes, CHCHD2 appears to act pre-
dominantly through cell-autonomous mechanisms.

Genes with both cell-autonomous and non-cell-
autonomous effects
Some neurodevelopmental genes act primarily in a cell-
autonomous manner but also exert secondary non-cell-
autonomous effects by modifying the extracellular
environment, intercellular signaling or other microen-
vironmental factors. This interplay suggests a crosstalk

between cell intrinsic and extrinsic mechanisms.

One striking example of this crosstalk is EML1, a gene
associated with subcortical heterotopia, which illus-
trates how intrinsic mutations can affect the ECM.
Jabali et al. showed that EML1-deficient brain organoids
exhibit ectopic neuronal rosettes, disrupted progenitor
behavior and excessive ECM deposition [22]. The
increased ECM production is associated with YAP1-
mediated progenitor expansion, illustrating how a cell-
autonomous defect can have non-cell-autonomous con-

sequences for neighboring cells. Importantly, brain
organoids provide a powerful model to study these
mechanisms, particularly as modelling heterotopia-
associated genes in mice has proven challenging. For
example, Eml1 mouse models exhibit abnormal cell
proliferation, perturbations in apical radial glial (RG)
behavior, and defects in primary ciliary structure
[23,24]. While these models develop neuronal hetero-
topia, they fail to recapitulate key human-specific phe-
notypes such as the polymicrogyria-like cortex or
megalencephaly observed in patients [25]. The ability

of organoids to capture species-specific developmental
processes makes them an invaluable tool for studying
neurodevelopmental disorders that are not fully repre-
sented in traditional animal models.

Similarly, CDYL, an epigenetic regulator of histone
modification, exerts both intrinsic and extrinsic effects.
Cell-autonomously, it plays a key role in neuronal
excitability, synaptic plasticity and early neural devel-
opment [26,27], in part by facilitating the establishment
and spreading of H3K27me3, a histone modification

associated with gene silencing. CDYL deficiency in ASD
patient-derived brain organoids has been associated
with disruptions in GABAergic neuron generation
mediated by modulation of the WNTand SHH signaling
pathways [28]. Beyond its intrinsic role, CDYL also
exerts non-cell-autonomous effects by influencing the
extracellular environment. Notably, it regulates ECM-
related genes such as NNAT, suggesting a role in influ-
encing the local microenvironment, providing a clear
example of crosstalk between cell-autonomous and non-
cell-autonomous effects. Moreover, NNAT is not highly

expressed in mice, suggesting potential evolutionary
differences in neurogenesis regulation. This highlights
Current Opinion in Neurobiology 2025, 92:103018
the value of brain organoids in modeling species-specific
mechanisms in neurodevelopmental disorders.

Beyond CDYL, another ASD-associated gene,
SYNGAP1, also exhibits both cell-autonomous and non-
cell-autonomous roles. Traditionally recognized as a
postsynaptic scaffolding protein, SYNGAP1 plays a
critical role in synaptic activity, where it is essential for

assembling the core scaffold machinery of the post-
synaptic density in excitatory synapses [29,30]. How-
ever, an emerging body of evidence suggests that some
ASD-related genes also function earlier in neuro-
development. Recent findings by Birtele et al. highlight
an unexpected role for SYNGAP1 in early neurogenesis,
where it is highly expressed in RG cells and regulates
cytoskeletal remodeling of subcellular components [31].
Given that RG cells secrete signaling molecules and
patterning cues, SYNGAP1 mutations may not only
affect intrinsic cellular processes but also influence the

fate and behavior of surrounding progenitors. This un-
derscores the importance of brain organoids in eluci-
dating early developmental effects of ASD genes,
revealing how mutations in genes traditionally associ-
ated with synaptic function may also have non-cell-
autonomous effects during cortical development.

Epigenetic mechanisms are also involved in this inter-
play [32]. Ditzer et al. investigated the epigenetic
landscape of human fetal brain tissue and cortical orga-
noids using Epi-CyTOF, an innovative mass cytometry

technique that enables the profiling of histone modifi-
cations at the single-cell level [33]. Their analysis
identified H3K27me3 as a major regulator of NPCs fate
decisions, with this repressive histone modification
being mediated by Polycomb Repressive Complex 2
(PRC2). Functionally, inhibition of PRC2 in cortical
organoids induced a shift in NPC proliferation toward
differentiation, demonstrating its role in controlling
cell-autonomous neurogenic gene expression. However,
PRC2 also non-cell-autonomously regulates NPC fate
by influencing ECM composition, highlighting a cross-
talk between intrinsic and extrinsic mechanisms. Spe-

cifically, PRC2 target genes regulate neuronal
differentiation, netrin signaling, and ECM components
such as syndecan 1, illustrating how epigenetic regula-
tion can simultaneously shape both cell-intrinsic and
microenvironmental properties in the developing
brain (Figure 1).

Non-cell-autonomous effects in
neurodevelopmental disorders
Non-cell autonomous cues typically encompass secreted
factors, such as cytokines, growth factors, and neuro-
transmitters, as well as extracellular vesicles (EVs),
which mediate intercellular communication. Addition-
ally, these cues include external environmental in-
fluences, such as the ECM, which provides structural
www.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


Intrinsic - extrinsic signals in neurodevelopment Berto et al. 5
and biochemical support to cells, and direct or indirect
interactions between different cell types, including
neuron-glia crosstalk, immune cell signaling, and
vascular-endothelial interactions. Together, these
mechanisms play a crucial role in shaping cellular
behavior in both physiological and pathological con-
texts (Figure 1).

Non-cell-autonomous effects mediated by
extracellular signals
EVs are small particles released by cells that transfer

proteins, nucleic acids, and lipids to other cells, influ-
encing their behavior [35]. In recent years, a great deal
of attention has been devoted to understanding how the
release and content of EVs affect neighboring cells.
Most of the studies have been performed in the field of
cancer biology and neurodegenerative diseases [36e38],
and little is known about the influential effect of EVs on
intercellular crosstalk during neurodevelopment. Forero
and colleagues have made significant strides in
addressing this gap [10]. Their findings reveal that EVs
possess protein content and dynamics specific to each

cell type, which evolve over time - likely as a result of
increased cell heterogeneity. Interestingly, EVs were
shown to transport important regulatory molecules
across cells, such as the transcription factor YAP1, with
different effects depending on the recipient cell type.
This study suggests a critical role for EVs in trafficking,
facilitating intercellular communication and regulating
processes like neurogenesis.

In addition, new insights into EVs during neuro-
development come from Pipicelli et al. [8]. They

investigated how EVs regulate neuronal specification
and migration using ventral cerebral organoids (vCOs)
and dorsoventral cerebral assembloids (dvCAs). They
investigated how a point mutation in the secreted
extracellular matrix gene LGALS3BP, previously associ-
ated with NDDs, affects these processes. It was shown
that mutant vCOs and dvCAs display dorsal identity and
migratory defects. Interestingly, EVs derived from
mutant cerebral organoids show altered protein
composition, specifically related to neuronal migration,
cell fate and ECM composition. They identified pro-

teins whose genes are associated with CMs, ASD and
epilepsy. These alterations led to differences in dorso-
ventral patterning, suggesting that EVs may play a key
role in regulating neuronal identity. In addition, treat-
ment of dissociated control vCOs and NPCs with
mutant EVs inhibited ventralization and altered the
transcriptomic profile of NPCs, activating the WNTand
NOTCH pathways, which are critical for cell fate
determination and regionalization [39]. Treatment with
control EVs restored ventral gene expression in mutant
cells, highlighting that LGALS3BP regulates inter-

neuron specification through EV-mediated communi-
cation (Figure 1).
www.sciencedirect.com
The ECM is a non-cellular scaffolding component that
supports three-dimensional cell growth and has recently
been shown to play a key role in neurodevelopment in a
non-cell-autonomous manner [40,41] (Figure 1). The
composition and mechanical properties of the ECM
have been shown to have a critical effect on many cell
functions, including cell anchorage, signaling, cell sur-
vival, and disease progression [42]. Recently, some new

advances have been made in studying and understand-
ing how the stiffness of the brain, and therefore the
composition of the ECM, affects brain development.
Zur and colleagues have focused on understanding how
tissue mechanics affects neuronal development and
disease states [43]. They examined how mutations in
the LIS1 gene, which is associated with lissencephaly (a
brain malformation characterized by the absence of
cortical folds), affect ECM organization [44,45]. The
researchers found that brain organoids carrying LIS1
mutations are significantly stiffer than control organoids

at several developmental stages. This stiffness is
attributed to abnormal ECM composition as well as
increased water content within the tissue. Mass spec-
trometry revealed that ECM-related proteins, particu-
larly collagens, were enriched in the mutant organoids,
indicating a mutation-induced alteration in ECM
secretion and remodeling. Application of metal-
loproteinase MMP9, an enzyme that degrades ECM
components, reduced stiffness in the mutant organoids,
suggesting that ECM-related changes may be reversible.
These findings provide insight into LIS1 as a key

regulator of the ECM and highlight the importance of
the ECM in shaping tissue, influencing cellular behavior
and contributing to brain development.

Non-cell-autonomous effects mediated by cell-cell
interactions
Intercellular communication is thought to be a critical
contributor to brain development. However, in standard
brain organoid models, key non-neuronal cell types such
as microglia, astrocytes, and endothelial cells are either
absent or underrepresented, limiting their ability to
fully recapitulate the complexity of the developing
brain. Lately, significant efforts have been made to
implement these cells in the organoid field to under-

stand how neuronal and non-neuronal cell types interact
to shape neural development (Figure 1).

Among these, glia-enriched cortical organoids have been
recently generated byWang and colleagues by inducing an
early gliogenic switch in forebrain organoids [46]. The
glia-enriched organoids have been intracerebrally trans-
planted in immunodeficient mice to better mimic a brain
environment, enabling to study the function and diversity
of human astrocytes. Similarly, in the last years, the
integration ofhumanendothelial cells andpericytes led to

advancements in vascularized brain organoids, allowing
the investigation of neurovascular interactions [47].
Current Opinion in Neurobiology 2025, 92:103018
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While various cell types have also been integrated into
brain organoids to explore intercellular communication,
microglia-mediated crosstalk has been increasingly
recognized as a key factor in NDDs. To study the inter-
action of human microglia (hMGs) with their human
neuronal environment, Schafer and colleagues generated
an immunocompetent human brain organoid (iHBO)
model co-cultured with iPSC-derived erythromyeloid

progenitors (EMPs) [48]. By xenotransplanting iHBOs
into mice, Schafer studied hMGs in a vascularized,
human brain-like environment in vivo. The study shows
that hMGs populate the organoid, express specific
microglial markers (e.g., P2RY12, TMEM119, SALL1)
[49], and exhibit morphological characteristics of a
quiescent, surveillance state. The model supports the
study of hMG behavior under both physiological and
pathological conditions. It has proven to be particularly
valuable for studying microglial involvement in ASD with
macrocephaly. Microglia from ASD-derived organoids

exhibited morphological changes (e.g., increased soma
size and thicker processes) consistent with a primed and
reactive state. Importantly, these changes were driven by
the ASD brain environment rather than intrinsic micro-
glial factors, as demonstrated by experiments with con-
trol microglia in ASD environments.

Further advances in microglia crosstalk were made by
Park et al. They co-cultured brain organoids with iPS
cell-derived primitive macrophages (iMac) that differ-
entiate into microglia-like cells (iMicro) [50]. The

addition of microglia to the brain organoid promoted
neuronal differentiation, limited NPC proliferation and
promoted axogenesis. The researchers highlight the
involvement of microglia in cholesterol transfer, a critical
process for NPC metabolism and differentiation. iMicro
highly expresses ABCA1 and PLIN2, suggesting a role in
lipid metabolism that promotes NPC differentiation
into neurons (Figure 1). These findings indicate that
microglia have a significant impact on forebrain devel-
opment by modulating neuron and axon growth.

Finally, Yu and colleagues shed light on the role of

human microglia in the development of inhibitory
GABAergic neurons, which primarily arise from the
medial ganglionic eminence (MGE) [51]. Alterations in
the number and function of interneurons are known to
be associated with several neurological disorders,
including ASD, but little is known about their devel-
opment. To investigate the role of microglia in
GABAergic neurons during early development, the re-
searchers established a human MGE neuroimmune
organoid (MGEO) model by transplanting human em-
bryonic stem cell (ESC)-derived microglia (iMG) into

hPSC-derived MGE organoids. They found that
microglia secrete insulin-like growth factor 1 (IGF1),
which enhances the proliferation of MGE progenitors
and thereby regulates the production of interneurons
(Figure 1). These findings suggest a key role for
Current Opinion in Neurobiology 2025, 92:103018
microglia-IGF1 signaling in the formation of inhibitory
neural circuits during brain development.
Final remarks
In summary, the study of both cell-autonomous and non-
cell-autonomous mechanisms in brain organoids provides
valuable insights into the complex nature of NDDs.
These mechanisms interact synergistically in multiple
ways. One form of interaction occurs when a cell-intrinsic
genetic alteration modifies intracellular pathways that in

turn affect neighboring cells or the extracellular envi-
ronment, such as mutations in cytoskeletal genes leading
to excessive ECM secretion, which alters signaling and
cell behavior in the surrounding microenvironment.
Another mode of interaction involves a cell-autonomous
defect being modified, exacerbated, or even rescued by
non-cell-autonomous factors, for example, paracrine
signaling from wild-type neighboring cells mitigating
differentiation defects in mutant progenitors. Brain
organoid models have evolved to recapitulate key fea-
tures of brain structure and function, as they enable

different genetic backgrounds and diverse cell types to
coexist within a single system, providing a unique tool to
dissect the complex interplay between intrinsic muta-
tions and external signals in shaping human brain
development and disease progression. However, it is
important to recognize the limitations of these models -
such as variability due to iPSC reprogramming and
limited neuronal connectivity and maturation, particu-
larly when cultured in vitro rather than transplanted [52].
Nevertheless, these models hold great promise for
unravelling the multifactorial nature of NDDs, providing

avenues for targeted therapeutic intervention and
advancing precision medicine in neurodevelopmental
and neurodegenerative research [53].
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