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Summary
Background While most sporadic adult-onset neurodegenerative diseases have only a minor monogenic component, given
several recently identified late adult-onset ataxia genes, the genetic burden may be substantial in sporadic adult-onset
ataxias. We report systematic mapping of the genetic landscape of sporadic adult-onset ataxia in a well-characterised,
multi-centre cohort, combining several multi-modal genetic screening techniques, plus longitudinal natural history data.

Methods Systematic clinico-genetic analysis of a prospective longitudinal multi-centre cohort of 377 consecutive patients
with sporadic adult-onset ataxia (SPORTAX cohort), including clinically defined sporadic adult-onset ataxia of unknown
aetiology (SAOA) (n = 229) and ‘clinically probable multiple system atrophy of cerebellar type’ (MSA-Ccp) (n = 148).
Combined GAA-FGF14 (SCA27B) and RFC1 repeat expansion screening with next-generation sequencing (NGS) was
complemented by natural history and plasma neurofilament light chain analysis in key subgroups.
*Corresponding author. Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of
Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
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Findings 85 out of 377 (22.5%) patients with sporadic adult-onset ataxia carried a pathogenic or likely pathogenic
variant, thereof 67/229 (29.3%) patients with SAOA and 18/148 (12.2%) patients meeting the MSA-Ccp criteria.
This included: 45/377 (11.9%) patients with GAA-FGF14≥250 repeat expansions (nine with MSA-Ccp), 17/377
(4.5%) patients with RFC1 repeat expansions (three with MSA-Ccp), and 24/377 (6.4%) patients with single
nucleotide variants (SNVs) identified by NGS (six with MSA-Ccp). Five patients (1.3%) were found to have two
relevant genetic variants simultaneously (dual diagnosis).

Interpretation In this cohort of sporadic adult-onset ataxia, a cohort less likely to have a monogenic cause, a
substantial burden of monogenic variants was identified, particularly GAA-FGF14 and RFC1 repeat expansions.
This included a substantial share of patients meeting the MSA-Ccp criteria, suggesting a reduced specificity of this
clinical diagnosis and potential co-occurrence of MSA-C plus a second, independent genetic condition. These
findings have important implications for the genetic work-up and counselling of patients with sporadic ataxia,
even when presenting with MSA-like features. With targeted treatments for genetic ataxias now on the horizon,
these findings highlight their potential utility for these patients.

Funding This work was supported by the Clinician Scientist programme “PRECISE.net” funded by the Else Kröner-
Fresenius-Stiftung (to DM, AT, CW, OR, and MS), by the Deutsche Forschungsgemeinschaft (as part of the PRO-
SPAX project), and by the Canadian Institutes of Health Research and the Fondation Groupe Monaco. Support was
also provided by Humboldt Research Fellowship for Postdocs and the Hertie-Network of Excellence in Clinical
Neuroscience and a Fellowship award from the Canadian Institutes of Health Research.

Copyright © 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study
Most sporadic adult-onset neurodegenerative diseases have a
minor monogenic component, which complicates mechanistic
understanding and the development of targeted mechanistic
therapies for these conditions. However, recent discoveries of
several adult-onset ataxia genes — some with onset even in
late adulthood — suggest a potential for a substantial
monogenic contribution in sporadic adult-onset ataxias.
Earlier genetic screening studies in sporadic ataxias indicated a
significant contribution of monogenic causes, but were
limited by their lack of leveraging of any next-generation
sequencing (NGS) approach; investigated only one gene (e.g.,
RFC1; or GAA-FGF14); did not maximise for exclusion of
common autosomal-dominant causes by systematically
excluding positive family history in parental generations and
prior exclusion of common CAG-repeat spinocerebellar
ataxias; and/or did not investigate a multi-centre cohort.

Added value of this study
This study provides in-depth insights into the genetic
architecture of sporadic adult-onset ataxia by systematically
mapping its genetic landscape through a multimodal genetic
approach that combines NGS with RFC1 and GAA-FGF14
genotyping in a large, well-defined, strictly consecutive
cohort, as well as longitudinal natural history data and plasma
neurofilament light chain (NfL) analyses in relevant key
subgroups. Our findings reveal a substantial burden of
monogenic variants in patients with sporadic adult-onset

ataxia (22%), particularly highlighting the prevalence of GAA-
FGF14 and RFC1 repeat expansions. Moreover, they
demonstrate that a noteworthy share of patients (12%)
meeting the criteria of ‘clinically probable multiple system
atrophy cerebellar type’ (MSA-Ccp), according to the 2nd
consensus multiple system atrophy (MSA) diagnostic criteria,
have a monogenic basis. This suggests a reduced specificity of
this clinical diagnostic criteria for MSA mimics and the
potential co-occurrence of MSA plus a second, independent
genetic condition (dual diagnosis).

Implications of all the available evidence
The significant monogenic burden identified in this study
demonstrates the need for comprehensive genetic
investigations in patients with apparently “sporadic” adult-
onset ataxia. This also applies to patients meeting the 2nd
consensus diagnostic criteria of ‘clinically probable MSA’. The
clinical presentation as “sporadic” ataxia — even for late onset
forms — can be explained, inter alia, by late adult-onset
ataxias with dynamic repeat expansions (e.g., GAA-FGF14) or
with autosomal-recessive inheritance (e.g., RFC1). Genetic
screening protocols in sporadic adult-onset ataxia should
routinely include tests, in particular for GAA-FGF14 and RFC1
repeat expansions, to improve diagnostic accuracy, genetic
counselling, and access to targeted treatments — a key
opportunity which would otherwise be critically missed in
these apparently “sporadic” patients.
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Introduction
In contrast to most other sporadic adult-onset neuro-
degenerative diseases (e.g., Alzheimer’s disease, amyo-
trophic lateral sclerosis (ALS), or Parkinson’s disease) in
which aetiology is more complex (includes environ-
mental factors), sporadic adult-onset ataxias seem to
have a higher monogenic burden in.1–3 In particular the
recent identification of genes prominently associated
with late adult-onset sporadic ataxias—such as
GAA-FGF14- (SCA27B)4–6 or RFC1-related ataxia7–9 –

indicates that the contribution of monogenic causes
underlying sporadic adult-onset ataxia could be sub-
stantial. This might also include patients with sporadic
adult-onset ataxia meeting the 2nd consensus MSA
diagnostic criteria of ‘clinically probable MSA-C’
(MSA-Ccp),10 as instances of single patients with an
MSA-C-like phenotype have been reported for several
adult-onset ataxia genes (e.g., RFC1,8,11,12 GAA-FGF1413

or SPG714).
Systematically unravelling the genetic landscape

underlying sporadic adult-onset ataxia, which in-
cludes both patients with sporadic adult-onset ataxia
of unknown aetiology (SAOA) and patients with
multiple system atrophy of cerebellar type (MSA-C),
has important implications beyond genetic work-up
and counselling of these patients. With targeted
treatments for genetic ataxias now on the
horizon,15–17 and for GAA-FGF14–associated ataxia
already in sight by an FDA-approved drug (4-
Aminopyridine6,18,19), it is increasingly relevant to
accurately diagnose these patients with the underly-
ing genetic cause, thereby providing access to future
targeted treatments.

Here, we performed a systematic multimodal
clinico-genetic analysis of the genetic landscape un-
derlying sporadic adult-onset ataxia, leveraging a large
prospective longitudinal multi-centre cohort of 377
consecutive patients with sporadic adult-onset ataxia
(SPORTAX cohort).20,21 In this analysis, we combined
complementary genetic screening techniques (GAA-
FGF14 and RFC1 repeat expansion screening, plus
next-generation sequencing), complemented by longi-
tudinal natural history data and plasma neurofilament
light chain (NfL) analysis in subgroups of interest. We
hypothesised that a substantial share of patients with
sporadic adult-onset ataxia– despite by their sporadic,
adult-onset presentation being less likely to have a
genetic cause—might carry a pathogenic or likely
pathogenic variant, in particular GAA-FGF14 or RFC1
expansions. This might also include a substantial
share of patients meeting the 2nd consensus MSA
criteria for MSA-Ccp,10 as these criteria might have a
reduced specificity against the background of genetic
MSA-mimics and pathogenic variants might also
simply co-occur as a second, independent condition to
MSA.
www.thelancet.com Vol 115 May, 2025
Methods
Study design, cohort characteristics, and patients
SPORTAX is a registry-inventoried prospective longitu-
dinal European multi-centre observational cohort study
(fourteen sites, from five different European countries;
Charité University Hospital, Berlin (Germany); Univer-
sity Hospital Bonn, Bonn (Germany); Essen University
Hospital, Essen (Germany); University of Frankfurt,
Frankfurt am Main (Germany); University Medical
Center Hamburg, Hamburg (Germany); Medical
University of Innsbruck, Innsbruck (Austria);
Universitätsklinikum Magdeburg A.ö.R., Magdeburg
(Germany); University Hospital of Ludwig-Maximilians-
Universität München, München (Germany); Federico II
University, Naples (Italy); Radboud University Medical
Center, Nijmegen (the Netherlands); Oslo University
Hospital, Oslo (Norway); Universitario “A. Gemelli”
IRCCS, Rome (Italy); University of Rostock, Rostock
(Germany); Hospital Tübingen, Tübingen (Germany)).
SPORTAX investigated the characteristics and evolution
of sporadic adult-onset ataxia, including genetics, clin-
ical outcome measures, and fluid biomarkers, with
recruitment having started on April 1, 2010.20,21 Inclu-
sion criteria of the predefined study protocol had been
designed to specifically target sporadic (late-)adult-onset
degenerative ataxia: (i) progressive ataxia with age of
ataxia onset >40 years; (ii) informative and negative
family history (no similar disorders in first- and second-
degree relatives; parents older than 50 years, or, if not
alive, age at death of more than 50 years, no consan-
guinity of parents); (iii) negative molecular genetic
testing for Friedreich’s ataxia (FRDA), spinocerebellar
ataxia type 1 (SCA1), SCA2, SCA3, SCA6, and Fragile X
Messenger Ribonucleoprotein 1 (FMR1) pre-mutation;
and (iv) no established acquired cause of ataxia. No
further ethnic inclusion/exclusion criteria were applied,
thus aiming to make our cohort representative of the
broader European population as seen in ataxia referral
centres across Europe.

Longitudinal follow-up assessments were carried out
at each visit of a patient, if possible, on an annual basis.
Phenotyping and biomarker assessments including
prospective longitudinal follow-up assessments were
performed blinded to the genotype results of the current
study.

Patients were classified with clinical MSA-C if they
fulfilled the diagnostic criteria for MSA-Ccp according to
the 2nd consensus MSA diagnostic criteria at least at the
last visit.10 These diagnostic MSA criteria were used as
they were the only criteria available at time of study
enrolment and data capture. Since subjects were
enrolled in the study and longitudinal data captured
from 2010 until 2020, they could not have been assessed
with the more recent Movement Disorders Society MSA
criteria published in 2022.22 The remaining patients
were classified with clinical SAOA. Further details on
3
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criteria and workup of the SPORTAX cohort can be
found in Oender et al., 2022.20

DNA extraction was performed on peripheral blood
samples obtained from patients. DNA availability did
not significantly correlate with any other study metrics,
except study centre. Overall, DNA availability per centre
is a systematic difference that has, however, not
incurred any bias in our cohort or genetic findings, thus
our study outcomes (see Statistics).

For 377/436 patients of the SPORTAX cohort, suf-
ficient quantity and quality of DNA was available, which
included 229 patients with SAOA (60.7%) and 148 pa-
tients with MSA-Ccp (39.3%). Genetic testing of these
patients included complementary genetic screening
techniques: GAA-FGF14 (SCA27B) repeat expansion
screening, RFC1 repeat expansion screening (initially
associated primarily with cerebellar ataxia, neuropathy
and vestibular areflexia syndrome (CANVAS)), next-
generation sequencing (Supplement 1). Patients were
investigated by each of these techniques when DNA was
available (356 individuals by GAA-FGF14 repeat expan-
sion screening, 360 individuals by RFC1 repeat expan-
sion screening, 301 individuals by next-generation
sequencing (NGS)), even if one of these techniques
already rendered a positive result, thus allowing to test
also for possible dual genetic diagnoses and to include/
exclude also other (potentially more convincing) genetic
variants.

Preliminary earlier results of a genetic analysis of the
SPORTAX cohort has previously been published,20

however this previous analysis (i) used genetic tests to
exclude patients from the respective subsequent ana-
lyses; (ii) was only preliminary in nature; and (iii) lacked
several genetic analyses employed in the current multi-
modal genetic study (for example, preliminary exome
sequencing analysis without GAA-FGF14 genotyping).

Ethics
The SPORTAX study was approved by the ethics com-
mittee of University Tübingen (AZ 598/2011BO1). All
participants provided written informed consent. This study
is registered with ClinicalTrials.gov (NCT02701036).

GAA-FGF14 expansion screening
In brief, the intronic FGF14 repeat locus was amplified
by long-range PCR and the number of repeat units was
subsequently determined by capillary electrophoresis of
fluorescent long-range PCR amplification products,
using methodology and primers as previously described
by Pellerin et al.4 Results of fragment length analysis
were confirmed by agarose gel electrophoresis of PCR
amplification products. Additionally, bidirectional
repeat-primed PCRs targeting the 5′-end and the 3′-end
of the locus were used to ascertain the presence of a
GAA repeat expansion. GAA repeat expansions ≥250
repeat units were considered pathogenic.4,6 GAA repeat
expansions 200–250 repeat units were considered of
potential pathogenic relevance (given recent observa-
tions that GAA 200–250 repeat units might cause
GAA-FGF14 ataxia syndromes).19

RFC1 expansion screening
Genetic screening for RFC1 repeat expansions was
performed as previously described assessing two motifs,
(AAAAG) and (AAGGG), using repeat-primed PCR and
an additional flanking PCR.23 In brief, the intronic
genomic region of the RFC1 expansion was amplified
from genomic DNA using a fluorescence-labelled PCR
primer. The number of 5 bp repeat motifs was calcu-
lated from the length of the alleles as determined by
capillary electrophoresis (ABI3730, Applied Biosystems)
allowing for an exact determination of repeat numbers
up to 115 repeats. In addition, a repeat-primed PCR to
target the frequent pathogenic motive (AAGGG, primer
sequences from Cortese et al.,7 and the non-pathogenic
motive (AAAAG, primer sequences from5) was per-
formed. The presence of biallelic AAGGG RFC1
expansion was confirmed if flanking PCR did not show
an amplifiable fragment and the repeat-primed PCR for
AAAAG did not show peaks, while the repeat-primed
PCR for the AAGGG showed the typical sawtooth
peak pattern.

Next-generation sequencing and analysis
Next-generation sequencing
The high-coverage custom HaloPlex gene panel
(Agilent, Santa Clara, CA) was run on a NextSeq500
sequencer (Illumina, San Diego, CA) with paired-end
2 × 150 bp sequencing (671 kb target size) as previ-
ously described.21 The mean vertical coverage was 413
reads, and a minimal coverage of 20 reads was achieved
for 98.8% of the target region. Bioinformatic analysis of
the variants were described previously.21 Exome
sequencing (ES) was run on the Illumina NovaSeq 6000
platform using the Agilent SureSelectXT library prepa-
ration kit and the SureSelect Human All Exon V7
enrichment kit (Q30-value: 92.34%). Reads were aligned
with BWA. Variants were called with Picard and
FREEBAYES and annotated with ANNOVAR as part of
the GENESIS platform.24

Targeted gene analyses
201 genes known to be associated with ataxia (Gene set
1, Supplement 2) were screened by NGS, either with a
high-coverage large-scale NGS panel (n = 154 subjects)
or by exome sequencing (ES) (n = 117 subjects), or
both (n = 30 subjects). For exome sequencing, an
additional 186 ataxia-overlap disease genes (Gene set 2,
Supplement 2), as well as a large gene set of 957 disease
genes associated with other types of neurodegenerative
disease (Gene set 3, Supplement 2) were evaluated. Data
was processed as described previously20,24 (Supplement 3).
Called variants were filtered for read quality, read depth,
population frequency, and for variant effect and
www.thelancet.com Vol 115 May, 2025
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annotated with available information from mutation
database ClinVar. Pathogenicity of variants was deter-
mined by semi-automated application of ACMG criteria
using InterVar with manual correction where needed.25–27

Subjects were classified as having a genetic diagnosis
based on the pathogenic likelihood of the respective
variants and the phenotypic match. That is, subjects and
their diagnoses were classified as: (i) definitive genetic
diagnosis, if having a pathogenic or likely pathogenic
variant (based on application of ACMG criteria) and a
phenotype typical of the genetic variant; (ii) probable
genetic diagnosis, if having a pathogenic or likely
pathogenic variant (based on application of ACMG
criteria) and a phenotype broadly compatible with the
genetic variant; (iii) unclear in cases where a pathogenic
or likely pathogenic variant (based on application of
ACMG criteria) was found, but the phenotype was not a
characteristic match or additional genetic studies would
be needed to provide final proof; (iv) no genetic
diagnosis (all other subjects).

Plasma neurofilament light chain analyses
Plasma NfL was determined as described previously.20

Study sites collected EDTA plasma samples that were
frozen at −80 ◦C within 1 h post collection and analysed
without any further freeze–thaw cycle. Plasma levels of
NfL were quantified using the Simoa NF-light Advan-
tage kit (Lot 502,183) on an Quanterix HD1 analyser
(Quanterix, Billerica, MA). All assays were performed by
the same operator blinded to sample identity. EDTA
plasma was centrifuged at 14,000×g for 4 min, and the
upper 90% transferred to the assay plate. Samples
(dilution factor 1:4 in sample buffer) and calibrators
were analysed in duplicate. Two internal control sam-
ples were assessed both at the start and end of an assay
plate. The repeatability was 3.7% (sample 1) and 5.7%
(sample 2). The inter-assay variance between the runs
across 5 days was 3.1% (sample 1) and 4.8% (sample 2).
Cross-sectional evaluation of NfL levels always used the
first available NfL level at a subjects first visit in the
SPORTAX study.

Statistics
The statistical analyses were conducted using GraphPad
Prism, version 10.1.2 (La Jolla, CA, USA), and Stata,
version 17.0 (College Station, TX, USA). Normal distri-
bution of data was assessed by visually inspecting
histograms and Quantile–Quantile plots. Fisher’s exact
tests were performed to assess the statistical significance
of the difference in the yield of genetic diagnoses
(categorical) between the SAOA and MSA-Ccp sub-
groups, where relevant. Clinical and cohort features
(e.g., sex, age at onset, disease severity) were compared
between groups using student’s t-tests (for continuous
variables) or Fisher’s exact tests (for categorical vari-
ables). A comparison for the presence of GAA-FGF14
intermediate repeat expansion length (200–249 GAA
www.thelancet.com Vol 115 May, 2025
repeats) was performed using a Fisher’s exact test with
the control population as described in Pellerin et al.
(2024).28 Differences in NfL levels between the non-
genetic MSA-Ccp group compared to the GAA-FGF14
and RFC1 MSA-Ccp and SAOA groups were examined
using the Kruskal–Wallis H test followed by Dunn’s
post-hoc test. NfL levels are age-dependent, with higher
levels observed in older individuals. To account for this,
we also modelled longitudinal plasma NfL levels in the
non-genetic MSA-Ccp group compared to the GAA-
FGF14 and RFC1 MSA-Ccp and SAOA groups using a
linear mixed effect model (LMEM) that included base-
line age as a covariate. The interpretation of the statis-
tical results from this model was similar to that of the
original simpler cross-sectional comparison. LMEM
with an unstructured covariance matrix was employed to
investigate the relationship between the response vari-
able (SARA—Scale for the Assessment and Rating of
Ataxia) and predictor variables. The LMEMs were
adjusted for age of disease onset and sex, and included
an interaction between time since disease onset and
diagnostic group as well as random intercepts and
slopes nested within subjects. Model building began
with the formulation of a null model, and covariates
and additional multilevel factors were systematically
introduced to assess their impact on the response
variable. Model fit was evaluated using the Akaike
Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC), with lower values indicating
better fit. Additionally, the interclass correlation coef-
ficient (ICC) was computed to assess the proportion of
total variance attributable to level-2 variability Addi-
tionally, the interclass correlation coefficient (ICC)
was computed to assess the proportion of total
variance attributable to level-2 variability. Homosce-
dasticity of level-1 residuals, which represent within-
group deviations from the predicted values, was
assessed using residual plots, was assessed using re-
sidual plots, while symmetry of total residuals was
examined through visual inspection of histograms.
Individual subjects’ longitudinal annualised disease
progression was determined by the slope of the line
through SARA scores from their first and their last
available assessment. We report p-values that are un-
adjusted for multiple comparisons due to the explor-
atory nature of our study. The significance threshold
was set p < 0.05.

Subgroup analysis for the centres was carried out by
analysing differences between the three largest
contributing sites, as the large variability of patients
included per centre–with low contributions from some
centres–did not allow for a meaningful per-centre
analysis. No correlations with the study sites (p-values
>0.1) for any continuous data patient characteristic (age
at onset, age at visit, SARA score, NfL concentration) or
categorical value (sex, phenotypic subgroup and genetic
diagnosis) was found. DNA availability was an
5
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exception, indicating only that specific centres were
more likely to sample for DNA, without selecting a
distinct patient population.

Sex and race/ethnicity reporting
Sex data were collected based on self-reporting by par-
ticipants or as recorded in their medical records. Race
and ethnicity data were not collected as part of our
study. Patients were included in the study solely based
on meeting the inclusion criteria, regardless of sex and
race/ethnicity. No specific analyses were designed to
assess differences in genetic findings by sex.

Role of funders
Funders had no role in the study design, data collection,
analysis, interpretation or writing of this manuscript.
Results
The analysis of 377 patients with sporadic adult-onset
ataxia (213 male, 164 female) from the SPORTAX
cohort included 229 (60.7%) SAOA patients (131 male,
81 female) and 148 (39.3%) patients meeting the
2nd consensus MSA-Ccp diagnostic criteria (MSA-Ccp

patients) (82 male, 66 female). A detailed overview of the
cohort characteristics, including demographic and clin-
ical features, is provided in Supplement 4. (Supplement
4; cohort characteristics). Median disease duration at
time of the most recent follow-up within the cohort was
6.7 years (IQR 4.8–10.7) (SAOA: 7.7 years (IQR
4.9–13.1), MSA-Ccp: 6.1 years (IQR 4.6–7.5); p < 0.0001,
student’s t-test), and significantly shorter in MSA-Ccp.
The median disease severity at the same assessment was
15 SARA points (IQR 11–20) (SAOA: 13 SARA points
(IQR 9.5–17), MSA-Ccp: 19 SARA points (IQR 14–24.5);
p < 0.0001, student’s t-test) and significantly higher in
MSA-Ccp.

Overall, a pathogenic or likely pathogenic variant was
identified in 85/377 individuals, rendering an overall
genetic yield of 22.5% in this cohort (Fig. 1a). Of the
identified SNVs 72% were definitive in classification
(Fig. 1b), and could further be subdivided into auto-
somal dominant (Fig. 1c) and autosomal recessive
(Fig. 1d) variants. Per clinical subgroup, 67/229 (29.3%)
SAOA patients and 18/148 (12.2%) MSA-Ccp patients
carried a pathogenic or likely pathogenic variant
(Fig. 1a).

GAA-FGF14 repeat expansions in sporadic ataxia
Heterozygous FGF14 (GAA)≥250 repeat alleles were
identified in 45/377 individuals (11.9%), thereof 36/229
patients (15.7%; 257–483 GAA repeat units) in the
SAOA cohort and 9/148 (6.1%; 273–409 GAA repeat
units) in the MSA-Ccp cohort (Supplement 5, pathogenic
FGF14-GAA repeat expansion sizes). Of the nine FGF14
(GAA)≥250 patients with MSA-Ccp phenotype, the MSAcp

criterion of autonomic dysfunction was met in 5/9
patients with orthostatic hypotension (>30 mmHG sys-
tolic or 15 mmHG diastolic), 2/9 patients with genito-
urinary dysfunction according to the MSAcp criteria
(urinary incontinence, with erectile dysfunction in
males) and 2/9 patients with both autonomic dysfunc-
tions (Table 1, for additional phenotypic information see
Supplement 10). Age of onset was 61 years (IQR 56–63),
current age 68 years (IQR 63–72), and disease duration
5.2 years (IQR 3.9–7.2) in the GAA-FGF14 MSA-Ccp

group. Each of which was not significantly higher than
in the GAA-FGF14 SAOA group (age of onset: 60 years
(IQR 57–68.3), current age: 73 (IQR 67.8–79), disease
duration: 9.5 years (6.5–15.3); p > 0.05 student’s t-test),
indicating that it was not a potentially higher age and/or
disease duration that might have contributed to the
MSAcp phenotype in those patients with GAA-FGF14
expansions meeting the MSA-Ccp criteria. 5/9 GAA-
FGF14 MSA-Ccp subjects showed downbeat nystagmus
(DBN), a sign characteristic for GAA-FGF14 ataxia
(while much less frequent in MSA-C) (Supplement 10).
This indicates that in at least some subjects with GAA-
FGF14 MSA-Ccp the MSA-like phenotype may present a
phenotypic cluster along the continuous phenotypic
spectrum of GAA-FGF14-ataxia. In turn, however, 2/9
subjects with GAA-FGF14 MSA-Ccp (including one
subject with DBN) also showed signs characteristic of
MSA-C like erectile dysfunction and poly-
minimyoclonus (patient 6) or stridor (patient 7)
(Supplement 10), which are very untypical for patients
with GAA-FGF14 ataxia. This indicates that in at least
some patients with GAA-FGF14 MSA-Ccp, MSA-C
might also be present as a coexistent, second indepen-
dent condition.

The disease progression rate in patients with
MSA-Ccp and GAA-FGF14 expansions (n = 9), calculated
by the LMEM which allows consideration of both cross-
sectional and longitudinal datapoints, was 0.93 ± 0.51
SARA points/year (for all intraindividual progression
plots, see Fig. 2a). If assessed on a group level, this
disease progression was substantially slower than the
disease progression of MSA-Ccp patients in whom no
genetic variant was found (2.11 ± 0.16 SARA points/
year, p = 0.03, n = 72), and more similar to the patients
with SAOA and GAA-FGF14 expansions (0.51 ± 0.22
SARA points/year, p = 0.45, n = 36). Yet, on an indi-
vidual level, for 4 out of those 5 patients for whom
longitudinal SARA data were available, the disease
progression rate was indeed more similar to the disease
progression rate of the patients with non-genetic
MSA-Ccp (Fig. 2a), than that of the GAA-FGF14 SAOA
cohort (i.e., SARA disease progression rate in 4/5
GAA-FGF14 MSA-Ccp subjects >2 SARA points/year:
Patient 3 (P3): 4 points/year; P5: 3.7 points/year, P6: 2.7
points/year; P7: 2.1 points/year). This indicates that in
some patients with GAA-FGF14-ataxia, the disease
progression is similar to MSA-C—either as they are part
of a more rapid disease cluster in GAA-FGF14 ataxia or
www.thelancet.com Vol 115 May, 2025
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Fig. 1: Genetic landscape of sporadic adult-onset degenerative ataxia. (a) 377 individuals with sporadic adult-onset ataxia from the
SPORTAX cohort underwent genetic testing (229 SAOA patients and 148 MSA-Ccp patients). FGF14 (GAA)≥250 repeat alleles were identified in
45 individuals (blue); biallelic RFC1 (AAGGG) repeat expansions were identified in 17 individuals (orange); 25 different definitive, probably or
unclear genetic diagnoses through SNVs were identified in 24 individuals (green); one individual has two relevant SNV findings. Two individuals
had multiple relevant genetic findings for the ataxia phenotype demonstrated by split pictographs (P25 and P40). (b) number and percentage
of SNV findings divided by phenotypic subtype and SNV interpretation (definitive/probable/unclear). (c, d) Number of individuals with a
relevant genetic finding of SNVs (n = 25, definitive, probable and unclear) in respective autosomal-dominant (n = 14) (c) or autosomal-recessive
(n = 11) (d) genes. Only genetic SNVs of the definitive, probably and unclear categories are shown here as based on the interpretation of the link
between variants and phenotype, separated by gene in MSA-Ccp individuals (dark green) and SAOA individuals (light green). Patients with MSA-
Ccp and meeting the criteria of clinically probable multiple system atrophy cerebellar type; SAOA, sporadic adult-onset ataxia of unknown
aetiology.
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Individual# Sex Age at
onset

Age at
assessment

SARA NfL levels
(pg/mL)

Genitourinary
dysfunction for
MSA-Ccp meta

Orthostatic
hypotension
criterion for
MSA-Ccp metb

Downbeat-
nystagmus
on fixation

GAA-FGF14≥250 MSA-Ccp patients

P1 F 62 65 9 NA no yes yes

P2 F 56 61 25 NA yes yes no

P3 M 61 63 19 NA no yes no

P4 M 67 72 8 NA no yes yes

P5 F 63 70 17.5 13.5 yes yes yes

P6 M 55 59 19 NA no yes no

P7 M 60 68 15.5 12.3 yes no yes

P8 M 77 77 11 14.5 no yes no

P9 M 50 76 7.5 14.8 yes no yes

Individual # Sex Age at
onset

Age at
assessment

SARA NfL levels
(pg/mL)

Genitourinary
dysfunction for
MSA-Ccp meta

Orthostatic
hypotension
criterion for
MSA-Ccp metb

≥Two out of
three additional
typical clinical
CANVAS signsc

RFC1 MSA-Ccp patients

P10 F 46 61 14 NA yes no yes

P11 M 47 61 9.5 16 no yes yes

P12 F 49 64 22.5 27.7 yes no yes

Individual # Sex Age at
onset

Age at
assessment

SARA NfL levels
(pg/mL)

Genitourinary
dysfunction for
MSA-Ccp meta

Orthostatic
hypotension
criterion for
MSA-Ccp metb

–

SNV MSA-Ccp patients

P13 M 40 42 6 NA yes no –

P14 F 51 54 10 10.2 yes no –

P15 F 65 76 26 22.5 yes no –

P16 F 48 54 17.5 NA yes no –

P17 F 54 71 9.5 9.4 yes no –

P18 M 57 60 18.5 NA yes no –

Abbreviations: #, number; CANVAS, Cerebellar ataxia, neuropathy and vestibular areflexia syndrome; MSA-Ccp, patients meeting the criteria of clinically probable multiple system atrophy cerebellar type;
SARA, Scale for the assessment and rating of ataxia; SNV, single nucleotide variant. MSA criteria according to the 2nd consensus MSA diagnostic criteria. aUrinary incontinence (inability to control the
release of urine from the bladder, with erectile dysfunction in males). bBy at least 30 mmHg systolic or 15 mmHg diastolic within 3 min of standing. cPresence of two or more of the following clinical signs:
sensory neuropathy/ganglionpathy, impaired head impulse test, chronic cough).

Table 1: Phenotype of patients with genetic findings meeting the MSA-Ccp criteria (for more phenotypic details, see Supplement 8 and Supplement 10 and 11).
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because they have MSA-C as a coexisting, second
condition.

Cross-sectional comparison of NfL levels revealed
that NfL levels in the GAA-FGF14 MSA-Ccp group
(12.9 pg/mL, IQR 11.6–14.4, n = 4) were significantly
lower than in the non-genetic MSA-Ccp group (27.1 pg/
mL, IQR 19.5–35.6, n = 58, p < 0.05) and more similar to
the NfL levels of patients with GAA-FGF14 SAOA
(15.5 pg/mL, IQR 10.3–20.6, n = 15, p > 0.05–LMEM)
(Fig. 2b). This indicates that, at least on the overall group
level, the rate of underlying axonal degeneration in pa-
tients with GAA-FGF14 expansions with the MSA-Ccp

phenotype is substantially less than in patients with
non-genetic MSA-Ccp.29,30

Biallelic FGF14 (GAA)≥250 repeat expansions were
identified in one individual (patient with non-MSA-Ccp

SAOA) (for further details on this subject, see
Supplement 5). Of note, we also identified 16/377
(4.2%) individuals with potentially pathogenic interme-
diate FGF14 (GAA)200-249 alleles in our cohort
(Supplement 6), which presents an enrichment
compared to controls (19/2191 (=0.87%)); (4.2% vs
0.87%; OR 5.06, 95% CI 2.41–10.50, Fisher’s exact test
p < 0.0001).

RFC1 repeat expansions in sporadic ataxia
Biallelic RFC1 repeat expansions of the pathogenic
AAGGG motif were identified in 17/377 (4.5%) in-
dividuals, thereof 14/229 (6.1%) patients in the SAOA
cohort and 3/148 (2.0%) patients in the MSA-Ccp cohort
(Supplement 7). This includes one SAOA patient (sub-
ject P77) in whom, in addition to the biallelic RFC1
repeat expansions, a potentially pathogenic intermediate
GAA-FGF14 repeat expansion (236 GAA repeat units)
www.thelancet.com Vol 115 May, 2025
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Fig. 2: Progression of disease severity (SARA), and cross-sectional NfL assessments in different ataxia disease groups. (a, c) Progression of
disease severity as calculated by a linear mixed effect model (LMEM) combining cross-sectional and longitudinal SARA scores, plotted against
time from onset, estimated trajectories per disease group with 95% CIs, GAA-FGF14 (a) (FGF14 MSA-Ccp n = 9, non-genetic MSA-Ccp n = 72,
FGF14 SAOA n = 36), RFC1 (c) (RFC1 MSA-Ccp n = 3, non-genetic MSA-Ccp n = 72, RFC1 SAOA n = 14). (b, d) Cross-sectional plasma NfL levels
at first visit per disease group, GAA-FGF14 (b) (FGF14 MSA-Ccp n = 4, non-genetic MSA-Ccp n = 58, FGF14 SAOA n = 14), RFC1 (d) (RFC1 MSA-
Ccp n = 2, non-genetic MSA-Ccp n = 58, RFC1 SAOA n = 8). Patients with MSA-Ccp patients meeting the criteria of clinically probable multiple
system atrophy cerebellar type; SAOA, sporadic adult-onset ataxia of unknown aetiology. Each point represents an individual subject and
means ± SEM are indicated. Differences between groups were assessed Kruskal Wallis H test followed by Dunn’s post hoc test, *p < 0.05,
***p < 0.001, ns is non-significant.

Articles
was identified. Of the three patients with RFC1 expan-
sions with an MSA-Ccp phenotype, the MSA-Ccp crite-
rion of autonomic dysfunction was met in 1/3 patients
with orthostatic hypotension, and 2/3 patients with
genitourinary dysfunction (Table 1, and for additional
phenotypic information see Supplement 11). Age of
onset was 47 years (IQR 46.5–48), current age was 61
www.thelancet.com Vol 115 May, 2025
years (IQR 61–62.5), and disease duration was 15.8
years (IQR 15.0–15.8) in the RFC1 MSA-Ccp group
(n = 3). Age of onset and current age were significantly
lower in the RFC1 MSA-Ccp group than in the RFC1
SAOA group (n = 14; age of onset: 54.5 years [IQR
49.3–59.8], current age 67 years [IQR 60.5–72.8], disease
duration 13.6 years [IQR 11.6–17.2]; compared to RFC1
9
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MSA-Ccp: p ≤ 0.01, <0.05, >0.05 respectively student’s t-
test). This indicates that it was not a potentially higher
age and/or disease duration that might have contributed
to the MSAcp-phenotype in those patients with RFC1
meeting the MSA-Ccp criteria. All 3/3 subjects with
RFC1 MSA-Ccp showed, in addition to ataxia, clinical
signs associated with CANVAS and demonstrative of
sensory neuropathy/ganglionopathy (absent distal
tendon reflexes, at least of the Achilles tendon reflex;
plus reduced vibration sense in all 3/3 patients),
vestibular impairment when assessed (impaired head
impulse test in all 2/2 patients), plus chronic cough (3/3
patients) (Supplement 11). This indicates that in at least
some subjects with RFC1 MSA-Ccp the MSA-like
phenotype may present a phenotypic cluster along the
continuous phenotypic spectrum of RFC1-ataxia and
CANVAS.

All three patients with MSA-Ccp and RFC1 expan-
sions had high levels of ataxia severity (SARA score)
relative to time since onset already at their first assess-
ments (Fig. 2c) (P10, 10 SARA points; P11, 9.5 SARA
points; P12, 20 SARA points), which were closer to the
range of non-genetic MSA-Ccp patients, rather than of
SAOA patients with RFC1 expansions (Fig. 2c). How-
ever, longitudinal disease progression in patients with
RFC1 MSA-Ccp (0.85 ± 0.71 points/year; n = 3) was
substantially slower than disease progression of patients
with non-genetic MSA-Ccp (2.15 ± 0.16 points/year;
n = 72), and more similar to patients with RFC1 SAOA
(1.16 ± 0.36 points/year; n = 14). Comparisons between
these groups for disease severity relative to time since
onset at first assessment and longitudinal progression
both did not reach statistical significance, likely due to
the small patient numbers. Cross-sectional comparison
of NfL levels showed that NfL levels in the RFC1 MSA-
Ccp group (21.9 pg/mL, IQR 16.0–27.7, n = 2) were
lower than in the non-genetic MSA-Ccp group (27.1 pg/
mL, IQR 19.5–35.6, n = 58) and more similar to RFC1
SAOA NfL levels (18.4 pg/mL, IQR 15.5–24.6, n = 8),
but also not reaching significance likely due to small
patient numbers (RFC1MSA-Ccp n = 3 and RFC1 SAOA
n = 14 respectively). The RFC1 SAOA group also
showed no significant difference in NfL levels compared
to the non-genetic MSA-Ccp group (p > 0.05 - LMEM)
(Fig. 2d). Taken together, these results indicate that the
MSA-like phenotype might represent a phenotypic
cluster along the continuous phenotypic spectrum of
RFC1-ataxia, with MSA-like symptoms and high ataxia
severity already early in the disease course, but still
without MSA-typical progression rates or MSA-typical
rates of axonal degeneration.

Single-nucleotide variants in sporadic ataxia
Next-generation sequencing was used to investigate
causative SNVs in this cohort, yielding 22 definitive or
probable genetic findings in 21/377 individuals (5.8%)
in the total cohort (Fig. 1a–c, Tables 2 and 3), thereof 14/
229 (6.1%) in the SAOA group and 6/148 (4.1%) in the
MSA-Ccp group. Unclear genetic findings were identi-
fied in 3 of 377 (0.8%) patients, in the form of patho-
genic or likely pathogenic variants for which the
contribution to the ataxia phenotype remains unclear,
were identified in the total cohort, thereof 3/229 (1.3%)
in the SAOA group (Fig. 1b and c). In total, 24/377
(6.4%) patients had SNVs identified by NGS in the
definitive, probable, unclear categories (Fig. 1b and c).
From a testing strategy perspective, the diagnostic yield
for SNVs in whole exome sequencing (WES)-tested in-
dividuals (10.8%) was overall higher than those sub-
jected to targeted gene panel sequencing (6.4%)
(Supplement 9).

Causative SNVs were identified in both autosomal-
dominant and autosomal-recessive genes for both
phenotypic subgroups (Fig. 1b and c). CACNA1A (n = 4)
and SPG7 (n = 4) were the most common genetic cau-
ses, with these genes accounting for four genetic di-
agnoses each. Variants in ATM (n = 2) were causative
for the ataxia phenotype in two cases. All other genes
(n = 11) accounted for a single definitive or probable
genetic diagnosis each: ADCK3/COQ8A, CACNA1G,
CSF1R, GFAP, KCNC3, PEX26, SLC1A3, SNX14,
STUB1, TRPC3, TMEM240 (Tables 2 and 3). Out of
these genes, pathogenic variants were found in the
MSA-Ccp group in the following genes: ATM, CAC-
NA1A, GFAP, KCNC3, SLC1A3 and SPG7 (Tables 2 and
3, Fig. 1b and c). All 6/6 of these patients with MSA-Ccp

phenotype met the MSA criterion of autonomic
dysfunction due to genitourinary dysfunction, while
they did not show orthostatic hypotension (Table 1). The
subject carrying the ATM variants (patient P16) also
showed all MRI signs characteristic of MSA on imaging
(hot cross bun sign, atrophy of pons and middle cere-
bellar peduncles), thus making it likely that she indeed
had MSA-C plus a genetic condition (Ataxia Telangiec-
tasia caused by mutations in ATM) as two independent,
co-occurring conditions (for case description, see
Supplement 8).

Variants of unclear significance for the ataxia
phenotype were identified in three cases: OPA1 (n = 1),
POLG (n = 2). P28 carries the likely pathogenic OPA1
variant, however, lacks the characteristic optic atrophy
phenotype. For individuals P39 and P40, variant
phasing could not be established for the two pathogenic
POLG heterozygous variants, and P40 also carries a
pathogenic GAA-FGF14 repeat expansion, thus poten-
tially presenting a dual diagnosis.

Two patients had variants in SOD1 (n = 2; P31, P32),
both with a second, independent mutation in an ataxia
gene, thus demonstrating a dual genetic diagnosis. In-
dividual P31 carried a known pathogenic SOD1 variant
(c.217G > A, p.Gly73Ser)31), together with biallelic
pathogenic RFC1 repeat expansions, and in fact showed
characteristic features of both an ataxia and a motor
neuron disease (Table 2; for case description, see
www.thelancet.com Vol 115 May, 2025
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Individual# Sporadic
ataxia
cluster

Clinical features Gene OMIM Zygosity Variant (hg19) GnomADv2 CADD
(GRCh37-
v1.7)

SIFT PolyPhen2 ACMG
classification

Genetic diagnosis
for causing the
ataxia phenotype

Definitive and probable genetic diagnoses

P19 SAOA Ataxia with ATR areflexia,
moderate Impaired vibration sense
(LL) and hypermetric saccades

CACNA1A 601011 heterozygous NM_001127222.2:
c.3882+2T > C (p.?)

0.00E+00 16.3 NA NA Pathogenic
(PVS1, PM2,
PP3)

Definitive

P20 SAOA Ataxia with mild LL paresis, broken
up smooth pursuit, mild dysphagia.

CACNA1A 601011 heterozygous NM_001126131.2:
c.1987C > T
(p.Gln663Ter)

0.00E+00 52.0 NA NA Likely
Pathogenic
(PVS1, PM2,
PP3, PP5)

Definitive

P13 MSA-Ccp Ataxia with bilateral positive
Babinski reflex, slowing of saccades,
mild urinary dysfunction.

CACNA1A 601011 heterozygous NM_001127222.2:
c.2404C >
A (p.Arg802Ser)

4.72E-06 25.9 Deleterious Possibly
damaging

Likely
Pathogenic
(PM1, PM2,
PP2, PP3,
PP4)

Definitive

P21 SAOA Ataxia with mild LL paresis, broken
up smooth pursuit, gaze-evoked
nystagmus, slowed saccades,
strabismus.

CACNA1A 601011 heterozygous NM_001127222.2:
c.593G > A
(p.Arg198Gln)

0.00E+00 28.6 Deleterious Probably
damaging

Likely
Pathogenic
(PM1, PM2,
PP3)

Definitive

P14 MSA-Ccp Ataxia with ATR and PTR areflexia,
mild limb spasticity, broken up
smooth pursuit, dysphagia, and
moderate urinary incontinence

GFAP 137780 heterozygous NM_002055.5:
c.208C > T
(p.Arg70Trp)

0.00E+00 25.6 Deleterious Probably
damaging

Likely
Pathogenic
(PM1, PM2,
PP3, PP5)

Definitive

P18 MSA-Ccp Ataxia with moderate Impaired
vibration sense (LL), broken up
smooth pursuit, hypermetric
saccades, Impaired visual acuity,
dysphagia, severe urinary
incontinence, severe cognitive
impairment

KCNC3 176264 heterozygous NM_004977.3:
c.1313G > A
(p.Gly438Glu)

0.00E+00 27.7 Deleterious Probably
damaging

Likely
Pathogenic
(PM1, PM2,
PP2, PP3)

Definitive

P15 MSA-Ccp Ataxia with PTR hyperreflexia, limb
spasticity, gait spasticity, moderate
Impaired vibration sense (LL),
broken up smooth pursuit,
horizontal nystagmus, slowed
saccades, Impaired visual acuity,
dysphagia, moderate urinary
incontinence, mild cognitive
impairment, sleep apnoea

SLC1A3 600111 heterozygous NM_004172.5:
c.1099G > A
(p.Ala367Thr)

0.00E+00 22.2 Deleterious Probably
damaging

Likely
Pathogenic
(PM1, PM2,
PP3, PP4)

Definitive

P22 SAOA Ataxia with neck, truncal and UL
chorea

STUB1 607207 heterozygous NM_005861.4:
c.613-1G > T (p.?)

0.00E+00 13.7 NA NA Pathogenic
(PVS1, PM2,
PP3)

Definitive

P23 SAOA Ataxia with UL and LL areflexia,
mild distal muscle atrophy LL,
severely impaired vibration sense
(LL), broken up smooth pursuit,
hypo- and hypersaccades,
dysphagia and mild urinary
dysfunction

TMEM240 616101 heterozygous NM_001114748.2:
c.239C > T
(p.Thr80Met)

0.0000385 12.0 Deleterious Probably
damaging

Likely
Pathogenic
(PM1, PM2,
PP2, PP5)

Definitive

P24 SAOA Ataxia with LL hyperreflexia,
moderate LL paresis, broken up
smooth pursuit, hypometric
saccades, gaze evoked nystagmus

TRPC3 602345 heterozygous NM_001130698.2:
c.2620G > T
(p.Glu874Ter)

0.00E+00 48.0 NA NA Pathogenic
(PVS1, PM2,
PP3)

Definitive

(Table 2 continues on next page)

A
rticles

w
w
w
.thelancet.com

V
ol

115
M
ay,

20
25

11

http://www.thelancet.com


Individual# Sporadic
ataxia
cluster

Clinical features Gene OMIM Zygosity Variant (hg19) GnomADv2 CADD
(GRCh37-
v1.7)

SIFT PolyPhen2 ACMG
classification

Genetic diagnosis
for causing the
ataxia phenotype

(Continued from previous page)

P25 SAOA Ataxia with ATR areflexia,
moderate distal muscle atrophy LL,
broken up smooth pursuit, gaze-
evoked nystagmus, dysphagia,
urinary dysfunction, and mild
cognitive impairment

CACNA1G 604065 heterozygous NM_018896.5:
c.4855G > A
(p.Gly1619Ser)

4.10E-06 22.4 Tolerated Probably
damaging

Likely
Pathogenic
(PM1, PM2,
PP2, PP3)

Probable (also
probable genetic
diagnosis of PEX26)

P26 SAOA Ataxia with mild loss of vibration
sense in distal LL, dysphagia, and
mild urinary dysfunction

CSF1R 164770 heterozygous NM_005211.3:
c.1447_1450dup
(p.Glu484ValfsTer30)

0.00E+00 NA NA NA Pathogenic
(PVS1, PM2,
PP3)

Probable

P27 SAOA Ataxia with mild muscle atrophy UL
and LL, mild loss of vibration sense
in distal LL, broken up smooth
pursuit, slowed saccades,
hypometric saccades and dysphagia

KCND3 605411 heterozygous NM_004980.5:
c.1119G > A
(p.Met373Ile)

0.00E+00 23.2 Tolerated Benign Likely
Pathogenic
(PM1, PM2,
PP2, PP3)

Probable

Unclear genetic findings

P28 SAOA Mild distal LL paresis, broken up
smooth pursuit, gaze evoked-
nystagmus, hypermetric saccades,
Impaired visual acuity.

OPA1 605290 heterozygous NM_130837.3:
c.1311A > G
(p.Ile437Met)

6.22E-04 23.1 Deleterious Probably
damaging

Likely
Pathogenic
(PM1, PM2,
PP2, PP3)

Unclear (lacks the
characteristic optic
atrophy associated
with OPA1)

Genetic findings not causative of the ataxia phenotype

P29 MSA-Ccp Ataxia with moderate Impaired
vibration sense (LL), broken up
smooth pursuit, hypometric and
hypermetric saccades, and severe
urinary dysfunction (catheter)

CACNB4 601949 heterozygous NM_000726.5:
c.311G > T
(p.Cys104Phe)

0.0004984 25.9 Deleterious Probably
damaging

Likely
Pathogenic
(PM1, PM2,
PP2, PP3)

No (possibly a
risk factor)

P30 SAOA Ataxia with severe resting tremor,
mild loss of vibration sense in distal
LL, broken up smooth pursuit and
dysphagia

MFN2 608507 heterozygous NM_001127660.1:
c.227T > G
(p.Leu76Arg)

0.00E+00 21.6 Tolerated Benign Pathogenic
(PM1, PM2,
PM5, PP3)

No (non-ataxia
disease variant, no
neuropathy in patient)

P31 SAOA Ataxia with ATR and PTR areflexia,
mild spastic gait, mild muscle
atrophy UL and LL, moderate loss
of vibration sense in distal LL,
broken up smooth pursuit, slowed
saccades, opthalmoparesis on
vertical gaze and dysphagia

SOD1 147450 heterozygous NM_000454.5:
c.217G > A
(p.Gly73Ser)

0.00E+00 29.1 Deleterious Probably
damaging

Pathogenic
(PS1, PM1,
PM2, PP3)

Unlikely (not responsible for
the ataxia phenotype, also
homozygous RFC1 AAGGG
expansion fully explaining
the ataxia phenotype)

P32 SAOA Ataxia with mild muscle atrophy UL
and LL, mild loss of vibration sense
in distal LL, broken up smooth
pursuit, slowed saccades,
hypometric saccades and mild
dysphagia

SOD1 147450 heterozygous NM_000454.5:
c.160A > G
(p.Asn54Asp)

0.00E+00 23.4 Deleterious Benign Likely
Pathogenic
(PM1, PMP2,
PP2, PP3)

Unlikely (not responsible for
the ataxia phenotype, as
also GAA-FGF14 expansion
294 length fully explaining
the ataxia phenotype)

Abbreviations: #, number; ATR, achilles tendon reflex; CADD, Combined Annotation Dependent Depletion score; HGVS, Human Genome Variation Society; LL, lower limb; MSA-Ccp, clinically probable multiple system atrophy cerebellar type; NA, not
applicable; OMIM, Online Mendelian Inheritance in Man; PolyPhen2, polymorphism phenotyping v2 based on HumDiv; PTR, patellar tendon reflex; SAOA, sporadic adult-onset ataxia of unknown aetiology; SIFT, scale-invariant feature transform
(algorithm to predict the effects of coding non-synonymous variants on protein function); UL, upper limb.

Table 2: Autosomal-dominant genetic findings by next-generation sequencing.
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Individual# Phenotype Clinical comments Gene OMIM Zygosity Variant (hg38) GnomADv2 CADD
(GRCh37-
v1.7))

SIFT PolyPhen2 ACMG
classification

Genetic diagnosis
for causing the
ataxia phenotype

Definitive and probable genetic diagnoses

P33 SAOA Ataxia with mild paresis UL
proximal, broken up smooth pursuit.

ADCK3/
COQ8A

606980 heterozygous NM_020247.5: c.1012G > A
(p.Ala338Thr)

8.68E-06 25.1 D Probably
damaging

VUS (PM1,
PM2, PP3,
PP6)

Definitive

heterozygous NM_020247.5:
c.1750_1752del (p.Thr584del)

9.99E-05 NA NA NA Likely
Pathogenic
(PM1, PM2,
PM4, PP6)

P34 SAOA Ataxia with UL and LL areflexia, moderate
Impaired vibration sense (LL), moderate
distal muscle atrophy LL, broken up smooth
pursuit, gaze-evoked nystagmus, and
hypermetric saccades

ATM 607585 heterozygous NM_000051.4: c.4882A > G
(p.Met1628Val)

0 22.3 D Benign Likely
Pathogenic
(PM1, PM2,
PP2, PP3,
PP6)

Definitive

heterozygous NM_000051.4:c.8264A > C
(p.Tyr2755Ser)

0 19.6 D Probably
damaging

Pathogenic
(PM1, PM2,
PP2, PP3,
PP4, PP6)

P16 MSA-Ccp Ataxia with hyperreflexia (biceps, patella,
Achilles), mildly Impaired vibration sense
(LL), moderate dysphagia, moderate urinary
dysfunction, bradykinesia,

ATM 607585 heterozygous NM_000051.4: c.94C > T
(p.Arg32Cys)

3.19E-05 26.5 D Possibly
damaging

VUS
(PM2, PP2,
PP3, PP4,
PP6)

Definitive

heterozygous NM_000051.4: c.1339C > T
(p.Arg447Ter)

0.00E+00 37.0 NA NA Likely
Pathogenic
(PVS1, PM2,
PP3, PP4,
PP6)

P35 SAOA Ataxia with mild resting tremor SNX14 616105 heterozygous NM_153816.6: c.2670del
(p.Cys890Ter)

6.39E-05 NA NA NA Pathogenic
(PVS1, PM2,
PP3)

Definitive

heterozygous NM_153816.6: c.512G > A
(p.Arg171His)

0.00E+00 26.9 T Probably
damaging

VUS (PM1,
PM2, PP3,
BP1)

P36 SAOA Ataxia with PTR hyperreflexia, mild
spasticity UL, mild LL paresis, broken up
smooth pursuit, ophthalmoparesis, slowed
and hypometric saccades, mild cognitive
impairment, erectile dysfunction

SPG7 602783 homozygous NM_003119.4: c.1529C > T
(p.Ala510Val)

2.92E-03 29.2 D Probably
damaging

Pathogenic
(PS3, PS4,
PM1, PM2,
PP3)

Definitive

P37 SAOA Ataxia with mild distal LL paresis,
hypometric saccades, mild dysphagia,
erectile dysfunction

SPG7 602783 homozygous NM_003119.4: c.1045G > A
(p.Gly349Ser)

8.34E-04 26.4 D Probably
damaging

Likely
Pathogenic
(PM1, PM2,
PP2, PP3,
PP5)

Definitive

P38 SAOA Ataxia with LL areflexia and bilateral positive
Babinski sign, spastic gait, limb spasticity
(LL), moderate Impaired vibration sense (LL),
slowed saccades, horizontal and vertical
opthalmoparesis, dysphagia and urinary
dysfunction

SPG7 602783 heterozygous NM_003119.4: c.1529C > T
(p.Ala510Val)

2.92E-03 29.2 D Probably
damaging

Pathogenic
(PS3, PS4,
PM1, PM2,
PP3, PP6)

Definitive

heterozygous NM_003119.4: c.2161A > G
(p.Asn721Asp)

0 26.9 D Probably
damaging

Pathogenic
(PM1, PM2,
PP2, PP3,
PP6)

(Table 3 continues on next page)
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Individual# Phenotype Clinical comments Gene OMIM Zygosity Variant (hg38) GnomADv2 CADD
(GRCh37-
v1.7))

SIFT PolyPhen2 ACMG
classification

Genetic diagnosis
for causing the
ataxia phenotype

(Continued from previous page)

P17 MSA-Ccp Ataxia with ATR and PTR areflexia, spastic
gait, LL spasticity, broken up smooth
pursuit, horizontal and vertical
opthalmoparesis and urinary dysfunction

SPG7 602783 heterozygous NM_003119.4: c.1529C > T
(p.Ala510Val)

2.92E-03 29.2 D Probably
damaging

Pathogenic
(PS3, PS4,
PM1, PM2,
PP3, PP6)

Definitive

heterozygous NM_003119.4:c.1552+1G > T
(p.?)

0.0000203 25.4 NA NA Pathogenic
(PVS1, PM2,
PP3, PP6)

P25 SAOA Ataxia with ATR areflexia, moderate distal
muscle atrophy LL, broken up smooth
pursuit, gaze-evoked nystagmus, dysphagia,
urinary dysfunction, and mild cognitive
impairment

PEX26 608666 heterozygous NM_017929.6: c.200A > G
(p.Asn67Ser)

1.40E-03 8.9 T Benign VUS (PM1,
PM2, PP6,
BP4)

Probable (also
probable genetic
diagnosis of
CACNA1G)heterozygous NM_017929.6: c.292C > T

(p.Arg98Trp)
6.49E-05 22.6 D Probably

damaging
Likely
Pathogenic
(PM1, PM2,
PP3, PP5,
PP6)

Unclear genetic findings

P39 SAOA Ataxia with mild rigidity (axial + UL + LL),
moderate Impaired vibration sense (LL),
broken up smooth pursuit, square wave
jerks on fixation, downbeat- and gaze
evoked nystagmus, slowed and hypometric
and hypermetric saccades, moderate urinary
dysfunction

POLG 174763 heterozygous NM_001126131.2: c.1760C > T
(p.Pro587Leu)

1.49E-03 24.5 D Probably
damaging

Pathogenic
(PS1, PS3,
PM2, PP3,
BP2)

Unclear (not proven
in trans, commonly
in cis)

heterozygous NM_001126131.2: c.752C > T
(p.Thr251Ile)

1.55E-03 13.5 T Benign Pathogenic
(PS1, PS3,
PM2, PP3,
BP2)

P40 SAOA Ataxia with ATR areflexia, mild UL muscle
atrophy, UL muscle myoclonus, UL rigidity,
mild resting tremor, moderately impaired
vibration sense (LL), broken up smooth
pursuit, downbeat nystagmus, gaze evoked
horizontal nystagmus, hypersaccades,
impaired visual acuity, moderate dysphagia,
and moderate urinary dysfunction

POLG 174763 heterozygous NM_001126131.2:
c.1760C > T (p.Pro587Leu)

1.49E-03 24.5 D Probably
damaging

Pathogenic
(PS1, PS3,
PM2, PP3,
BP2)

Unclear (not proven
in trans, commonly
in cis, GAA-FGF14
expansion 274
length)heterozygous NM_001126131.2: c.752C > T

(p.Thr251Ile)
1.55E-03 13.5 T Benign Pathogenic

(PS1, PS3,
PM2, PP3,
BP2)

heterozygous NM_003119.4: c.1552+1G > T
(p.?) (p.?)

0.0000203 25.4 NA NA Pathogenic
(PVS1, PM2,
PP3, PP6)

Abbreviations: #, number; ATR, achilles tendon reflex; CADD, Combined Annotation Dependent Depletion score; D, deleterious; HGVS, Human Genome Variation Society; MSA-Ccp, clinically probable multiple system atrophy cerebellar type; NA, not
applicable; OMIM, Online Mendelian Inheritance in Man; PolyPhen2, polymorphism phenotyping v2 based on HumDiv; PTR, patellar tendon reflex; SAOA, sporadic adult-onset ataxia of unknown aetiology; SIFT, scale-invariant feature transform
(algorithm to predict the effects of coding non-synonymous variants on protein function); T, tolerated.

Table 3: Autosomal-recessive genetic findings by next-generation sequencing.
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Supplement 8), indicating that the SOD1 variant is likely
not responsible for the ataxia phenotype. Individual P32
carried the likely pathogenic SOD1 variant (c.160A > G
(p.Asn54Asp)), together with a pathogenic GAA-FGF14
repeat expansion (294 GAA repeat units). He showed no
symptoms of a motor neuron disease, but showed a
clear ataxia phenotype, including the classic clinical
characteristics of SCA27B e.g., severe downbeat
nystagmus. This does, of course, not exclude a potential
pathogenicity of this SOD1 variant, e.g., as a dual
genetic diagnosis in an as of yet asymptomatic patient
(for case description, see Supplement 8). Similarly, a
known pathogenic MFN2 c.227T > G (p.Leu76Arg)
mutation, causative for Charcot-Marie-Tooth disease,
was identified; however, the patient displayed no clear
peripheral neuropathy phenotype and isolated adult-
onset ataxia is not a phenotype currently associated
with MFN2 mutations. These findings indicate that a
certain share of patients with sporadic degenerative
ataxia (at least 3/377 = 0.8%) can carry pathogenic mu-
tations in other, non-ataxia known neurological mono-
genetic disease genes (e.g., SOD1, MFN2), but where
they likely do not explain the actual manifest neurolog-
ical disease of ataxia, yet present a genetic risk for a
second, non-manifest neurological disease.

Dual genetic diagnoses
Overall, one patient was found to carry pathogenic var-
iants in two different ataxia genes (CACNA1G + PEX26);
two patients had one pathogenic variant in one ataxia
gene plus one possibly pathogenic variant in another
ataxia gene (RFC1 + GAA-FGF14236 and GAA-
FGF14274 + POLG mutations); and two patients had
pathogenic variants in one ataxia gene plus one other rare
neurological disease gene (GAA-FGF14294 + SOD1N54D
mutation, RFC1 + SOD1G73S). The overall frequency of dual
genetic diagnosis in this cohort was 5/377 = 1.3% (Fig. 1a).
Discussion
Here we provide a systematic assessment of the genetic
landscape of sporadic adult-onset ataxia, combining
multi-modal genetic screening techniques (NGS plus
repeat sequencing techniques, including optimised
techniques for recent genes such as GAA-FGF14) in a
well-characterised prospective large multi-centre cohort
(SPORTAX), combined with longitudinal natural history
data. This allowed us to provide not only estimates on
relative frequencies in sporadic adult-onset ataxia; but
also insights on variant types, dual genetic diagnoses,
and genetic findings in patients with ataxia meeting the,
now revised,22 2nd consensus MSAcp diagnostic criteria.

The genetic landscape of sporadic (late-)
adult-onset ataxia
Our findings demonstrate a substantial burden of
monogenic causes in sporadic adult-onset ataxia, with
www.thelancet.com Vol 115 May, 2025
22.5% (85/377) patients carrying a pathogenic or likely
pathogenic variant, thereof 67/229 (29.3%) patients with
SAOA and even 18/148 (12.2%) patients meeting the
MSA-Ccp criteria. This frequency is a substantially
conservative estimate as the most common SCA
CAG-repeat expansions, which account for up to
10–15% of sporadic adult-onset ataxia in non pre-
stratified cohorts,1,2 had to be excluded prior to inclu-
sion per SPORTAX study cohort enrolment criteria.
This high overall frequency of monogenic causes in
sporadic adult-onset ataxia is somewhat surprising not
only compared to most other sporadic adult-onset
neurodegenerative diseases including Alzheimer’s dis-
ease, amyotrophic lateral sclerosis, or Parkinson’s dis-
ease (which only have a relatively minor monogenic
component of 5–10%32–37), but also from an ataxia
perspective. Albeit genetic studies in other ataxia
cohorts have rendered similar frequencies in the range
of 20–30% monogenic causes,38–40 these screening
studies—unlike SPORTAX—have not focused strictly
on sporadic (late) adult-onset ataxia. SPORTAX included
only (i) late adult-onset patients (age of onset >40 years),
with (ii) negative family history and (iii) exclusion of the
common CAG-repeat SCAs (see inclusion criteria), thus
making them less likely to have a genetic cause.
Applying these criteria would likely have led to sub-
stantially smaller frequencies in other prior studies.

Our study indicates that high monogenic burden of
sporadic adult-onset ataxia is due to substantial contri-
butions of repeat expansions. Here, 72.9% (62/85)
patients with a genetic diagnosis carried disease-causing
repeat expansions in one of these two genes (GAA-
FGF14≥250 45/85 (52.9%) and RFC1 17/85 (20.0%)),
thus confirming their role as key loci of adult-onset
ataxia, now even in patients with sporadic ataxia. This
might also explain why, compared to previous studies,
our study was able to unravel such a high monogenic
contribution in sporadic adult-onset ataxia. Many other
previous cohort studies38,40,41 had not been able to test for
these two loci as they were only quite recently identified
in 2019 and 2022 respectively, in particular GAA-FGF14
(SCA27B).4,5

Patients with pathogenic and likely pathogenic SNVs
also account for a relevant share of sporadic adult-onset
ataxia (21/377, 5.6%). These are highly heterogeneous
with 16 genes contributing, and only three genes
presenting a recurrent cause (i.e., >1 patient). The genes
that account for more than one genetic diagnosis in our
cohort were ATM, CACNA1A and SPG7, three genes
that are also very frequent genes in the broader
spectrum of ataxia disorders including early-onset and
familial types.38,42,43

GAA-FGF14 as the main genetic contributor to
sporadic adult-onset ataxia
Together with the RFC1 expansion, GAA-FGF14 repeat
expansions were the main genetic contributor of
15
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sporadic adult-onset ataxia in our cohort. A total of 45
patients with GAA-FGF14≥250 were identified, account-
ing for 52.9% (45/85) of all patients with sporadic ataxia
where a genetic diagnosis could be established, and
11.9% (45/377) of the total group. The identification of
such a high frequency of patients with a variant in an
autosomal-dominant disease gene might be surprising
at first glance in a patient cohort of sporadic disease,
where patients with similar disorders in first- and
second-degree relatives had been explicitly excluded
upfront by study design. Yet, this finding is well in line
with other recent studies, reporting a sporadic presen-
tation of GAA-FGF14 disease in 15–50% patients,13,44–47

with our results thus further corroborating the concept
of an age-dependent reduced penetrance of GAA-FGF14
repeat expansions.4,48,49

The finding of a high contribution of GAA-FGF14 to
sporadic adult-onset ataxia is important not only because
of the high frequency, but importantly also given the
direct actionable treatment implications. While sporadic
ataxia without any identified genetic cause is currently
not amenable to targeted drug treatments, an increasing
body of evidence demonstrates that GAA-FGF14 disease
is readily treatable with 4-aminopyrdine (4-AP). In
recent studies, up to 80% of patients with GAA-FGF14
showed a clinician-reported treatment response to
4-AP,19 often of marked intraindividual effect size,6,19

and now documented by digital-motor recordings of
both gait and nystagmus.19,49

In addition to the 45 patients with GAA-FGF14≥250,
we also identified 16 individuals with GAA repeat
expansions in the range of 200–250 GAA-FGF14 repeat
units, which presented a significant enrichment
compared to controls.19,50,51 This finding substantiates
the recent suggestion that the pathogenic threshold of
GAA-FGF14 disease might be lower than the previously
established cutoff of 250 repeat units.52 Here we add
indications that FGF14-GAA repeats of 200–249 repeat
units could possibly be associated with an adult-onset
cerebellar ataxia phenotype. Hypothetically, this ‘interme-
diate’ repeat range may in particular even be associated
with a sporadic adult-onset cerebellar ataxia phenotype, as
intermediate alleles with reduced penetrance are fitting
with a sporadic appearance of disease inheritance. Future
studies are warranted to test this hypothesis further.

Genetic variants associated with MSA-Ccp
phenotypes and clinico-molecular insights
Apart from 29.3% (67/229) patients with SAOA carrying
a pathogenic or likely pathogenic variant, 12.2%
(18/148) patients meeting the 2nd consensus MSAcp

diagnostic criteria (‘patients with MSA-Ccp’) carried a
pathogenic or likely pathogenic variant. This group
likely comprises both, patients with ‘true’ MSA-C and
patients with ataxia with MSA-C mimic phenotypes. It
included nine patients with GAA-FGF14≥250, three with
RFC1 repeat expansions, and six with SNVs.
Our multi-modal in-depth assessments combining
phenotypic features with longitudinal progression
modelling and molecular biomarker (NfL) data indicated
that the MSA-Ccp patients with GAA-FGF14 expansions
did not only meet the phenotypic criteria of MSA-Ccp,
but many of them also had a similar progression rate as
non-genetic MSA-Ccp patients; while their plasma NfL
levels were more similar to the patients with SAOA and
GAA-FGF14. This indicates that in at least some pa-
tients with GAA-FGF14 expansions, the MSA-like
phenotype might represent a fast progression pheno-
typic cluster along the continuous phenotypic spectrum
of GAA-FGF14-ataxia, while the rate of underlying
axonal degeneration is substantially less than in patients
with non-genetic MSA-Ccp. Higher NfL levels in non-
genetic MSA-Ccp may derive from a more widespread
degeneration (e.g., of the brainstem) than in GAA-
FGF14-ataxia.

The patients with MSA-Ccp and RFC1 expansions
showed high levels of ataxia severity relative to time
since onset already at first assessments, in the same
range as patients with non-genetic MSA-Ccp. However,
longitudinal disease progression rates and NfL levels
were more similar to patients with SAOA and RFC1
expansions than patients with non-genetic MSA-Ccp.
This indicates that the MSA-like phenotype may also
represent a more severe phenotypic cluster along the
continuous phenotypic spectrum of RFC1 disease,
starting early and more severe in the disease course of
RFC1 disease; yet it does still not show MSA-typical
progression rates and MSA-typical axonal degeneration
rates.

Our findings on the MSA-Ccp phenotypes in these
respective genetic diseases not only corroborate, but
substantially extend recent single case or small case
series on the MSA-Ccp- phenotypes in GAA-FGF1453 and
RFC1 disease,8,12 respectively. They provide comparative
insights into the longitudinal progression and underlying
axonal degeneration rates of these MSA-Ccp phenotypes
in GAA-FGF14 and RFC1 disease. Comparisons are
provided to both a non-genetic MSA-Ccp cohort on the
one hand and a non-MSA cohort of the respective genes
on the other.

It is unlikely that any of the variants identified here
in MSA-Ccp patients (including the SNVs) present a
direct monogenic cause of definite MSA, i.e., an oligo-
dendrocyte synucleinopathy. This would be mechanis-
tically unlikely, and as shown here, the substantially
slower axonal degeneration rate speaks against this
possible explanation. The most conservative interpreta-
tion of these findings is that the group of MSA-Ccp

patients comprises a substantial share of MSA-C
mimics. MSA-C mimics are well known for other ge-
netic ataxias like SCA1, SCA2, SCA3 or FXTAS.54 RFC1-
ataxia and SCA27B should now be added to this list.
Taken together, this underlines a lack of specificity of
the 2008 2nd consensus MSA-Ccp criteria against the
www.thelancet.com Vol 115 May, 2025

http://www.thelancet.com


Articles
background of genetic ataxias. Specifically, autonomic
dysfunction -in particular urinary incontinence and
orthostatic hypotension-is a recurrent feature,55,56 (as
shown here for patients with GAA-FGF14 expansions,
RFC1 expansions and SNVs). Moreover, some patients
with genetic ataxia even show MSA-like progression
rates (GAA-FGF14) or MSA-like early severity levels
(RFC1).

In addition, our MSA-Ccp group might also have
included a certain, likely smaller share of ‘true’ MSA-C
patients. Here some MSA-Ccp patients may carry path-
ogenic variants in ataxia genes just as a statistical coin-
cidence (dual diagnosis), but not as the causally main
driver of an actual MSA-C disease. This might be
particularly true for GAA-FGF14 and RFC1 repeat
expansion carriers, based on their high background
frequency in the general population,4,7 and as suggested
here by MSA-Ccp patients with GAA-FGF14 expansions
P6 and P7 who showed additional clinical signs highly
characteristic for MSA-C; as well as likely for patient P16
with the ATM variants plus MSA-Ccp.

Pathogenic variants unrelated to the ataxia
phenotype
One patient (1/377 = 0.3%) where no primary genetic
cause for the ataxia disease had been identified, carried a
pathogenic mutation in another non-ataxia known
neurological monogenetic disease gene (MFN2).
This variant likely does not explain the actual ataxia
phenotype, yet presents a genetic risk for a second
non-manifest neurological disease. This illustrates the
scrutiny required in the neurogenetics field to not pre-
maturely claim a pathogenic contribution of a respective
non-ataxia gene to the main disease phenotype. Rather,
the more likely concept needs that to be explicitly
appreciated is that patients can also carry pathogenic
variants in not-yet-manifest disease genes, completely
independent of the main manifest disease phenotype—
which was recently similarly shown for ALS genetics.57

Dual genetic diagnoses
In addition, 5/377 patients (1.3%) were found to have two
relevant genetic findings simultaneously (dual genetic
diagnosis). This finding corroborates and extends previ-
ous studies where 4%–6% of children diagnosed with a
genetic disease also have a second, independent genetic
diagnosis.58,59 We now demonstrate that even in one of
the patient strata least likely to have a genetic cause—late
adult-onset sporadic disease—dual genetic diagnoses are
also a recurrent finding, even if considering only neuro-
logical disease genes. This finding is of immediate
clinico-genetic diagnostic importance, as it highlights the
need to consider genetic investigations for a second ge-
netic diagnosis—and potentially also exclusion thereof—
even in late adult-onset disease patients.

Yet with a quickly increasing number of targeted
treatments for genetic diseases reaching clinical care,
www.thelancet.com Vol 115 May, 2025
this finding is of direct treatment-relevance. For
example, with GAA-FGF14 ataxia now showing a sub-
stantial treatment-response to 4-aminopyridine,6,19 the
corresponding treatment effect might be confounded—
both in terms of efficacy as well as side effects—by the
concurrent SOD1 mutation in patients with sporadic
adult-onset ataxia (as identified in P31 and P32). Addi-
tionally, in turn, with SOD1 disease now being treatable
by the antisense oligonucleotide Tofersen,60 any treat-
ment effect from Tofersen might be confounded—both
in terms of efficacy and by side effects—by the con-
current RFC1 and GAA-FGF14 mutations, respectively,
in these two patients with ataxia.

Strengths and limitations
Our study has several key strengths. It presents a sys-
tematic clinico-genetic analysis of a large, multi-centre,
prospective cohort focused exclusively on sporadic
adult-onset ataxia. Using comprehensive multi-modal
genetic screening approach, including optimised
methods for recently identified genes like GAA-FGF14,
we were able to uncover a substantial monogenic
burden in sporadic adult-onset ataxia - a cohort designed
to be less likely to have a genetic cause. This even
included a substantial share of patients meeting the
MSA-Ccp criteria, suggesting a reduced specificity of this
clinical diagnosis; and potential co-occurrence of MSA-C
plus a second, independent genetic condition. Further-
more, our findings have direct clinical relevance, high-
lighting the importance of genetic testing in sporadic
ataxia - even when presenting with MSA-like features–
and paving the way for providing these patients with
potential access to targeted treatments.

However, the results of our study need to be inter-
preted in light of some limitations. First, independent
cohorts ideally from different ethnic backgrounds are
needed to compare and replicate our findings. Second,
while presenting a large number of patients with an
MSA-Ccp phenotype associated with an underlying
monogenic variant and in particular providing compar-
ative insights into the longitudinal progression rates and
underlying axonal turnover of these patients, still larger
cohorts of MSA-Ccp patients with associated monogenic
variants are required to study these phenotypic disease
clusters in more depth. In particular, future studies are
warranted to confirm the current findings on the GAA-
FGF14 and RFC1 MSA-Ccp severity, progression and
NfL levels, which are still preliminary in nature given
the small sample sizes (e.g., n = 9 MSA-Ccp patients
with GAA-FGF14 expansions; n = 3 MSA-Ccp patients
with RFC1 expansions), Third, larger studies in definite
(i.e., neuropathologically confirmed) MSA cases are
highly warranted to allow disentangling in which
MSA-Ccp patients the respective genetic variants are
coincident second hits to an independent ‘true’ MSA
pathology versus causes of an MSA-C-like phenotype
without any MSA pathology. Similarly, future studies
17
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are also needed to prospectively characterise these MSA
phenotypes according to the recent Movement Disorder
Society MSA criteria,22 as these criteria might allow for
improved specificity also against the background of
genetic ataxias. Fourth, similar to previous studies,19 our
findings of potential pathogenic contribution of FGF14
GAA200-249 alleles are still preliminary and require vali-
dation through additional segregation studies, larger
case–control series, and functional studies. Fifth, not all
individuals for whom DNA was available were subjected
to all available tests. NGS testing was not performed for
20.2% of these individuals (for GAA-FGF14 and RFC1
this was 5.6% and 4.5%, respectively). Based on these
proportions of missing testing, we could expect that we
are underestimating the relevant SNV findings that
come from NGS when compared to the repeat expan-
sion results. Sixth, future studies should complement
the current genetic screening methods by methods for
additional repeat motifs—e.g., especially additional
RFC1 repeat motifs61—and in particular by whole
genome sequencing (given the large number of repeat
expansions in sporadic ataxias) as the NGS data in our
current study was not suitable to assess the presence of
most repeat expansion loci. Ideally, additional repeat
expansion loci would be tested by long-range whole
genome sequencing, thereby potentially increasing the
genetic yield even further by 8–20%,62–64 to further
support that the frequency findings presented here may
present a rather conservative estimate of the actual
monogenic contribution to sporadic adult-onset ataxia.

In conclusion, leveraging a multi-modal genetic
sequencing approach plus a strictly consecutive, pro-
spective, multi-centre cohort, we demonstrated that
sporadic adult-onset ataxias–as such less likely to have a
genetic cause–have a substantial burden of monogenic
variants, particularly GAA-FGF14 and RFC1 repeat
expansions. This even includes a substantial share of
patients with sporadic adult-onset ataxia meeting the
2008 2nd consensus MSA-Ccp diagnostic criteria. These
findings have important implications for genetic
work-up and counselling of patients with sporadic
adult-onset ataxia, even when presenting with MSA-like
features. With targeted treatments now on the horizon
for genetic ataxias, they are also key for providing these
patients with potential access to targeted therapies.
Heightened sensitivity to potential second genetic
diseases is necessary even in patients with (late) adult-
onset sporadic ataxia, which might alter the treatment
response to targeted treatments.
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