
Regular Article
LYMPHOID NEOPLASIA
Dissection of single-cell landscapes for the
development of chimeric antigen receptor T cells in
Hodgkin lymphoma
D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/145/14/1536/2364281/blood_bld-2023-022197r1-m

ai
Adrian Gottschlich,1-4,* Ruth Grünmeier,2,* Gordon Victor Hoffmann,2,* Sayantan Nandi,2,* Vladyslav Kavaka,5-7 Philipp Jie Müller,2

Jakob Jobst,2 Arman Oner,2 Rainer Kaiser,8,9 Jan Gärtig,2 Ignazio Piseddu,2,3,10 Stephanie Frenz-Wiessner,11,12 Savannah D. Fairley,11,13

Heiko Schulz,14 Veronika Igl,2 Thomas Alexander Janert,2 Lea Di Fina,8 Maité Mulkers,8 Moritz Thomas,15,16 Daria Briukhovetska,2

Donjetë Simnica,2 Emanuele Carlini,2 Christina Angeliki Tsiverioti,2 Marcel P. Trefny,2 Theo Lorenzini,2 Florian Märkl,2 Pedro Mesquita,2

Ruben Brabenec,2,15 Thaddäus Strzalkowski,2 Sophia Stock,1,2,4 Stefanos Michaelides,2 Johannes Hellmuth,1 Martin Thelen,17,18

Sarah Reinke,19 Wolfram Klapper,19 Pascal Francois Gelebart,20,21 Leo Nicolai,8,9 Carsten Marr,15 Eduardo Beltrán,6,7,22

Remco T. A. Megens,13,23,24 Christoph Klein,11,12,25 Fanny Baran-Marszak,26,27 Andreas Rosenwald,28,29 Michael von Bergwelt-Baildon,1,3,4

Paul J. Bröckelmann,30,31 Stefan Endres,2,4,32 and Sebastian Kobold2,4,32

1Department of Medicine III, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany; 2Division of Clinical Pharmacology,
Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany; 3Bavarian
Cancer Research Center, Munich, Germany; 4German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer
Consortium Heidelberg, Munich, Germany; 5Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karl University
Tuebingen, Tuebingen, Germany; 6Institute of Clinical Neuroimmunology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich,
Germany; 7Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany; 8Department of Medicine I, Ludwig Maximilian
University Hospital, Ludwig Maximilian University Munich, Munich, Germany; 9German Center for Cardiovascular Research, Partner Site Munich Heart Alliance,
Munich, Germany; 10Department of Medicine II and 11Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig Maximilian University Hospital, Ludwig
Maximilian University Munich, Munich, Germany; 12German Center for Child and Adolescent Health, Partner Site Munich, Munich, Germany; 13Institute of
Cardiovascular Prevention and 14Institute of Pathology, Faculty of Medicine, Ludwig Maximilian University Munich, Munich, Germany; 15Institute of AI for Health,
Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany; 16School of Life Sciences Weihenstephan,
Technical University of Munich, Freising, Germany; 17Department of General, Visceral, Thoracic, and Transplantation Surgery, and 18Center for Molecular Medicine
Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; 19Hematopathology Section, Department of Pathology,
University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; 20Department of Clinical Science, University of Bergen, Bergen, Norway; 21Department of
Hematology, Haukeland University Hospital, Bergen, Norway; 22Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; 23Department of Biomedical
Engineering, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands; 24German Center for Cardiovascular
Research, Partner Site Munich Heart Alliance, Munich, Germany; 25Gene Center, Ludwig Maximilian University Munich, Munich, Germany; 26INSERM U978,
University of Paris 13, Bobigny, France; 27Service d’Hématologie Biologique, Ho

ˇ

pitaux Universitaire Paris Seine Saint Denis, Ho

ˇ

pital Avicenne, Université Sorbonne
Paris Nord Bobigny, Paris, France; 28Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany; 29Institute of Pathology,
University of Würzburg, Würzburg, Germany; 30Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne,
Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf and German Hodgkin Study Group, Cologne, Germany; 31Max Planck Institute for Biology of
Ageing, Cologne, Germany; and 32Einheit für Klinische Pharmakologie, Helmholtz Zentrum München-German Research Center for Environmental Health
Neuherberg, Neuherberg, Germany
n.pdf by guest on 09 M
ay 2025
KEY PO INT S

• CD86 is a promising
immunotherapeutic
target in cHL, and the
CD86–CTLA-4 axis
orchestrates an
immunosuppressive
cHL tumor
microenvironment.

• CD86-targeted
immunotherapies
induce a distinct
reprogramming of cHL-
associated T cells and
are highly effective
treatment options for
cHL.
1536 3 APRIL 2025 | VO
The success of targeted therapies for hematological malignancies has heralded their
potential as both salvage treatment and early treatment lines, reducing the need for high-
dose, intensive, and often toxic chemotherapeutic regimens. For young patients with
classic Hodgkin lymphoma (cHL), immunotherapies provide the possibility to lessen long-
term, treatment-related toxicities. However, suitable therapeutic targets are lacking. By
integrating single-cell dissection of the tumor landscape and an in-depth, single-cell–based
off-tumor antigen prediction, we identify CD86 as a promising therapeutic target in cHL.
CD86 is highly expressed on Hodgkin and Reed-Sternberg cancer cells and cHL-specific
tumor-associated macrophages. We reveal CD86–CTLA-4 as a key suppressive pathway
in cHL, driving T-cell exhaustion. Cellular therapies targeting CD86 had extraordinary effi-
cacy in vitro and in vivo and were safe in immunocompetent mouse models without
compromising bacterial host defense in sepsis models. Our results prove the potential value
of anti-CD86 immunotherapies for treating cHL.
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Introduction
In hematological malignancies, targeted immunotherapies
including chimeric antigen receptor (CAR) T cells were found to
have unparalleled clinical efficacy1,2 and are now considered
standard of care as second-line treatment in early relapsed non-
Hodgkin lymphoma (NHL).3,4

As cHL most often occurs at a younger age,5 long-term, therapy-
related toxicity is almost as important as therapeutic efficacy.
Although the multimodal first-line treatment regimens in cHL are
highly effective (complete response rates >90%6), up to 94% of
long-term cHL survivors have treatment-related comorbidities,
including treatment-related secondary neoplasm, cardiopulmo-
nary toxicities, and infertility.7-9

As recently found in the HD-21 clinical trial,6 the development
of novel immunotherapies and their application in early treat-
ment lines possess the potential to reduce these toxicities, yet,
alternatives to CD30-targeted immunotherapies have rarely
been reported.10,11 Although immune checkpoint blockade is
highly active12 and considered as a standard of care in
relapsed/refractory cHL (R/R cHL), long-term remissions are
scarce.13 Anti-CD30 CAR T-cell therapy was found to have
promising results in a phase 1/2 clinical trial,14 but early reports
also revealed high rates of toxicities and overall limited anti-
tumor activity.15

To address this unmet medical need, we developed a cHL-
tailored, multimodal screening algorithm to identify unrecog-
nized and functionally relevant target antigens for cHL. We
identified the central role of the CD86–CTLA-4 axis in orches-
trating the immunosuppressive cHL tumor microenvironment
(TME), with CD86 having high expression on HRS cells (HRSCs)
and cHL-associated tumor-associated macrophages (cHL
TAMs). CD86 blockade reverts the exhausted phenotype of
cHL-associated T cells, and preclinical testing of anti-CD86 CAR
T cells were found to have extraordinary treatment efficacy,
without exhibiting relevant safety signals in immunocompetent
mouse models.
7r1-m
ain.pdf by guest on 09 M
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Methods
Ethics approval and consent
Fixed, paraffin-embedded cHL specimens were obtained after
written informed consent in accordance with the regulation of
the Declaration of Helsinki. The use of the cHL samples for
immunohistochemistry and multiplexed immunofluorescence
was approved by the institutional review board of the Julius
Maximilian University, Würzburg, Germany.

Software and statistical analysis
Flow cytometric data were analyzed using FlowJo version (v.)
10.3 to v.10.9.0 software. Established ImageJ was used for the
analysis of chip cytometric images using established pro-
tocols.16 Radiance calculation of images of bioluminescence
imaging (BLI) was performed using Living Image 4.4 (Perkin-
Elmer, Shelton, CT).

LASX (v.3.8) and deconvolution were performed with the fully
integrated Leica lightening software plugin using standard set-
tings. Image processing was done in Imaris (v.10.0). Live cell
DEVELOPMENT OF CAR T CELLS IN HODGKIN LYMPHOMA
imaging analyses were performed with Incucyte S3 Software
2022B, Rev2. Immunohistochemical stainings were analyzed with
QuPath (v.0.4.4). All statistical analyses were performed using
GraphPad Prism software v.9.3.1 to v.9.4.1 (San Diego, CA).

A detailed description of all other methods can be found in the
supplemental Material, available on the Blood website.
Results
Multimodal screening approach identifies CD86 as
an immunotherapeutic target in cHL
To identify target antigens for cHL, we integrated publicly
available microarray gene expression analysis of laser-dissected
HRSCs and subsequent flow cytometric validation with single-
cell analysis of the cHL TME. In addition, we carried out sin-
gle-cell–based off-tumor antigen prediction using publicly
available data sets (Figure 1A).

We first obtained available transcriptomic profiles of laser-
dissected HRSCs and carried out differential gene expression
(DGE) analysis.17 We identified 4293 genes that were overex-
pressed on HRSCs compared with germinal center B cells. To
determine target accessibility to immunotherapies, we next used
a library consisting of 4924 genes that encode cell surface pro-
teins established by integrating different available surfaceome
libraries.18-21 We manually removed genes encoding proteins
that are primarily secreted and proteins with known intracellular
functions from the candidate list. Finally, to ensure transferability
to T-cell–based therapies, we excluded genes high on T cells, as
measured by single-cell RNA-sequencing (scRNA-seq). Using
this stringent approach, we identified 8 genes encoding
potential targets highly expressed in HRSCs, which are as fol-
lows: CD14, CD80, CD86, THY1 (CD90), CD163, IL13RA1
(CD213a), CD274 (PD-L1), and IGSF6 (Figure 1B-C). CD30 was
excluded due to high expression on cHL-infiltrating T cells, but it
was used as a reference control for all further analyses.

To confirm these results, we quantified expression of the target
antigens on 6 different cell lines using published microarray
profiles. Three NHL cell lines were used as controls. Of the
above-described candidates, CD86 was most highly expressed
on cHL cell lines with overall comparable expression to CD30
(supplemental Figure 1A). Comparison to NHL cell lines revealed
a higher expression of CD86, CD80, and PD-L1 on cHL cell lines,
whereas CD90 expression was similar (supplemental Figure 1B).
We next performed flow cytometric analysis for all candidate
antigens, except for IGFS6, due to the lack of a suitable anti-
body, on cHL cell lines (L-428, L-540, KM-H2) and on control
non-cHL B-cell line (Nalm-6). Only CD30 and CD86 were vali-
dated on all 3 cHL cell lines, PD-L1 and CD80 were only
moderately expressed on 1 and 2 cell lines, respectively, whereas
other antigens were undetectable by flow cytometry (Figure 1D).

To obtain off-tumor expression patterns of CD80, CD86, PD-L1,
and CD30, we carried out in-depth, off-tumor antigen predic-
tion using a total of 24 different scRNA-seq data sets of 11
healthy human tissues.16,22-44 This atlas consisted of nearly 2.5
million sequenced single cells from 266 individuals
(supplemental Figure 1C). PD-L1 was most strongly expressed
on cell clusters of tissues, reported as targets for on-target,
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Figure 1. Identification of CD80, CD86, and PD-L1 as potential therapeutic targets in cHL. (A) Schematic overview of components of the used multimodal target
screening approach in cHL. (B) Volcano plot illustrating the log2 average fold change and P values of surface antigens absent on T cells and differentially overexpressed on
HRSCs compared with GCB. Microarray data (GSE12453) were obtained from the gene expression omnibus17 (cHL, n = 12; RLN, n = 5). Labeled genes in red passed all filters
(surface expression, absent on T cells), whereas non-highlighted gray dots indicate overexpressed genes that did not pass the filter thresholds. (C) Heat map visualizing the
expression of the identified target antigens on microdissected control cells (left) or HRSCs (right). (D) Comparison of absolute densities of indicated antigens measured using
flow cytometry on a panel of cHL cell lines (L-428, L-540, KM-H2) with that of the control cell line Nalm-6. Plotted is the pooled fold change ± standard error of the mean (SEM)
of absolute molecule count in comparison to an isotype control stain of 3 different cHL cell lines. Statistical significance was calculated using 2-way analysis of variance
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off-tumor toxicities of CAR T cells (endothelial cells, alveolar
cells, cardiomyocytes, podocytes, hematopoietic stem
cells).45,46 In contrast, CD80, CD86, and CD30 were minimally
expressed in these clusters. CD80 and CD86 expression were
detected on lymphoid and myeloid immune cells, with CD86
having higher baseline expression than CD80. CD30 was
minimally expressed on immune cells but was expressed on
mesothelial and glomerular visceral epithelial cells (Figure 1E).

The CD80–CD86–CTLA-4–CD28 axis is active in cHL
and shifted toward CTLA-4–mediated
immunosuppression
Our analyses centered on HRSCs. Yet, HRSCs represent only
1% to 5% of the entire cHL TME. The remaining tumor mass
consists of infiltrating immune cells.47 CD30, PD-L1, CD80, and
CD86 are all central mediators of the adaptive immune
response. The CD80-CD86 axis can provide either immuno-
stimulatory or immunosuppressive stimuli, depending on the
expression patterns of its ligands CTLA-4 and CD28, whereas
PD-1–PD-L1/PD-L2 axis is primarily known for its immunosup-
pressive function. CTLA-4 binds to CD80 and CD86 with higher
affinity than CD28, and high expression of CTLA-4 can tip the
equilibrium toward immunosuppression.17,48

To evaluate the advantages and disadvantages of targeting
these critical immunomodulatory molecules in cHL, we charac-
terized functions of these axes at the tumor site by analyzing a
scRNA-seq data set of 22 cHL specimens and 5 reactive lymph
node (RLN) controls49 (Figure 2A).

We pooled and integrated sequencing data of all samples to
offset batch effects during sample preparation. Uniform manifold
approximation and projection (UMAP) visualization illustrate the
successful integration of the obtained data (supplemental
Figure 2A). We reannotated the data set based on upregulated
functional signatures from DGE analysis and identified 25
different cell clusters (supplemental Figure 2B-C), spanning the
most relevant innate and adaptive immune cell subtypes and a
distinct “proliferative” cell cluster with high mitotic activity and
positive for proliferative markers (Ki67; Figure 2A; supplemental
Figure 2B-D). As previously reported by Aoki et al,49 in this
data set, we failed to detect HRSC, most likely due to loss of
these cells during preprocessing procedures and their overall
rarity at the tumor site.

We next analyzed expression of CD30, CD80, CD86, and PD-L1
on infiltrating immune cells and found that all 4 were expressed
on cHL TAMs. CD80 and CD86 were also expressed on B-cell
subtypes (germinal center B cells; plasma cells; memory B cells,
B_m), whereas PD-L1 was expressed on different regulatory T-cell
(Treg) populations. CD30 was strongly expressed on Treg_3 and
Treg_4 clusters and on the proliferative cell cluster (Figure 2B-C).
To better understand characteristics of cHL-infiltrating immune
cells, we next interrogated the difference in fractions of immune
cell populations between RLN and cHL samples. Macrophages
(log2 FC = 3.46), Treg_3 (log2 FC = 2.04), and proliferative cells
(log2 FC = 1.62) were highly enriched in cHL compared with RLN
Figure 1 (continued) (ANOVA) with Sidak multiple comparison correction. *P < .05; **P
transcriptomic atlas screening for CD80, CD86, PD-L1, and CD30. The transcriptomic
organs. A detailed summary of all used data sets is provided in the supplementary Mat

DEVELOPMENT OF CAR T CELLS IN HODGKIN LYMPHOMA
controls (Figure 2D; supplemental Figure 2E-F). Importantly,
these nearly cHL-exclusive immune cell subtypes highly
expressed our genes of interest (Figure 2B).

Using DGE analysis, we compared differences in gene expres-
sion of known inhibitory (Figure 2E) and activating (Figure 2F)
signaling pathways50 between cHL and RLN specimens. We
observed upregulation of several hallmark inhibitory and acti-
vating axes in cHL compared with RLN controls (Figure 2E-F). As
previously described, the human leukocyte antigen class II, DR
alpha (HLA-DRA)–LAG3 (lymphocyte-activation gene 3) axis was
highly active in cHL, with higher expression of LAG3 on CD4+

and CD8+ T-cell subsets in cHL compared with RLN.49 At the
single-cell level, the CD80–CD86–CTLA-4 axis was the second
most prominent axis, with high expression of CTLA-4 in Tregs
and CD4 memory cells (CD4m_1, 2) and overexpression of
CD86 in cHL TAMs (Figure 2E).

Collectively, in line with previous results,51 our single-cell
analyses revealed overexpression of several hallmark immuno-
suppressive pathways in the TME of cHL compared with RLN.

CD86 is highly expressed in primary diagnosis and
relapsed cHL
To confirm expression of the identified target antigens in a
larger validation cohort and in R/R cHL, we obtained Nano-
String profiling data of 95 patients with primary diagnosis of
cHL, who were treated within the NIVAHL phase 2 trial.52 In
NIVAHL, patients with early stage unfavorable cHL were either
randomized to receive 4 cycles of concomitant nivolumab-AVD
(nivolumab, doxorubicin, vinblastine, dacarbazine) treatment or
a sequential therapeutic regimen consisting of 4 cycles of
nivolumab monotherapy, followed by 2 cycles of nivolumab-
AVD and 2 cycles of AVD. We also obtained matched-pair
samples of early treatment biopsies during first-line therapy
(Figure 3A; n = 10). Matched-pair biopsies were split into
samples revealing complete HRSC clearance (n = 4, left) or
HRSC maintenance (n = 6, right). As with our previous data,
CD30 was most highly expressed at primary diagnosis, followed
by CD86, CD80, and PD-L1 (Figure 3B). In matched-pair
biopsies, CD30 expression was lower in secondary tissue,
independent of treatment response, whereas no change was
observed for CD86, CD80, or PD-L1 (Figure 3C).

Our multimodal analyses revealed CD86 as the most relevant
target antigen with overall comparable expression to CD30
(overview of all cohorts in supplemental Figure 3A). Thus, we
decided to primarily investigate CD86 as a novel therapeutic
target for cHL.

To gain deeper insights into expression profiles of CD86 in cHL,
we carried out immunohistochemistry staining of either primary
diagnosis cHL samples (Figure 3D,F-G) or R/R cHL (Figure 3E,H-I;
supplemental Figure 3B). CD86 was highly expressed on HRSCs of
both primary diagnosis and R/R cHL with an overall count of
CD86+ tumor cells comparable to CD30 (Figure 3G,I). To assess
coexpression patterns of CD86 and CD30, we conducted
< .01; ***P < .001; ****P < .0001. ns, P > .05. (E) Single-cell cross-organ off-target
atlas consists of a total of 2.5 million sequenced cells comprising 11 different

erial.
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multiplexed immunofluorescence of formalin-fixed, paraffin-
embedded primary cHL tissues using ChipCytometry (Figure 3J-K;
supplemental Figure 3C-D). Chip-loaded cHL specimens from
either primary diagnosis (Figure 3J) or R/R cHL (Figure 3K) were
sequentially stained with anti-CD86, anti-CD30, and anti-CD20
antibodies and the Hoechst stain, for DNA, and then visualized
by immunofluorescence microscopy. Staining intensities revealed
high expression of both CD86 and CD30 in primary and R/R cHL,
1540 3 APRIL 2025 | VOLUME 145, NUMBER 14
with general expression patterns of CD86 comparable to CD30.
Importantly, CD86-expressing HRSCs were present in all stained
samples, in both nodular sclerosis and mixed cellularity subtype
(supplemental Figure 3C-D).

In summary, we reveal broad and conserved expression of
CD86 on HRSCs both at primary diagnosis and in R/R cHL
patients.
GOTTSCHLICH et al
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CD86-targeted immunotherapies reverse
cHL-associated immunosuppression
Our scRNA-seq analyses highlighted a pivotal role of the CD86–
CTLA-4 axis in cHL TME and suggested a shift toward CTLA-4–
mediated immunosuppression. NanoString profiling of biopsies
from patients treated within the NIVAHL trial confirmed these
results (Figure 4A). Analyses of the NIVAHL matched-pair
biopsies revealed a downregulation of CTLA-4 after PD-1
checkpoint inhibition, yet with still relevant expression levels
in secondary biopsies (Figure 4B).

Although the expression analyses reveal a high abundance of
CD86 and CTLA-4 expression in cHL, the functional conse-
quences of modulating the CD86–CTLA-4 axis remain unknown.

Consequently, we first investigated whether CD86 blockade
influences the proliferative capacity or the phenotype of cHL
cell lines. Although CD86 was highly expressed on all tested
cell lines (supplemental Figure 4A-B), the addition of a CD86-
blocking antibody (αCD86) did not affect cHL proliferation as
measured by live cell imaging (supplemental Figure 4C-D).
Similarly, clustered regularly interspaced short palindromic
repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) knockout
of CD86 did not affect the proliferation of KM-H2 cells
(supplemental Figure 4E-F). CD86 blockade also did not
change the expression of several HRSC-associated surface
molecules, except for CD86 (supplemental Figure 4G-H).

Next, we designed in vitro experiments that would inform on
the impact of CD86-targeted immunotherapies on the cHL
TME. We cocultured cHL cell lines L-540, L-428, KM-H2, or
Nalm-6 control cells with peripheral blood mononuclear cells
(PBMCs) from healthy donors for 5 days in the presence of
either an αCD86 or an isotype antibody. In coculture with cHL
cell lines, but not with Nalm-6 cells, CD14+ monocytes highly
expressed CD86. Treatment with αCD86 antibody reduced
surface CD86 expression (Figure 4C-D; supplemental
Figure 5C-D, left). Interestingly, CD86 blockade diminished
expression of CTLA-4 and PD-1 on T cells (Figure 4C-D;
supplemental Figure 5C-D, middle). Conversely, surface CD28
expression increased on T cells in cocultures with L-540 and
L-428 cHL cells, but not with KM-H2 or Nalm-6 cells (Figure 4C-
D; supplemental Figure 5C-D, right).

To corroborate these finding, we developed a PBMC-
humanized mouse model of cHL, using tumor-bearing–immu-
nodeficient NOD.Cg-Prkdcscid Il2rgtm1WjI/SzJ or tm1/Rj (NSG/
NXG) mice. Humanized mouse models were chosen due to the
lack of relevant cHL models in immunocompetent mice. We first
injected 2 × 106 L-540 cells transduced with a firefly luciferase
(L-540-fLuc+) intravenously into NSG mice. Tumor growth was
measured with BLI. After 15 days, we injected 2 × 107 PBMCs of
healthy human donors into L-540 tumor-bearing mice and
regularly treated with αCD86, isotype, or an anti–PD-1 antibody
(nivolumab, αPD-1; Figure 4E). Antibody treatment did not
inhibit tumor progression in any of the mice (Figure 4F-G).
Seven days after PBMC injection, we sacrificed the mice and
analyzed the phenotype of human immune cells with flow
cytometry. Antibody treatment did not reduce tumor burden in
the bone marrow, spleen, or blood of mice (supplemental
Figure 5E).
1542 3 APRIL 2025 | VOLUME 145, NUMBER 14
Intriguingly, αCD86 antibody led to a striking reduction of
CTLA-4 expression on CD3+ T cells in the spleen, blood, and
bone marrow of the mice. αPD-1 treatment also resulted in a
downregulation of CTLA-4 expression, however to a lower
extent than αCD86 (Figure 4H, J). As expected, αPD-1 treat-
ment induced a near-complete absence of measurable surface
PD-1 expression. T cells of αCD86-treated mice revealed similar
low PD-1 levels in the spleen and blood as αPD-1–treated mice.
In the bone marrow, this reduction was less pronounced
(Figure 4I,K). CD28 was lower in T cells in the spleen and blood,
but not in the bone marrow of αCD86 antibody-treated mice
(supplemental Figure 5F).

L-540 tumor cells were originally established from the bone
marrowof a 20-year-oldpatientwith advanced cHL, and it is known
that the characteristic cHL microenvironment is also present in the
case of primary bone marrow involvement.53 To provide proof of
principle in a clinically relevant, 3-dimensional, fully human model
of the cHL-bone marrow niche, we used a recently published
induced pluripotent stem cell-based bone marrow organoid
(BMO)model.54 TheBMOwas coculturedwith L-540 or L-428 cells
and PBMC (addition of PBMC is necessary, as BMO lacksmature T
cells due to missing thymic development and priming steps) and
treated with αCD86 or an isotype control (Figure 4L). BMO
cocultures were then visualized with confocal microscopy or
dissociated and analyzed by flow cytometry. Both cHL tumor cells
and PBMC engrafted the BMO niche, visualized by CD271
expression on mesenchymal stromal cells (Figure 4M). Again,
αCD86antibody led to a striking reduction of CTLA-4 expression in
L-540–PBMC–BMO cocultures (Figure 4N-O, left). In L-428 cocul-
tures, similar trends were observed. Surface PD-1 expression in
bothmodels did not change (Figure 4N-O,middle). No changes in
CD28 expression were also observed (Figure 4N-O, right).

Altogether, in several advanced disease models, we reveal a
distinct reprogramming of cHL-associated T cells by CD86
blockade.
Anti-CD86 CAR T cells engage and lyse cHL cell
lines in vitro
Given the high expression of CD86 on HRSCs, cHL TAMs, and
the distinct TME reprogramming after CD86 blockade, we
hypothesized that CD86-directed CAR T cells would have triple-
effector functions by simultaneously targeting key, pathogno-
monic components of the cHL TME.

We designed a second-generation anti-CD86 CAR harboring
CD28 and CD3 zeta stimulatory domains (CD86-28z), which was
equivalent to that of the anti-CD30 CAR T cells (CD30-28z)
currently used in clinical trials.55 Anti-CD19 CAR T cells (CD19-
28z) were used as a negative control for all experiments
(Figure 5A). All CAR constructs could be efficiently transduced
into primary human T cells (Figure 5B) with average trans-
duction efficiencies of approximately 60% (Figure 5C). Flow
cytometric phenotyping of CAR T cells after viral transduction
did not reveal relevant differences in the cellular composition of
T cell subsets of the generated CAR T cell products or
untransduced control cells (supplemental Figure 5G-H).

Quantitate measurements of CAR antigen densities illustrated
highest CD86 expression on L-428 cells, followed by L-540 and
GOTTSCHLICH et al
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KM-H2 cells. Nalm-6 cells did not express CD86 and expressed
low levels of CD30. The density of CD19 was quantified as a
reference control (Figure 5D).

To elucidate in vitro efficacy, we cocultured CD86-28z, CD30-
28z, or CD19-28z CAR T cells with cHL cell lines or Nalm-6 cells
(Figure 5E-H). CD86-28z CAR T cells showed a strong, antigen-
dependent proliferation in the presence of cHL cells, similar to
CD30-28z CAR T cells (Figure 5E). Comparable to CD30-28z,
CD86-28z CAR T cells efficiently lysed cHL cells also at low
effector-to-target cell ratios (Figure 5F). An alternative measure-
ment using flow cytometry confirmed high lysis (supplemental
Figure 5I) and proliferative capacity (supplemental Figure 5J) of
CD86-28z CAR T cells. In cocultures with cHL cell lines, CD86-
28z CAR T cells released high amounts of interferon gamma
(IFN-γ; Figure 5G) and were as positive for granzyme B as cells
stimulated with CD3-CD28 activation beads (Figure 5H).

cHL TAMs express CD86 and can be depleted by
CD86-28z CAR T cells in vitro
Besides being strongly expressed on HRSCs, CD86 was
expressed on cHL TAMs. In cHL, high infiltration of TAM has
been associated with an adverse prognosis and lower overall
survival of treated patients.56,57 Consequently, we characterized
the phenotypic properties and functions of cHL TAMs. Reclus-
tering using scRNA-seq data delineated 4 clusters of cHL TAMs
that could be subdivided into M2-like (high expression of
CSF1R, CD163, CD204, CD206; clusters 0, 1) or M1-like (high
expression of CD80; clusters 2, 3) macrophages (supplemental
Figure 6A-C). M2-like macrophages were more abundant than
M1-like macrophages. CD86 was expressed in both M1-like and
M2-like macrophages, with strongest expression in clusters
0 and 2. Microarray profiling of cHL cell lines and primary cHL
samples confirmed high expression of M1- and M2-like stimu-
lating cytokines (supplemental Figure 6D-E).

To characterize possible effects of CD86-28z CAR T cells toward
cHL TAMs, we generated macrophages from CD14+ monocytes
and polarized them toward different macrophage trajectories.
Macrophages were either polarized using IFN-γ and LPS (M1

like) and IL-4 and IL-13 (M2 like) or stimulated solely with the
supernatant of cHL cell lines without exogenous cytokines (MH

like). In vitro-polarized, MH-like macrophages mimicked cHL
TAMs of clusters 0 and 1, revealing high expression of CD163
and CD206 (supplemental Figure 6F). CD86 was expressed on
all 3 subtypes (supplemental Figure 6G). Next, in vitro-polarized
macrophages were cocultured with CD86-28z, CD30-28z, or
CD19-28z CAR T cells. Only CD86-28z CAR T cells proliferated
and selectively depleted in vitro-polarized macrophages
(supplemental Figure 6H-I) and released high amounts of IFN-γ
(supplemental Figure 6J), correlating with CD86 expression.

CD86-28z CAR T cells lyse cHL cell lines in vivo and
retain efficacy in models of CD30-negative disease
We then sought out to evaluate in vivo therapeutic efficacy of
CD86-CD28z CAR T cells. We again injected L-540-fLuc+ cHL
Figure 4 (continued) confocal images of cHL-PBMC-BMO cocultures. Yellow: mesenchym
rectangle area are depicted at the bottom. (N-O) Expression of indicated antigens on CD
(O) cHL tumor cell lines measured by flow cytometry. cHL cell lines and BMO were cocult
from n = 4-8 independent donors and BMO. Scale bar in panel M 100 mm (top), 30 mm (bo
panels: *P < .05; **P < .01; ***P < .001; ****P < .0001. ns, P > .05.
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cells intravenously into NSG mice, which resulted in rapid tumor
development in all mice. We treated tumor-bearing mice with a
single injection of CD86-28z, CD30-28z, or CD19-28z CAR
T cells (Figure 6A). CD86-28z and CD30-28z CAR T cells effi-
ciently eradicated L-540 cHL burden (complete responses in 6
of 10 mice), whereas cHL rapidly progressed in mice injected
with CD19-28z CAR T cells (Figure 6B-D). Similar results were
obtained in a second cHL xenograft model using L-428 tumor
cells (supplemental Figure 7D-G).

To investigate whether CD86-28z CAR T cells were effective
against CD30-negative relapse, we used CRISPR-Cas9 to
knockout CD30 in L-428 cells (L-428-CD30−/−), which was
confirmed with flow cytometry (supplemental Figure 7A). In vitro
cocultures of CD86-28z, CD30-28z, or CD19-28z CAR T cells with
L-428-CD30−/− cells revealed lysis of tumor cells only by CD86-
28z CAR T cells (supplemental Figure 7B). When CD30-28z
CAR T cells were cocultured with L-428 wild type (WT) and
L-428-CD30−/− cells, high production of granzyme B was only
observed in cocultures with L-428 WT cells (supplemental
Figure 7C). Only CD86-28z CAR T cells controlled tumor
growth in L-428-CD30−/− tumor-bearing mice (Figure 6E-H).

We next challenged the efficacy of CD86-28z CAR T cells by
injecting only 106 CAR T cells into immunodeficient mice with L-
540 tumors (supplemental Figure 7H). CD86-28z CAR T cells
retained their ability to control tumor progression, leading to
prolonged survival in comparison to CD19-28z CAR T cell-
treated mice (supplemental Figure 7H-K). No differences in
treatment response were observed between CD86-28z and
CD30-28z CAR T cells (supplemental Figure 7H-K).

To reveal antigen-dependent CAR T cell proliferation in vivo, we
used the teLuc-system, which is optimized for deep-tissue
imaging and is excited by a different substrate than the one
used for fLuc, thus permitting simultaneous detection of 2 cell
populations in the same mouse.58 The CD86-28z or CD19-28z
CAR construct together with the teLuc-F2A-mCherry construct
was efficiently introduced into primary human T cells with
double-transduction efficiencies of 50% to 60% (supplemental
Figure 7L). Decrease of tumor burden mediated by CD86-28z-
teLuc, but not CD19-28z-teLuc CAR T cells, was paralleled by
strong, antigen-dependent expansion of CD86-28z-teLuc CAR T
cells (Figure 6J-M). Neither CD86-28z-teLuc CAR T cells injected
into nontumor-bearing mice nor CD19-28z-teLuc CAR T cells
injected into L-540 tumor-bearing mice expanded (Figure 6K,M).

Collectively, our results reveal remarkable efficacy of CD86-28z
CAR T cells in cHL tumor models.
CD86-targeted immunotherapy is safe and does
not affect bacterial host defense in vivo
Given the expression of CD86 on antigen-presenting cells such
as B cells, monocytes, and dendritic cells, anti-CD86–targeted
immunotherapies bear the prospect of increasing the risk for
opportunistic infections and on-target–off-tumor toxicities.
al tissue (CD271); violet: PBMC; turquoise: cHL tumor cells. Magnified images of the
3+ T cells (left, CTLA-4; middle PD-1; right CD28) in coculture with L-540 (N) or L-428
ured either with αCD86 antibody or isotype control antibody. Data are mean ± SEM
ttom). Statistical significance was calculated using Wilcoxon signed rank test. For all
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Figure 5. CD86-28z CAR T cells exhibit high potency toward cHL cell lines in vitro. (A) Summary of the composition of anti-CD86 (CD86-28z), anti-CD30 (CD30-28z), and
anti-CD19 CAR (CD19-28z) constructs. (B-C) Representative flow cytometric images (B) and quantification (C; individual results and mean ± SEM of 10 different donors) of
transduction efficiencies. Transduction efficiency was determined by staining for the extracellular c-Myc tag. (D) Absolute quantification of the molecule count per cell measured
with quantitative flow cytometry. Molecule counts/cell of the indicated cell lines were calculated for CD86, CD30, and CD19, respectively. Molecule counts/cell of the isotype
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Before cocultures, CAR T cells were stained with a Far Red proliferation dye, and antigen-specific proliferation was determined by trace dilution. Cocultures were analyzed by flow
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determined after 72 hours. Specific lysis was calculated by normalizing to tumor cell-only controls. (G) IFN-γ release into coculture supernatant measured by ELISA. (F-G) Data are
mean ± SEM from 3 independent donors. Statistical significance was calculated using 2-way ANOVA with Sidak multiple comparison correction. (H) Representative histograms
depicting granzyme B-positive cells after 48 hours of coculture. Granzyme B was measured by intracellular staining after 12 hours of incubation with GolgiStop and GolgiPlug.
Illustrated are representative histograms of in total 3 different donors. For all panels: *P < .05; **P < .01; ***P < .001; ****P < .0001. ns, P > .05.
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Figure 6. CD86-28z CAR T cells elicit a strong antitumor response toward cHL cell lines in vivo. (A) Summary of the treatment schedule used for L-540 xenograft in vivo
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Consequently, we investigated the impact of CD86-directed
immunotherapies in immunocompetent, syngeneic mouse
models. We generated second-generation, murine, anti-CD86
1546 3 APRIL 2025 | VOLUME 145, NUMBER 14
CAR T cells (mCD86-28z; supplemental Figure 8A). Anti-
EpCAM CAR (mEpCAM-28z), green fluorescent protein (GFP)-
transduced (GFP), or untransduced T cells were used as
GOTTSCHLICH et al
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controls. mCD86-28z CAR T cells could be efficiently trans-
duced into primary murine T cells at comparable efficiencies to
mEpCAM CAR T cells (supplemental Figure 8B). mCD86-28z
CAR T cells specifically recognized Fc-immobilized recombi-
nant murine CD86 protein, determined by upregulation of
activation and degranulation markers CD69 and CD107a
(supplemental Figure 8C). Only mCD86-28z CAR T cells effi-
ciently lysed the J774A.1 murine reticulum cell sarcoma cell
line, which was highly positive for CD86 and secreted high
amounts of IFN-γ (supplemental Figure 8D-G). We then used
mCD86-28z CAR T cells to test their safety in syngeneic mouse
models (supplemental Figure 8H). To this end, C57Bl/6 WT
mice were irradiated with 3.5 Gy (total body irradiation) and
injected with either mCD86-28z CAR- or GFP-transduced T
cells. No weight loss was observed in any of the treated mice
(supplemental Figure 8I). Flow cytometric analysis of the blood
at day 8 revealed higher rates of engraftment and proliferation
of mCD86-28z CAR T cells compared with GFP controls
(supplemental Figure 8J). Yet, after analyzing the organs after
29 days, we did not observe measurable reduction of circulating
B or myeloid cells and no mCD86-28z CAR T cells were
detected in the spleen or the lymph node (supplemental
Figure 8K-L). Overall, this suggests that these T cells did not
persist in the mice.

Consequently, we designed a more intensive model, which
included myeloablative total body irradiation with 5.5 Gy and
injection of supraphysiological T cell doses (107 active CAR
T cells per mouse; Figure 7A). Again, mice did not exhibit signs
of weight loss (Figure 7B). mCD86-28z CAR T cells expanded
rapidly in the blood (Figure 7C). Percentages of circulating
CD86+CD19+ B cells were reduced in mCD86-28z–treated
mice (Figure 7D, left). We did not observe differences in
the percentages of circulating CD86+CD11b+ monocytes
between the different treatment groups (Figure 7D, right).
Expansion of mCD86-28z CAR T cells (measured by GFP
expression) inversely correlated with percentages of circu-
lating CD86+CD19+ B cells (Figure 7E). Furthermore, 28 days
after T-cell injection, mice were sacrificed and organs were
analyzed with flow cytometry. mCD86-28z CAR T cells were
detected in large amounts in the spleen, lung, and liver of
treated mice (Figure 7F). In organs, there was a trend toward
lower percentages of CD19+ B cells, whereas the overall
amount of CD11b+ myeloid cells did not differ between the
treatment groups (Figure 7G). Interestingly, we observed higher
percentages of CD86+ myeloid cells in the lung, most likely due
to activation of the myeloid cell compartment resulting in
upregulation of CD86 (Figure 7H).

We next sought out to dissect the impact of anti-CD86–tar-
geted immunotherapies on the formation of antigen-specific
T cells. We injected C57Bl/6 mice with an anti-murine CD86-
blocking antibody (αCD86 antibody, 2 injections, day [d]7 and
d4). On d0 and d7, we subcutaneously inoculated mice with a
complexed ovalbumin (OVA) vaccine. On d14, we measured
the amount of OVA-specific T cells by SINFEKL-pentamer
staining. We observed modest reduction of antigen-specific
T cells in the blood, but not in the spleen of αCD86 antibody-
treated mice (Figure 7J). Restimulation of splenocytes with a
SINFEKL peptide did not reveal differences in the amount of
IFN-γ–positive T cells (Figure 7K). When we injected mCD86-
28z CAR or GFP control T cells into lymphodepleted mice,
DEVELOPMENT OF CAR T CELLS IN HODGKIN LYMPHOMA
which were subcutaneously vaccinated with the OVA vaccine on
d24 and d31 (Figure 7L), we did not observe differences in the
percentages of OVA-specific T cells in the blood (Figure 7M) or
the amount of IFN-γ–positive T cells on restimulation of sple-
nocytes (Figure 7N). Adequate expansion of mCD86-28z CAR
T cells and depletion of CD86+ B cells were found as reported
previously (supplemental Figure 8M-N).

Next, we tested the impact of either αCD86 antibody or
mCD86-28z CAR T cell therapy on bacterial host defense. We
made use of a clinically relevant polymicrobial peritonitis
model, which rapidly induces sepsis in mice.59 We first treated
C57Bl/6 mice with an αCD86 or isotype antibody on d7 and d4.
On d0, mice were intraperitoneally injected with cecal slurry,
derived from healthy donor mice (Figure 7O). A sepsis severity
score, which includes hallmark characteristics of sepsis in mice,
did not differ between the treatment groups (Figure 7P). Simi-
larly, bacterial colony formation units in the blood of mice were
not different (Figure 7Q). We then repeated the experiment
using mCD86-28z CAR or GFP control T cells. After injection
into lymphodepleted mice, mCD86-28z CAR T cells again
rapidly expanded in the blood of the mice (supplemental
Figure 8O). After 21 days from T-cell injection, mice were
intraperitoneally injected with cecal slurry (Figure 7R). Mice
treated with mCD86-28z CAR T cells had a lower sepsis severity
score (Figure 7S) and lower colony formation unit counts in the
blood (Figure 7T). We again observed rapid expansion of CAR T
cells and target antigen-specific depletion (CD86+CD19+

B cells) in mCD86-28z–treated mice (supplemental Figure 8Q).

Overall, CD86-targeted immunotherapies seem to have
acceptable safety profiles in mice.
Discussion
We used multidimensional target screening to identify CD86 as
the single most promising target antigen in cHL and illustrate its
expression in different stages of cHL. Yet, the exact underlying
molecular pathways leading to high CD86 expression on HRSCs
remain elusive. Although genetic alterations (eg, copy number
gain of 9p24.1) resulting in high PD-L1–PD-L2 expression on
HRSCs are found in up to 55% of patients with cHL,60 no
genetic alterations in the CD86-coding region have been
reported.60 Our data reveal that CD86 blockade or genetic
knockout does not influence the proliferative capacity of
HRSCs. It can be hypothesized that known activation of proin-
flammatory signaling cascades resulting in JAK/STAT and NF-
κB signaling induces CD86 expression on HRSCs. Furthermore,
EBV positivity is found in up to 30% of patients with cHL.61 The
EBV-encoded genes LMP2a and LMP1 induce a proliferative
cell state by either directly inducing B-cell receptor pathways
through structural similarity (LMP2a) or mimicking CD40
downstream signaling (LMP1). These pathways are known to
increase CD86 expression. Other environmental factors such as
high secretion of IL-4 with subsequent auto- or paracrine
engagement of IL-4R may further contribute to upregulation of
CD86 expression, both in the cHL TME and on HRSCs. CD86+-
HRSCs and CD86+-nontumor cells of the cHL TME then in turn
seem to interact with CTLA-4–expressing T cells, to create
immunologically privileged niches in which HRSCs are prefer-
entially located.51
3 APRIL 2025 | VOLUME 145, NUMBER 14 1547
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indicated time points after adoptive T-cell transfer (ACT) measured by flow cytometry. (D) Percentage of CD86+ B cells (left) or CD86+ monocytes (right) in the blood of C57Bl/6
mice at indicated time points after ACT. (E) Simple linear regression of CD3+CD8+ GFP+ T cells (x-axis) and CD86+ B cells (y-axis) in the blood of the mice over the different
time points after ACT (days 6, 13, 23). r = Pearson correlation coefficient. (F-H) Mice were sacrificed 28 days after ACT, and organs were analyzed by flow cytometry. (F)
Percentage of transferred T cells in the different organs of C57Bl/6 mice. (G) Immune cell composition in organs. (H) Percentage of CD86+ CD11b+ cells in different organs. (A-
H) Data are mean ± SEM of 3 to 8 mice per group. Statistical significance was calculated using 2-way ANOVA with Tukey multiple comparison correction. (I,L) Summary of the
treatment schedule used to assess formation of antigen-specific T cells in C57Bl/6 mice. (J,M) Percentage of OVA-specific T cells in the blood or spleen of antibody (J; n = 4-5
mice per group) or CAR T cell-treated mice (M; n = 7-8 mice per group). SINFEKL pentamer staining was used to measure antigen-specific T cells by flow cytometry. (K,N) IFN-
γ–positive T cells measured by intracellular flow cytometry after restimulating harvested splenocytes with a SINFEKL peptide. (K,N) Mice were injected with aCD86 antibody or
isotype control antibody on the indicated days (K) or treated with depicted amounts of mCD86-28z CAR T cells or GFP control T cells (N). (O,R) Summary of the treatment
schedule used to assess bacterial host defense in C57Bl/6 mice. (O) 4 to 5 mice per group. (R) 8 mice per group. (P,S) Sepsis severity score after injection of cecal slurry. (Q,T)
Bacterial colony counts in the blood (colony formation units per microliter) of mice IP injected with cecal slurry. For all panels, data are mean ± SEM of the indicated n number.
Statistical significance was calculated using 2-way ANOVA with Sidak or Tukey multiple comparison correction or unpaired t test. *P < .05; **P < .01; ***P < .001; ****P < .0001.
ns, P > .05. i.p., intraperitoneal.
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We believe that our results lay the basis for other treatment
modalities such as antibody-drug conjugates or T-cell–
engaging antibodies.62 It should be noted that although we did
not observe slowing of tumor progression in humanized mouse
models with anti-CD86 antibodies, this does not exclude the
possibility of treatment efficacy in humans. A major drawback of
these models is the lack of critical immune cell interactions in
lymphoid organs, preventing deep functional insights into
human immunological processes.63 This is highlighted by the
fact that highly effective treatments for cHL in humans such as
PD-1 blockade do not induce relevant treatment responses in
these models.64

Exploring different treatment modalities could also aid in
overcoming possible limitations of CD86-directed CAR T cells.
CD86 is expressed on antigen-presenting cells, including
microglia, and is upregulated in inflammatory conditions.65 This
might cause on-target–off-tumor toxicities, immune-effector
cell-associated neurotoxicity (due to microglia expression) or
predispose to opportunistic viral or bacterial infections. These
DEVELOPMENT OF CAR T CELLS IN HODGKIN LYMPHOMA
theoretical considerations could, however, not be confirmed in
various syngeneic mouse models.

These risks should also be interpreted in the clinical context, in
which CD86-targeted immunotherapies could be used.
Although most patients with cHL can be cured with novel, less
toxic multimodal treatment regimens,6 in R/R cHL, treatment
alternatives include high-dose chemotherapy and autologous/
allogeneic stem cell transplantation. Both short-term and long-
term toxicities of these therapies (therapy-related secondary
malignancies, graft-versus-host disease) are expected to be
more detrimental than those of CD86-directed immunother-
apies. Our results confirm high expression of CD86 in R/R cHL,
underpinning the value of CD86-targeted immunotherapy as an
option for salvage therapies.

Collectively, our results reveal that CD86-targeted immuno-
therapies act on several hallmark characteristics of cHL and
could serve as a first-in-class dual cytolytic- and checkpoint-
inhibitory agents in cHL.
3 APRIL 2025 | VOLUME 145, NUMBER 14 1549
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Microarray data set of laser-dissected HRS cells is publicly accessible
under the Gene Expression Omnibus database (accession number
GSE12453). Single-cell data sets of cHL specimens are deposited in the
European Genome-phenome Archive (EGAS00001004085).

The transcriptomic single-cell atlas was generated using published data
sets and can be accessed through the respective studies 27 to 50;
scripts for replicating the figures from the scRNA-seq analysis will be
made available in the following GitHub repositories on publication:
https://gitfront.io/r/vlkavaka/298HUSeN1dik/hodgkin-2023/ and https://
gitfront.io/r/MThomas/hXvhiqhnRjjy/HL-off-tumor-antigen-expression/.
Supplemental Figure 1C summarizes all used publicly available scRNA-
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scripts for replicating the figures from the scRNA-seq data can be
found in the GitHub repository at https://github.com/beltranLab/
hodgkin_2023 and https://github.com/MoritzTh/HL_off-tumor-antigen-
expression/. Count matrices of processed scRNA-seq data will be
made available upon reasonable request. All raw data generated in this
study will be uploaded to the LMU open data repository (https://data.
ub.uni-muenchen.de) and can be accessed by using the article’s digi-
tal object identifier (DOI) in accordance with the principles of open
science of the European Research Council (ERC). All reagents and
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biological material will be made available upon reasonable request to
the authors given the agreement by the providing institution.

The online version of this article contains a data supplement.
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