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A cerebrospinal fluid synaptic protein 
biomarker for prediction of cognitive 
resilience versus decline in Alzheimer’s 
disease
 

Rates of cognitive decline in Alzheimer’s disease (AD) are extremely 
heterogeneous. Although biomarkers for amyloid-beta (Aβ) and tau 
proteins, the hallmark AD pathologies, have improved pathology-based 
diagnosis, they explain only 20–40% of the variance in AD-related cognitive 
impairment (CI). To discover novel biomarkers of CI in AD, we performed 
cerebrospinal fluid (CSF) proteomics on 3,397 individuals from six major 
prospective AD case–control cohorts. Synapse proteins emerged as the 
strongest correlates of CI, independent of Aβ and tau. Using machine 
learning, we derived the CSF YWHAG:NPTX2 synapse protein ratio, which 
explained 27% of the variance in CI beyond CSF pTau181:Aβ42, 11% beyond 
tau positron emission tomography, and 28% beyond CSF neurofilament, 
growth-associated protein 43 and neurogranin in Aβ+ and phosphorylated 
tau+ (A+T1+) individuals. CSF YWHAG:NPTX2 also increased with normal 
aging and 20 years before estimated symptom onset in carriers of 
autosomal dominant AD mutations. Regarding cognitive prognosis, CSF 
YWHAG:NPTX2 predicted conversion from A+T1+ cognitively normal to 
mild cognitive impairment (standard deviation increase hazard ratio = 3.0, 
P = 7.0 × 10–4) and A+T1+ mild cognitive impairment to dementia (standard 
deviation increase hazard ratio = 2.2, P = 8.2 × 10–16) over a 15-year follow-up, 
adjusting for CSF pTau181:Aβ42, CSF neurofilament, CSF neurogranin, CSF 
growth-associated protein 43, age, APOE4 and sex. We also developed a 
plasma proteomic signature of CI, which we evaluated in 13,401 samples, 
which partly recapitulated CSF YWHAG:NPTX2. Overall, our findings 
underscore CSF YWHAG:NPTX2 as a robust prognostic biomarker for 
cognitive resilience versus AD onset and progression, highlight the potential 
of plasma proteomics in replacing CSF measurement and further implicate 
synapse dysfunction as a core driver of AD dementia.
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YWHAZ, YWHAH, NEFL, NEFH, DLG2, HOMER1, MAP1LC3A, PPP3CA and 
PPP3R1. The YWHA family (which encode 14-3-3) proteins, DLG2 and 
calcineurin subunits (PPP3CA and PPP3R1) were strongly associated 
with pTau181:Aβ42 (ref. 20) (Extended Data Fig. 1b,c). In line with these 
observations, Aβ42 signaling promoted calcineurin activity21, and inhibi-
tion of calcineurin activity protected from Aβ-induced and tau-induced 
synapse loss and CI in mice22,23. Notably, SMOC1, an extracellular matrix 
protein previously linked to AD and Aβ plaques24,25, was not associated 
with CI after pTau181:Aβ42 adjustment (Extended Data Fig. 1b).

The most downregulated proteins included NPTX2, NPTXR, SLI-
TRK1, CBLN4, LRFN2 and EPHA4. These proteins were weakly negatively 
associated with pTau181:Aβ42 (ref. 20) (Extended Data Fig. 1b,c). The 
most downregulated protein was NPTX2, encoded by an immediate 
early gene that regulates homeostatic scaling of excitatory synapses 
on parvalbumin interneurons26 to prevent neuronal network hyperacti
vity27. In line with its reduction in AD CSF, NPTX2 mRNA and protein are 
downregulated in AD neurons based on brain single-cell RNA sequenc-
ing, immunohistochemistry and bulk proteomic studies28,29. Interest-
ingly, overexpression of NPTX2 tau P301S in the mouse hippocampus 
protects synapses from complement-mediated glial engulfment30, 
suggesting that it may be a synaptic resilience factor.

Given the enrichment of synapse proteins, we sought to derive a 
multiprotein synaptic signature of CI. Using the ADNI data, we trained 
a penalized linear model to predict CI severity based on the levels 
of 214 synapse proteins that significantly changed with CI. We used 
recursive feature elimination (RFE) to further simplify the model to 
facilitate clinical applications (Fig. 1d). The model identified a near 1:1 
difference between YWHAG and NPTX2 to be a suitable signature of CI 
(Fig. 1d). As we log-normalized the z-scored protein levels before the 
analyses, the difference between normalized protein levels represents 
a normalized ratio. The figures refer to YWHAG.1, a specific YWHAG 
proteoform detected by the SomaLogic aptamer with SeqId: 4179-57. 
Notably, ratios between CSF YWHA family proteins and NPTX2 based 
on MS have been previously associated with general AD phenotypes31,32, 
suggesting reproducibility across cohorts and proteomic platforms.

We validated the association of YWHAG:NPTX2 with CI across 
all cohorts with SomaScan data (ADNI r = 0.54; Knight-ADRC r = 0.55; 
Stanford r = 0.62; DIAN r = 0.66; total n = 2,067) including both sporadic 
AD and ADAD (Fig. 1e and Supplementary Table 4). Correlations were 
consistent across sexes (Extended Data Fig. 1d) and slightly exceeded 
the correlations of pTau181:Aβ42 with CI (Extended Data Fig. 1e). The 
YWHAG:NPTX2 ratio was not significantly affected by the cohort 
(Fig. 1f), making it advantageous for clinical applications.

To assess the potential of using YWHAG:NPTX2 for cognitive 
diagnosis, we tested logistic regression models that aimed to dis-
tinguish individuals across different CI stages. We found that while 
pTau181:Aβ42 had better performance in distinguishing individuals 
with MCI versus cognitively normal individuals, YWHAG:NPTX2 had 
better performance in the later stages (Fig. 1g, Extended Data Fig. 1f 
and Supplementary Table 5). When tasked to distinguish individuals 
with dementia versus cognitively normal individuals, YWHAG:NPTX2 
with an area under the curve (AUC) of 0.97 was predictive (Fig. 1g and 
Extended Data Fig. 1g).

We next sought to determine the robustness of YWHAG:NPTX2 
in explaining CI beyond AD pathology. We observed that while 
YWHAG:NPTX2 and pTau181:Aβ42 were correlated (r = 0.61), low and 
high levels of YWHAG:NPTX2 further separated A+T1-positive (A+T1+) 
(log10 pTau181:Aβ42 > −1; Methods) individuals into no impairment versus 
dementia, respectively (Fig. 1h). Among A+T1+ individuals (n = 898), 
62% of individuals with low levels of YWHAG:NPTX2 (bottom 25th 
percentile) were cognitively normal and 37% had only MCI, whereas 
only 4% of individuals with high YWHAG:NPTX2 (top 25th percen-
tile) were cognitively normal and 46% had dementia (Extended Data 
Fig. 2a). This pattern was consistent across cohorts and both spo-
radic AD and ADAD. Using linear regression, we found that pTau181:Aβ42 

Alzheimer’s disease (AD) is the most common age-related neurodegen-
erative disease characterized by decades-long buildup of amyloid-beta 
(Aβ) plaques and neurofibrillary tau tangles followed by dementia1. 
Rates of cognitive decline in AD are extremely heterogeneous, with 
symptom onset occurring between the ages of 40 and 100 years and 
conversion from mild cognitive impairment (MCI) to AD dementia 
occurring in 2–20 years2. While the development of cerebrospinal 
fluid (CSF) and positron emission tomography (PET) biomarkers of 
Aβ and tau have begun to untangle this heterogeneity and have thereby 
improved AD diagnosis, patient stratification and drug development3–7, 
Aβ and tau still only explain 20–40% of the variance in cognitive impair-
ment (CI) in AD8–11 (Extended Data Fig. 1a), suggesting the existence 
of additional drivers of AD dementia. The prevalence of Aβ+ cogni-
tively normal aged individuals further underscores the need for an 
increased understanding of what drives AD dementia versus cognitive 
resilience12,13.

The ‘A/T/N’ (Aβ/tau/neurodegeneration) AD biomarker 
framework14, developed by the National Institute on Aging (NIA) and 
the Alzheimer’s Association, structures the integration of biomarkers. 
Among CSF biomarkers, Aβ42 is typically used to define ‘A’ positivity 
and pTau181 to define ‘T1’ (phosphorylated secreted tau) positivity14. 
The CSF pTau181:Aβ42 ratio captures both aspects simultaneously15,16. 
‘T2’ includes emerging biomarkers of fibrillary tau proteinopathy, such 
as CSF pT205, CSF MTBR-243 (ref. 17) and tau PET18. The ‘N’ category 
includes Aβ-independent and tau-independent biomarkers of AD, such 
as neurofilament light (NfL) for axon degeneration and neurogranin 
(Ng) for synapse dysfunction5. However, these ‘N’ biomarkers explain 
only a small additional proportion of variance in CI beyond Aβ and tau5.

To discover new robust Aβ-independent and tau-independent 
correlates of CI in AD, we performed large-scale proteomics (SomaS-
can, mass spectrometry (MS)) on the CSF of 3,397 individuals across 
six deeply phenotyped case–control cohorts with AD spanning both 
sporadic and autosomal dominant AD (ADAD): Stanford (includes the 
Stanford Alzheimer’s Disease Research Center (ADRC), Stanford Aging 
and Memory Study (SAMS) and Poston cohort); Knight-ADRC; Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI); Dominantly Inherited 
Alzheimer’s Network (DIAN); BioFINDER2; and Kuopio University 
Hospital (Fig. 1a and Supplementary Table 1). We integrated these CSF 
proteomics data with CSF and PET biomarkers of Aβ and tau, cognitive 
function, age, sex, APOE4 genotype and ADAD mutation status to derive 
a robust CSF biomarker of CI that explains CI beyond existing A/T/N 
biomarkers. Lastly, we derived a plasma surrogate of the CSF biomarker 
based on the SomaScan plasma proteomics data from 2,829 individu-
als from the Knight-ADRC and Religious Order Study/Memory Aging 
Project (ROSMAP) cohorts and evaluate the signature in an additional 
9,502 individuals from Stanford, the Global Neurodegeneration Prot-
eomics Consortium (GNPC) (https://www.neuroproteome.org/) and 
the Atherosclerosis Risk in Communities (ARIC) study.

Multicohort CSF proteomics for AD biomarker 
discovery
We performed proteomics on 3,397 CSF samples (3,187 with a complete 
CI diagnosis) from six independent cohorts. To identify CSF proteins 
that explained additional variance of CI beyond AD pathology, we 
regressed the global clinical dementia rating (CDR) (a clinical CI score) 
against CSF protein levels, while adjusting for CSF pTau181:Aβ42, age, 
sex, APOE4, cohort and principal component 1 (PC1) of the proteome 
(Methods). We analyzed the SomaScan proteomics data (7,289 protein 
measurements per sample) from the Knight-ADRC (n = 756) and ADNI 
(n = 716) cohorts for discovery.

We identified 675 significantly (Benjamini–Hochberg q < 0.05) 
upregulated and 721 significantly downregulated proteins with CI 
(Fig. 1b and Supplementary Tables 2 and 3). The most significant pro-
teins were enriched at the synapse (based on the SynGO database19; 
Fig. 1c). The most upregulated synapse proteins included YWHAG, 
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explained 10% of the variance in CI in A+T1+ individuals, YWHAG:NPTX2 
explained 36% and YWHAG:NPTX2 explained an additional 27% beyond 
pTau181:Aβ42 (Fig. 1i). YWHAG:NPTX2 was significantly associated with 
CI independently of pTau181:Aβ42 and age in A+T1+ individuals across all 
cohorts and proteomic platforms (Extended Data Fig. 2b). Notably, in 
the DIAN ADAD cohort, YWHAG:NPTX2 was associated with CI even 

after accounting for the estimated age at symptom onset (Extended 
Data Fig. 2b).

While pTau181:Aβ42 is a robust biomarker of Aβ plaques and phos-
phorylated secreted tau, it is not well representative of tau tangle load 
(T2), which is known to correlate with CI more strongly18. Therefore, we 
analyzed the BioFINDER2 cohort; we performed time-point-matched 
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Fig. 1 | The CSF YWHAG:NPTX2 ratio explains a substantial proportion of 
variance in CI beyond amyloid and tau in AD. a, Study design. Integration of CSF 
proteomics, AD pathology biomarkers and clinical cognitive scoring from six 
independent cohorts to identify the molecular correlates of CI, independently 
of AD pathology. b, Volcano plot showing the change with CI independent of age, 
sex, cohort, APOE4 dose and pTau181:Aβ42, and PC1 of the CSF proteome, in the 
Knight-ADRC and ADNI cohorts (n = 1,472). Bold indicates synapse proteins based 
on the SynGO database; q values are Benjamini–Hochberg-corrected P values.  
c, Rank-based pathway enrichment heatmap of differentially abundant proteins. 
Cells are color-coded according to − log10(q). d, A penalized linear model was 
trained to predict CI severity using synaptic proteins that significantly changed 
with CI. RFE showed that two proteins sufficiently captured 83% of the full model 
performance. Model coefficients show the normalized ratio between YWHAG.1 
and NPTX2. e, Box plot showing YWHAG.1:NPTX2 versus CI severity across 
cohorts with the SomaScan data (n = 2,067). The box bounds are the Q1, median 
and Q3; the whiskers show Q1 − 1.5× the interquartile range (IQR) and Q3 + 1.5× the 

IQR. f, CSF YWHAG.1:NPTX2 regressed against age, CI, sex and cohort in a linear 
model (n = 2,067). The points and error bars represent the standardized effect 
sizes and 95% confidence intervals. g, AUC results from the logistic regression to 
classify CI stage based on YWHAG.1:NPTX2 or pTau181:Aβ42. All SomaScan cohorts 
are included (n = 2,067). h, YWHAG.1:NPTX2 versus pTau181:Aβ42, color-coded 
according to CI. Linear correlation and P value are shown. i, r2 results from a 
linear model regressing CI against covariates displayed on the x axis in A+T1+ 
individuals (n = 898). The difference in r2 values between the full model and the 
model with only pTau181:Aβ42 is shown. j, As in h but for YWHAZ:NPTX2 versus 
tau PET in Aβ+ individuals in BioFINDER2. k, As in i but with different covariates 
in BioFINDER2 (n = 512). The difference of r2 values between the full model and 
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BioRender.com.
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targeted CSF synapse protein MS proteomics, tau PET imaging and CSF 
Aβ42:Aβ40 measurement32. As YWHAG was not measured, we analyzed 
YWHAZ, a related protein (r = 0.92; Extended Data Fig. 2c), which was 
also associated with CI albeit not as strongly (Fig. 1b and Extended 
Data Fig. 2d). We confirmed the association of YWHAZ:NPTX2 with 
CI based on MS in BioFINDER2 (r = 0.63; Extended Data Fig. 2e). We 
plotted YWHAZ:NPTX2 versus tau PET in Aβ+ individuals (n = 512), 
color-coded according to CI severity (Fig. 1j). We observed several 
interesting patterns. First, we found a moderate correlation between 
YWHAZ:NPTX2 and tau PET (r = 0.45). Second, we observed that all indi-
viduals with above moderate levels of tau had above moderate levels 
of YWHAZ:NPTX2, but not vice versa, suggesting that YWHAZ:NPTX2 
may change before tau during AD progression. Third, we observed 
that YWHAZ:NPTX2 and tau PET independently explained CI severity. 
Using linear regression, we found that Aβ42:Aβ40 and tau PET together 
explained 35% of the variance in CI in Aβ+ individuals; YWHAZ:NPTX2 
explained an additional 11% beyond Aβ42:Aβ40 and tau PET (Fig. 1k). 
The association of YWHAZ:NPTX2 with CI was robust to additional 
adjustment with age, APOE4 dose, sex and CSF NfL (Extended Data 
Fig. 2f,g). Although YWHAG:NPTX2 and YWHAZ:NPTX2 were highly 
correlated (r = 0.94) in SomaScan (Extended Data Fig. 2c), additional 
studies are needed to confirm the association of YWHAG:NPTX2 with 
CI independently of tau PET.

Together, these results show that CSF synapse proteins, some 
with established causal roles in synaptic and cognitive resilience to AD 
pathology in mouse models (that is, calcineurin, NPTX2), are among 
the strongest correlates of CI severity independent of Aβ and tau in 
humans, and that the CSF YWHAG:NPTX2 ratio is a synapse protein 
signature that explains a major proportion of variance in CI in AD 
beyond gold standard biomarkers of Aβ and tau.

CSF YWHAG:NPTX2 versus established 
neurodegeneration AD biomarkers
While we observed that CSF YWHAG:NPTX2 explained CI beyond Aβ and 
tau, whether it also explained CI beyond established biomarkers of neu-
rodegeneration and synapse dysfunction was unknown. Therefore, we 
compared CSF YWHAG:NPTX2 with CSF NfL, growth-associated protein 
43 (GAP-43) and Ng5, which were also measured on the SomaScan assay. 
We confirmed that the levels of these biomarkers based on SomaScan 
were highly correlated with levels based on established immunoassays 
used in AD research33,34 (Supplementary Fig. 2). We further confirmed 
that the levels of these biomarkers were higher in AD and A+T1+ individu-
als compared to controls in the Knight-ADRC and ADNI cohorts (Fig. 2a).

We examined pairwise correlations between YWHAG:NPTX2 
and these ‘N’ biomarkers in the Knight-ADRC and ADNI cohorts (total 
n = 1,472) and found that YWHAG:NPTX2 was notably distinct from 
the rest (Fig. 2b–d). To our surprise, CSF YWHAG:NPTX2 was slightly 
negatively correlated with GAP-43 (r = −0.07) and Ng (r = −0.09), even 
though all biomarkers were positively correlated with AD.

Regarding associations with CI, we observed that NfL, GAP-43 and 
Ng each and together explained only a small proportion of the variance 
in CI (1–5%) in A+T1+ individuals (Fig. 2e). Conversely, YWHAG:NPTX2 
explained 31% of the variance, 28% beyond NfL, GAP-43 and Ng.

These results suggest that the levels of YWHAG:NPTX2 represent 
a ‘pathology’ that is distinct from previously reported AD neurode-
generation and synapse dysfunction biomarkers and one that is much 
more closely related to CI.

CSF YWHAG:NPTX2 in normal aging and ADAD
As age is the strongest risk factor for AD onset, we next asked whether 
YWHAG:NPTX2 increases during normal aging before CI. Surprisingly, 
we found that YWHAG:NPTX2 increased with age not only in later dec-
ades, but also in the earliest decades of adulthood, ~30 years before 
changes in pTau181:Aβ42 (Fig. 3a). This pattern was replicated in the 
BioFINDER2 cohort (Extended Data Fig. 3a).

To determine whether changes with age in YWHAG:NPTX2 precede 
AD symptom onset, we leveraged data from ADAD mutation carriers in 
the DIAN cohort who have genetically determined early-onset AD. Spe-
cifically, we tested whether YWHAG:NPTX2 had a steeper age-related 
increase in presymptomatic carriers versus noncarriers. We tested 
a linear model regressing YWHAG:NPTX2 against carrier status, age 
and their interaction, among cognitively normal individuals aged 
under 55 years, the age range where noncarriers are A–T1− (Fig. 3a). We 
found that carriers had significantly higher YWHAG:NPTX2 (ref. 35) 
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(P = 7.21 × 10−13) and a steeper age-related increase (two times increase 
in slope, interaction P = 0.032) (Fig. 3b).

ADAD mutations have varying degrees of severity, with esti-
mated ages at symptom onset ranging from 25 to 65 years depend-
ing on the mutation25,36. To determine whether age-related slopes of 
YWHAG:NPTX2 correlate with ages at symptom onset, we grouped pre-
symptomatic carriers into bins based on estimated age at onset (EAO) 
(<35, 35–45, 45–55, 55–65) and calculated age-related YWHAG:NPTX2 
slopes per bin. We observed a strong negative correlation between 
mean EAO per bin and age-related YWHAG:NPTX2 slopes (Spear-
man r = − 0.9, P = 0.037), whereby those with earlier ages at symptom 
onset had steeper age-related increases in YWHAG:NPTX2 (Fig. 3c and 
Extended Data Fig. 3b).

We then examined the effects of the APOE genotype, the leading 
genetic risk factor for sporadic AD, on age-related YWHAG:NPTX2 
slopes. We regressed YWHAG:NPTX2 against APOE4 (high-risk allele) 
dose, age and their interaction in cognitively normal individuals across 
the lifespan from the Knight-ADRC, ADNI and Stanford SomaScan 
cohorts. Like the ADAD mutation carrier status, APOE4 was significantly 
associated with higher YWHAG:NPTX2 (P = 7.50 × 10− 6) and a steeper 
increase in YWHAG:NPTX2 with age (33% increase in slope compared 
to APOE3/3 homozygotes, P = 3.40 × 10−3; Fig. 3d). APOE2 (protective 
allele) carriers showed no significant differences, although we suspect 
this may be because of the limited sample size.

Our analyses thus far revealed YWHAG:NPTX2 increases with normal 
aging and presymptomatic AD as well as CI severity during AD progres-
sion. We next compared the degrees to which YWHAG:NPTX2 increases 
during these two phases. We found that YWHAG:NPTX2 increased by 1.95 
s.d. over 60 years of normal aging and then 2.66 s.d. from cognitively  
normal aged to late-stage dementia (Fig. 3e). Although cognitively nor-
mal versus dementia groups were age-matched given the nature of case–
control studies, assuming ~20 years for progression from Aβ+ cognitively 
normal to AD dementia based on population-based studies37,38, our data 
suggest that AD progression mimics 82 years of ‘normal’ age-related 
increases in YWHAG:NPTX2, representing a stark 4.1-time increase in 
slope during AD progression compared to normal aging.

We examined this phenomenon in ADAD by plotting 
YWHAG:NPTX2 versus EYO. We compared YWHAG:NPTX2 slopes 
before and after estimated symptom onset and, similar to our estimates 
in sporadic AD, we observed a 3.4-time increase in the YWHAG:NPTX2 
slope during ADAD symptom progression compared to the presymp-
tomatic phase (Fig. 3f). Notably, YWHAG:NPTX2 increased in ADAD 
~22 years before estimated symptom onset (Fig. 3f).

To obtain a bird’s-eye view of all these data, we plotted 
YWHAG:NPTX2 versus age color-coded according to CI stage and sized 
according to AT1 status for ADAD carriers versus noncarriers (Fig. 3g). 
We confirmed the extremely accelerated increase in YWHAG:NPTX2 
among ADAD mutation carriers leading up to early-onset AD, as well as 

0 25 50 75

Age (years)

−1.5

−1.0

−0.5

pT
au

18
1:A

β 4
2

0 25 50 75

Age (years)

−2

0

2

4

YW
H

AG
.1:

N
PT

X2

0 25 50 75

Age (years)

−2

0

2

4

YW
H

AG
.1:

N
PT

X2

30 40 50 60 70

Mean estimated age at
symptom onset

−0.1

0

0.1

Pr
es

ym
pt

om
at

ic
YW

H
AG

.1:
N

PT
X2

sl
op

e 
w

ith
 a

ge

ρ = –0.9
P = 0.037

25 50 75

Age (years)

−2

0

2

4

YW
H

AG
.1:

N
PT

X2

APOE genotype
e2/e2 or e2/e3 e3/e3
e4/e4 or e4/e3

20
–3

5
35–5

0

50–6
5
65–8

0

80–9
5

MCI

Mild
 dementia

Moderat
e-to

-

se
ve

re dementia

Age group to CI stage

−2

0

2

4

YW
H

AG
.1:

N
PT

X2

−40 −20 0

EYO

−1

0

1

2

3

YW
H

AG
.1:

N
PT

X2

50

−2

0

2

4

YW
H

AG
.1:

N
PT

X2

50 100

a

e f g h

b c dCognitively normal aging Presymptomatic ADAD

A+T1+
0
1

Age (years)

ADAD groups

APOE4
P = 7.50 × 10–6

APOE4 × age
P = 3.40 × 10–3

ADAD
P = 7.21 × 10–13

ADAD × age
P = 0.032

Carrier
Noncarrier

Noncarrier

Sporadic ADADAD

Cognitively
normal

Time (years)

Aβ plaque buildup

AD dementia

MCI

No CI

YW
H

AG
.1:

N
PT

X2

Cognitively
normal

Sporadic ADADAD
EYO > 0

Slope = 0.14

EYO < 0
Slope = 0.041

Noncarrier

Carrier

1.95 s.d.

2.66 s.d.

60 years

Fig. 3 | CSF YWHAG:NPTX2 ratio increases with normal aging and 
presymptomatic ADAD. a, Changes with age of YWHAG.1:NPTX2 and 
pTau181:Aβ42 in cognitively normal non-ADAD mutation carriers. Locally weighted 
scatterplot smoothing regression lines with 95% confidence intervals are shown. 
b, Changes with age of YWHAG.1:NPTX2 in cognitively normal individuals aged 
under 55 years stratified according to ADAD mutation carrier status. P values 
from a linear model regressing YWHAG.1:NPTX2 against ADAD carrier status, 
age and their interaction are shown. Linear regression lines with 95% confidence 
intervals for carriers versus noncarriers are shown. c, Association between mean 
EAO and slope of YWHAG.1:NPTX2 change with age. Spearman correlation and  
P value are shown. Data from noncarriers are shown for comparison. The linear 
regression line with the 95% confidence intervals is shown. d, Changes with 
age of YWHAG.1:NPTX2 in cognitively normal non-ADAD mutation carriers 
stratified according to APOE genotype. P values from a linear model regressing 
YWHAG.1:NPTX2 against APOE4 dose, age and their interaction are shown.  

Linear regression lines with 95% confidence intervals for specified APOE 
genotypes are shown. e, Box plot showing changes in YWHAG.1:NPTX2 across 
different age groups and CI stages (n = 1,846). The box bounds show the Q1, 
median and Q3; the whiskers show Q1 − 1.5× the IQR and Q3 + 1.5× the IQR; 
s.d. changes in YWHAG.1:NPTX2 with cognitively normal aging and cognitive 
decline are shown. f, Changes with estimated years to symptom onset (EYO) 
of YWHAG.1:NPTX2 stratified according to ADAD carrier status. ADAD carrier 
points are color-coded according to CI stage as in Fig. 1e. Linear regression lines 
with 95% confidence intervals for carriers versus noncarriers before and after 
estimated symptom onset are shown. Slopes for carriers are shown. g, Changes 
with age and CI stage of YWHAG.1:NPTX2 for all individuals. Points are color-
coded according to CI stage as in Fig. 1e and sized according to Aβ positivity. h, 
Schematic of proposed model showing that changes in YWHAG.1:NPTX2 with 
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the widespread heterogeneity in noncarriers leading to sporadic AD in 
some and cognitive maintenance in others, despite amyloid positivity 
and old age (Fig. 3g,h).

Collectively, these results demonstrate that YWHAG:NPTX2, a 
robust correlate of CI severity in AD, substantially increases with cog-
nitively normal aging and presymptomatic AD.

CSF YWHAG:NPTX2 associations with future AD 
progression
We next sought to determine the potential clinical utility of 
YWHAG:NPTX2 in predicting future AD onset and progression. First, 

we leveraged Aβ and tau PET imaging data collected 4–15 years after 
CSF draw in the ADNI cohort to assess whether YWHAG:NPTX2 predicts 
Aβ-driven tau accumulation (Fig. 4a). Using linear regression, we found 
that YWHAG:NPTX2 modified the future association between Aβ and 
tau PET (YWHAG:NPTX2 × Aβ PET interaction, P = 6.84 × 10−4), adjust-
ing for baseline CI, pTau181:Aβ42, age, sex and APOE4 (n = 120). Among 
individuals with high future Aβ load, high baseline YWHAG:NPTX2 was 
associated with higher future tau PET, while low YWHAG:NPTX2 was 
associated with limited Aβ-related tau PET increase (Fig. 4b). These 
results align with previous studies showing that Aβ combined with syn-
apse dysfunction and neuronal hyperactivity drives tau accumulation 
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and propagation39,40, and a study showing that levels of CSF GAP-43 
modify the rate of Aβ-driven tau accumulation41.

More important than predicting future tau tangle buildup is 
predicting future cognitive decline. We plotted future Alzheimer’s 
Disease Assessment Scale-13 (ADAS13) cognitive score versus future 
tau load, color-coded according to baseline YWHAG:NPTX2 in future 
Aβ PET+ individuals (n = 70) (Fig. 4c). ADAS13 was chosen for its sen-
sitivity and dynamic range over global CDR. Among individuals with 
low-to-mild tau buildup, we observed that YWHAG:NPTX2 distin-
guished cognitively normal versus impaired individuals (Fig. 4c). All 
individuals with high tau PET had high YWHAG:NPTX2. Using linear 
regression, we found that pTau181:Aβ42, Aβ PET and tau PET together 
explained 41% of the variance in ADAS13 in A+T1+ individuals, and 
YWHAG:NPTX2 explained an additional 13% (Fig. 4d). We confirmed 
that YWHAG:NPTX2 was significantly associated with future ADAS13, 
while adjusting for tau tangle load and several additional covariates 
(Extended Data Fig. 4a).

To more broadly assess whether YWHAG:NPTX2 could predict 
future cognitive decline independent of Aβ and tau, we used data from 
all cohorts with longitudinal cognitive follow-up (ADNI, Knight-ADRC, 
Stanford; Fig. 4e). Global CDR CI staging was used because it was meas-
ured across all cohorts. We analyzed both dementia progression from 
an MCI to mild dementia baseline, as well as dementia onset from a 
cognitively normal baseline.

Using Cox proportional hazards regression, we tested the associa-
tion of YWHAG:NPTX2 with a future CI stage increase among A+T1+ 
individuals with MCI to mild dementia over 1–15 years, adjusting for 
baseline CI, pTau181:Aβ42, CSF NfL, CSF Ng (CSF GAP-43 was redundant 
with Ng; Supplementary Fig. 2c), age, sex and APOE4 dose in each 
cohort (total n = 520). YWHAG:NPTX2 significantly predicted future 
cognitive decline across all cohorts; in a meta-analysis, an s.d. deviation 
increase in YWHAG:NPTX2 conferred a 124% increased risk of cognitive 
decline (meta hazard ratio (HR) = 2.24, meta P = 8.16 × 10− 16; Fig. 4f and 
Supplementary Table 6).

We then tested whether YWHAG:NPTX2 could predict demen-
tia onset in A+T1+ cognitively normal individuals, adjusting for 
pTau181:Aβ42, CSF NfL, CSF Ng, age, sex and APOE4 dose (the Stanford 
cohort was not included because of a low event sample size, total 
n = 171). YWHAG:NPTX2 significantly predicted dementia onset across 
all cohorts; in a meta-analysis, an s.d. increase in YWHAG:NPTX2 con-
ferred a 197% increased risk of conversion from cognitively normal 

to dementia (meta HR = 2.97, meta P = 7.03 × 10− 4; Fig. 4g and Sup-
plementary Table 7).

Aggregating data from all A+T1+ cognitively normal, MCI and mild 
dementia individuals across cohorts (total n = 697), YWHAG:NPTX2 was 
the strongest predictor of future cognitive decline among covariates 
(HR = 2.26, P = 2.24 × 10− 22; Fig. 4h). Notably, YWHAG:NPTX2 was more 
strongly associated with future cognitive decline than the established 
biomarkers pTau181:Aβ42, CSF NfL and CSF Ng in the multivariate model.

To aid patient stratification, we binned individuals into binary high 
and low groups (upper and lower 25th percentiles) and tested AT1 status 
and YWHAG:NPTX2 status in predicting future cognitive decline, indi-
vidually and together. As done previously, we aggregated data from all 
A+T1+ cognitively normal, MCI and mild dementia across cohorts. Based 
on AT1 status alone, we found that A+T1+ individuals had a four-time 
increased risk of future cognitive decline compared to A–T1-negative 
(A–T1−) individuals (HR = 3.96, P = 5.94 × 10− 16; Fig. 4i). Surprisingly, 
based on YWHAG:NPTX2 status alone, YWHAG:NPTX2high individuals 
had a striking 15-time increased risk of future cognitive decline com-
pared to YWHAG:NPTX2low individuals (HR = 15.36, P = 8.04 × 10− 48; 
Fig. 4j). Combining both biomarkers, A+T1+ and YWHAG:NPTX2high 
individuals had a 19-time increased risk of future cognitive decline com-
pared to A–T1− YWHAG:NPTX2low individuals (HR = 18.87, P = 3.74 × 10− 25; 
Fig. 4k). No additional covariates were included in these Cox models, 
demonstrating the power of these biomarkers alone in predicting 
future cognitive decline versus maintenance.

Together, these results demonstrate that YWHAG:NPTX2 pro-
vides additional prognostic clinical utility beyond gold standard AD 
biomarkers.

Five defined CSF YWHAG:NPTX2 groups for 
cognitive prognosis
Given that percentiles may vary depending on the cohorts analyzed, 
we aimed to establish YWHAG:NPTX2 thresholds for stratifying indi-
viduals into defined low and high groups, which can be validated in 
future studies and potentially applied in clinical trials. While A/T/N 
status is typically binary (positive versus negative), we hypothesized 
that YWHAG:NPTX2, which correlates with increasing CI stages (five 
groups), could define multiple groups with varying risk of cognitive 
decline.

We used the Youden index from binary logistic regression models 
(MCI versus normal, mild dementia versus MCI, moderate versus mild 
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dementia; Fig. 1g) to define four YWHAG:NPTX2 groups tracking CI 
stages (0, no CI; 1, MCI; 2, mild dementia; 3, moderate-to-severe demen-
tia; Fig. 5a). Moderate and severe dementia were combined because of 
the limited sample size. Additionally, we defined a ‘−1’ group represent-
ing predominantly cognitively normal individuals (95% sensitivity for 
MCI versus normal).

Interestingly, we observed that many individuals were classified 
into YWHAG:NPTX2 groups that did not match their diagnosis (Fig. 5a). 
We hypothesized these ‘misclassifications’ may provide prognostic 
insights into future cognitive maintenance or decline. We focused on 
MCI and cognitively normal A+T1+ individuals, which are key popula-
tions for AD dementia prevention clinical trials.
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YWHAG.1:NPTX2 in the Knight-ADRC and Stanford cohorts (n = 518). The colors 
indicate the CI stage as shown in a. Linear regression lines with 95% confidence 
intervals for cognitively normal versus cognitively impaired individuals are 
shown. d, Plasma signature versus neurofibrillary tau tangle load in the ROSMAP 
cohort, color-coded according to CI as in a. e, r2 values from linear models 
regressing CI against covariates displayed on the x axis in the ROSMAP cohort 
(n = 110). The bars and error bars represent bootstrapped (n = 1,000) means and 
95% confidence intervals. Two-sided P values were calculated via the empirical 
distribution of the bootstrapped test statistic. The difference in r values between 
the two models is shown. ***P < 0.001. f, Results from a multivariate linear 
model regressing CI against the displayed covariates in the ROSMAP cohort 

(n = 110). The points and error bars represent the standardized effect size and 
95% confidence interval. g, Cox proportional hazards regression was used to 
associate the plasma signature with future cognitive decline in individuals 
with MCI to mild dementia, while adjusting for APOE4, age, sex and CI stage. 
The results from a cross-cohort, fixed effects meta-analysis are shown (total 
n = 1,877). The points and error bars represent the HRs and 95% confidence 
intervals. h, As in g but for predicting dementia onset in cognitively normal 
individuals (total n = 4,753). CI stage was not included as a covariate because 
all individuals were cognitively normal. i, Cox proportional hazards regression 
was used to associate the plasma signature with future cognitive decline in 
all individuals across the Knight-ADRC, ROSMAP and Stanford cohorts, while 
adjusting for APOE4, age, sex and CI stage (n = 2,292). The points and error bars 
represent the HRs and 95% confidence intervals for each covariate. j, Kaplan–
Meier curves with 95% confidence intervals showing the rates of future cognitive 
decline in plasma signaturehigh (top 25th percentile) versus plasma signaturelow 
(bottom 25th percentile) individuals. HR and 95% confidence interval are shown.
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First, we stratified MCI A+T1+ individuals in the Knight-ADRC and 
ADNI cohorts (n = 397) into these YWHAG:NPTX2 groups and deter-
mined their rates of future cognitive decline (defined as an increase in CI 
stage) over 15 years using a Cox proportional regression meta-analysis. 
Interestingly, we found that relative to ‘correctly’ classified individuals 
with MCI (group 1), those classified into the ‘cognitively normal’ group 
(group 0) had a 73% reduced risk of cognitive decline (meta HR = 0.27, 
meta P = 7.35 × 10− 6), while those classified into the ‘mild dementia’ 
group (group 2) had a 2.3-time increased risk of cognitive decline 
(meta HR = 2.30, meta P = 2.74 × 10− 6), adjusted for pTau181:Aβ42, CSF 
NfL, CSF Ng, age, sex and APOE4 (Fig. 5b, Extended Data Fig. 5a and 
Supplementary Table 8). Specifically, only 17 of 77 (22%) individuals in 
group 0 experienced cognitive decline, while 93 of 133 (70%) in group 2  
declined over 15 years (Fig. 5b and Supplementary Table 8).

Next, among cognitively normal A+T1+ individuals (n = 168), those 
in the ‘MCI’ group (group 1) had a 2.7-time increased risk of cognitive 
decline (meta HR = 2.72, meta P = 7.16 × 10− 4), and those in the ‘mild 
dementia’ group (group 2) had a 4.9-time increased risk of cognitive 
decline (meta HR = 4.92, meta P = 2.39 × 10− 3) compared to ‘correctly’ 
classified cognitively normal individuals (group 0), adjusted for 
pTau181:Aβ42, CSF NfL, CSF Ng, age, sex and APOE4 (Fig. 5c, Extended 
Data Fig. 5b and Supplementary Table 9). Notably, all cognitively nor-
mal individuals or individuals with MCI in the high confidence cogni-
tively normal group (group −1) maintained cognition over 10 years, 
while almost all in the ‘moderate-to-severe dementia’ group (group 3)  
declined within 1 year, although sample sizes were too small for rigor-
ous statistics (Fig. 5b,c).

Overall, we demonstrate that individuals with the same clinical 
diagnosis and AT1 positivity can be further stratified into defined 
YWHAG:NPTX2 groups, which are strongly associated with future 
cognitive outcomes. Thresholds defining these groups are provided 
in Methods for future validation and exploration in clinical trials.

Partial plasma proteomic surrogate of CSF 
YWHAG:NPTX2
While CSF biomarkers provide important insights for AD research 
and in the clinic, the invasiveness of CSF extraction limits widespread 
clinical use. Thus, we sought to derive a plasma proteomics-based 
biomarker of CI that could recapitulate CSF YWHAG:NPTX2. We 
performed SomaScan plasma proteomics on 4,245 samples from 
the Knight-ADRC, Stanford and ROSMAP cohorts (Supplementary 
Table 10); 3,899 samples had complete CI diagnosis and 519 samples 
from the Knight-ADRC and Stanford cohorts were collected within 6 
months of CSF samples from the same individuals, enabling direct 
plasma–CSF comparisons.

We first tested the correlations between plasma YWHAG:NPTX2 
with CI and CSF YWHAG:NPTX2 and found no significant correla-
tions (Supplementary Fig. 3a). We then systematically tested several 
frameworks to optimize correlations between the plasma signature 
with CI and CSF YWHAG:NPTX2 (Supplementary Methods and Sup-
plementary Figs. 3–5). Briefly, the optimal framework used a penalized 
linear model trained on plasma protein levels to predict CI based on a 
subset of plasma proteins that were (1) enriched for synapse proteins 
associated with CI in CSF, (2) unaffected by cohort and (3) not subject 
to putative APOE genotype-based proteoform-aptamer binding altera-
tions. We trained the plasma signature on unique patient samples from 
the Knight-ADRC (n = 1,969) and ROSMAP (n = 860) cohorts and tested 
on unique patient samples from the Stanford cohort (n = 600). We 
also tested the signature in the GNPC (F. B. Imam et al., manuscript 
in preparation), which encompasses over 40,000 patient samples 
from over 20 international research groups. Specifically, we tested the 
signature on a subset of 2,872 unique patient samples with complete 
CI information (global CDR) and without a diagnosis of non-AD neuro-
degeneration (five independent cohorts; Knight-ADRC, Stanford and 
ROSMAP not included).

The plasma signature (Supplementary Table 11) correlated with 
CI across all training and test cohorts (Knight-ADRC r = 0.66; ROSMAP 
r = 0.62; Stanford r = 0.51; GNPC-L r = 0.54; GNPC-E r = 0.47; GNPC-P 
r = 0.23; GNPC-I r = 0.68; GNPC-N r = 0.54; total n = 6,301; Fig. 6a and 
Supplementary Table 12). Proteins with strong weights included CPLX2, 
PTPRD, PI3, MAG and PTGDS (increased with CI), and NPTXR, SEZ6L, 
CD93, TPPP3 and PIANP (decreased with CI) (Supplementary Table 11). 
Notably, CPLX2, PTPRD, NPTXR (the receptor for NPTX2) and SEZ6L 
are synaptic proteins, confirming synapse protein associations with CI 
across both CSF and plasma (Fig. 6b). The plasma signature correlated 
with CSF YWHAG:NPTX2 (Knight-ADRC r = 0.57; Stanford r = 0.53; 
Fig. 6c), with stronger correlations observed in individuals with some 
degree of CI (CI ≥ MCI r = 0.64; CI = none r = 0.28; Fig. 6c).

To assess whether the plasma signature, like CSF YWHAG:NPTX2, 
explained CI beyond Aβ and tau in AD, we used the ROSMAP cohort, 
which has collected comprehensive neuropathological and cognitive 
data from participants. We analyzed 110 individuals whose blood draws 
were within 2 years of death; autopsies confirmed a neuropathological 
diagnosis of AD (neuritic plaques Consortium to Establish a Registry 
for Alzheimer’s Disease score = probable or definite; Braak stage ≥ III). 
Plotting the plasma signature versus neurofibrillary tau tangle load, 
color-coded according to CI severity, we observed that high plasma 
signature levels were correlated with CI beyond tau levels (Fig. 6d). 
Linear regression showed that the plasma signature explained 36% 
of the variance in CI beyond neuritic Aβ plaque and tau tangle load 
(Fig. 6e). The association was robust to additional adjustment with 
age, sex, APOE4 dose and postmortem interval (Fig. 6f).

Next, we examined whether the plasma signature could be used to 
predict future cognitive decline, as with CSF YWHAG:NPTX2. In addi-
tion to the ROSMAP, Knight-ADRC and Stanford cohorts, we analyzed 
the ARIC study, a large independent cohort with SomaScan plasma 
proteomics and MCI and dementia diagnosis follow-up42. For each 
cohort (total n = 1,877), we used a Cox proportional hazards regres-
sion model to test the association between the plasma signature and a 
future increase in CI stage over 1–15 years among individuals with MCI 
to mild dementia, adjusting for baseline CI, age, sex and APOE4 dose. 
We did not have sufficient data to include plasma or CSF biomarkers 
of AD pathology. The plasma signature significantly predicted future 
cognitive decline across all cohorts; in a meta-analysis, an s.d. increase 
in the plasma signature conferred a 56% increased risk of cognitive 
decline (meta HR = 1.56, meta P = 3.16 × 10− 19; Fig. 6g and Supplemen-
tary Table 13).

We then examined conversion from cognitively normal to demen-
tia (total n = 4,753) and found that an s.d. increase in the plasma signa-
ture conferred an 86% increased risk, adjusting for age, sex and APOE4 
dose (meta HR = 1.86, meta P = 9.97 × 10− 17; Fig. 6h and Supplementary 
Table 14). Aggregating data across the ROSMAP, Knight-ADRC and 
Stanford cohorts (total n = 2,292), the plasma signature was among 
the strongest predictors among covariates (HR = 1.59, P = 1.00 × 10− 24; 
Fig. 6i), with age, baseline CI and APOE4 dose also having significant 
effects. Binary high and low groups based on the upper and lower 25th 
percentiles of the aggregated sample, as done with YWHAG:NPTX2, 
revealed that plasma signaturehigh individuals had a seven-time 
increased risk of future cognitive decline compared to plasma signa-
turelow individuals (HR = 7.17, P = 2.12 × 10− 64; Fig. 6j), with no additional 
covariate adjustment.

Together, these data show that plasma proteomics combined 
with machine learning can be used to derive a plasma-based protein 
signature that correlates with AD dementia independently of Aβ and 
tau and partly recapitulates CSF YWHAG:NPTX2.

Discussion
Overall, our findings reveal that synapse proteins in the CSF and plasma 
are among the strongest Aβ-independent and tau-independent cor-
relates of CI in AD, and that from these synapse proteins emerges the 
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CSF YWHAG:NPTX2 ratio, a sparse and robust correlate of CI. We found 
that YWHAG:NPTX2 increases with cognitively normal aging starting 
early in life and predicts AD onset and progression in both sporadic 
AD and ADAD across six independent deeply phenotyped AD cohorts. 
Most notably, we established YWHAG:NPTX2 thresholds that define 
five groups which predict future cognitive resilience versus decline 
among early AD A+T1+ individuals of the same cognitive diagnosis.

Although these findings indicate that CSF YWHAG:NPTX2 rep-
resents a biological process in the brain that is central to cognitive 
function in AD, what that process is remains unclear. Our data suggest 
it reflects a ‘pathology’ distinct from existing neurodegeneration 
and synaptic AD biomarkers NfL, GAP-43 and Ng. Based on the litera-
ture, we speculate that it relates to synapse dysfunction and neuronal 
hyperactivity-induced synapse loss caused by reduced expression of 
NPTX2. In human brains, the NPTX2 mRNA and protein are downregu-
lated in AD neurons based on single-cell RNA sequencing, immunohis-
tochemistry and bulk proteomics28,29, suggesting that its decrease with 
CI in AD CSF may reflect decreased expression. Furthermore, genetic 
loss of NPTX2 and NPTXR causes major GluA4 loss27, increased net-
work hyperactivity27 and increased complement-mediated microglial 
engulfment of synapses30. While NPTX2 has been studied exclusively 
in neurons, it is worth noting that the gene is also highly expressed in 
the oligodendrocyte lineage in humans43.

The role of YWHAG in the brain is less understood, but the YWHA 
family of proteins localize in neuron bodies and synapses44, and YWHAG 
mutations cause childhood epilepsy45, implying regulation of neuronal 
activity. Furthermore, YWHA proteins physically regulate tau aggrega-
tion and phosphorylation46,47, and YWHA protein concentrations are 
dramatically increased in Creutzfeldt–Jakob disease CSF48, suggesting 
potential involvement in activity-dependent prion and tau propaga-
tion. YWHAG also binds to phosphatidylserine44, which is involved 
in synaptic pruning49. Future studies that collect CSF near death and 
perform molecular measurements from matched postmortem brains 
combined with mechanistic studies may illuminate what ‘pathology’ 
CSF YWHAG:NPTX2 and other CSF biomarkers represent.

In addition to reported roles of YWHAG and NPTX2 in neuronal 
hyperactivity and synapse dysfunction, our study shows that CSF 
YWHAG:NPTX2 is associated with several aspects of AD including 
CI, normal aging, genetically driven Aβ overproduction (ADAD) and 
tau accumulation, which together strongly implicate its relevance to 
synapse dysfunction. To elaborate, as with YWHAG:NPTX2, synapse 
loss is the most robust histological correlate of CI, beyond Aβ and 
tau50. Second, synapse dysfunction, morphological alterations and 
loss, rather than overt neuron loss, are major hallmarks of mammalian 
brain aging that are closely linked with age-related cognitive decline 
in nonhuman primates51. Third, Aβ oligomers cause synapse loss and 
neuronal hyperactivity50, akin to how ADAD mutations—which presum-
ably lead to Aβ overproduction—are associated with a faster increase 
in YWHAG:NPTX2 with age. Lastly, neuronal hyperactivity enhances 
tau propagation40, which aligns with the positive association between 
YWHAG:NPTX2 and future Aβ-driven tau PET.

Together, these data suggest that CSF YWHAG:NPTX2 is prob-
ably a measure of synapse dysfunction perhaps related to loss of 
NPTX2-driven hyperactivity and YWHAG-driven tau toxicity, and point 
to synapse dysfunction as a promising therapeutic target to promote 
cognitive resilience in the presence of Aβ and tau. Strategies to restore 
NPTX2 expression to youthful levels may be especially promising, as 
overexpression of NPTX2 in tau P301S mice protects synapses from 
complement-mediated microglial engulfment30. NPTX2 is also reduced 
in frontotemporal dementia (FTD) and dementia with Lewy bodies 
CSF52, suggesting that its restoration may have benefits across multiple 
neurodegenerative diseases. Future studies are needed to determine 
whether CSF YWHAG:NPTX2 is correlated with CI independent of age 
and disease-specific pathologies across non-AD dementias, including 
FTD, dementia with Lewy bodies and amyotrophic lateral sclerosis.

Beyond biological and therapeutic implications, we show compre-
hensive evidence that CSF YWHAG:NPTX2 provides major prognos-
tic utility in early AD well beyond established A/T/N biomarkers. We 
demonstrate it can be used to stratify both A+T1+ cognitively normal 
patients and A+T1+ patients with MCI into five low-risk and high-risk 
groups based on the thresholds provided in Methods. This stratifica-
tion may aid in clinical trial target patient selection (that is, by selecting 
high-risk patients) and drug efficacy evaluation (that is, treatment 
response in different groups). The lack of cohort effects is especially 
advantageous for biomarker applications because no batch correc-
tion is needed, at least with the SomaScan assay. It is important to 
further validate our SomaScan YWHAG:NPTX2 group thresholds in 
independent cohorts, evaluate YWHAG:NPTX2 in comparison to tau 
PET in predicting future cognitive outcomes and examine changes in 
YWHAG:NPTX2 longitudinally in both the normal aging population 
and the population with early AD. Furthermore, developing affordable 
YWHAG:NPTX2 assays will be essential to overcome the high cost of the 
SomaScan assay and enable widespread clinical use.

Lastly, we show the development of a plasma proteomic signature 
of CI that partly recapitulates the characteristics of CSF YWHAG:NPTX2. 
Notably, the highest weighted proteins in the plasma signature are 
synapse proteins previously implicated as brain-specific proteins 
linked to brain aging53. Although more efforts are needed to improve 
the plasma signature, we expect that future advances in proteomics 
and machine learning will lead to sparse, scalable plasma surrogates of 
CSF YWHAG:NPTX2 to be used broadly for patient monitoring, clinical 
trials and research.
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Methods
Participants
Stanford cohorts. Plasma and CSF collection, processing and storage 
for all Stanford cohorts followed a single standard procedure. All stud-
ies were approved by the Institutional Review Board (IRB) of Stanford 
University and written informed consent or assent was obtained from 
all participants or their legally authorized representatives.

Blood collection and processing followed a rigorous standardized 
protocol to minimize variation. Briefly, about 10 ml of whole blood was 
collected in four vacutainer EDTA tubes (Becton Dickinson) and spun at 
1,800g for 10 min to separate out plasma, leaving 1 cm of plasma above 
the buffy coat to avoid contamination. Plasma was aliquoted into poly-
propylene tubes and stored at −80 °C. Processing took approximately 
1 h from draw to freezing and storage. All draws occurred in the morning 
to minimize circadian effects.

CSF was collected via lumbar puncture using a 20–22 G spinal 
needle that was inserted in the L4–L5 or L5–S1 interspace. CSF sam-
ples were immediately centrifuged at 500g for 10 min, aliquoted in 
polypropylene tubes and stored at −80 °C.

Plasma from all Stanford cohorts was sent to SomaLogic for prot-
eomics (v.4.1 SomaScan, ~7,000 proteins) in the same batch. CSF sam-
ples from all Stanford cohorts were sent to SomaLogic for proteomics 
(v.4.0 SomaScan, ~5,000 proteins) in the same batch. The core CSF 
AD biomarkers Aβ42, Aβ40 and pTau181 were measured using the fully 
automated LUMIPULSE G1200 instrument (Fujirebio) as described 
previously54,55. Descriptions for each cohort are provided below.

A total of 1,160 plasma samples (738 participants, longitudinal 
sampling) and 371 CSF samples (371 participants, one sample from 
each) from the Stanford cohorts were included in this study. Per-cohort 
sample sizes were as follows: ADRC plasma n = 827 (423 participants), 
CSF n = 113; SAMS plasma n = 222 (215 participants), CSF n = 169; Bio-
markers in Parkinson’s Disease (BPD) plasma n = 55 (55 participants), 
CSF n = 68; Stanford Center for Memory Disorders (SCMD) cohort 
study plasma n = 45 (45 participants), CSF n = 21.

Stanford-ADRC study. Samples were acquired through the NIA-funded 
Stanford-ADRC, a longitudinal observational study of individuals with 
clinical dementia and age-matched and sex-matched individuals with-
out dementia. Healthy controls were deemed cognitively unimpaired 
during a clinical consensus conference that included board-certified 
neurologists and neuropsychologists. Cognitively impaired individuals 
underwent CDR and standardized neurological and neuropsychologi-
cal assessments, including the procedures of the National Alzheimer’s 
Coordinating Center (https://naccdata.org/), to determine cognitive 
and diagnostic status. Cognitive status was determined during a clinical 
consensus conference that included neurologists and neuropsycholo-
gists. All participants were free from acute infectious diseases and in 
good physical condition.

SAMS study. SAMS is an ongoing longitudinal study of healthy aging. 
Blood and CSF collection and processing, and neurological and neu-
ropsychological assessments, were performed by the same team and 
followed the same protocol as in the Stanford-ADRC cohort. All SAMS 
participants had a CDR = 0 and a neuropsychological test score in the 
normal range; all SAMS participants were deemed cognitively unim-
paired during a clinical consensus conference that included neurolo-
gists and neuropsychologists.

Stanford BPD cohort. The BPD cohort56 was a Michael J. Fox Founda-
tion for Parkinson’s Research-funded longitudinal study of biomarkers 
associated with cognitive decline in Parkinson’s disease (PD). Research 
participants were recruited from the Stanford Movement Disorders 
Center between 2011 and 2015, with a PD diagnosis according to the 
UK Brain Bank criteria; they required bradykinesia with muscle rigidity 
or rest tremor. All participants completed baseline cognitive, motor, 

neuropsychological, imaging and biomarker assessments (plasma and 
optional CSF), including the Movement Disorders Society-revised Uni-
fied Parkinson’s Disease Rating Scale. Age-matched healthy controls 
were also recruited to control for age-associated biomarker changes. 
After a comprehensive neuropsychological battery, all participants 
were given a cognitive diagnosis of no CI, MCI or dementia, according 
to published criteria.

SCMD study. The SCMD was an NIA-funded cross-sectional study of 
people across the cognitive continuum. Participants with mild AD 
dementia and amnestic MCI were recruited from the Stanford Center 
for Memory Disorders between 2011 and 2015. Participants were 
included if they had a diagnosis of probable AD dementia (amnes-
tic presentation) according to the NIA-Alzheimer’s Association57 cri-
teria and a CDR score of 0.5 or 1, or a diagnosis of MCI according to 
the NIA-Alzheimer’s Association criteria57, a score of 1.5 s.d. below 
age-adjusted normative means on at least one test of episodic memory 
and a CDR score of less than 1. Older healthy controls were recruited 
from the community, were selected to have a similar average age as 
the enrolled patients and were required to have normal neuropsycho-
logical performance and a CDR of 0. Participants completed cognitive, 
neuropsychological, imaging and biomarker assessments with plasma.

Knight-ADRC study. The Knight-ADRC is an NIA-funded longitudinal  
observational study of individuals with clinical dementia and 
age-matched controls. Research participants undergo longitudinal 
cognitive, neuropsychological, imaging and biomarker assessments 
including a CDR. Cases with AD corresponded to those with a diagnosis 
of dementia of the Alzheimer’s type using criteria equivalent to the 
National Institute of Neurological and Communicative Disorders and 
Stroke (NINCDS)-Alzheimer’s Disease and Related Disorders Associa-
tion (ADRDA) for probable AD; AD severity was determined using the 
CDR at the time of the lumbar puncture (for the CSF samples) or blood 
draw (for the plasma samples). Controls received the same assessment 
as cases but did not have dementia (CDR = 0).

Blood samples were collected in EDTA tubes (vacutainer purple 
top, Becton Dickinson) at the time of the visit, immediately centrifuged 
at 1,500g for 10 min, aliquoted on two-dimensional barcoded Micronic 
tubes (200 μl per aliquot) and stored at −80 °C. Plasma was stored in 
a monitored −80 °C freezer until it was pulled and sent to SomaLogic 
(SomaScan 7k) for data generation. Proteomics data from 2,112 plasma 
samples from each of the 2,122 participants were included in this study.

CSF samples were collected through lumbar puncture from par-
ticipants after an overnight fast. Samples were processed and stored at 
−80 °C until they were sent for protein measurement. Proteomics data 
from 927 CSF samples from each of 927 participants were included in 
this study. CSF samples from the Knight-ADRC, ADNI and DIAN cohorts 
were sent for proteomics using the SomaScan platform (SomaScan 7k) 
in the same batch. CSF Aβ42, Aβ40 and pTau181 were measured using the 
LUMIPULSE G1200 immunoassay platform according to the manufac-
turer’s specifications.

The IRB of Washington University School of Medicine in St. Louis 
approved the study and research was performed in accordance with 
the approved protocols.

ADNI study. ADNI is a longitudinal multicenter study designed to 
develop early biomarkers of AD. All data used in this study were 
accessed from the ADNI database (https://adni.loni.usc.edu/). ADNI 
investigators assessed and diagnosed individuals as either cogni-
tively normal (Mini Mental State Examination (MMSE) ≥ 24, CDR = 0, 
nondepressed), MC (MMSE ≥ 24, CDR = 0.5, objective memory impair-
ment on education-adjusted Wechsler Memory Scale-II, preserved 
activities of daily living) or with dementia (MMSE = 20–26, CDR > 0.5, 
NINCDS/ADRDA criteria for probable AD). Comprehensive details on 
study design, data acquisition, ethics and policies are described above.  
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CSF Aβ42 and pTau181 were measured using the xMAP immunoassay 
platform according to the manufacturer’s specifications. Proteomics 
data from 725 CSF samples from each of 725 participants were included 
in this study.

DIAN study. DIAN, led by Washington University School of Medicine 
in St. Louis, is a family-based long-term observational study designed 
to understand the earliest changes of ADAD. All participants undergo 
clinical and cognitive batteries (that is, global CDR). Comprehensive 
details on study design, data acquisition, ethics and policies can be 
found at https://dian.wustl.edu/. The data used in this study are from 
data freeze 15. CSF Aβ42 and pTau181 were measured using the LUMI-
PULSE G1200 platform according to the manufacturer’s specifications. 
Proteomics data from 455 CSF samples from each of 455 participants 
were included in this study.

BioFINDER2 study. BioFINDER2 is a Swedish prospective cohort study 
(NCT03174938) on age-related neurodegenerative diseases. AD was 
diagnosed based on the Diagnostic and Statistical Manual of Mental 
Disorders, Fifth Edition and Aβ positivity (CSF Aβ42:Aβ40). Proteomics 
data from a total of n = 829 participants, consisting of n = 480 cog-
nitively unimpaired, n = 213 with MCI and n = 136 with AD dementia 
were included in this study. Global CDR scores were not measured in 
BioFINDER2, so for estimation, participants with AD were subdivided 
according to the MMSE thresholds defined in ref. 58: 21–25 for mild 
dementia (CDR = 1); 11–20 for moderate dementia (CDR = 2); and 0–10 
for severe dementia (CDR = 3). Participants were recruited at Skåne 
University Hospital and Ängelholm Hospital. The study was approved 
by the Regional Ethical Committee in Lund, Sweden; all participants 
gave written informed consent.

CSF samples were collected close in time after baseline clinical 
examination and handled according to established preanalytical 
protocols, previously described in detail in ref. 59. All analyses were 
performed by technicians blinded to all clinical and imaging data. CSF 
pTau181, Aβ42 and Aβ40 were measured using Elecsys assays in accord-
ance with the manufacturer’s instructions (Roche Diagnostics). CSF 
Aβ42/Aβ40 was used to define Aβ positivity according to a previously 
established cutoff of <0.08 (ref. 60). CSF samples from the BioFINDER2 
cohort were analyzed with liquid chromatography–tandem MS (LC–
MS/MS), previously described in detail in ref. 32.

Tau PET was performed using [18F]RO948. SUVR images were cre-
ated for the 70–90-min postinjection interval using the inferior cer-
ebellar cortex as the reference region. A composite corresponding to 
a Braak I–IV meta-region of interest was used to represent AD-related 
tau tangle pathology.

Kuopio University Hospital. The Kuopio Normal Pressure Hydrocepha-
lus (NPH) and AD Registry and Tissue Bank includes patients from the 
Eastern Finnish population who were referred to the Kuopio University 
Hospital neurosurgical unit for suspected NPH. The registry’s inclusive 
criteria encompass a wide range of hydrocephalic conditions and 
comorbidities: patients must exhibit 1–3 symptoms potentially associ-
ated with NPH (such as impaired gait, cognition or urinary continence) 
along with enlarged brain ventricles (Evans index > 0.3) as seen on 
computed tomography or magnetic resonance imaging, and no other 
clear cause that alone explains the observed findings and symptoms. 
Preoperative comorbidities and conditions were recorded at baseline; 
patients underwent a systematic differential diagnostic workup fol-
lowed by a CSF tap test paired with gait evaluation.

A diagnostic right frontal cortical brain biopsy was taken from all 
patients during shunt surgery from the insertion site of the intraven-
tricular catheter. A neuropathologist (T.R.) analyzed immunoreactivity 
for Aβ and hyperphosphorylated tau with light microscopy; the results 
were graded as present or absent. Patients were then further classified 
into groups according to the presence of the pathology of Aβ or HPτ 

observed in the frontal cortical biopsies61. Follow-up was conducted 
on all operated patients, with optimal shunt function ensured through 
valve adjustment, brain imaging, shunt valve tapping, lumbar infu-
sion testing and shunt revision if necessary. Global CDR scores were 
not measured; the Consortium to Establish a Registry for Alzheimer’s 
Disease cognitive score62, including the MMSE, was used instead. The 
latest follow-up MMSE score less than 26 was considered as at least 
mild dementia61.

Lumbar CSF proteomics was performed using high-throughput 
tandem mass tag-labeling MS, previously described in detail in ref. 63. 
Data from 90 individuals with CSF proteomics and cognitive scoring 
performed within 1 year were included in this study.

The study was conducted according to the 1964 Declaration of 
Helsinki and its later amendments (2013) and all patients provided 
written informed consent. The Research Ethics Committee of the 
Northern Savo Hospital District (decision no. 276/13.02.00/2016) 
approved the study.

ROSMAP studies. All ROSMAP participants enrolled without known 
dementia and agreed to detailed clinical evaluation and brain donation 
at death64. Both studies were approved by the IRB of Rush University 
Medical Center (no. L91020181, MAP IRB no. L86121802). Both studies 
were conducted according to the principles expressed in the Declara-
tion of Helsinki. Each participant signed an informed consent, Anatomi-
cal Gift Act and a Rush Alzheimer’s Disease Center (RADC) Repository 
consent (IRB no. L99032481) allowing their data and biospecimens to 
be repurposed. All MAP participants and a subset of ROS have blood 
drawn during an annual home visit. For plasma, blood is drawn in a 
lavender (purple) top EDTA tube. For out of town ROS sites, they were 
spun, aliquoted into Nunc vials, stored in dry ice and sent to RADC 
by FedEx, where they were transferred to −80 °C. Samples collected 
in northeastern Illinois were brought to the RADC laboratory and 
processed there using the same procedures. A total of 1,046 55-µl 
samples were shipped to Stanford, then to SomaLogic for proteomics 
(SomaScan 7k); 973 samples passed quality control.

Clinical and neuropathological data collection has been reported 
in detail elsewhere10,65–68. Regarding clinical diagnosis, an actuarial deci-
sion tree designed to mimic expert clinical judgment was implemented 
by computer to inform several clinical diagnoses, including dementia 
and AD. It combined data reduction techniques for cognitive perfor-
mance testing, with a series of discrete clinical judgments made in 
series by a neuropsychologist and a clinician. Presumptive diagnoses of 
dementia and AD were calculated that conformed to accepted clinical 
criteria. The clinician was asked to agree or disagree with the decisions. 
An algorithm used these decisions to provide diagnoses of MCI and 
amnestic MCI. Persons with MCI were judged to have CI by the neu-
ropsychologist, and without a diagnosis of dementia by the clinician. 
Persons without dementia or MCI were categorized as having no CI.

Global CDR scores were not assessed in ROSMAP. Rather, partici-
pants underwent a battery of 21 cognitive performance tests, 17 of which 
were combined into a measure of global cognition which was z-scored 
based on the mean and s.d. of all participants from baseline69. For esti-
mation, participants were subdivided according to global cognition 
z-scores: cognitively normal = z-score > 0; MCI = −1 < z-score < 0; mild 
dementia = −2 < z-score < =−1; moderate dementia = −3 < z-score < = −2; 
and severe dementia z-score < = −3. These cutoffs were set based on the 
distributions of global cognition z-scores per clinical diagnosis. Details 
on cognitive scores, neuropathology and other patient information are 
described at https://www.radc.rush.edu/documentation.htm. Prot-
eomics data from 973 plasma samples from each of 890 participants 
were included in this study.

GNPC. The GNPC is a major neurodegenerative disease biomarker dis-
covery effort, which hosts the largest collection of SomaScan data (over 
40,000 patient samples from over 20 international research groups) 
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from patient samples across healthy aging, AD, PD, amyotrophic lateral 
sclerosis and FTD. All cohorts and data are anonymized. Cohorts that 
had global CDR cognitive scores were included in this study.

ARIC study. ARIC is a prospective epidemiological study conducted in 
four US communities: Forsyth County, NC; Jackson, MS; the northwest 
suburbs of Minneapolis, MN; and Washington County, MD. The ARIC 
study enrolled 15,792 mostly White and Black participants aged 45–64 
between 1987 and 1989 (ref. 70). After initial enrollment, participants 
had four additional in-person visits: visit 2 (1990–1992); visit 3 (1993–
1995); visit 4 (1996–1999); and visit 5 (2011–2013). Participants were 
invited back for visit 6 (2016–2017) after 5 years, and visit 7 (2018–2019) 
immediately thereafter. Additional follow-up visits are ongoing. Blood 
was drawn for proteomic analysis at visits 2 and 5. For this paper, the 
late-life (8-year) dementia risk was assessed between visits 5 and 7. 
Plasma was collected using standardized protocols and frozen at −80 °C 
until analysis. Proteins were measured using the SomaScan v.4.0 assay; 
protein quality control steps have been described in detail previously42.

Dementia was adjudicated through cognitive assessment tests, 
telephone screening, informant ratings, hospital records and death 
record review, as described previously71. From visits 2 through 4, a 
three-instrument cognitive assessment was applied (delayed word recall 
task, digit symbol substitution from the Wechsler Adult Intelligence 
Scale-Revised and a letter fluency task). At visits 5 through 7, a surveil-
lance approach was used, where participants received a comprehensive 
cognitive exam and a functional assessment that included the Clinical 
Dementia Rating Scale and Functional Activities Questionnaire. With 
these data, dementia was classified based on the NIA, Alzheimer’s Asso-
ciation and Diagnostic and Statistical Manual of Mental Disorder, Fifth 
Edition criteria. In the time between visits 5 and 6, participants were 
contacted annually via phone and administered the Six-item Screener 
(SIS), a brief cognitive assessment. If participants received a low score on 
the SIS, or if they were unable to participate in the screening via phone, 
the Ascertain Dementia 8 (AD8) was administered to the participant’s 
informant. For participants who received a dementia diagnosis at visit 6 
or 7, SIS, AD8, hospital discharge and death certificate codes were used 
to define the date of dementia onset. For participants who did not attend 
visits 6 or 7, SIS, AD8, hospital discharge and death certificate codes 
were used to define the dementia diagnosis and date of dementia onset.

The ARIC study protocols were approved by the IRBs at each par-
ticipating center: University of North Carolina at Chapel Hill; Wake 
Forest University; Johns Hopkins University; University of Minnesota; 
and University of Mississippi Medical Center. All ARIC participants gave 
written informed consent at each study visit; proxies provided consent 
for participants who were judged to lack capacity.

Proteomics
The SomaLogic (https://somalogic.com/) SomaScan assay72,73, which 
uses slow off-rate modified DNA aptamers (SOMAmers) to bind target 
proteins with high specificity, was used to quantify the relative concen-
tration of thousands of human proteins in plasma and CSF in the Stan-
ford, Knight-ADRC, ADNI, DIAN and ROSMAP cohorts. The v.4.1 (~7,000 
proteins) assay was used for all the mentioned cohorts and samples, 
except for the Stanford CSF, for which the v.4.0 (~5,000 proteins) assay 
was used. Standard SomaLogic normalization, calibration and quality 
control were performed on all samples, resulting in protein measure-
ments in relative fluorescence units. Plasma samples were further nor-
malized to a pooled reference using an adaptive maximum likelihood 
procedure. The resulting values are the data from SomaLogic and are 
considered ‘raw’ data. We further performed log10 normalization as 
the assay had an expected log-normal distribution. No cohort batch 
corrections were applied. Acetylcholinesterase was removed before 
the analyses because it can be confounded with scetylcholinesterase 
inhibitor treatment. CSF samples from the BioFINDER2 cohort were 
analyzed with LC–MS/MS, previously described in detail in ref. 32. CSF 

samples from the Kuopio cohort were analyzed with high-throughput 
tandem mass tag-labeling MS, previously described in detail in ref. 63.

CI stage classification
CI stages reflect global CDR scores. CDR scores of 0, 0.5, 1, 2 and 3 are 
synonymous with the CI stages of none, MCI, mild dementia, mod-
erate dementia and severe dementia, respectively. The Stanford, 
Knight-ADRC, ADNI and DIAN cohorts measured global CDR scores. 
BioFINDER2, ROSMAP and Kuopio did not measure global CDR scores, 
so we estimated global CDR scores based on cognitive battery tests and 
clinical diagnoses as described in the sections for each cohort.

A+T1+ versus A–T1− classification
Typically, ‘A’ positivity is defined by the levels of Aβ42 and ‘T1’ positivity 
by pTau181, using a separate Gaussian mixture model for each biomarker 
to derive value cutoffs74 (Supplementary Fig. 1a). This leads to four 
possible groups: A–T1−, A+T1−, A–T1+ and A+T1+. However, this clas-
sification system does not fit the ‘shape’ of the data and artificially 
increases the number of A–T1+ individuals75 (Supplementary Fig. 1a), 
as the frequency of A–T+ individuals based on PET imaging biomarkers 
(the gold standard) are extremely rare75. To overcome this limitation, 
we used the CSF pTau181:Aβ42 ratio, which better fits the shape of the 
data (Supplementary Fig. 1b), to define A–T1− versus A+T1+ status (log10 
pTau181:Aβ42 cutoff = − 1, based on Lumipulse or xMAP; different cutoffs 
were used for Elecsys; Supplementary Fig. 1c). Previous studies showed 
that pTau181:Aβ42 appropriately captures A–T1− versus A+T1+ status15,16. 
Aβ positivity, regardless of T status, was determined using the CSF 
Aβ42:Aβ40 ratio or Aβ PET (gold standards).

Statistical analyses
While some cohorts included multiple plasma samples from the same 
individual (precise numbers are described in the cohort sections), all 
analyses in this study were performed using proteomics data from 
only a single time point per individual. Only one CSF sample was col-
lected per individual. For cross-sectional associations with CI, the most 
recent plasma sample was used to maximize the sample size of cases 
with dementia, which were fewer than cognitively normal cases. For 
analyses involving the prediction of future cognitive decline from a 
cognitively normal or early AD baseline, the earliest plasma sample 
was used to maximize sample size.

The NumPy76 and Pandas77 Python packages were used for data 
processing and transformation; the Matplotlib78 and seaborn79 Python 
packages were used for plotting.

Linear regression. The stats.pearsonr function from the SciPy80 Python 
package was used to assess the Pearson correlations. The ordinary least 
squares (OLS) function from the statsmodels81 Python package was 
used to assess the linear associations between protein levels and CI. 
For the unbiased proteome-wide association tests in Fig. 1b, we tested 
the following linear model for each protein: CI ~ protein + CSF pTau181: 
Aβ42 + age + sex + APOE4 dose + cohort + PC1. We included the PC1 of the 
proteome as a covariate because previous studies showed that it repre-
sents a large source of non-disease-related variance, potentially related 
to heterogeneity in CSF production and clearance rates35,75. Inclusion of 
PC1 ‘de-noised’ the data and greatly improved the significance of pro-
tein associations with CI in every cohort we assessed. Multiple hypoth-
esis testing correction was applied using the Benjamini–Hochberg 
method, and the significance threshold was set at a 5% false discovery 
rate (q < 0.05). All other linear regression analyses in the manuscript 
relied on the same OLS function. Precise covariates used per analysis are 
displayed in the figures or described in the main text. The proportion 
of CI variance explained by certain variables was determined using the 
r2 values from the OLS models. Bootstrapping (n = 1,000) was applied 
to derive the 95% confidence intervals and P values for variable (that 
is, YWHAG:NPTX2 versus pTau181:Aβ42) comparisons.
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Logistic regression. The LogisticRegression function from the 
scikit-learn82 Python package was used to assess the CI classification 
based on YWHAG:NPTX2 or pTau181:Aβ42 (Fig. 1g and Extended Data 
Fig. 1e). Models were tested to distinguish MCI versus cognitively 
normal, mild dementia versus MCI, moderate-to-severe versus mild 
dementia and mild dementia or worse versus cognitively normal. The 
AUC, accuracy, sensitivity, and specificity were calculated using the 
confusion_matrix, accuracy_score, recall_score, roc_curve and roc_auc 
functions from scikit-learn82. Bootstrapping (n = 1,000) was applied to 
derive the 95% confidence intervals and P values for YWHAG:NPTX2 
versus pTau181:Aβ42 comparisons.

Cox proportional hazards regression. The CoxPHFitter function 
from the lifelines83 Python package was used to assess the associations 
between CSF YWHAG:NPTX2 and future cognitive decline (Figs. 4e–k, 
5b,c and 6g–j. An event of cognitive decline was defined as a stage 
increase in CI (that is, none to MCI, or MCI to mild dementia). An event 
of conversion from cognitively normal to dementia was defined as 
a two-stage or more increase in CI from a cognitively normal base-
line (none to mild dementia). Additional covariates such as baseline 
age, sex, APOE4 dose, CSF pTau181:Aβ42, CSF NfL, CSF Ng and CI were 
included depending on the analysis. The precise covariates used for 
each analysis are displayed in the figures or in the text. Meta-analyses 
to compare and aggregate effect sizes and confidence intervals from 
multiple cohorts were performed in R using the metafor84 package, 
with an inverse-variance-weighted fixed effects model.

Biological pathway enrichment analyses. gProfiler85 was used for 
Gene Ontology (GO) enrichment analyses (Fig. 1c). The GO86,87 database 
includes the SynGO19 database used to subset the synapse proteins; 
6,379 unique protein-encoding genes detected by SomaScan were 
used as background in gProfiler.

Derivation of CSF YWHAG:NPTX2 ratio. The LassoCV function from 
the scikit-learn82 Python package was used to train, in the ADNI cohort, 
a penalized linear model to predict CI severity based on the levels of 
214 synapse proteins that significantly changed with CI in the ADNI and 
Knight-ADRC cohorts (Fig. 1b). Fivefold cross-validation was imple-
mented to identify the optimal lambda parameter. The RFECV and RFE 
functions from scikit-learn82 were used to perform RFE on the LassoCV 
model to further simplify the model to facilitate clinical applications. 
RFECV showed that two proteins sufficiently captured most of the 
signal in the model. RFE was used to derive a model with two proteins, 
which resulted in the normalized ratio between YWHAG and NPTX2. 
Details on testing the YWHAG:NPTX2 in independent cohorts are 
provided in the ‘Code availability’ section of the article.

Derivation of plasma signature of CI. Full details are shown in Supple-
mentary Methods. Briefly, the LassoCV function from the scikit-learn82 
Python package was used to train, in the Knight-ADRC and ROSMAP 
cohorts, a penalized linear model to predict CI severity based on the levels 
of 745 plasma proteins. Fivefold cross-validation was implemented to 
identify the optimal lambda parameter. We call this model the ‘plasma sig-
nature’ throughout the paper. Model weights and intercept are provided 
in Supplementary Table 7 and details on testing the signature in independ-
ent cohorts are provided in the ‘Code availability’ section of the article.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available upon reasonable request with formal applications 
submitted to the respective cohort committees to protect patient 
sensitive data. Stanford data (including the Stanford-ADRC, SAMS, BPD 

and SCMD) can be requested at https://web.stanford.edu/group/adrc/
cgi-bin/web-proj/datareq.php. Data from specific Stanford cohorts can 
be requested from the following cohort leaders: ADRC, T.W.-C. (twc@
stanford.edu); SAMS, E.M. (bmormino@stanford.edu) or A.D.W. (awag-
ner@stanford.edu); and BPD and SCMD, K.L.P. (klposton@stanford.
edu). The Knight-ADRC proteomics data were generated by the labora-
tory of the principal investigator C.C. (cruchagac@wustl.edu) and are 
available upon reasonable request at https://knightadrc.wustl.edu/
professionals-clinicians/request-center-resources/submit-a-request/. 
The ADNI data can be requested at the ADNI database (https://adni.
loni.usc.edu/). The DIAN data can be requested at https://dian.wustl.
edu/our-research/for-investigators/diantu-investigator-resources/
dian-tu-biospecimen-request-form/. Pseudonymized BioFINDER2 
data can be shared with qualified academic researchers after request 
to the cohort leader O.H. (oskar.hansson@med.lu.se) for the pur-
pose of replicating the procedures and results presented in the study. 
Data transfer must be performed in agreement with EU legislation 
regarding general data protection regulation and decisions by the 
Ethical Review Board of Sweden and Region Skåne. The Kuopio data 
can be requested and accessed via a repository on Terra https://app.
terra.bio/#workspaces/marsh-terra-inph/iNPH_Proteomics_Work-
space. The ROSMAP data can be requested at the RADC Research 
Resource Sharing Hub (https://www.radc.rush.edu) and https://www.
synapse.org/Synapse:syn64957327. The ARIC proteomics data are 
available through the NHLBI Biologic Specimen and Data Repository  
Information Coordinating Center (https://biolincc.nhlbi.nih.gov/ 
studies/aric/). Additional ARIC requests for clinical or proteomic data 
from individual investigators may be submitted to the ARIC steering 
committees and will be reviewed to ensure that data can be shared 
without compromising patient confidentiality or breaching intellectual 
property restrictions. Participant-level demographic, clinical and pro-
teomic data may be partially restricted based on previously obtained 
participant consent. Data sharing restrictions may also be applied to 
ensure consistency with confidentiality or privacy laws and considera-
tions (https://sites.cscc.unc.edu/aric/). g:Profiler can be accessed at 
https://biit.cs.ut.ee/gprofiler/gost (ref. 85). The Gene Ontology86,87 
database can be accessed at https://geneontology.org/ and the SynGO19 
database can be accessed at https://www.syngoportal.org/.

Code availability
The CSF YWHAG.1:NPTX2 ratio can be derived by log10-normalizing 
the SomaScan (assay v.4.1) protein levels (YWHAG.1 SeqId = 4179-57, 
NPTX2 SeqId=6521-35), then by z-score normalization using the means 
and s.d. from our cohorts (YWHAG.1 mean = 3.425, s.d. = 0.183; NPTX2 
mean = 4.099, s.d. = 0.171), then taking the difference between normal-
ized YWHAG.1 and NPTX2 values. The thresholds for the YWHAG.1:NPTX2 
subgroups are ‘− 1 group’ < − 1.269 < ‘0 group’ < 0.53 < ‘1 group’ < 1.208 < ‘2 
group’ < 2.795 < ‘3 group’. Importantly, CSF data from other versions of 
the SomaScan assay (that is, v.4 and v.5) need to be normalized to the v.4.1 
assay space if our means, s.d. values and thresholds are to be applied. 
While scale factors for cross-assay version normalization of plasma data 
can be requested from SomaLogic, scale factors for CSF data have not 
been prioritized by SomaLogic at the time of this publication. CSF scale 
factors can be derived in house by running samples on both the v.4.1 assay 
and other SomaScan assay versions. CSF scale factors may be derived by 
SomaLogic in the future. The plasma signature of CI can be derived from 
independent plasma SomaScan data (assay v.4 and later) by following a 
tutorial on the synapsesignature GitHub repository (https://github.com/
hamiltonoh/synapsesignature), which uses the protein weights provided 
in Supplementary Table 7. See Supplementary Methods for details.

References
54.	 Wilson, E. N. et al. Performance of a fully-automated Lumipulse 

plasma phospho-tau181 assay for Alzheimer’s disease. Alzheimers 
Res. Ther. 14, 172 (2022).

http://www.nature.com/naturemedicine
https://web.stanford.edu/group/adrc/cgi-bin/web-proj/datareq.php
https://web.stanford.edu/group/adrc/cgi-bin/web-proj/datareq.php
https://knightadrc.wustl.edu/professionals-clinicians/request-center-resources/submit-a-request/
https://knightadrc.wustl.edu/professionals-clinicians/request-center-resources/submit-a-request/
https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
https://dian.wustl.edu/our-research/for-investigators/diantu-investigator-resources/dian-tu-biospecimen-request-form/
https://dian.wustl.edu/our-research/for-investigators/diantu-investigator-resources/dian-tu-biospecimen-request-form/
https://dian.wustl.edu/our-research/for-investigators/diantu-investigator-resources/dian-tu-biospecimen-request-form/
https://app.terra.bio/#workspaces/marsh-terra-inph/iNPH_Proteomics_Workspace
https://app.terra.bio/#workspaces/marsh-terra-inph/iNPH_Proteomics_Workspace
https://app.terra.bio/#workspaces/marsh-terra-inph/iNPH_Proteomics_Workspace
https://www.radc.rush.edu
https://www.synapse.org/Synapse:syn64957327
https://www.synapse.org/Synapse:syn64957327
https://biolincc.nhlbi.nih.gov/studies/aric/
https://biolincc.nhlbi.nih.gov/studies/aric/
https://sites.cscc.unc.edu/aric/
https://biit.cs.ut.ee/gprofiler/gost
https://geneontology.org/
https://www.syngoportal.org/
https://github.com/hamiltonoh/synapsesignature
https://github.com/hamiltonoh/synapsesignature


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03565-2

55.	 Wilson, E. N. et al. Soluble TREM2 is elevated in Parkinson’s 
disease subgroups with increased CSF tau. Brain 143, 932–943 
(2020).

56.	 Plastini, M. J. et al. Multiple biomarkers improve diagnostic 
accuracy across Lewy body and Alzheimer’s disease spectra.  
Ann. Clin. Transl. Neurol. 11, 1197–1210 (2024).

57.	 McKhann, G. et al. Clinical diagnosis of Alzheimer’s disease: 
report of the NINCDS-ADRDA Work Group under the auspices 
of Department of Health and Human Services Task Force on 
Alzheimer's Disease. Neurology 34, 939–944 (1984).

58.	 Perneczky, R. et al. Mapping scores onto stages: mini-mental state 
examination and clinical dementia rating. Am. J. Geriatr. Psychiatry 
14, 139–144 (2006).

59.	 Palmqvist, S. et al. Discriminative accuracy of plasma 
phospho-tau217 for Alzheimer disease vs other 
neurodegenerative disorders. JAMA 324, 772–781 (2020).

60.	 Pichet Binette, A. et al. Amyloid-associated increases in soluble 
tau relate to tau aggregation rates and cognitive decline in early 
Alzheimer’s disease. Nat. Commun. 13, 6635 (2022).

61.	 Koivisto, A. M. et al. High risk of dementia in ventricular 
enlargement with normal pressure hydrocephalus related 
symptoms. J. Alzheimers Dis. 52, 497–507 (2016).

62.	 Nerg, O. et al. The CERAD neuropsychological battery in patients 
with idiopathic normal pressure hydrocephalus compared with 
normal population and patients with mild Alzheimer’s disease.  
J. Alzheimers Dis. 81, 1117–1130 (2021).

63.	 Weiner, S. et al. Optimized sample preparation and data analysis 
for TMT proteomic analysis of cerebrospinal fluid applied to the 
identification of Alzheimer’s disease biomarkers. Clin. Proteomics 
19, 13 (2022).

64.	 Bennett, D. A. et al. Religious Orders Study and Rush Memory and 
Aging Project. J. Alzheimers Dis. 64, S161–S189 (2018).

65.	 Bennett, D. A. et al. Neuropathology of older persons without 
cognitive impairment from two community-based studies. 
Neurology 66, 1837–1844 (2006).

66.	 Bennett, D. A. et al. Decision rules guiding the clinical diagnosis 
of Alzheimer’s disease in two community-based cohort studies 
compared to standard practice in a clinic-based cohort study. 
Neuroepidemiology 27, 169–176 (2006).

67.	 Bennett, D. A. et al. Natural history of mild cognitive impairment in 
older persons. Neurology 59, 198–205 (2002).

68.	 Boyle, P. A. et al. Attributable risk of Alzheimer’s dementia 
attributed to age-related neuropathologies. Ann. Neurol. 85, 
114–124 (2019).

69.	 Oveisgharan, S. et al. Estrogen receptor genes, cognitive decline, 
and Alzheimer disease. Neurology 100, e1474–e1487 (2023).

70.	 Wright, J. D. et al. The ARIC (Atherosclerosis Risk In Communities) 
study: JACC focus seminar 3/8. J. Am. Coll. Cardiol. 77,  
2939–2959 (2021).

71.	 Knopman, D. S. et al. Mild cognitive impairment and dementia 
prevalence: the Atherosclerosis Risk in Communities 
neurocognitive study. Alzheimers Dement. 2, 1–11 (2016).

72.	 Williams, S. A. et al. Plasma protein patterns as comprehensive 
indicators of health. Nat. Med. 25, 1851–1857 (2019).

73.	 Gold, L. et al. Aptamer-based multiplexed proteomic technology 
for biomarker discovery. PLoS ONE 5, e15004 (2010).

74.	 Timsina, J. et al. Harmonization of CSF and imaging biomarkers in 
Alzheimer’s disease: need and practical applications for genetics 
studies and preclinical classification. Neurobiol. Dis. 190, 106373 
(2024).

75.	 Karlsson, L. et al. Cerebrospinal fluid reference proteins increase 
accuracy and interpretability of biomarkers for brain diseases. 
Nat. Commun. 15, 3676 (2024).

76.	 Harris, C. R. et al. Array programming with NumPy. Nature 585, 
357–362 (2020).

77.	 McKinney, W. Data structures for statistical computing in Python. 
In Proc. 9th Python in Science Conference (eds van der Walt, S. & 
Millman, J.) 56–61 (SCIPY, 2010).

78.	 Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. 
Eng. 9, 90–95 (2007).

79.	 Waskom, M. L. seaborn: statistical data visualization. J. Open 
Source Softw. 6, 3021 (2021).

80.	 Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific 
computing in Python. Nat. Methods. 17, 261–272 (2020).

81.	 Seabold, S. & Perktold, J. Statsmodels: econometric and 
statistical modeling with Python. In Proc. 9th Python in Science 
Conference (eds van der Walt, S. & Millman, J.) 92–96 (SCIPY, 
2010).

82.	 Pedregosa, F. et al. Scikit-learn: machine learning in Python.  
J. Mach. Learn. Res. 12, 2825–2830 (2011).

83.	 Davidson-Pilon, C. Lifelines, survival analysis in Python (v0.27.0). 
Zenodo https://doi.org/10.5281/zenodo.6359609 (2022).

84.	 Viechtbauer, W. Conducting meta-analyses in R with the metafor 
package. J. Stat. Softw. 36, 1–48 (2010).

85.	 Raudvere, U. et al. g:Profiler: a web server for functional 
enrichment analysis and conversions of gene lists (2019 update). 
Nucleic Acids Res. 47, W191–W198 (2019).

86.	 Ashburner, M. et al. Gene Ontology: tool for the unification of 
biology. Nat. Genet. 25, 25–29 (2000).

87.	 Aleksander, S. A. et al. The Gene Ontology knowledgebase in 
2023. Genetics 224, iyad031 (2023).

Acknowledgements
We thank the contributors who collected the samples used in 
this study, as well as patients and their families, whose help and 
participation made this work possible. We thank B. Lehallier,  
J. Rutledge, L. Gold and members of the Wyss-Coray laboratory for 
feedback and support, and D. Channappa for laboratory management. 
We are also grateful for the help of M. Parviainen and T. Laaksonen with 
patient management and cognitive testing. This work was supported by 
the Stanford-ADRC (NIA grant nos. P50AG047366 and P30AG066515), 
the National Centralized Repository for Alzheimer’s Disease and 
Related Dementias (no. U24AG021886), the NIA (no. AG072255 to 
T.W.-C), the Milky Way Research Foundation (T.W.-C.), the Knight 
Initiative for Brain Resilience (T.W.-C.), the Stanford Graduate Fellowship 
(H.S.-H.O.), the National Science Foundation Graduate Research 
Fellowship (H.S.-H.O.), a grant from the KIBR (E.N.W.), a Stanford’s 
Center for Clinical and Translational Education and Research award, 
under the Biostatistics, Epidemiology and Research Design Program 
(no. UL1TR003142 to Y.L.G.) and the National Institutes of Health (NIH) 
Pathway to Independence Award no. 1K99AG088304-01 (to I.H.G.). 
Samples from the National Centralized Repository for Alzheimer’s 
Disease and Related Dementias, which receives government support 
under a cooperative agreement grant (no. U24 AG021886) awarded by 
the NIA, were used in this study. This work was also supported by grants 
from the NIH (no. R01AG044546 to C.C.; no. P01AG003991 to C.C.;  
no. RF1AG053303 to C.C.; no. RF1AG058501 to C.C.; no. U01AG058922 
to C.C.), the Chan Zuckerberg Initiative, the Michael J. Fox Foundation 
(to C.C.), the Alzheimer’s Association Zenith Fellows Award (no. 
ZEN-22-848604, awarded to C.C.) and an anonymous foundation. 
The recruitment and clinical characterization of the research 
participants at Washington University were supported by NIH grant 
nos. P30AG066444, P01AG03991 and P01AG026276. This work was 
supported by access to equipment made possible by the Hope Center 
for Neurological Disorders, the Neurogenomics and Informatics Center 
(https://neurogenomics.wustl.edu/) and the Departments of Neurology 
and Psychiatry at Washington University School of Medicine. The 
BioFINDER2 study was supported by the European Research Council 
(no. 101096455), the Alzheimer’s Association (nos. ZEN24-1069572 
and SG-23-1061717), the Gerald and Henrietta Rauenhorst Foundation, 

http://www.nature.com/naturemedicine
https://doi.org/10.5281/zenodo.6359609
https://neurogenomics.wustl.edu/


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03565-2

the Swedish Research Council (no. 2022-00775), ERA PerMed (no. 
ERAPERMED2021-184), the Knut and Alice Wallenberg Foundation (no. 
2022-0231), the Strategic Research Area MultiPark (multidisciplinary 
research in Parkinson’s disease) at Lund University, the Swedish 
Alzheimer Foundation (no. AF-980907), the Swedish Brain Foundation 
(no. FO2021-0293), the Parkinson Foundation of Sweden (no. 1412/22), 
the Cure Alzheimer’s Fund, the Rönström Family Foundation, the King 
Gustaf V:s and Drottning Victorias Masonic Foundation, the Skåne 
University Hospital Foundation (no. 2020-O000028), the Regional 
Research Support (no. 2022-1259) and the Swedish federal government 
under the ALF agreement (no. 2022-Projekt0080). SAMS is supported 
by grants from the NIH (nos. R01AG048076 and R21AG058859), the 
Stanford Wu Tsai Neurosciences Institute and the Stanford Center for 
Precision Health and Integrated Diagnostics. ROSMAP is supported 
by grant nos. P30AG10161, P30AG72975, R01AG15819, R01AG17917, 
U01AG46152 and U01AG61356. The Kuopio study was funded by 
the Alzheimer’s Association, Academy of Finland (grant nos. 338182 
and 328287), the KUH VTR Fund, the Sigrid Juselius Foundation, the 
Strategic Neuroscience Funding of the University of Eastern Finland 
and the Alzheimer’s Association (ADSF-24-1284326-C). H.Z. is a 
Wallenberg Scholar and a Distinguished Professor at the Swedish 
Research Council; he is supported by grants from the Swedish 
Research Council (nos. 2023-00356, 2022-01018 and 2019-02397), 
the European Union’s Horizon Europe Research and Innovation 
Programme under grant no. 101053962, the Swedish State Support for 
Clinical Research (no. ALFGBG-71320), the Alzheimer Drug Discovery 
Foundation USA (no. 201809-2016862), the AD Strategic Fund 
and the Alzheimer’s Association (nos. ADSF-21-831376-C, ADSF-21-
831381-C, ADSF-21-831377-C and ADSF-24-1284328-C), the European 
Partnership on Metrology, cofinanced by the European Union’s Horizon 
Europe Research and Innovation Programme and by Participating 
States (NEuroBioStand, no. 22HLT07), the Bluefield Project, the Cure 
Alzheimer’s Fund, the Olav Thon Foundation, the Erling Persson Family 
Foundation, the Rönströms Family Foundation, the Gamla Tjänarinnor 
Foundation, the Swedish Brain Foundation (no. FO2022-0270), the 
European Union’s Horizon 2020 Research and Innovation Programme 
under a Marie Skłodowska-Curie grant no. 860197 (MIRIADE), the 
European Union Joint Programme-Neurodegenerative Disease 
Research (no. JPND2021-00694), the National Institute for Health 
and Care Research, the University College London (UCL) Hospitals 
Biomedical Research Centre and the UK Dementia Research Institute 
at UCL (no. UKDRI-1003). B.S. was supported by the Alzheimer’s 
Association (grant nos. ADSF-21-836089-C, ADSF-21-836083-C 
and ADSF-21-836085-C). N.M. was supported by NIH training grant 
nos. 5T32AG222-30 and 1F32AG079666-01. ARIC is carried out as a 
collaborative study supported by National Heart, Lung, and Blood 
Institute (NHLBI) grant nos. 75N92022D00001, 75N92022D00002, 
75N92022D00003, 75N92022D00004 and 75N92022D00005. 
Additionally, the ARIC Neurocognitive Study is supported by grant 
nos. U01HL096812, U01HL096814, U01HL096899, U01HL096902 
and U01HL096917 from the NIH (NHLBI, the National Institute of 
Neurological Disorders and Stroke, the NIA and the National Institute 
on Deafness and Other Communication Disorders). M.R.D. and K.A.W. 
were supported in part by the NIA Intramural Research Program of  
the NIH.

Author contributions
H.S.-H.O. conceptualized the study. H.S.-H.O. led the study design and 
analyses. D.Y.U. helped with the study design and analyses. L.K. helped 
with the analyses in the BioFINDER2 cohort. Z.Z. helped with the 
analyses in the ADNI cohort. Y.S. helped with the analyses in the DIAN 
cohort. A.F. helped with the analyses in the Stanford-ADRC cohort. 
M.R.D. and J. Chen helped with the analyses in the ARIC cohort.  

N.M. helped with the analyses in the Kuopio cohort. J.T., I.H.G., C.Y., 
D.W., M.A., Y.L.G. and A.T. provided data, helped with the analyses and 
provided insights. T.R., S.-K.H., M.H., A.L. and A.J.L. collected the data 
from the Kuopio cohort. K.L.P. established the Stanford BPD cohort. 
E.M. and A.D.W. established the SAMS cohort. E.N.W. led the fluid AD 
biomarker data collection in the Stanford cohorts. D.C. led plasma 
collection in the Stanford cohorts. V.L., B.S. and H.Z. established the 
Kuopio cohort. A.J.E. provided key insights on the Alzheimer’s field. 
R.F.G., J. Coresh and K.A.W. lead the ARIC neurocognitive study. D.A.B. 
established the ROSMAP cohort. N.F. provided key insights on the 
Alzheimer’s field and helped with the analyses in the ADNI cohort. O.H. 
established the BioFINDER2 cohort. C.C. established the Knight-ADRC 
cohort. T.W.-C. established the Stanford-ADRC cohort. K.L.P., E.M., 
A.D.W., E.N.W., V.L., B.S., H.Z., D.A.B., N.F., O.H. and C.C. provided data 
and insights. H.S.-H.O. produced the figures and wrote the paper. 
T.W.-C. edited the paper. H.S.-H.O. and T.W.-C. supervised the study. All 
authors critically revised the paper for intellectual content. All authors 
read and approved the final version of the paper.

Competing interests
T.W-C. and H.S.-H.O. are cofounders and scientific advisers of Teal 
Omics and have received equity stakes. C.C. has received research 
support from GSK and Eisai. C.C. is a member of the scientific advisory 
board of Circular Genomics and owns stocks. C.C. is a member 
of the scientific advisory board of ADmit. C.C. and M.A. have an 
invention disclosure for AT1 prediction models, including protein 
IDs, weights, cutoffs and algorithms. O.H. has acquired research 
support (for the institution) from AVID Radiopharmaceuticals, Biogen, 
C2N Diagnostics, Eli Lilly, Eisai, Fujirebio, GE Healthcare and Roche. 
In the past 2 years, he has received consultancy and speaker fees 
from ALZpath, BioArctic, Biogen, Bristol Myers Squibb, Eisai, Eli Lilly, 
Fujirebio, Merck, Novartis, Novo Nordisk, Roche, Sanofi and Siemens. 
H.Z. has served at scientific advisory boards or as a consultant for 
Abbvie, Acumen, Alector, Alzinova, ALZPath, Amylyx, Annexon, 
Apellis, Artery Therapeutics, AZTherapies, Cognito Therapeutics, 
Cognition Therapeutics, Denali, Eisai, Labcorp, Merry Life Biomedical, 
NervGen Pharma, Novo Nordisk, OptoCeutics, Passage Bio, Pinteon 
Therapeutics, Prothena, Red Abbey Labs, reMYND, Roche, Samumed, 
Siemens Healthineers, Triplet Therapeutics and Wave, has given 
lectures in symposia sponsored by AlzeCure, Biogen, Cellectricon, 
Fujirebio, Lilly, Novo Nordisk and Roche, and is a cofounder of Brain 
Biomarker Solutions in Gothenburg, which is a part of the GU Ventures 
Incubator Program (outside the submitted work). The other authors 
declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41591-025-03565-2.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41591-025-03565-2.

Correspondence and requests for materials should be addressed to 
Hamilton Se-Hwee Oh or Tony Wyss-Coray.

Peer review information Nature Medicine thanks Sudeshna Das, 
Tharick Pascoal and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work. Primary Handling Editor: 
Jerome Staal, in collaboration with the Nature Medicine team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-025-03565-2
https://doi.org/10.1038/s41591-025-03565-2
https://doi.org/10.1038/s41591-025-03565-2
https://doi.org/10.1038/s41591-025-03565-2
http://www.nature.com/reprints


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03565-2

Extended Data Fig. 1 | CSF YWHAG:NPTX2 ratio versus PTau181:Aβ42 and 
cognitive impairment. a, Global cognition score versus tau tangle load in 
Aβ + individuals in the ROSMAP cohort. Aβ and tau do not sufficiently explain 
cognitive impairment. b, Scatterplot showing both change with cognitive 
impairment independent of PTau181:Aβ42 (y-axis) and association with 
PTau181:Aβ42 (x-axis). Axes show signed –log10 q-values (Benjamini-Hochberg 
adjusted p-value) from linear regression models. Bold indicates synapse proteins 
based on SynGO database. c, Scatterplot showing PC1-adjusted YWHAG.1 (left) 
and NPTX2 (right) versus PTau181:Aβ42, colored by cognitive impairment. 
Correlation and p-value are shown. d, Boxplot showing YWHAG.1:NPTX2 versus 
cognitive impairment severity across cohorts with SomaScan data per biological 

sex (male n = 1,024, female n = 1043). Box bounds are Q1, median, and Q3, and 
whiskers show Q1 − 1.5×IQR and Q3 + 1.5×IQR. Pearson correlations per cohort  
are shown. e, As in d, but for PTau181:Aβ42 (male n = 1,024, female n = 1043).  
f, Results from binary logistic regression models classifying CI stage based on 
YWHAG.1:NPTX2 or PTau181:AB42. AUC, accuracy, sensitivity, and specificity are 
shown (total n = 2,067). Bars and error bars represent bootstrapped (n = 1,000) 
means and 95% confidence intervals. Two-sided p-values were calculated via the 
empirical distribution of the bootstrapped test statistic. *p < 0.05, **p < 0.01, 
***p < 0.001. g, Receiver operating curve (ROC) for classification of mild/
moderate/severe dementia versus cognitively normal is shown.
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Extended Data Fig. 2 | CSF YWHAG:NPTX2 ratio explains a substantial 
proportion of variance in cognitive impairment beyond amyloid and tau in 
AD. a, Stacked bar plot showing proportions of different cognitive impairment 
stages among different YWHAG.1:NPTX2 percentile groups, in all and each 
cohort. b, Results from linear models regressing cognitive impairment against 
the displayed covariates, per cohort (total n = 2,150). Points and error bars 
represent effect sizes and 95% confidence intervals. c, Scatterplot showing 
YWHAZ versus YWHAG.1, colored by cognitive impairment (top). Scatterplot 
showing YWHAZ:NPTX2 versus YWHAG.1:NPTX2, colored by cognitive 
impairment (bottom). d, R-squared values from linear models regressing 
cognitive impairment against covariates displayed on x-axis (n = 2,067). The 
difference between r-squared values between two models is shown. ***p < 0.001. 

e, Boxplot showing YWHAZ:NPTX2 versus cognitive impairment severity based 
on mass-spectrometry data in BioFINDER2 (n = 829). Box bounds are Q1, median, 
and Q3, and whiskers show Q1 − 1.5×IQR and Q3 + 1.5×IQR. f, Results from a 
multivariate linear model regressing cognitive impairment against the displayed 
covariates in BioFINDER2 (n = 512). Points and error bars represent standardized 
effect sizes and 95% confidence intervals. g, R-squared values from linear models 
regressing cognitive impairment against covariates displayed on x-axis in 
BioFINDER2 (n = 512). The difference between r-squared values between different 
models are shown. ***p < 0.001. Colors in a,c,e indicate cognitive impairment 
stage as shown in Fig. 1e. Bars and error bars in d and g represent bootstrapped 
(n = 1,000) means and 95% confidence intervals. Two-sided p-values were 
calculated via the empirical distribution of the bootstrapped test statistic.
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Extended Data Fig. 3 | Changes in CSF YWHAG:NPTX2 with normal aging and 
ADAD. a, Changes in CSF Aβ42:Aβ40, PTau181:Aβ42, and YWHAG.1:NPTX2 with 
cognitively normal aging in the BioFINDER2 cohort. Lowess regression lines 
with 95% confidence intervals are shown. b, Changes in CSF PTau181:Aβ42, and 

YWHAG.1:NPTX2 with age in ADAD mutation carriers, binned by estimated age of 
onset, in the DIAN cohort. Lowess regression (left) and linear regression (right) 
lines are shown.
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Extended Data Fig. 4 | CSF YWHAG:NPTX2 association with future cognitive 
impairment independent of tau PET. a, Results from a multivariate linear model 
regressing future ADAS13 cognitive score against the displayed covariates in 

BioFINDER2 (n = 70). PET data are from same time point as the cognitive score. 
YWHAG.1:NPTX2 and PTau181:Aβ42 was measured 4-15 years before PET. Points 
and error bars represent standardized effect sizes and 95% confidence intervals.
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Extended Data Fig. 5 | Defined YWHAG:NPTX2 groups for prediction of future 
cognitive decline, meta-analysis. a, Cox proportional hazard regression was 
used to associate YWHAG.1:NPTX2 groups with future cognitive decline in 
A + T1 + MCI individuals, while adjusting for PTau181:Aβ42, CSF NfL, CSF Ng, 

APOE4, age, and sex. Group 1 was the reference group. Results from a cross-
cohort fixed-effect meta-analysis are shown (total n = 397). Points and error bars 
represent hazard ratios and 95% confidence intervals. b, As in a, but for A + T1+ 
cognitively normal individuals (total n = 168). Group 0 was the reference group.
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