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Abstract
Background London taxi drivers’ navigationally challenged hippocampi are known to be enlarged, and reduced Alzheimer’s 
disease (AD)-related mortality has recently been shown in similarly well-versed drivers, implying a neuroprotective effect 
through hippocampal engagement. Vestibular function has been linked to hippocampal size, suggesting that vestibular input 
may influence AD risk.
Methods Including 16 known modifiable lifestyle factors as covariates, we analyzed UK Biobank (UKB) volunteers aged 
over 55 years and without dementia at baseline to assess how peripheral vestibular dysfunction (PVD) influences the likeli-
hood of an AD diagnosis.
Results 4684 AD and 2133 PVD cases were identified based on their ICD diagnoses; even accounting for other risk factors, 
PVD increased the risk of AD 1.7 times in UKB volunteers.
Discussion Vestibular loss, linked to hippocampal atrophy and default mode network disruption, appears to increase AD 
risk. Consequently, active vestibular stimulation by balance training or neuromodulation could offer potential for modifying 
AD progression.
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Introduction

In an aging society, interest and research in dementia have 
been expanding over recent decades as its increasing preva-
lence is placing an ever heavier burden on care systems and 
the population [1]. While research focused on familial forms 
of early-onset dementia with Mendelian inheritance (such 
as familial Alzheimer’s disease (AD), familial frontotem-
poral dementia (FTD) or inherited prion disease) has been 
crucial to furthering our understanding of the underlying 
clinical-pathological processes [2], in older age, most cases 
appear to be sporadic, with AD the commonest late-onset 
dementia [3]. A recent study showed reduced AD-related 

mortality among drivers frequently engaged in navigational 
tasks, suggesting a neuroprotective effect of spatial cognition 
and hippocampal engagement [4]. AD patients have been 
demonstrated to suffer from balance and vestibular func-
tion impairment [5, 6], and falls in the otherwise healthy 
older adults have been shown to predict future dementia 
diagnoses [7], underscoring the links between the vestibular 
system and AD dementia, although a causal link has never 
been proven. Previously, the posterior hippocampi of highly 
trained navigator London taxi drivers have been shown to 
be significantly larger relative to those of control subjects, 
while similarly, the hypertrophied posterior hippocampi of 
ballet dancers and slackliners demonstrated the effects of 
intensive balance training [8]. Conversely, patients with 
acquired chronic bilateral vestibular loss develop atrophy 
of the hippocampus [9], impacting spatial memory [10, 11]. 
These patients show selective deficits in finding novel routes 
in real space, alongside reduced navigation-induced right 
hippocampal activation, suggesting that allocentric spatial 
orientation relies on vestibular input [12, 13]. Based on 
these findings, it appears possible that vestibular sensory 
input may influence the resilience of cerebral networks and 
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thereby the risk of dementia [14–16]; we, therefore, asked 
whether the elderly with peripheral vestibular dysfunction 
are at a higher risk of AD.

Methods

In order to test this hypothesis, we analyzed data from the 
UK Biobank (UKB), a population-based, deeply phenotyped 
cohort of more than 500,000 participants aged 40–69 years 
at recruitment linked to their continually updated health 
records [17]. Ethics approval was provided by the National 
Information Governance Board for Health and Social Care 
and the National Health Service North West Multicen-
tre Research Ethics Committee; all participants provided 
informed consent through electronic signature at the base-
line assessment.

After downloading and unpacking the data in R (version 
2024.04.1 + 748) using ukbtools [18], the dataset of 502,414 
participants was filtered to only include participants aged 
over 55 years of age at baseline to allow time for partici-
pants to develop late-onset AD during the 17-year follow-up 
between recruitment and data dispensation; participants with 
dementia known to have been diagnosed prior to their first 
assessment were excluded using the UKB variable “date_of_
all_cause_dementia_report_f42018_0_0”. A logistic regres-
sion was run using a glm model in R to calculate the impact 
of peripheral vestibular dysfunction on the likelihood of an 
AD diagnosis, including known modifiable lifestyle factors 
as covariates [19]. Other forms of dementia, central vertigo, 
and unspecified dizziness were excluded from the analysis. 
To create the relevant covariate variables, subsets of partici-
pants were created for AD, hearing loss, obesity, hyperten-
sion, and depression by extracting ICD9 and ICD10 diagno-
ses from the dataset. For the subset “vestibular dysfunction”, 
this included the ICD10 codes “H81.0 Menière disease”, 
“H81.1 Benign paroxysmal vertigo”, “H81.2. Vestibular 
neuronitis”, “H81.3 Other peripheral vertigo”, “H81.8 Other 
disorders of vestibular function”, “H81.9 Disorders of ves-
tibular function, unspecified”, but excluded “H81.4 Vertigo 
of central origin” to focus on peripheral sensory input. For 
ICD9, the diagnoses “386.1 Vestibular neuronitis”, “386.2 
Benign paroxysmal positional vertigo (BPPV)”, “386.3 
Labyrinthitis”, “386.5 Labyrinthine dysfunction”, “386.8 
Other specified disorders of vestibular function”, and “386.9 
Unspecified vertiginous syndrome” were included in the ves-
tibular dysfunction subset, while “386.4 Vertigo of central 
origin” was excluded. UKB data variables were coded as 
factors for the Townsend deprivation index at recruitment, 
excess alcohol consumption (> 6 units of alcohol at least 
weekly), physical activity (1–2 h of moderate exercise), age 
when full time education was completed (as a measure of 
overall education), inverse distance to the nearest major road 

(as a measure of air pollution), diabetes, loneliness and iso-
lation, sleeplessness and insomnia, pack years of smoking, 
and whether someone used a hearing aid. Since both AD 
and vestibular disorders have a strong relationship with age, 
in addition to age at first assessment, we added  age2 and 
 age3 terms into the model to account for a likely non-linear 
relationship. We also filtered the data based on the encoded 
dates of the ICD diagnoses to exclude participants diagnosed 
with AD prior to a diagnosis of peripheral vestibular dys-
function (PVD).

Results

Baseline characteristics of participants are shown in 
Table 1. Filtering the 502,414 UKB participants to only 
include participants aged over 55 years of age at baseline 
left 291,426; after excluding participants with dementia 
known to have been diagnosed prior to their first assess-
ment, 291,240 participants were included in the analysis. 

Table 1  Overview of the characteristics of the cohort

The total of 502,414 UKB participants were filtered to only include 
those over 55 years old at the first assessment, leaving 291,426 par-
ticipants. From this cohort all those with a diagnosis of any dementia 
before their first assessment were removed, leaving 291,240 partici-
pants in the study cohort
AD Alzheimer’s disease, TBI traumatic brain injury, N number

Characteristic N of 291,240 
participants

UKB participants > 55 years without dementia old at 
first assessment

291,240

Female sex 155,871
Participants with vestibular dysfunction 2133
Participants diagnosed with AD 4684
Participants diagnosed with hearing loss 9742
Participants diagnosed with TBI 1750
Participants diagnosed with obesity 21,268
Participants diagnosed with hypertension 113,586
Participants diagnosed with depression 16,373
Participants diagnosed with diabetes 19,341
Participants drinking > 6 units of alcohol at least 

weekly
10,285

Participants reporting moderate exercise at least 1–2 h 12,030
Participants reporting frequent feelings of loneliness 47,897
Participants reporting frequent insomnia 228,528
Participants using a hearing aid 12,676
Average Townsend index of deprivation – 1.5102
Average age at leaving full time education 16.16 years
Average inverse distance to the next major road 0.005655754
Average age at first assessment 62.47 years
Average pack years of smoking tobacco 25.75 years
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Having already removed all participants who were diag-
nosed with any type of dementia prior to their first UK 
Biobank assessment (using the “date of all dementia 
report” variable), we found that the ICD diagnoses for 
both PVD and AD were coded on the same day for all 
cases diagnosed with both. Using the “date of all dementia 
report” variable again, we found that, where this variable 
had been encoded, the date of the dementia report was 
later than the ICD PVD diagnosis dates in all cases where 
both diagnoses were present. We, therefore, proceeded 
with the analysis. Of the 291,240 participants, 155,871 
were female and 135,369 were male. According to their 
health records, 4684 participants were diagnosed with 
AD after their initial UKB assessment, or their date of 
diagnosis was censored, and 2133 participants had been 
diagnosed with peripheral vestibular disorders. Further-
more, 16,373 participants had a history of depression, 
19,341 participants had been diagnosed with diabetes by 
a doctor, 21,268 participants had been diagnosed as obese, 
1750 participants had had a traumatic brain injury (TBI), 
9,742 participants had been diagnosed with hearing loss 
and 113,586 suffered from hypertension. Based on their 
questionnaire answers, 15,955 participants drank > 6 units 
of alcohol at least monthly, 12,030 participants reported 
at least 1–2 h of moderate exercise, 47,897 participants 
reported feelings of loneliness, 228,528 participants 
reported insomnia at least sometimes, and 12,676 partici-
pants used a hearing aid. Unavailable data for these vari-
ables was interpreted as a negative response. Participants 
completed their full time education at a mean of 16.16 
years, were on average 62.47 years old at their first UKB 
assessment, had a mean of 25.75 pack years of smoking 

tobacco, and a mean Townsend index of deprivation of 
– 1.5102. Participants mean inverse distance to the next 
major road was 0.005655754 (see Table 1).

The logistic regression showed that hearing aid use, 
male or female sex, loneliness, and the inverse distance to 
a major road were not significantly correlated with a diag-
nosis of AD in our analysis and were, therefore, removed 
as covariates. In our analysis, UKB volunteers with ves-
tibular dysfunction were 1.7 times as likely to receive a 
diagnosis of AD as those without (p = 0.0094, OR = 1.72, 
CI 1.12–2.55), even accounting for other contributing 
covariates. Other significant factors increasing the likeli-
hood of AD included the Townsend deprivation index at 
recruitment (p = 1.97e-06, OR = 1.04, CI 1.02–1.06), hear-
ing loss (p = 0.0024, OR = 1.38, CI 1.11–1.69), traumatic 
brain injury (TBI) (p < 2e-16, OR 4.85, CI 3.56–6.492), 
hypertension (p = 9.91e-16, OR = 1.63, CI 1.45–1.84), 
depression (p: 2e-16, OR = 3.18, CI 2.77–3.64), age (p, 
OR = 2.68 e-8, CI 3.69 e-14–0.0212),  age2 (p: 0.0016, 
OR = 1.32, CI 1.06–1.63),  age3 (p: 0.0127, OR = 0.999, 
CI 0.997–1.00), sleeplessness/insomnia (p = 4.19e-07, 
OR = 1.26, CI 1.15–1.38), and diabetes (p = 1.40e-06, 
OR 1.30, CI 1.17–1.45). In our analysis, frequent (at least 
monthly) consumption of more than 6 units of alcohol 
significantly decreased the likelihood of AD (p = 6.02e-05, 
OR 0.283, CI 0.165–0.448), as did obesity (p = 0.0342, 
OR = 0.83, CI 0.69–0.98), frequent moderate physical 
activity (p = 0.012000 OR = 0.56, CI 0.35–0.86), and edu-
cation (p = 0.024, OR = 0.98, CI 0.96–0.998), while pack 
years of smoking only had a marginal effect (p = 0.0009, 
OR = 1.00, CI 1.00–1.01). An interaction analysis between 

Image  1  Odds ratios and 95% confidence intervals for the predic-
tion of Alzheimer’s disease. Shown are odds ratios for Alzheimer’s 
disease (AD) with their 95% confidence intervals (x-axis) for each 

significant predictor in the analysis (y-axis). AD Alzheimer’s disease, 
TBI traumatic brain injury, H81_subset vestibular dysfunction
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vestibular dysfunction and hearing loss showed no signifi-
cant interaction. See Image 1 and Table 2 for details.

Discussion

Patients with AD have been known to suffer from higher 
rates of vestibular dysfunction for some time [20]; a recent 
study has shown a dose–response relationship between 
cognitive decline and vestibular dysfunction [21]. So far, 
whether this is due to cause or effect has been widely con-
tested, with some suggesting that that early neurodegen-
erative change might either cause vestibular symptoms or 
increase the likelihood of seeking primary care for vestibular 
disorders. However, new evidence now points towards a pro-
tective effect of intense navigational training [4], suggesting 
that vestibular deficits may indeed be an independent risk 
factor for AD. Focusing on a population-based approach, our 
analysis demonstrates that UKB volunteers with vestibular 
dysfunction are 1.7 times as likely to be diagnosed with AD 
even taking into account other known risk factors.

Vestibular function [22] and functional vestibular corti-
cal connectivity [23] demonstrably decline with age; clini-
cally relevant peripheral vestibular dysfunction is most likely 
underdiagnosed given a prevalence of balance dysfunction 
of 35% even in relatively young adults [24], long before 
early neurodegenerative changes would be expected even 
in those patients who later go on to develop AD or other 

dementias. Falls in otherwise healthy older adults can pre-
dict future dementia diagnoses [7], likely reflecting neuron 
loss in cholinergic and aminergic nuclei [25]. However, this 
more likely follows vestibular input loss, rather than caus-
ing peripheral sensory loss. Non-specific dizziness and falls 
often stem from autonomic dysfunction or gait disturbances, 
e.g. due to Parkinson’s disease dementia [26] or later stages 
of dementia, particularly in care homes [27–29]. While 
patients with clinical dementia exhibit higher healthcare 
utilization, including more frequent primary care visits, 
hospitalizations, and prescriptions [30], evidence suggests 
that this is primarily due to complex medical needs, such 
as fractures, cardiovascular diseases and neuropsychiatric 
symptoms [31], with utilization increasing over time. It is, 
therefore, crucial to distinguish peripheral vestibular deficits 
as a distinct sensory dysfunction from non-specific dizziness 
and falls, which may signal advancing neurodegenerative 
disease. For this reason, we excluded central vestibular defi-
cits and dizziness/giddiness from our analysis. Peripheral 
vestibular dysfunction as a specific risk factor for AD should 
lead to more accurate population screening in middle age 
and updates to the clinical care of patients with vestibular 
disorders. In addition, it raises the question whether regular 
balance training may delay the progression of mild cognitive 
impairment to the full clinical picture of dementia as new 
evidence now points towards a protective effect of intense 
navigational training [4]. As expected, education and moder-
ate physical activity slightly decreased the likelihood of an 

Table 2  Odds ratios and 
confidence intervals

Many known modifiable risk factors for Alzheimer’s disease (AD) were highly significant and had strong 
effect sizes; still vestibular dysfunction increased the likelihood of an AD diagnosis strongly and signifi-
cantly
AD Alzheimer’s disease, TBI traumatic brain injury, CI confidence interval. Level of significance: * = 
<0.05, ** = <0.01, *** = <0.001

Covariates Odds_Ratio CI_Lower CI_Upper Pr( >|z|)

(Intercept) 1.18E + 156 8.24E + 31 1.78E + 279 0.013336*
H81 subset 1.72 1.12 2.55 0.009387**
Townsend deprivation index at recruitment 1.04 1.02 1.06 1.97e-06***
Hearing loss subset 1.38 1.11 1.69 0.002448**
TBI subset 4.85 3.56 6.49  < 2e-16***
Obesity subset 0.828 0.693 0.983 0.034185*
Hypertension subset 1.63 1.45 1.84 9.91e-16***
Depression subset 3.18 2.77 3.64  < 2e-16***
Excess alcohol frequent 0.283 0.165 0.448 6.02e-07***
Activity frequent 0.564 0.349 0.857 0.011997*
Age completed full time education 0.980 0.963 0.998 0.024449*
Age when attended assessment center 0.0268E-02 0.000369 0.0212E 0.011565*
Age squared 1.32 1.06 1.63 0.011671*
Age cubed 0.999 0.997 1.00 0.012662*
Diabetes diagnosed by doctor 1.30 1.17 1.45 1.40e-06***
Sleeplessness insomnia 1.26 1.15 1.38 4.19e-07***
Pack years of smoking 1.00 1.00 1.01 0.000899***
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AD diagnosis, possibly indicating the strength of underlying 
connections, networks and training effects. While (at least 
monthly) consumption of more than 6 units of alcohol and 
obesity decreased the likelihood of an AD diagnosis, sex 
and hearing aid use did not have a significant effect. For 
obesity, this may be due to our cohort’s mean age of 62, 
where the harmful effects in middle age transition to frailty 
protection in later life [32].Our results are consistent with 
the neurobiology of the central vestibular system [33–35] 
and with previous evidence that acquired chronic bilateral 
vestibular loss leads to hippocampal atrophy [9, 10], and 
that unilateral vestibular loss disrupts the default mode net-
work [36]. While vestibular dysfunction earlier in life has 
been shown to increase the risk of AD [37], PVD appears 
not to be directly associated with beta-amyloid deposition 
in AD patients or to directly influence this aspect of the 
pathology [38]. One possible explanation may be that, in 
AD, the posterior default mode network fails before amy-
loid plaques become measurable; this initiates a connectivity 
cascade involving hubs of high connectivity, which in turn 
are associated with amyloid accumulation [39]. The influ-
ence of modifiable risk factors, such as vestibular function, 
depression, and TBI, on network disruption may go some 
way to explain the gap between neuropathology and clinical 
deficits. Beyond their impact on progression, disorders of 
vestibular function may even influence the development of 
AD sub-phenotypes with a predominant affection of visu-
ospatial cognitive domains [40, 41], and to be markers of 
premature aging and harbingers of dementia [14]. Inversely, 
impairment of allocentric spatial orientation performance 
is a robust predictor of AD pathology in patients with mild 
cognitive impairment [42]. Frequent practice of navigational 
tasks, balance training, and potentially targeted vestibular 
stimulation may therefore foster hippocampal resilience with 
potentially disease modifying effects. Recently, non-invasive 
noisy galvanic stimulation of primary vestibular afferents 
has been shown to improve spatial cognition in animal mod-
els of vestibular loss [43] and cognitive impairment [44]. 
Limitations of this study include the lack of diagnosis tim-
ing for all cases of PVD and AD, the correlational nature 
of the findings, and the underdiagnosis of PVD, meaning 
some participants may not have an ICD-recorded diagno-
sis. Further research is therefore needed to provide a deeper 
understanding of how vestibular function may impact cer-
ebral networks and their degeneration.
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