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Weakly Interacting Bose Gases
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Abstract. We consider the ground state of a Bose gas of IV particles on the
three-dimensional unit torus in the mean-field regime that is known to
exhibit Bose—Einstein condensation. Bounded one-particle operators with
law given through the interacting Bose gas’ ground state correspond to
dependent random variables due to the bosons’ correlation. We prove that
in the limit N — oo bounded one-particle operators with law given by
the ground state satisfy large deviation estimates. We derive a lower and
an upper bound on the rate function that match up to second order and
that are characterized by quantum fluctuations around the condensate.

1. Introduction
We consider N bosons on the three-dimensional unit torus A = [0,1]% in the
mean-field regime described by the Hamiltonian

N

N
Hy =3 (-80) + 5 D oo — ) (L1)

j=1 i<j

acting on L? (AN ), the symmetric subspace of L2 (AN ) We consider two-
particle interaction potentials with Fourier transform v given by

v(z) = Z (p)e™* for A*=27Z® with ©>0,0€H(A*). (1.2)
peA*

At zero temperature, the bosons relax to the unique ground state ¥ of Hy
realizing

En = HJHI}“leﬁ/% Hyv) = (n, HNYn) - (1.3)
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The ground state 15 exhibits Bose—Einstein condensation, i.e., a macroscopic
fraction of the N particles occupies the same quantum state, called the con-
densate. Mathematically, 1 is said to satisfy the property of Bose-Einstein
condensation if its corresponding one-particle reduced density given by

Yoy = v ) (| (1.4)

for k =1 converges in trace norm to
1
Yow = 0} (ol as N — oo (15)

where ¢o € L?(A) denotes the condensate wave function. In fact the conver-
gence (1.5) holds true not only for the one—but also in general for k-particle
reduced densities. However, due to particle’s correlation, the ground state ¢ n
is not a purely factorized state of the condensate’s wave function.

Both, the computation of the ground state energy (1.3) and the ground
state’s property of BEC (1.5) and beyond are widely studied in the literature
(see, for example, [3,9,10,13-16,18,20,22,24]). In fact, [20] proves besides BEC
that the Bose gas’ excitation spectrum is well described by Bogoliubov theory.
Consequently, the fluctuations around the condensate, namely the particles
orthogonal to the condensate can be effectively described as a quasi-free state
(namely a Gaussian quantum state) on an appropriate Fock space. This char-
acterization of the condensates’ excitations will be important for our analysis.

1.1. Probabilistic Approach

Recently, the characterization of Bose-Einstein condensation through prob-
abilistic concepts became of interest. In fact, the property of Bose-Einstein
condensation (1.5) implies a law of large numbers for bounded one-particle
operators [1]. To be more precise, let O denote a bounded one-particle opera-
tor on L?(R?) for which we define the N-particle operator O by

0D =191®---919001®---1 (1.6)

, i.e., as operator acting as O on the i-th particle and as identity elsewhere.
We consider O as a random variable with law given by

P, [o@ € A} = (0, xa(0D)y) with 1 € L2(AY) (1.7)

where y 4 denotes the characteristic function of A C R. We remark that fac-
torized states lead to i.i.d. random variables in this picture [19] and thus a law
of large numbers and a large deviation principle hold true from basic theorems
of probability theory.

Random variables with law given by the ground state in (known to
not be a factorized state) of Hy satisfy a law of large numbers, too (though
they are not independent random variables). To be more precise, the averaged
centered (w.r.t. to the condensate’s expectation value (pg, Opp)) sum

On = Jifi (O(i) - (@070<Po>) (1.8)

i=1
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with O given by (1.6) satisfies for any § > 0
lim PwN HONl > (S] =0. (19)
N—oo

The law of large numbers is a consequence of the property of Bose-Einstein
condensation [1,19], that is, the trace norm convergence of the one- and two-
particle reduced density.

Here, we are interested in the precise decay of the probability distribution
(1.9) in probability theory described through the rate function

Ay (@) = lim_ N~tlogPy, [On > 2] (1.10)

if it exists. In case of i.i.d. random variables (i.e., factorized states @®)
Cramer’s theorem shows that the rate functions exists and is given in terms
of the Legendre—Fenchel transform through

pen (T) = /{161% [=Az + Agon (V)] (1.11)
where A e~ (A) equals for i.i.d. random variables the logarithmic moment gen-
erating function

Agen(X) = log(p, OV =(@:02Dey (1.12)

In our main theorem, we show that for the ground state ¥ of Hy, known to
be not factorized due to particles’ correlation, still large deviation estimates
hold true.

1.2. Results

Before stating our main theorem, we introduce some more notation. In our
result, we consider operators O such that the norm

Ol == [I(1 = A)O(1 — A)7H| (1.13)
is bounded. Furthermore, we define
A% = 2773\ {0} (1.14)
and the function f € (2(A%) by
£(p) = cosh(p,)a00 (p) + sinh(1,)g00 (p) (1.15)

where ¢ denotes the projection onto the orthogonal complement of the span
of the condensate wave function (i.e., ¢ = 1 — |po)(po|) and p,, is given by the
identity

P’ +0(p)
v(p)

Theorem 1.1. Let v be a real-valued, even function with 0 <o € £*(A*), such
that Hu||gz(Ajr) 1s sufficiently small. Let vy denote the ground state of the
Hamiltonian Hy defined in (1.1).

Let O denote a self-adjoint operator on L*(A) such that [|O]| < oo,
and let f be defined by (1.15). For OY) given by (1.6), we define Oy =

N7t Z;‘Vzl (OY) — (g, Opp)).

coth(2u,) = (1.16)



1242 S. Rademacher Ann. Henri Poincaré

Then, there exist C1,Cy > 0 (independent of O) such that
(i) for all 0 <2 < 1/(Ch|O]])

2 alol?
limsup N ' log Py, [On > 2] < — x2 z? 1‘! I (1.17)
N—oo 2Hf||zz(Ai) ”fHZ?(Ai)
(i) for all 0 < 2 < ][4 0. /(CallO])
2 3/2
limsup N~ log Py, [On > 2] > fxf - x5/2% . (1.18)
N—o0 2”pr(/\1) ||f||ez(A1)

We remark that for sufficiently small z < min{||f||;}2(A*+)/(CQ|HO|||3)7

1/C1||O|lI}, Theorem 1.1 characterizes the rate function up to second order.
Namely, Theorem 1.1 shows that in the regime of large deviations, i.e., x =
O(1), we have

.’L‘2

— 4+ 0(%?). 1.19
M, ) (19

Ay (x) =

Regime of Large Deviations. The present result in Theorem 1.1 provides a
first characterization of the regime of large deviations (i.e., z = O(1)) for
fluctuations around the condensate of bounded one-particle operators in the
ground state. We remark that the variance || f||rz(a4) differs from the variance

of factorized state (p? N and is, in particular, fully characterized by the ground
state’s Bogoliubov approximation (for more details, see (2.15) and subsequent
discussions resp. Lemma 4.3 in Sect. 4) representing the particles’ correlation.

Up to now, results in the regime of large deviations are available for
the dynamics in the mean-field regime only. For factorized initial data, the
rate function characterizing the fluctuations of bounded one-particle operators
around the condensate’s Hartree dynamics was proven to satisfy a upper bound
of the form of Theorem 1.1 (i) first [12], and a lower bound of the form of
Theorem 1.1 (ii) later [22].

Regime of Standard Deviations. In the regime of standard deviations, i.e.,
x = O(N~1/2), Theorem 1.1 furthermore implies

T 2 2
lim Py, {\/NON - x] :/ 0" /(2||f\|,gz(A1>)7 (1.20)
N—oo — 00
thus a central limit theorem where the limiting Gaussian random variable’s
variance is given by [|f|[s2(a+) agreeing with earlier results [21]. In fact [21]
proves a central limit theorem for fluctuations around the condensate for the
ground state in the Gross—Pitaevskii regime. The Gross-Pitaevskii scaling
regime considers instead of v, the N-dependent two-body interaction poten-
tial vg = N3Py (NP.) with 8 = 1. (For more details and recent progress on
results in the Gross—Pitaevskii regime, see [5-7,11,17].) However, (1.20) fol-
lows from adapting the analysis in [21] to the mathematically easier accessible
mean-field scaling regime (corresponding to 5 = 0).
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Recently, [2] refined the characterization of the regime of standard devi-
ations and derived an edge-worth expansion.

Central limit theorems were proven first for the mean-field dynamics of
Bose gases. Fluctuations of bounded one-particle operators around the Hartree
equations were proven to have Gaussian behavior [1], though they do not
correspond to i.i.d. random variables. These results were later generalized to
multivariate central limit theorem [8], dependent random variables (i.e., k-
particle operators) [19] and singular particles interaction in the intermediate
scaling regime (for v@ with 8 € (0,1))) [20].

Theorem 1.1 follows (similarly to [12,22]) from estimates on the logarith-
mic moment generating function given in the following theorem.

Theorem 1.2. Under the same assumptions as in Theorem 1.1,
(i) there exists a constant C1 > 0 such that for all0 < X < 1/|O|| we have

)\2
.. -1 20 2 3 3
liminf N~ By [*O%] < T fllaas ) + CAYO] (1.21)
1) there exists a constant Cy > 0 such that for a <AL we have
ii) th ] C 0 h that f o< \A<1 O h
)\2
limsup N~ InEy, [2°%] = T |fliE s, - CAON (1.22)

Theorem 1.1 follows from Theorem 1.2 by a generalization of Cramer’s
theorem (see [22, Section 2]).

Idea of the Proof. The rest of this paper is dedicated to the proof of Theo-
rem 1.2, thus on estimates on the moment generating function. We recall that
for the result of Theorem 1.2 we are interested in the leading order of the expo-
nential of the moment generating function that is o(NA?) in the limit of small
A and large N. We will show that for the leading order fluctuations around the
condensate are crucial that we describe by the excitation vector Uyt y. (For a
precise definition of the unitary map Uy to the Fock space of excitations, see
(2.2).) As a first step, we prove that we can replace the moment generating
function Ey [eAON } with the expectation value

<UNT/)N7 e*¢+(qO<P0)/26>\RN+ e>\¢+(qO<Po)/QUN¢N> (1.23)

paying a price exponentially O(N)?) and thus sub-leading (see Lemma 4.1).
Here, we introduced the notation
¢+(q00%0) = /N — Nia(qoOpo) + a*(qoOpo) /N — Ny (1.24)

where a, a* denote the creation and annihilation operators on the bosonic Fock
space and NV the number of excitations. (For a precise definition, see Sect. 2.)
Note that the operator ¢, in contrast to its asymptotic limit

¢+ (h) = VNa(qoOpo) + VNa*(g0O¢po) (1.25)

for N — o0, does not increase the number of excitations which will be crucial
for our analysis.
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We remark that the excitation vector Uyt is the ground state of the
excitation Hamiltonian

UNHyUy = Q+ Ry . (1.26)

Its quadratic (in modified creation and annihilation operators) part Q and the
remainder term Ry are given in (2.15) resp. (2.16). In the second step, we show
that replacing Un 1y with the ground state 1o of the quadratic operator Q
leads to an error exponentially O(NA?) (and thus sub-leading). While the first
step follows strategies presented in [12] on the dynamical problem, the second
step uses novel techniques. The proof is based on the Hellmann—Feynman
theorem and Gronwall’s inequality applied for s € [0, 1] to the family of ground
states ¢g, (s) that corresponds to the Hamiltonians Gy (s) = Q+sRy and thus
interpolates between the excitation vector Uyt n and ¥g. (For more details,
see Proposition 2.1 and Lemma 4.2.)

We remark that the ground state of operators quadratic in standard
creation and annihilation operators is well known and given by a quasi-free
state, i.e., by

BWQO  with B(p) = % Z pp (apa*, —apa_p) (1.27)

PEAL

where p is given by (1.16) and vacuum vector €. Note that the operator Q
is quadratic in modified creation and annihilation operators. However, we will
prove that its ground state ¢ g is approximately given by a generalized quasi-
free state, i.e., by
1
B .
eBWQO  with B(p) = B Z pip (bib*, — bpb_p) (1.28)
pEAT

A crucial property of a Bogoliubov transform (1.27) is that its action on cre-
ation and annihilation operators is explicitly known. In particular, we have for
the asymptotic limit of ¢ that

eBIG, (go0po)e ™ PW) = g, (f) . (1.29)

Though the explicit action of the generalized Bogoliubov transform (1.28) on
the operator ¢, is not known, we show in the third step that we still have

P o, (g00po)e P ~ ¢ (f) (1.30)

with an error exponentially O(NA3). This argument will be based again on
the Hellmann—Feynman theorem together with Gronwall’s inequality applied
to the family of ground states 15y of Q(s) = D+ sRg for s € [0, 1] where D
is a quadratic, diagonal operator. Thus, Q(s) interpolates between the ground
state eP(Myhg and the vacuum vector (see Lemma 4.3).

In the last step, we then compute the remaining expectation value

(Q, X+ (DN/2ARNL Ab+(£)/2)) (1.31)
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with f given by (1.15). A comparison with the asymptotic limit @. shows
that the exponential of A\, contributes exponentially O(NA?), and thus sub-
leading, leading to Theorem 1.2. For the true operator ¢, this holds still true
in the limit N — oo and follows from arguments given in [12] (see Lemma 4.4).

Structure of the Paper. The paper is structured as follows: In Sect.2, we
introduce the description of the fluctuations (called excitations) around the
condensate in the Fock space of excitations. In particular, we prove properties
of the excitations’ Hamiltonian Gy and the quadratic approximation Q and
their corresponding ground states (see Propositions 2.1, 2.2). In Sect. 3, we
recall preliminary results from [12,22] and prove further auxiliary Lemmas (in
particular for generalized Bogoliubov transforms (1.28)) that we will use later
for the proof of Theorem 1.2 in Sect. 4.

2. Fluctuations Around the Condensate

2.1. Fock Space of Excitations

On the unit torus the condensate wave function g is given by the constant
function. To study the fluctuations around the condensate, we need to factor
out the condensates contributions. For this, we use an observation from [13]
that any N-particle wave function ¢y € L?(A™) can be decomposed as

(N

Un =10 @5 SV + 111 @5 oF NV 4y (2.1)

where the excitation vectors 7; are elements of Li% (A7), and the orthogonal
complement in L?(A7) of the condensate wave function ¢ and ®; denotes the
symmetric tensor product. Furthermore, we define the unitary

2 (AN <N
Z/INZLS (A )—) 1@07 ¢N'—>{7717»77N} (22)
mapping any N-particle wave function ¢ onto its excitation vector {ny,...,nn}
that is an element of the Fock space of excitations
®S j
Ls@o @LJ—% 7. (2~3)

A crucial property of elements of the Fock space of excitations &y € FS Ltpo
is that the number of particles operator N' = 3° _,. aya, is bounded, i.e.,

(En, NEN) < N[En]|?. Here, we introduced the standard creation and anmhl—
lation operators ay, a, in momentum space defined through the following re-
lation by the well-known creation and annihilation operators in position space

a(f),a*(f)
=a(ypy), resp. a,=a(p,) with ¢, =eP* for pe A% =2q7Z°
(2.4)

that satisfy the canonical commutation relations

lay,aq] = 0pq, and  [ap,ag] = [a;,a;] =0. (2.5)

p’q
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Contrarily, on the full bosonic Fock space built over L?(A7) (instead of Lf_%
(A7) and given by

F = é L2(N)®<7 . (2.6)
j=0

the number of particles N = ZpGA ayay is an unbounded operator.

For our analysis, it will be useful to work on the Fock space of excitations
that is equipped with modified creation and annihilation operators by, b, that
leave (in contrast to the standard ones aj,a,) ]-"f;\g invariant and were first
introduced in [4]. They are given by

VN - N N - N
b, = 7+ap7 b, = a;; . (2.7)
VN VN
with the number of excitations
Ny= > apa, and A} =A"\{0}. (2.8)
pEAL
It follows from (2.5) that by, b, satisfy the modified commutation relations

[bp, 7] = Gy (1 - N*) — 304t - [0 bg] = bp,bg] =0 (2.9)

We remark that in the limit of N — oo, the commutation relations of by, b,
agree with the canonical commutation relations (2.5). However, the corrections
that are O(N 1) lead to difficulties in the analysis later.

The operator by, b, arise from the unitary Uy applied for p,q # 0 to
products of creation and annihilation operators, namely

UnajaUn = \/ﬁbp, and Unazaoldy = \/ﬁb; . (2.10)
Moreover, Uy satisfies the property
Z/lNa;aqL{N = a;aq, Unyajagldy = N — Ny . (2.11)

2.2. Excitation Hamiltonian

We can embed L2(A™) into the full bosonic Fock space F where the Hamil-
tonian Hy defined in (1.1) then reads in momentum space

* 1 - * *
Hy = Z p2apap + 2N Z v(k)ay,_ray 4 1,apag - (2.12)
peA* p,q,kEA*

If ¢y denotes the ground state of H, then the excitation vector Unyn =: ¥g,
denotes the ground state of the excitation Hamiltonian

N
QN = Z/[NHNZ/{X[ - ?’U(O) (2.13)

that can be explicitly computed using the properties of the unitary (2.10),
(2.11) and is of the form

Gy =Q+ Ry (2.14)
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where Q denotes an operator quadratic in (standard) creation and annihilation
operators and is given with the notation A% = A, \ {0} by

* Iy * 1/‘ 5 7%
Q:= Z {p%pap +0(p)byby, + §v(p) (byb™ ) + byb_p) (2.15)

pEAT

, whereas the remainder terms collected in R and given by

1 ~ * *
Ry = N Z 0(q) (bp4q0”gap + hc.)

p,qENY pFE—q

1 ~ * *
+ N Z v(k)ay @y _,apar (2.16)
P,qENL ,q#—p.k

will be shown to contribute to our analysis sub-leading only. In fact, in the
proof of Theorem 1.2 in Sect.4 it turns out that Q resp. its corresponding
ground state g is approximately given by

Yo =eBWQ  with B0 = exp ( Z [1pbyb* , — Tipbypb_p) > (2.17)

PEAT

with p, given by (1.16), i.e., 1g is a generalized Bogoliubov transform eBw)
applied to the vacuum Q and fully determines the variance (i.e., ||f ||?2( A%)

in Theorem 1.1). We remark that the approximation of Gy (s) by Q is often
referred to as Bogoliubov approximation.

Furthermore, we introduce the family of Hamiltonians {Gn(s)}seqo,1]
given by

Gn(s) = Q+sRy (2.18)

interpolating between the excitation Hamiltonian Gy and its quadratic ap-
proximation Q. In the following proposition, we collect useful properties of
{Gn(5)}seqo,1)- For this, we introduce the following notation for the particles’
kinetic energy

K=Y p. (2.19)

pEAi

Proposition 2.1. Let s € [0,1], then there exists a ground state n(s) of the
Hamiltonian Gy (s) defined in (2.18). Furthermore, there exists a constant C' >
0 such that

(Vgy(s), Ny +1DFgs) <C (2.20)

for k = 1,2 and the spectrum of the Hamiltonian Gn(s) has a spectral gap
above the ground state En(s) independent of s, N.

Moreover, there exists C' > 0 such that for any Fock space vector & € ffj}\;
we have

Tgy o)
v+ v o] < e,
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—172 Moy ~3/2
o e B <ol +pa oy
Proof. The proof uses well-known ideas and techniques introduced to prove
results on the properties of G and its corresponding ground state 9g,, showing
that the remainder Ry contributes sub-leading only (see, for example, [13,15,
20]). Since Gn(s) differs from Gy by a multiple of the remainder only, these
techniques apply for Gy (s) as we shall show in the following.

The strategy is as follows: First we show that Gn(s) is bounded from
below by a multiple of Ay — C yielding the estimate (2.64) for k = 1 and with
further arguments for k = 2, too. Then, the remainder R can be proven to
be sub-leading, and the existence of a spectral gap of the spectrum of Gy (s)
independent of IV, s follows from the spectral properties of Q. Finally, we prove
(2.65) from the previously proven properties.

Proof of Lower Bound for Gy (s). First we shall prove that there exist con-
stants C7,Cs > 0 such that

Gn(s) > CLINy — Oy . (2.22)

To this end, we recall that by definition (2.18) we have Gy (s) = Q + sRy
for s € [0,1]. For the quadratic operator Q, we find since ¥(p) = v(—p) and
u(p) 20

1 ~ * * L.
Q=) Paja,+ 5 > ) [0 +b-p] [0, + ] — 3ol

PEAL pEAL
~ 1.
> Y Paga, — [Tl > 20)°Ny = 5 [Dller - (2.23)
PEAT

Thus assuming that there exists sufficiently small £; > 0 with
Ry > —eaN,-C (2.24)

, then (2.22) follows from (2.18) and (2.23). We are left with proving (2.24). For
this, we use that the contribution of R quartic in creation and annihilation
operator is nonnegative, i.e., that we can write
s . 1 ~ * *
RN =Ry + VN, with Vy = N Z v(k)ay, 0% apar

p,q€ENY ,q#—p.k
(2.25)

and Vy > 0 following from © > 0. Therefore, to prove (2.24) it suffices to show
that

Ry > —e Ny —eVy — C (2.26)

for sufficiently small 1,62 > 0. We estimate the single contributions of Ry
given in (2.16) separately using the bounds

la(R)ENl < 1Bl any IN2ENL Nla™ (R)EIN < lhllean 1N +1)Y2€) - (2.27)
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where a*(h) = >_ - hpay, for any h € (2(A%) resp. for the modified creation
and annihilation operators

Ib(REN < hllezay IN2ENL 16" (REN < Bllezeas) IV + 1)V (2.28)

By definition (2.16), the operator Ry is cubic in creation and annihilation
operators and can be bounded with (2.28) by

N_1/2|<1/)7 Z i}\(q) p+q 7qa’17¢>|

P,qENT ,pF£—q

= N1/2<¢» Z ﬁ(q)‘1;4—tza*—qap\/mw>|

P,qENY ,pF—q

1/2
< C<(2N_1 Z a(q)”azﬂrqaqw2>

p,qENY pFE—q

1/2
( S 5@la 1—<N++1>/Nw||2) . (2.29)

p,qEANY ,pF—q
We switch to position space for the first factor and find

eN)™t Y B@llaprga-gd]®

P,qEA] pF#q
= (2N)7! /dmdy v(r —y) (Y, azayaya. ) = (P, VNY) (2.30)

and therefore

N <w, > B@)bg0 w> < Ol VY0l |V + D)2y
P,qENL ,p~—q
(2.31)

The Hermitian conjugate can be estimated similarly. Thus, with (2.31) we
arrive at (2.26) and thus at (2.22) using that s € [0, 1].

Proof of (2.64). The lower bound (2.22) has several consequences: On the one
hand, the lower bound (2.22) shows that Gy (s) is bounded from below by a
constant —C(N +1). On the other hand, (2.22) shows that for any normalized
§ € F with g, (5)<c§ = £ (i.e., in particular for the ground state) that

(€ N4€) < CTHE Gn()€) + Co S CTI(+ O (2.32)
which proves (2.64) for k = 1. To prove (2.64) for k = 2, we remark that (2.22)
furthermore implies

(€ Wi +1)%€) < CE Wy + 1D)MY2GN () Wy + 1))
= C¢ <§, N &) +ClE N [QN(s),Ni/Z} §>. (2.33)



1250 S. Rademacher Ann. Henri Poincaré

With spectral calculus, we find that

2] 1 [% Vit 1
[Gn (). M%) = = T O N et 23

We recall the definition of Gy (s) and compute the commutators for every term
separately. We have

QN =D B(p) [byd", — bpby] (2.35)

pEAL

and thus
(62 [ )

Ny +1)1/2
PNy 14t

1

b A —
PNy +1+t

3

1/2
1/2
s) (26@) ) dt
pEAi

1/2 12
5') < > o) 3 ) dt
pEAi

< /O°° (1 ft)z dt [|(N+ + DEI V3 + DM2€) < CIINE + DEI TV + 1) 3¢] ~(2 "

The commutator with Ry follows similarly using that [NV, a,] = —a,
resp. [N, a%] = a3 and analogous estimates as in (2.31)) (with Vy < CN~'N?

< CN, on ]—'f;\i). Thus, we arrive at
(6 N2 [on (), M%) €)] < IV + Dl IV + 1) 2] (2.37)
and with (2.33) furthermore at
1
(1-3)( wiripg<cle wirngsc @3

from (2.32) yielding (2.64) for k = 2.
With (2.32), we can now refine the estimates on the remainder. We shall
prove that

1 [e° ~
§5/0 ﬁ(Zv@)

*
pEAJr

L NVE D2
PNy +1+¢

1

b b, —
PNy +1412

1 [ N
+5 \/E(Zv(p)

pEAi

[RN[? < CNTH(N +1)% 292 (2.39)

For the contribution of Ry in (2.16) cubic in (modified) creation and annihila-
tion operators, we switch to position space and compute with the commutation

relations for any vector ¢ € ff;\i

2

> @byelapy

P,q€N ,pF—q

z7x "y

= / dzdydzdw v(z — y)v(z — w) (Y, ataralayazar,(N — Ny —1)/N )
A4

+/ dadydz v(x — y)v(z — 2)(¥, alaja.a.(N — Ny —1)/N 9)
A3
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+/' dedydw (v(e — y)v(y — w) + v(z — y)v(w — )
AS
(2, a:a:awaw(N — Ny —1)/N )

+ ‘ dzdydz v(z — y)v(z — y) (¥, atasaza, (N — Ni —1)/N 1)
JA3

+ / dady v(z — y)* (¢, (a;aw + a:ax) (N =Ny —1)/N ¥y . (2.40)
A2

Since [[v|| g (a) < |[9]]er (A*) < C, we thus conclude by (2.27) that
2

NS et e <N v P 2an
P,qENY ,p£—q

We proceed similarly for the contribution of Ry cubic in creation and annihi-
lation operators Vi (see (2.16) resp. (2.25)). With the commutation relation,
we find for any ¢ € ffé\g

(2N)?[[Vnf?
_ /A ddydzdw o(z — y)o(z —w) (6, 4205 050.00000,0)

+2 /3 dxdydz (v(x — y)v(z — z) +v(x — y)v(z — y))

(1, aga;a;;azawayw)

+2 /A2 drdydz v(z —y)* (1, Ay Gy 1)) (2.42)
and thus we arrive with ||v||zea) < [[0]l1(a+) < C at

VNgl* < CNTH(NG +1)%9)1%. (2.43)

Summarizing (2.40), (2.41) and (2.43), we thus arrive at the desired estimate
(2.39).
Therefore, with (2.39) we find that for any ¢ € }'ii\g in the limit N — oo

(¥, G (s)¥) = (¥, Gn(s)¥) + O(N~/?) (2.44)

and with the min max principle it follows that the low energy states are de-
termined through the quadratic Hamiltonian Q. In particular the spectrum of
Gn(s) has a spectral gap independent of N,s (given in leading order by the
spectral gap of Q. (For more details, see, for example, [13].) Furthermore, with
similar arguments as in [10] it follows that for every s € [0, 1] there exists a
ground state ¥ (s) approximated by the ground state of Q.

Proof of (2.65). With (2.22), we find

Tg (o) 2 Moy
Gn(s)— En(s) Ny +1) Gn(s) — En(s)
TG (o) 1/2 ) — Els 12 Wone
< CgN(s) () Nt +1)72(Gn(s) — En(s) +1) (N4 +1) (o)~ En (o)

(2.45)
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In order to use (2.22) once more, we write the r.h.s. as

Doy ) 1/2 s) — s 1/2 EARIO)
Gn(5) — Ex(5) N3 +1)772(Gn(s) — En(s)) Ny + 1) on(s) - En()
_ 1 1/2 1/2 gy ()
3 |02 |z, ||
1 qng(-?)

([ + 022 o)) s + 1)1/ m .

(2.46)

2Gn(s) — En(s)
For the first term, we find similarly to (2.34) with spectral calculus

Wi +1)1/2, - Pon }
’ ()

gn(s) —
_ Wy 1/2 G (s g (=)
= Ga ) = By [ T 000 SRR
_ 1 qwgm ) Vit dt Qg ()
e Ew T O T G
(2.47)
and thus with similar estimates as in (2.34)-(2.37) and (2.22)
1/2 1/2 gy (o)
‘<€’ [(N++1) ’ [N+ "GN (s) —EN(S)”5>’
gy (o) 1/2 o s
<0 gm0 |+ ng |
<clel H(M T 1) Moo gH | (2.48)

gn(s) — En(s)

The second term of the r.h.s. of (2.45) can be estimated similarly, and we find
with (2.34)-(2.37), (2.22) that

(& g s [[We + D72 Gn0)] (4 7] g imntn o)

) — En(s) Gn(s) — En(s)
_ Wone 1/2 _ Bove
< O germy e W+ DY I + 1) g el
<Cle| H(M st R (2.49)

Gn(s) = En(s)
Thus, we conclude with (2.48), (2.49) from (2.45) with the operator inequality

1 q"/)QN(S) 2 qng(S)
(-3 mohe™ ae R <C @Y

that finally leads to the desired first bound of (2.65).
The second bound follows with similar arguments from (2.47).
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2.3. Generalized Bogoliubov Transform

We note that the quadratic Hamiltonian Q is formulated w.r.t. to modified cre-
ation and annihilation operators. For operators quadratic in standard creation
and annihilation operators, the corresponding unique ground state is explic-
itly known and given by a quasi-free state. However, here we do not have an
explicit expression for the ground state 1o, but we will use that it is approx-
imately given by the generalized quasi-free state eZ(*)() as defined in (1.28).
In contrast to the standard Bogoliubov transform (1.27) formulated w.r.t. to
standard creation and annihilation operators, there is no exact formula for the
action of e on modified creation and annihilation operators. However, we
have

6B(M)b;;e—B(M) = 'ypb; + opb_p + dp,
eBWp e B — 4 b 4 opb”, +d, (2.51)

where we write 0, = sinh(u,) and 7, = cosh(y,). The remainders d,, d;; are

small on states with a small number of excitations. More precisely, [5, Lemma
2.3] shows (since p € £2(A%)) that for any k € Z there exists Cj, > 0 such that

N+ 1] < O™ () S22+ g |+ 1)°/201)
(2.52)

for all p € A% and
IV + DR8] < CuNTHI (N + 1) 29 (2.53)
In particular, this leads to

IV + D)2 izl IV + 1) 20 diz el < CNTY2||(Wy + 1>(w|| :
2.54

and

IV + 1) 2 di2 0]l < ONTY2 (N + 1)y (2.55)

with #; € {-,*} for i = 1,2, either i = o or ff = x and ffo = - and @ = —1
if #1 = 2 and a = 1 otherwise. These estimates (2.52), (2.53), (2.55) remain
true when replacing dp, d;, resp. dgl dﬁfp with their (double commutator) with
Ny ; we have

IOV + 1R NG dp] 6l < CoN 2 (118 NV 1) FFD7 20 4 | IV + 1) 240
(2.56)

resp.

Vs + D2 Vg, IV dpl) 9l < CeN T (Ip (Ve 1) D 2]+ g [N + 10329
(2.57)

and similarly for the other operators. (Note that (2.56), (2.57) follow
from the proof of [6, Corollary 3.5].) Also, we know the generalized Bogoliubov
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transform approximate action on the kinetic term that is given by

eBw) Z an;ape_B(“)

pEAi
=Y Pajap+ Y P (0f + op1p(bpbT, + bpb_p) + 202b5b,) + R
peEA} pEAL
(2.58)
where the remainder Ry satisfies
Ny +1)72Ricp| < CNTV2|(Wy + 1)y (2.59)

and also similar bounds for its (double) commutator as formulated before
(2.56), (2.57). Note that since p*p,, € £*(A) and oy, 7, € £>°(A%), this is a con-
sequence of (2.54), (2.55). (For more details, see Lemma 3.10.) Consequently,
conjugating the quadratic Hamiltonian Q with the generalized Bogoliubov
transform e almost diagonalizes Q. More precisely, we have

e—B(N)QeB(M) — D+RQ (260)
where the diagonal operator D is given by
D:= Z ((p*+9(p)) (0127 + 'yﬁ) + 20,7,0(p)) ayay (2.61)

pGAj
and the remainder is
Ro = Z (22720;2) + ﬁ(p))(b;bp - a;ap)
pEA

+ Z u(p) (('Ypb; + opb_p)dp + dy(vpbp + b7 ,) + d;dp)
pEAi

+ Z o(p) (('7pb; + opb_p)dZ, + dy(7pbZ, + opby) + d;dip)) +h.c.
pEAL
+ Rk - (2.62)
Though we do not have an explicit form of e? (”)1/19, the ground state of the

diagonal operator D is explicitly known and given by the vacuum €. For this
reason, we will study for s € [0, 1] the family of Hamiltonians

Q(s) :=D+ sRx (2.63)
interpolating between Q(1) = e~ QeP ) and Q(0) = D.

Similarly to Proposition 2.1, we have the following properties.

Proposition 2.2. Let s € [0,1], then there exists a ground state Vg(s) of the
Hamiltonian Q(s) defined in (2.18). Furthermore, there exists a constant Cj, >
0 (independent of s, N) such that

(Va(s), Wi+ 1)Fvg)) < Ck (2.64)

for k = 1,2 and the spectrum of the Hamiltonian Q(s) has a spectral gap above
the ground state E(s) independent of s, N. Moreover, for k = 1,2 there exists
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Ck > 0 (independent of N, s) such that for any Fock space vector £ € ffg) we
have

H(M sy e EH < Cullel - (2.65)

Proof. We proceed similarly as in the proof of Proposition 2.1. First note that
from Proposition 2.1 we have (since Q@ = Gy (0)) that

(1) = efB(”)(Q _ E(l))eB(“) > ClE*B(H)N_i_eB(M) —Cy (2.66)

for some C7,Cs > 0. The generalized Bogoliubov transform approximately
preserves the number of particles. More precisely, it follows from [5, Lemma
2.4] that

e BWQeBW > Cu N, — Oy (2.67)

for some positive constants C3,Cy > 0. Since D > CN. for some positive
C > 0and Q(s) = se" B QeBW 4 (1 — 5)D is a convex combination of both,
we find

(Q(s) — E(s)) = coNy — Co (2.68)
for some positive constants c¢o, C' > 0. This implies that for any normalized

¢ e F with £ = ]IQ(S)SQ{ that

(6, (N +1)%) < Cle, Wi+ D2Q)Wy +1)T/2)
= CClE, Wi +1)8) + 0 (& [We + 1Y, [Q(s), Wi + D72 ) -

(2.69)
With formula 2.34, we write the commutator as
[V + )12, [Q(s), Wi + 1)1/
1 o0 1 1 1 1
- ﬁ/o Ry vapns prray vy s AL Sy v s VA e
(2.70)

Since ¥ € £2(A%) and [Ny, b%] = ab} with ff € {-,+} and a = —1if § =~
and o = 1 if § = x, it follows from (2.28) and (2.57) that we can bound the
double commutator in form by the number of particles. Thus, we arrive for

<N
any & € .7:1% at

(€, W +1)%) < O¢lg, W +1)€) + OV + 1) li] (2.71)

and we conclude by (£, (N + 1)2¢) < C. The spectral gap and the bound on
the resolvent follow with similar arguments as in the proof of Proposition 2.1
using again the estimates on the double commutator.

O
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3. Preliminaries

The proof of Theorem 1.2 is based on closed formulas derived in [12] for the
conjugation of operators of the form by, b; and

Z g Apl—g (3.1)
pGA*

for any bounded operator H on ¢?(A% ) with the exponential of N (given by
(2.8)) and the symmetric operator

¢y (h) = b*(h = hy by +by) (3.2)
pGA*

with h € ¢2(A%). For this, we furthermore define for any h € ¢*(A%) the
anti-symmetric operator

ig_(h) =b(h) —b*(h) = = > hy [bj —b_p] . (3.3)
pEA*
and (in abuse of notation) the shorthand notation
~vs = cosh(s) and o4 = sinh(s) (3.4)

We recall the closed formulas from [12] that are formulated in position
space and easily translate with (2.4) to momentum space relevant for the
present analysis.

Lemma 3.1. (Proposition 2.2,2.4in [12]) With the shorthand notation ||-||s2(a1) =
| - ||, we have for h € £2(A%) and p € A%

— v -1 v 1 *
eV No+ (M) e=VNé (h) = Yy +in) Yz h-pid— (h) = iz hopb (k)
oNn N | Y 1 *
VN i hp (L= 5 ) + 5 Tii i hepa® (Wa(h)
4_:%7 Twﬁra*(h)ap' (3.5)

Furthermore, for any self-adjoint H : D(H) — (*(A%) with domain
D(H) C ¢>(A%) and h € D(H), we have

eVNos(h dF(H)e_\/N¢+(h)
= (i) + VN TWig_(mn)

i
i NeY | (e = 1)
~ Nt H“>( N)* RE

+ VI T i )+ (L) R (alh).

(a*(h)a(HR) + a*(Hh)a(h))

A similar formula as (3.46) for em¢+(h)b;e_m¢+(h) follows when re-
placing h with its negative —h and taking the Hermitian conjugate of (3.46).
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Furthermore, the following closed formulas hold for the conjugation with
respect to the exponential of the number of particles operator on the excitation
Fock space NV.

Lemma 3.2 (Proposition 2.5 [12]) . Let Ny be given by (2.8) and h € (*(AT).
Then, for every s € R we have with the short hand notation (3.4)

e Nep(h)eN+ = e*b(h),
e NHp* (R)eNt = e=*b*(h),
e Nt g (h)eN = yy4(h) + 0sig—(h),
e~ Nrig_(h)eNt = yid_(h) + ody(h) . (3.6)
Moreover, we shall use the following Lemma proven in [12].

Lemma 3.3 (Proposition 2.6 [12]) .Let h. : R — (*(A%), t — hy be a differen-

tiable. For &1,& € ]-'fg), we find with the short hand notation (3.4)

<€17 [8te\/ﬁ¢+(h‘)} e—\/ﬁ¢+(ht)§2>

-1
= VN 601 (Ouh)) — VN S S0 b, ) (61,6 (h)E2)

— ||
- VN WRe@m he)(6r, 64 (he)é2)

2
Tlihell
[| ]2

1\ 2
i (W) Im(0ihe, hy) (&1, a™ (hy)a(hy)a)

Vhell — 1 * *
W@, [a* (he)a(Oshe) — a*(Bshe)alhe)] §2> . (3.7)
t
In the proof of the main theorem, we consider operators conjugated w.r.t.
to both exponentials e?VNé+ (M AN+ where the parameter A € [0,1] is consid-
ered to be small. The previous lemma yields in the following corollary for the
first-order contributions.
Corollary 3.4. Let H € (*(A%), g € (*(A%) and |A|,|As| < 1. Then, there
exists C > 0 (independent of k, \) such that

—tN

Im(;h, he) (€1, (1 — Ny /N)E2)

+

S (0 T ) o

PAL
< C(llgll + [EDIMNVN (NG + D)2 + CllglIP AN || (3.8)
with §; € {-,*} fori = 1,2, either §; = o and o = —1 or #; = *,4 = -

and o = 1 otherwise. Furthermore, for p*g € (*(A%) there exists C > 0
(independent of k, A) such that

sz (em\./\/+e/\\/ﬁth(g)a;ape—)\\/ﬁ¢+(g)e—m)\./\/+ _ a;ap> ¢H
pAL
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< ClP?gll AV + )29l + Cllo*gl*A Nl - (3.9)

Proof. We consider the case i1 = *,fo = - and a = 1 first. We recall that by
definition of the modified creation and annihilation operators in (2.7) we have

o N-Ni+1 . N-N;+1
> Hybib, = T* > H,aja, = T* dU(H)  (3.10)
pEAL pEAL

and thus
Z H, (em\f\@6/\\/ﬁ<f>+(g)b;;bpe*)\\/ﬁm(g)e*MN+ - b;‘,bp)
PEAL
_ W (emmewmu(g)dp(H)e—AWm(g)e—“M - dF(H))
_ (em\/\ue/\\/ﬁm(g)/\]@e_A‘/ﬁ‘z’*(g)e_’\”NJr - JX;) dr(H). — (3.11)

From Lemma 3.1, we find that

Z H, <6NAN+6)\\/ﬁ¢7+(g)b;bpefk\/ﬁ¢+(g)€7)\nN+ _ b;b,q)

pPEAL
_ NN Xl ;5 - Ix|lg|
= SR VIR _(119) + a0/ W L o 1)
0'2 —
- g, ) (1= 2 ) 42 O D 0 pagtt) +a (ttg)ate)
5., Ol Mgl — 1 ; 8/ N o, TAlall Mgl =1
FYNX Sl Gl % 190 F XN e S gy #1909+
4 (Mgl = 1) W
ot (B) G0, )" o) (g>}
N IMlgll Igll
v P T 0-0) + 2o Sl oo
—1
*W(Aﬂgﬁ! (1 - %%”m&“ﬁgu) o @ats)
3 Ixllgll YAllgll — * i 3 U/\HQ\I'VAHQH“1 2
VA s A T li6-(6)+ VI s el TR ol
a (Mgl — 1 20%(0)a 12
axt (21 g g <g>} ar () (3.12)

Since g, Hg € (*(A%), we find with (2.27), (2.28) for any ¢ € ff;v and
[\ <1 that

Z H, (e'-ﬁ/\@6/\\/ﬁ¢+(9)b;;bpe—h/ﬁm(g)e—>\f</\/4r _ b;b_q) ¥
PEAL

< CA|gl[VN||(N4 + 1)Y29|| + CA2||g| 2N |[¥ ]| - (3.13)
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The remaining cases for (3.8) (i.e., §1 = #2) follow similarly from Lemma 3.1.
We have

Z H, (em\NJre/\\mdw(g)b;btpeﬂ\\/ﬁm(g)e*/\w\h _ b;b,q) "

peEAy
< OA(llgll + m)VN [N+ + 1)V 29 + CX* gl N4 - (3.14)
Note that the bound linear in A depends on « (in contrast to (3.13)) as bib*

does not commute with e N+,

The second estimate (3.9) follows with similar arguments from Lemma 3.1
since

Z p? (en)\/\f+e>\\/ﬁ¢+(g)a
pPEA L

N-Ny+1 g . o -
=t [A%NNMWL@) +araVNle, (5)
N Allgl Allgl

2
2 gl Ny 2 (gl — 1
N Rz >(1 N ) RSOV TTIE

-1
]‘;l” %(g,gﬁm(g) + A VN o

_ 2
o <M ) (9, Hg)a" <g)a<g>]

;apefk\/N¢+(g)e*MN+ — a;ap>

(a*(9)a(g) + a*(g)a(9))

Ixllgll MAllgll — 1
Mgl (Mlglh?

+ \/N)ﬁ’m)\ <g’ g>¢+(g)

(Allgl)?
(3.15)

where we denoted g(p) = p?g(p). Since g € £2(A%) by assumption, (3.9)
follows with similar arguments. O

For our analysis, we need to improve those bounds and prove similar
bounds for the conjugated operators

NG AVN G (h) d e AVNG () g=ARN (3.16)

with £ € {-,*} and k, A € R. For this, we are using closed formulas derived
in [12, Proposition 2.3—2.6] and properties of d,, dy from [4,5] based on the
expansion for any p € A%

m—1 ()
—Bp (Bl _ ad g, (0p)
g B n!
n=1
1 S1 Sm—1
+/ d$1/ dsy . / dgme*SmB(#)adgf(L)L)(bp)esmB(#)
0 0 0 I
(3.17)
with the recursive definition for the nested commutators
0 n n—1
adsggﬂ)(A) =A and ad(B()H) — [B(u),adgg(#))(A)} . (3.18)
In [4], it is shown that the nested commutators of by, by are given in terms

of the following operators: For fi,...,f, € (2(A%), # = (f1,....8n),0 =
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(boy ... bp_1) € {-,%}", we define the II®-operator of order n by
) (fr o fa)

_ b b # b fin— b

- Z bO?OPlaﬁlplaa11p2a622p2aa22p3 g A0y, ﬁnpn Hff pe)
D1, Pn €AY

(3.19)
were for £ = 0,1,...,n we define ap = 1 if by = ., ap = -1 if by =+, B =1
if 44 = - and By = —1 of §, = *. Moreover, we require that for every j =
1,...,n—1, we have either §; = - and b; = * or ff; = * and b; = - (so that the
product a%ma‘,’jép”l preserves the number of particles for all ¢ = 1,...,n—1).
Then, the operator Hﬁ)( f1,..., fn) leaves the truncated Fock space invariant.
Moreover, if for some £ = 1,...,n, by = - and f; = *, we furthermore

require that f; € ¢*(A%) (so that we can normal order the operators). For
9 f1,-- s fn € 62(Aj_)7 = (f1,..,00) € {, %} b= (bo,...,bn) € {-, %} we
define a II(M-operator of order n by

Hé}ﬁ(fh oy fnig)

n
_ bo o by M2 bo Brn—1 brn_1 In b
- Z befh 0193 p1 G192 apy Yiaps UG, _1py_y Wn—1Pn9fp, @ " (9) H fe(pe)

Plyeens pw,EA =1
(3.20)
where ay and [y are defined as before. Also here, we require that for
all £ = 1,...,n either § = - and by = * or § = % and b, = -. Then, the

operators II(V) leave the truncated Fock space invariant, too. Furthermore, we
require that f, € ¢'(A%) if by_y = - and f, = * for some £ = 1,...,n. The
following lemma proven in [4] shows that nested commutators adp(,)(b,) can
be expressed in terms of (N — N,)/N, (N — (N, — 1))/N and T resp.
I -operators.

Lemma 3.5. Let 1 € (>(A%) be such that p, = p_,, for allp € A%, To simplify
the notation, assume also p to be real-valued. Let B(u) be defined as in (1.28),

n € N and p € A7.. Then, the nested commutator adg()#)(bp) can be written as
the sum of exactly 2"n! terms with the following properties.
(i) Possibly up to a sign, each term has the form

ArAg o ANTRIIE) (i i ) (3.21)

for some i,k,s € N, j1,...,5, € N\{0}, € {,*}*,b € {-,x}F! and
a € {x} chosen so that a =1 ifby, = - and o = =1 of by, = = (recall that
op(x) = e ). In 3.21, each operator Ay, : F<N — FSN w=1,...,i
is either a factor of (N N4)/N, a factor (N — (Ny —1))/N or an

operator of the form
N hné?)b/( 7.[1’225 s Hu‘Zh) (322)

for some h, z1,...,z, € N\{0},4,8 € {-,*}".
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(ii) If a term of the form (3.21) contains m € N factors (N — Ny)/N or
(N—(N,.+1))/N and j € N factors of the form (3.21) with TI®) operators
pf order hq, ..., h; € N\ {0}, then we have

m+ i+ 4+ +1)+(k+1)=n+1 (3.23)

(i) If a term of the form (3.21) contains (considering all A-operators and
the I -operator) the arguments p', ..., p' and the factor wy, for some
m,s € N and iy, ..., i, € N\{0}, then

Wttty +s=n. (3.24)

(iv) There is exactly one term having the form (3.21) with k = 0 and such
that all A-operators are factors of (N —N4)/N or of (N+1—N)/N. It

is given by
N n/2 Ni1l— n/2
< N*) ( + N*) by (3.25)

N N

if n is even, and by

N — (n+1)/2 Na4l— (n—1)/2
( Ny ) <+N+) b (3.26)
N N HpO—p
if n is odd.
(v) If the TM -operator in (3.21) is of order k € N\ {0}, it has either the
form
k
b -
Z bavops H g, p, Gl 1p7+1 a’,, aPH”pi (3.27)
P1se-Dk i=1

or the form

Z bI;OOPI H aﬁlpl vLPL+1a'Pk'u121r+1 > H/’L (328)

P1;---sPk
for some r € N, j1,....j5r € N\{0}. If it is of order k = 0, then it is
either given by uprb or by u2r+1b* for some r € N.
(vi) For every non-normally ordered term of the form

Z,uéaqaz, Z/‘quaz’ Z“Z“qbz or Zpébqb; (3.29)
qeN* qeN* qeN* qen”

appearing either in the A-operators or in the IV -operator in (3.21), we
have i > 2.

As a consequence of Lemma 3.5, for ||u]] small enough we have

- 1
B B _ Z( ) 2d3), (by),
n=0

— * > _1 " n *
e B(M)bpeB(H) _ Z ( n') ad(B()M)(bp) (330)

n=0
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and the series converge absolutely (see [6, Lemma 3.3]). From this, we also get
an explicitly define the remainder operators (2.51) by

dp = Z E [ad(jrg(#)(b ) — l‘glbg'fnp] ;

m>0

4 = mzzjo E [ad " (05) - b&;ﬂ (3.31)
where p € A%, (8, m) = (-, +1) if m is even and (§5, ) = (%, —1) if
m is odd. This representation allows to prove the following improved error
estimates on the remainder terms d,, using Lemmas 3.5 and 3.1. We start with
the conjugation w.r.t. to eMV+ first.

Lemma 3.6. Under the same assumptions and notations of Lemma 3.5, for
A < 1 and sufficiently small ||u||, there exists C' > 0 (independent of A, k)
such that

| (2 dpe™ = dy) l| < CAINT (b (N + ] + iy IV + D)) )

(3.32)
and

I (M dpe™ N5 —dp) || < CIAINTH|(N + 1)y (3.33)

Proof. From (3.31), we find that

I (M dpe™ N —dy) |
1 _
: X>:0 ot (X [ o) — wbi | e — (a5, 00) = i) v

- (3.34)

and by Lemma 3.5 the difference
ANV (m) m —AN; (m) [
+ [ad o (0p) — bimp} [ ") (by) — p} (3.35)

is the sum of one term of the form

m+ m)/ m+(1+2~'¥m)/2
e () S
N N_ er(l;Olm)/2 N+l N M+(1+20m)/2
— (1\/_+> <]V+> [Lpngnp (336)

and 2™m! — 1 terms are of the form

Bp — eli)\N+A1 A“N kH(l)( 7)\11./\/_;_

s R o, pp)e
_ 1 1
— Ay AN kﬂé’b)(,u N A uﬁl <pw1p) (3.37)

where i1, k1,01 € N, j1,...,jr € N\{0} and where each operator A, is either a
factor (N — N,)/N, a factor (N + 1 — N;)/N or a II® operator of the form

N7 () (3.38)
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with h, 21, ..., 2, € N\{0}. We consider (3.36) and (3.37) separately, and thus,
each term that is of the form (3.36) either has k; > 0 or contains at least one
operator of the form (3.38). We start with estimating (3.36) first that vanishes
for m = 0. Furthermore, we have from Lemma 3.1

m+(l—am)/2 m+(1tam)/2
2 2

N — N- N+1-MN
] (152) U (s
i (Vb e M —bin Yl < IACT NI+ 132 (3.39)

For (3.37), we find

7 u—1 i
By=Y <H eW+AteW+> (M nue™ M —ay) TT A

u=1 \t=1 t=u+1
7
x N‘kﬂé}ﬁ(ujl,..-,u”“l;uf}so%p) + <H At) NTF
t=1
o . B N .
x (ML I g, p)e M ST (W R g g, ) ) -
(3.40)

In case A, is of the form (N — N,)/N or (N + 1 —N,)/N then e+
Aye N+ — A, vanishes. Otherwise, if A, is an operator of the form I1(?),
it creates resp. annihilates two particles; thus, in this case it follows from
Proposition 3.2 that eM+A,e ™+ — A, = (eMw — 1)A, with k, = 2 or

Ky = —2. Similarly, as the operator II!) creates or annihilates one particle,
we have
0, , , 3 1, ,
T (7 0 1 g e M =TI (W0 s 1 )
. 0, . . .
= (e)‘ — 1)H§)b)(/ﬂl, ey Y R /‘ff(Pazlp) (3.41)
with kK = 1 or kK = —1. Therefore, we find

Bpy| < i‘(e“u — 1)+ (M —1)
u=1

HAtNkngfﬁ(uj%---,ujkl;ﬂﬁl‘P%PWH '
t=1
(3.42)

We consider the case ¢, = 0 and ¢; > 0 separately (see, for example, [6,
Lemma 3.4] resp. [4, Section 5]) and arrive with |p,| < ||g| at

|Bow|| < INC™ NE (1™ =0 il 26, 50l (N + D 28] + [l ™ [p (N + 1€
< C™ N ™ (lapldm>o | (Ve + 1226 + alllbp W + 1) . (3.43)

We plug (3.39) and (3.43) into (3.34) and conclude for sufficiently small
||| at (3.32). The second bound (3.33) follows similarly using that in the case
¢y = 0 we only have [|b (N + 1)|| < (M +1)3/2]]. O

Next we prove similar estimates for the conjugation of d,,d; with the

two exponentials "MW AVNGL(9) | To this end, we first prove the following
auxiliary estimates.
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Lemma 3.7. Under the same assumptions and notations of Lemma 3.5, let
|KA|, [N <1, g € £2(A%). Then for sufficiently small ||p| there exists C > 0
(independent of k,\) such that

H(enw\qex\/ﬁ¢+(g)N+e—A\/N¢+(g))efan+ — N )wH

<& (N glPlell + Mg IN T2 + 1) 20])

H(enmg AMVROLOIR), (11,172, i)V T o4 (0) = AN
—I,, (1, p2 -~-7uz”))¢H
<ON™ (W glP gl + I gll + kDN 2N + 1) 2])) (3.44)

Proof. The first bound follows with similar arguments as in the proof of
Lemma 3.4. For the second, we note that from definition (3.19) it follows

ANL AVN 2 AN —AkN. 2
e M ‘ﬁ”(g)ﬂ;,fb/(u”,uz%u~7uz")e VNG () g=ARN Y _ 3, (™, n™, )
_ KAN L AVN¢ 4 (9)1bo —AMVN¢(g9)  —A&N. bo
= Z e te + bao’ple +i9e Jr7b0107p1
Pl pneAJr
n—1
by b
x [T aft,,altp, oy 0B, a" (9) er(m)
t=1 =1
+ Z e)\n/\/q,e\/ﬁd)‘#(y)bba%Yple*\/ﬁ¢+(g)efkmN+
Plsees pn,EAj_
n o /i—1
A/\/‘Jr A\/idur(g) 4 bt **\/ﬁdur(g) AN
x (H DBypy Parpyqr © €
i=1 \t=1
KA fqb (9) F b “AVN$4 (9) ,—ARN. # b
x [e *Dag , adip; e e *—ag, a ﬂ’j+1]
n—1
o b
H aﬂupuaoztunﬁl Gy @ ”(g)Hfg(pg) (345)
u=j4+1

On the one hand, it follows from Lemma 3.1 that

ANy VN (9) Dovop: e~ VNbL(9) ANy beop:

= (gl = 1) ™ + g (€3 = 1)] bagp,

+ Mngn%g aopy (Vari9—(9) + 72 ¢+(9))

Mgl — Allgl N+
— A s 6 g «a >"7 g a (]— - )
ol ot (9) = VR X101 S0 -oom (1= 5

5 1 oxjgl Mgl — 1 1 oajgl

+>\ \/» )\HgH )\HgHQ g*OéO]ha*(g) ( )+ \/» )\H H (g)aaopl
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We recall that from the estimates (2.28), any term is O(v/N\) for small X and
large N. On the other hand, from Lemma 3.1 for ff; = * and b; = -

ANy VN (k) i b; VN (h) ,—AeNy _ B b;
¢ ¢ aﬁjpjaajijrle ¢ aﬂjpj QjPj+1

IAlgll
= \WN Moll 2 [’YM (bgjpjgajijrl - bajpjﬂg*ﬂjpj)

ROV (ijpjgo‘ij-%—l + bajpj+19—ﬁjpj)]

02 N
2 Allgll
BT PR <1 B N)

(Vallgl — 1) x -
- /\QW(Q—mPJ‘Haﬁjma(g) T 95,4 (g)aaijl)
O 95\ —1 ]
+ VN A? )\||‘LI(;]|‘|| %gﬁjmgprﬁl (eaid—(9) + 0rxd+(9))
2
gl — 1 *
A <|Z|2) 965p;9—0jpj+1@ (9)alg)

and, similarly to Lemma 3.4, any term is either bounded by multiples of
V NNy +1)Y2¢]| or O(A2N). Note that the case #; = - and b; = * follows
in the same way using the commutation relations. Moreover, (3.46), (3.46)
show that terms appearing in (3.45) of the form
He)\’iN+e\/ﬁ¢+(h)aﬁﬁipj bajjpj+1 *\/ﬁ(]bJr(h)ef)\k;Ner)”,
||e/\n/\f+e\/ﬁ¢+(h)bﬁﬁ'jpjef\/ﬁtzn(h)ef)\n./\@w” (346)
bounded through multiples of N'/2||(N, + 1)/2|| + A2N||¢[| < ON resp.
(N 4+ DY2| + ANY2|9p|| < CN'/2. Since the number of particles opera-

tor can be easily commuted through a%ﬂ v aii:jpj +15bagp,» We get

e

H (emj\ar exﬁ¢+(g)ng??bl (0™, p™2 LT )efk\/ﬁ(b+(g))ef)\mN+

—IL, (7t iR, -7uz"))¢H
< n(@N) N (lgll + Iel) (A llll + N2 + 1))
< (©N)"IA(lgll + sl (A9l + N2 + 1)) (3.47)
and Lemma 3.7 follows. 0
From these estimates, we derive the following estimates for (3.16).

Lemma 3.8. Under the same assumptions and notations as in Lemma 3.5,
g € (2(A%) and [N, |Ak| <1 and ||p|| small enough. Then, there exists C > 0
(independent of k, A) such that

o+ 107 (s T o)

< C (gl + 1Dl + 1gsD) | (AINTH2 Ny + 1) 272y

APV + 1)F 2 )
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+ Cllgll + [x1) (AINTY2[lbp (W + 1)EFD 2y
AP lgI2 VN by (N + 1) 5D/ 24 ) (3.48)

and

H(NJr 4 1)k/2 (e'i)\/\h EA\W¢+(g>d;efkﬁ¢+(g)eﬂ\~/\/+ _ d;) d,H
< C(llgll + 1[) (\A|N71/2||(N+ + DER 20+ AP llglP VNNV + 1)’“/%\\)
(3.49)
Proof. We start with the first bound and observe that from (3.31) we have
I (ewv+ewﬁ¢+<g> dye=VNO+(9) = ANy _ dp)wl\

11/ m . _ a
- %H (e Ne AN @) o (b,) = iz, | €0 A
>0

— [ o) — i ] o (3:50)

By Lemma 3.5, the term inside the norm can be written by a sum where one
term is given by

m+(1—2ﬂm)/2 m—(1—am)/2
A — "MWe AVNGL(9) LM N+1-MN;
P N N
« u;nbg’;pefAm(b*(g)e*AﬁN*
m+(l—am)/2 m—(1—am)/2
N - N, 2 N+1-N, 2 mt

and 2™m! — 1 terms are of the form

B, = MW VNOL @A, A,

21

NI (0 g g, p)e YN O 0 e AN

— A Ailekﬂé}b)(ujl, . ,ujkl;,uglgoa[lp) (3.52)

where i1, k1,01 € N, j1,...,jr € N\{0} and where each operator A, is either a
factor (N — N,)/N, a factor (N + 1 — N;)/N or a II® operator of the form

N7 () (3.53)

with h, z1,...,2, € N\{0}. We consider terms of the form (3.51) and (3.52)
separately. Each term of the form (3.52) has either k; > 0 or at least one
operator that is of the form (3.53). We start with (3.51) that vanishes for
m = 0. We have for §,, = (1 — @) /2

A, =

(m+Bm)/2 Mt-B) /2=
(N—N+>( FBu)/2— 41 (enAMeAWWWﬁe‘*m‘”(f’)e—*m@ B ﬁ)
N N N

j=1
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y N — N+> ] <N+1 7N+><m+fﬁm>/2

< N Hp 00 p
N N = Ny \ (8 /2 (m %ﬂ/? N 41— Ny \n—Bm)/2—i+1
; N
j=1
N < SN AVEG (9) <N+> CAVN 64 (9) —ARN N+> <N+ 1 —N+>j o
N+, e ) (AT TN
N N N P Tamp
AN AV 0) N = N\ /2 (N 41— Ny \(m=Bn)/> )
N N
« e—)\\/ﬁqxr(g)e—)\n/\ﬁr
AN, AVNg m = AVN — AN m
% #;'l (e"”v te +(9)bﬁampe P4(9) g=ARNL bﬁamp) (354)

Since for the second summand of the r.h.s. of (3.54) we have

<N _N+>(M+Bm)/2 <N +1 _N’Jr)(mfﬁm)/Z .

N N

(mABm)/2 A\ () 204 N N AN (N 1 — N\ (B /2
:_§<N) W(N)(N)

N — Ny (m+Bm)/2 (m—FBm)/2 N 41— Ny (mtBm)/2=i+1
A > (W

j=1

(5 () a5

we can argue similarly as in the proof of Lemma 3.7. In particular, since
powers of the number of excitations Ay can be easily commuted through any
operator appearing (3.54), we find from Lemma 3.7 for the first and Lemma 3.1
for the second term of the r.h.s. of (3.52)

IV + 12 A0
< C™ | (lA\(llgll + RN T2V )2y
AP VNI, + 1)Fy)) (3.56)
for some constants C' > 0. For (3.52), we write

NkB _Nk Z ( H KANJre)x\/ﬁdnr(g)Ate—A\/ﬁ¢+(g)e—AnN+)

x (ewwexfm(g)Ane—Aﬁm(g)e—MM - An)
N, ,
X Apy1 . .-Ai1H§,ﬁ(u“,--~7u7’°1;u§1s0a[1p)

i1

+Nk( I e+ em/mmg),\tefxﬁm(g)efmw)
t=1

% (ef)\\/ﬁqﬁ+(g)€7AHN+N7kH§’1b) (1

IR, e NN O (9) e AN

—Héylb)(.“jlw'-al‘jkl?ﬂfal@azlp)) (3.57)
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First note again powers of the number of excitations can be easily com-
muted through operators appearing in this term. Moreover, by Lemma 3.7 we
have

||6~AN+6/\\/ﬁm(g)Atef/\\/ﬁm(g)eﬂ\NJ\hq/]” <C. (3.58)
Thus, the first term of the r.h.s. of (3.57) can be estimated by Lemma 3.7
distinguishing the case £; = 0 and ¢; > 0 as in the proof of Lemma 3.6 by
C™ el ™ || (|>\\(Hg|| + RN TN + DEFD 2] 4+ 0Pl P VNNV + l)k/2¢||>
+ O™ ul™ (l/\l(llgll + RN T2y (N + 1) FFD2g|
AP lgIP VN by (V4 + 1) D 2y (3.59)

For the second term of the r.h.s. of (3.57), we proceed similarly as in the
proof of Lemma 3.7 by Lemma 3.1 distinguishing again the case £; = 0 and
£1 > 0 and thus finally get

C™ ™ (gl + 1xDlp| + oD |
(IMINT2)/ W+ DEFD 2] 4 32 g2 VNI + D/ 2y
+ ™ all™ (Mgl + IKDN =22 [y (N + D EHD 2]
+HIAP gl * VN Iy (N + 1) B0 ) (3.60)

Plugging these estimates into (3.50) we arrive for sufficiently small |||
at Lemma 3.8. The second estimate of Lemma 3.8 follows similarly. g

Lemma 3.9. Under the same assumptions as in Lemma 3.8, there exists C > 0
(independent of A\, k) such that

[Ny + 1)~/ (enxmexm¢+<g>d§;dgzpe—xmm(g))e—mm —d dga) |
< C(lgll + [KDIMINVG + D' 24 + CIAPllglP N4l (3.61)
and stmilarly
(Vg +1)~F/2 (e'ﬂf\ﬁrEA\/Nm(g)dglbgzpefk\/ﬁm(g))e*/\w\@ _ di‘}bff) bl
< Clllgll + IKDIMIANG +DMH2] + CIAP gl Nl
(Vg +1)~F/2 (e’i)‘NJreA\/N¢+(g)b2)1dngpe*)\\/ﬁ¢+(g))e*/\”N+ _ bf,ldgf) bl
< C(llgll + [N NN + 1) 29] + CIAP gl Nl | (3.62)

with §; € {,*} fori=1,2 either 1 =2 orfy =% and 2 = - and a = =1 if
f1 =t =2 and a =1 otherwise.

Proof. We start with #; = §3 = x. We observe that from (2.51) we have
(emm AN (9) d;d*_pefAWm(g))efmm —ddr p)

= (e“/\@eA\/Nm(9)d;e—h/ﬁ¢+(g))e—mﬂf+ _ d;;)
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eﬁ/\/\/+GAW¢+(g)dipefkﬁ¢+(g))e*ANN+
+d (emm AVNG(0)gr o AVNG (o) =AMy _ g p) (3.63)
and thus
1Ny + 1)—k/2 ( RANG AVNG (g )d*d* e MWNGL(9) p= NG d;‘,d’ip> |
< (N + 1)/ (emmewﬁm<g>dpefxﬁ¢+<g>>eﬂm+ - dp)
em\N+ekﬁm(g)d*_pefkﬁm(g))eﬂ\m\@w
TN + 1)—k/2d; (em\NJr e/\Wm(y)dipe—/\\/ﬁm(g))e—/\ﬁ/\& — dip) Y|
(3.64)
With (2.52) and Lemma 3.8, we find for all |A|,|sA| <1

lNE + 1)*79/2 (e*i)\/\/+ekm¢+(9)d;dipe*)\\/ﬁ¢+(g))E*Am’\@ _ d;dip) |
< CVN PP glP [l Ve X VN0 gr e m AN lo) = ANy
+ Ol + [KDN T ZI N 4 1) BT 2N AV g7 =AY O (1) o= g

+ CN_I/QH(N+ + 1)(2—k)/2 (em\/\@e/\\/ﬁm(g)dipe—,\\/ﬁm(g))e—AmN; _ d*,p) ||
< ONIAPIglP Il + N7 Mgl + IsDIT NG + D)3 2 (3.65)

The remaining bounds follow similarly with (2.28) and Lemmas 3.1, 3.8.
O

Additionally, we consider the conjugation of the kinetic energy with the
generalized Bogoliubov transform that we write as

Zpaap B(p)

pEA*
Z praja, + Z p? (02 + opyp(bib*, +b5b* ) + 202b%b,) + R
PEAT pEAL

(3.66)

where the remainder Ry satisfies the following properties.

Lemma 3.10. Under the same assumptions as in Lemma 3.5, 3.8, let p*u €
(Y (A%) and ||p|| small enough. Then, there exists C > 0 such that

IV + 1) 2Ryl S ONTVRING + 18] (367)
[V + D2, [V + )2, R [0l < CHVG + 1) (3.68)

Furthermore for |\, |kA| < 1 there exists C > 0 (independent of A\, k) such
that

H (emm AN ()R, e AVNG4(9) o= ANt _ R;c) wH

< CNPlglPllll + CIM gl + [sDINVE + D]l - (3.69)
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Proof. We compute

1
e~ B jceB(w) =IC+/ ds ie—sB(u)KesB(u)
Jo ds

1
=K +/ ds e B[, B(p)]es B

—}C+/ ds Z p ppe 53(#)( +b;btp) esB(H)
pEA*
=K+ Y op+ > PPrpop(bpb®, +b5b%,) +2 Y biby + R
pEAT PEAL PEAT
(3.70)
where
R/C _ Z ( 1)’"«+m Z p2 n+1bﬁn {d( m) (b_ ) mbﬁm }+hc

o nlm!(n+m+1) pens @np B(u) Hp O—amp

+ Z ﬂzp#[d( (6p) — gt b +
n'm'(n+m+1) P B(u) jD —Qnp amp i
Z P ’up[ B(u)( -») _”pbu—nanp}

pEAL
t
pEAT

{adB"g#)(b,) b ] (3.71)

P —Qnp

n+m

n'm'n+m+

We recall that it follows with the same arguments as in Lemma 3.8 (see,
for example, [6, Lemma 3.4] that

I+ 172 (ad S, (b-p) — g, ,) 0l < ONTHING + 10200 (3.72)

—anp

for all p € A%. Since p*p € *(A%) by assumption, the first estimate (3.67)
follows. This estimates remains true for the double commutator, too (see [6,
Lemma 3.4]) and thus (3.68) follows. For the second estimate (3.69), we recall
that in the proof of Lemma 3.8 we more precisely prove that

“(eﬁ/\N+e>‘\/ﬁ¢+(g) |:a,d(;rnB)( )(bq) mbnm ] —A\/N¢+(g)e—>\NN+

Kq Oap
(m) miplim
[ B oy, | )|
< C™ (gl + DIV + Dl + C™ glPIAPNI ] 1l - (3.73)
and thus (3.69) follows. O

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2, and thus, we estimate the logarithmic
moment generating function. For this, we define the centered (w.r.t. to the
condensate’s expectation value) operator

O := 0 — (po, Oy) (4.1)
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and recall that we need to compute the moment generating function

Eyy [29V] = (Yn, 9Vn) (4.2)

We consider the embedding of ¥y € LZ(R3Y) in the full bosonic Fock space
where we have the identity

= > OM ara_g . (4.3)

p,qEA*

~

where O, , denotes the Fourier coefficients of O, ie., Op,4 Jaxa

dzdy O(z;y)e!®P=+tav) By definition of Uy in (2.2), we observe that we can
write ¥ as

YN =Untgy (4.4)

where g, denotes the ground state of the excitation Hamiltonian Gy defined
n (2.14). The properties (2.10), (2.11) of the unitary Uy show that

Un Z Opq apa—q Uy = Z ap’qa;a,q—f—\/ﬁ@r(@) (4.5)

p,gEA* P,gENT

where we recall the notation 3.2. Furthermore, we introduce the notation

g= Ogoo and B = Z Opq apa_g (4.6)
p,qEAT
and thus arrive at
Eyy [XOV] = (g, eXVNo+@+Byg ) (4.7)

In the following, we will compute the expectation value of the r.h.s. of (4.7).
First we will show that the operator B contributes to our analysis sub-leading
only (see Lemma 4.1). This will be based on ideas introduced in [12,22]. Second
we will show that the ground state v, of the excitation Hamiltonian Gy (de-
fined in (2.14)) approximately behaves as the ground state ¢ of the excitation
Hamiltonian’s quadratic approximation Q (defined in (2.15)) (Lemma 4.2).
Then, we show that g effectively acts as a Bogoliubov transformation on the
observable ¢ (g). We remark that this would be an immediate consequence if
the operator ¢ defined in (3.2) would be formulated w.r.t. to standard cre-
ation and annihilation operators. However, ¢ is formulated w.r.t. to modified
creation and annihilation operators that lead to more involved calculations (see
Lemma 4.3). Finally, in the last step, we compute the remaining expectation
value (see Lemma 4.4).

While the first and the forth step are based on ideas presented in [12] for
the dynamical problem, the second and third step use novel ideas and tech-
niques based on the Hellmann—Feynman theorem and Gronwall’s inequality.
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4.1. Step 1

In this step, we show that the operator B defined in (4.6) contributes to
the expectation value (4.7) exponentially cubic in A only. This lemma follows
closely the proof of [22, Lemma 3.3] resp. [12, Lemma 3.1] considering a similar
result for the dynamics in the mean-field regime (8 = 0). The results [12,22]
are formulated in position space; however, the proofs and results are easily
carried over to momentum space.

Lemma 4.1. Under the same assumptions as in Theorem 1.2, there exists C' >
0 such that for all 0 < XA < 1/||O| we have

oc—CN[O]>x° <¢ng exﬁm<g>/2672A||0|W+6AW¢+<g>/2ng>

< (g, NVFO-w iy, )

< (CNIOIPN’ <¢gw exmm(g)me»uonm6Ax/ﬁ¢+<g>/2¢gN> L (48)

Proof. We start with the lower bound (i.e., the first inequality of Lemma 4.1)
and define similarly to [22, Lemma 3.3] for s € [0, 1] and & > 0 the Fock space
vector

£(s) 1= e~ LmDANL /2, (1= NG4(9)/ 25N [B+VNG4 ()] /2y (4.9)

We remark that by construction n(s) is an element of the Fock space of
excitations F ff}ov, and thus, the number of particles of £(s) is at most N. This
observation will be crucial for our analysis later. Since we have for s =0

JEO)I2 = (g, VNoa/2emmNs AVNGL @) /205 ) (4.10)

and for s =1

JEOIZ = (g, VRO AE g ), (4.11)

it suffices to control the difference of (4.10) and (4.11) to get the desired
estimate. We aim to control their difference through the derivative

Bsll€(s)11* = 2Re(£(s), DsE(s)) = 2Re(£(s), M(s)E(s)) = Re(€(s), (M(s) + M(s)") &(s))
(4.12)
with the operator M, given by

M(s) = gef(ksmmme(l—s)xﬁm<g)/2 B e~ (1=WNb4 (9)/2,(1-9)ARNL /2 | %/\h-
(4.13)
The results from [12, Propositions 2.2-—2.4] (summarized in Lemma 3.1, 3.2)

provide formulas to compute the operator M(s) explicitly. We use the short-
hand notation (3.4) and h(s) = (1 — s)Ag and arrive at

M(s) + M(s)*
A
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= E: 6pﬁa;a,q+—mN}

P,gEAY
’ % 2 [hp(s)éqvkhk(s)a;iafq + hq(s)Op ihi()aba—g
p»‘l,kEAi
2
MIO] =

B ||h(s)||2<h(s)a0h(5)> (N —N3)

L 2 s), Oh(s s)hq(s)asa
+< 1A (s)|I? ) (h(s), Oh(s)) qu%;\i hp(s)hq(s)apa—q

Tn(s)l . Aneo)) — 1 ~ ~

YN en sinh((s = 1)Ax/2) {WWS): Oh(s)) ¢+ (h(s)) + ¢+(Oh(s))} .

(4.14)
With the bounds (2.28) for any Fock space vector & € ffé\i and

11(s)]l2 < AlOgollz < MO llpoll2 < 1, [O1l < (O] (1 + llpoll3) = 2I(IOII :
4.15

for all A|O]| < 1, we observe that that all but the terms of the first line of the
r.h.s. of (4.14) are bounded by CA2N. For the first line, however, we find with
the choice k = 2||O]||

> Opgaiag+sNe > (=20 + k)N, >0 (4.16)
p,qEAY

. . S <N ..
as operator inequality on the Fock space of excitations F Lo Summarizing,
we arrive at

M > 0NN (4.17)
again as operator inequality on ]-'ii\; that yields
2
3 Re (€(s), M(s) &(s)) = —~CNN[OIP[IE(s)]I* - (4.18)

In combination with (4.12), the lower bound from Lemma 4.1 now follows from
Gronwall’s inequality.

The upper bound is proven with a similar strategy (see also [12] for more
details) replacing the constant  in the definition of the Fock space vector £(s)
in (4.9) by —r and estimating the terms of (4.14) from above instead of from
below. O

4.2. Step 2

The goal of the second step is to show that we can replace ¢g, , the ground state
of the excitation Hamiltonian Gy with the ground state 1o of its quadratic
approximation Q. The idea is to use the family of Hamiltonians {Gn (s)}sejo,1)
defined in (2.18) interpolating between the excitation Hamiltonian Gy =
Gn(1) and its corresponding quadratic approximation @ = Gy (0). We re-
mark that Proposition 2.1 summarizes useful properties of the Hamiltonians
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{Gn(8)}seo,1) and their corresponding ground states {tg (s)}se[o,1] that will
be crucial for the proof of the following Lemma.

This Lemma’s proof is crucially different from the proof of [12,22] where
the analogous step was based on properties of the dynamical evolution.

Lemma 4.2. Under the same assumptions as in Theorem 1.1, there exist con-
stants C1,Cy > 0 and k1,ky such that for all 0 < X <
min{1/ (k1 [[Ol}), 1/ (s2[[Ol)} we have

<¢gw exmm(g)/zemnoumewﬁ¢+<g>/zm>
< C1NNHN) () 0 - AVNG1(9)/26mANOIIN+ AVNG(9)/24p (4.19)
resp.
<¢gw exﬁwg)/ze—unoumeAWm(g)/zng>

> e O ) MNG1(9)/2=r2AOING MWNG1(9)/2 ) (4.20)

Proof. We start with the lower bound, i.e., the second inequality of Lemma 4.2.
The upper bound then follows with similar arguments.

We consider the two families of Hamiltonians {Gn(s)}seo,1] defined in
(2.18). We shall prove first that denoting with g, () the ground state of
gn(s)

(g (1), €
> e—cz(NA3+,\)<

AWNé+(9)/20=2MOIN4 ARG (0)/ 2y 11

MWNG+(9)/2 =R MIOING ARG+ @)/ 2
(4.21)

Ygn(0), €

for some constants Co, ko > 0 which together with the observation Gy (0) = Q
yields the lower bound of Lemma 4.2.

For s € [0,1], let Gn(s) denote the Hamiltonian defined in (2.18) with
corresponding ground state 1g (s)- Then, we define the Fock space vector

&(s) = e_)‘”SN+/26’\¢+(9)/2ng(S) ) (4.22)

where k5 : [0,1] — R denotes a differentiable positive function with k1 = 2||O||
chosen later. We remark that it follows from Proposition 2.1 that g () €

}"i]p\; for all s € [0,1] and thus {n(s) € ff;\;. Moreover,

1E)]2 = <¢gw exﬁm(g)/ze—mnonmexﬁm(g)/z%> . (4.23)
and

IEO)IE = (W (o), NV MmN NNO /25 () (4.24)

Thus, we are left with controlling the difference of (4.23) and (4.24) for which
we shall use estimates on the derivative

Os)1€(s)II* = 2Re(€(s), 05E(s)) - (4.25)
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As a preliminary step toward computing the derivative of £(s), we compute
with the Hellmann—Feynman theorem the ground states derivative given with

the notation Qg =1 — Vg () (Vg (s)| DY

q"/’QN(s)

s (s) = MRN Vg (s) - (4.26)

Proposition 2.1 ensures that the reduced resolvent m is well defined
for all s € [0,1] and, in particular, bounded from above independent of N, s.
We remark that by Proposition 2.1, the r.h.s. of (4.26) is Eq. (2.15)
and (2.28) in norm by bounded by a constant. However, we cannot bound
the derivative in norm here, but we need to compute the conjugation of the
operators of the r.h.s. of (4.26) with the exponentials of v/ N ¢, (g), Ny to then
bound the operators of the r.h.s. of (4.26) in form. To this end, we introduce

the splitting Ry = Y27_, RY given by

1 .
R%):ﬁ Z o(q) (bj 440" 4ap +h.c.)
1

P,qENT ,pFq
3 -~ *
Rg\,) = Z v(k)a,_ray ., kapag (4.27)
P,q,kEAY

We remark that Gy (s) leaves the truncated Fock space invariant (as it is formu-
lated w.r.t. to modified creation and annihilation operators only). Moreover,
we recall that it follows from Lemma 2.1 that

H gn qugN(E)N(s) " I gN(j;l}g_N(EN(s) (N + 1)” <C (4.28)
and
H(J\@ +1)71/2 Qg () (N + 1)3/2H <C. (4.29)

Gn(s)— En(s)
We use these properties now in the following to estimate the derivative

OsllEn (s)]1* = 2Re(En (s), M(s)En(s)) (4.30)
where the operator M(s) is with (4.26) is given by

A Doy () AV 2 R AN, /2
M(s) — e~ AN /2 AT (00) /2 N R oK AE G4 (9)/2gha AN/
(=) Gns) — Ents) ™
VA (4.31)

It follows that denoting with

gN(S) _ efx\ﬁsN+/26/\\/ﬁ¢+(g)/2gN(S)eﬂ\\/ﬁm(g)/?ekns/\@/? (4.32)
the conjugated Hamiltonian and thus
o ANG 2 AN @)/ Tone ARy (9) /2w /2 _ Tgy (o)
Gn(s) — En(s) Gn(s) — En(s)

(4.33)
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where we introduced the notation

(Y%N(S) — e—msj\u/zem/mu(y)/2qng(s)e—m/mw(g)/zemsj\/gg (4.34)

We remark that despite that @QN(S) is not a projection, it still commutes with
Gn(s) and we have for any ) € ]—'f;v the bound

100 En (Sl < Clien (s)]| + [l VN2 N 255 |
[AVNO /2 =AM 26 (o)

< CllEn ()]l - (4.35)
Hence, we find
ang(s) ~
=0y (s)|| < Oy ()| < Cllen(s)] (4.36)
H Gn(s) — En(s) e
where the estimates are independent in /N. Furthermore, with the notation
e**'ﬁs/\@/Qekm¢+(g)/2RNe*/\\/ﬁ¢+(9)/2e>\N+/2 =Ry + Ary (4.37)
we arrive for (4.31) at
D s Tpg (o .
M(s) Yone Ry YoNG) A NN . (4.38)

= = + =
Gn(s) — En(s) Gn(s) — En(s)

We will show in the following that the first two terms can be bounded by terms
that are either O(A>N) (and thus sub-leading) or can be bounded in terms of
operators that are compensated by the last term for properly chosen ks. To
this end, we estimate the two first terms of the r.h.s. of (4.38) separately. While
the second term is by definition already at least linear in A, we need to use the
reduced resolvent’s properties for the first term.

We start with the second term of the r.h.s. of (4.38) and consider for this
the single contributions of Ry separately, i.e., we define with (4.27) the sum

2
Ary =305 AR%q where

A e—MsN+/2€>\\/N¢+(g)/27g%)e—>\\/ﬁ¢+(9)/26>\f<s/\/+/2 _ R%) . (4.39)

R —
The first term A ) is by [12, Proposition 2.2—2.4] (resp. Lemma 3.1, 3.2) of
N

the form

ARE\}) = BR%}) + DRS) + 8725\}) (440)
where [| B, || < C[|O|PA*N for all ks < 1, while the operator D) qua-

N N

dratic in A is given by

A2 Ny 1
D_y =~ Z 0(q) {Nsb*Jr +VNgpiq (1 - —) — —ay, ,a(g)
R 4 pTq N pT4q
N p,q€A] ,pF#q VN
[9-qbp — gpb—q]

)‘2 -~ * - *
+ m Z (q) [Hg”?2bp+q — Ip+qi—(9) + 9p+qb(g)} a_q,ap
P,qEAY ,pF#q
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A2 U N
+ N Z (9)bp 44 ks VN (g—gbp + gpb—q) — Nh_ghy (1 — ﬁ)
P,qEAY ,pF#q
+ h_qa™(g9)ap + hpa™ ja(g)| + h.c., (4.41)

and thus bounded for ¢ € 75 and Ak, <1 by
Dl < CXOIPVN (s + D[+ + )2y

< C OIPAN (k2 + D)[[4]* + OO |V *0> . (4.42)
For the contribution of (4.40) linear in A, we find

A Ny 1
ey == D, 0(q) |:Hsb*+ +VNgp1q(1 = = ) = —=apiqale)| aZqap
r p+q p+q q
N 2V N pra€AT ptq ( N ) VN
A -~ *
+ 5 Z 9(@)bptq [9-qbp — gpb—q] — hec. (4.43)
P,qEAY ,pF#q

that is bounded for ¢ € ff;\g and A\kg < 1 by

q~¢g ()
Y, =————Er v
< Gn(s) = En(s) ™~
Thus from (4.40), (4.42) and (4.44), we get for all kg <1

< OANO|(ks + DIV + 1)20 )12 . (4.44)

s —%QN(S) 1 s
‘<€N( " Gt - B )>
< ON[O||(ks + 1){(En(s), N4 + 1)én(s)) + ONN[|En (3)]|? (4.45)

that is, again of the desired form. For the second term of (4.27), we first observe
that by the commutation relations we can write

1

2 ~ * *
RY = N Z v(k)ay_raqa;, wap (4.46)
p,q,kEAT

and thus we find with [12, Proposition 2.2—2.4] (resp. Lemma 3.1, 3.2) that
ARS\?) = BRS\?) + DRS\?) + 57253) (447)
where Aks < 1 we have || B, || < C [O[PA’N and
N

AN N
DRS\?) = W Z v(k) [g—pﬂcaq - gqa;—k] [g—q—kap - gpaZHJ

p,q, k€AY
A2 PO N
+ N Z o(k)ay_paq [Hs VN [g—q—kap + gpag i) — Ng—q—kgp<1 - ﬁ)
p,q,kEAY

+a"(9)g—q—rap + a;+k9pa(9)]

A2 -~ * N+
t3N > k) {Rs\/ﬁ [9-p+raq +9qapy_1] — Ng—pir9q (1 - W>
p,q,keAjr
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+0%(9)9-p+kaq + ap_rgqa(9)] ajxap + hic. (4.48)
and thus bounded for ¢ € ngj and Akg < 1 by

IDR@¥ll < CXVNIW; +1)125] < CIOPAN|w|? + O O] IN} 6
(4.49)

For the linear contributions of (4.47), we find

AN N .
5R(2> = AN Z (k) ([g—p+kaq - gqa;—k] Ggqpap + a;—kaq [g—q—kap - gpa2+k})
N p,¢,kEAY
“he. (4.50)

that is bounded for v € ffé\g and A\kg <1 by

aibg ()
P ~—N5 3
<w G (s) — En(s) RM>

Thus, from (4.47), (4.49) and (4.51) we get

< OX OV + 1) 29| . (4.51)

5), =—N2 %QN(S) A_e s
‘<§N( )s G (s) - En(s) r@EN( )>
< CX O|[{én(s), (NG + 1)En(s)) + CN|o|*X*||En ()] - (4.52)

With (4.45) and (4.52), we therefore conclude that the second term of the r.h.s.
of (4.38) is bounded by

§), =——N2 awgms) A S
'<§N( )s Gn(s) — En(s) R &N ( )>
< ONO[|(1 4 £s)(En(s), Ny + 1D)En(5)) + CNOIPN[lEn (s) [ (4.53)

for all A\kg < 1, that is, of the desired form, namely the first term can be
compensated (for properly chosen k) by the last term of the r.h.s. of (4.38),
while the second term is considered sub-leading here.

It remains to show a similar bound for the first term of the r.h.s. of (4.38).
For this, we use the resolvent’s properties and first note that

q~¢gN(s) R — gNM’QN(M
- N -_—"-—=<
Gn(s) — En(s) Gn(s) — En(s)
while the first term is with Lemma 2.1 bounded by

(p%ms) + ql/’gN(s)>RNa (4.54)

Ej%‘mw
- R
<5N(5)a Gn(s) 7EN(s)pw9N<s> NgN(5)>
q~¢gN<s>

<[ 5 e ) I Riven()] < ON e ()17 (4.5
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and we use the resolvent identity for the second term and write

Dhg () Pogpy () » Dbgp )

— N = Rn
Gn(s) = En(s) Gn(s) — En(s)
Z]vngu) g (s)
Gn(s) — En(s) " Gn(s) — En(s)
(4.56)
with the notation (4.39) and
Ag = e_’\“sN+/26>\\/ﬁ¢+(g)/2Qe—)\\/ﬁ@r(g)/?e)\/\@/? -9. (4.57)

Thus summarizing (4.54)—(4.56), it follows from Lemma 2.1 that the first term
of the r.h.s. of (4.38) is bounded by

<€N(5)7 qupgNN(S)73N§N($)>‘
G (s) — En(s)

Tg ()

5), = gy ()
" Gn(s) — En(s)

< CllEn ()11 + (e ( Gn(s) — En(s)

(Ag + Ary) RnéEN(s))]

(4.58)

and we are left with bounding the last term. For this, we are going to use
that on the one hand the operators Ag/, Az, are at least linear in A and the
resolvent w.r.t. to G (s) allows to bound the number of particle operator. We
proceed similarly as before and observe that it follows from [12, Proposition
2.2—2.4] (resp. Lemma 3.1, 3.2) that for all Aks < 1 we have from Lemma 3.4
that

AQ = DQ + SQ (4.59)

with [[Dgllop < NA? and since [p*gllez < CllOllllollm= < C|O]| for any
¢ € FT,. that

1€l < CVNA(IO] + rsIOINIIN + 1) (4.60)
We recall that from (4.45) and (4.52), we similarly have for all Akg <1
Ary = Dry +Ery (4.61)
with ||Dg, | < CNJ||O]]*A? and
I€RxYIl < CVNIOIA(L + &) [|(N + 1)1/24)| (4.62)

for any ¢ € ffé\g. Thus, from (4.63) we find

s Doy o 5
TR —

< Cllen ()] + A°N
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+ <€N(S), O - (Eo+Ern) %QWRN&\/(S)>
Gn(

s) — En(s) Gn(s) — En(s)
(4.63)
and we find with Lemma 2.1
Bgy 5
<§N( " Gae) - () N )>
< Clén ()l + NIOIPV N[Ny + 1)én(s)]?

_ oy MO N 5

+ <§N(S)’ G ls) — En(s) (€o+Ery) o) = En(s) Rnén(s)
(4.64)

The first two summands of the r.h.s. of (4.64) are already of the desired form
as it can be bounded by terms O(A3N) resp. terms of the form AN/, . For the
last term, we, however, have to estimate more carefully. We use once more
the resolvent formula and write with the notation &g () = o + Er, and
Dgy(s) = Do + Dry

gy (s) Tg ()

— £
v (3) = B (s) IO Gn(s) — B(s)

Tg () Tg () g (s)
= =N (g, 4 Dgoo)Fl| NS e, TOING  p
(gN<s)_EN(s>( on () T Do) >gN<s>—EN(s> INO Gy (s) — Bn () N
(4.65)

It follows from (4.60), (4.62) and Lemma 2.1 that for all Aks < 1 we have

_ oo _ Moy
HggN(S) Gn(s) — En(s) Eon (o) Gn(s) — En(s) Rén(s)
dyp AWg (s
< CVN)|O|I(1 IV +1)1/2 9N (s) Eo (s N (s) R
< CYNNION + )| (N + 1) g0 o o S S Raven o)

< OVRNIOIN( + )|V + 1) ot __myew(s)| (4.66)

1/2 "N
ggN()g/() En(s)

With Mia, = a,(Ny — 1), it follows from (4.44), (4.51) and (4.60) that
[Ny + 1) 2Eg, (@]l < CVNXO]|(1 + k) || (4.67)

for any ¢ € ff;\; , and therefore,

e o gy B oo ey = vy e |
< CNNJO|IP(1 + & ngwg—N“(RN&N(s)H
En(s)

< CVNA2||O|2(1 + k) H Ny + 1)1/25N(3)H . (4.68)
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where we used Lemma 2.1 and (2.39). Similarly, we find with Lemma 2.1

gy () Doy ()
HDQN(S)M 95 G ls) — En(s) EN(S)RNfN(S)H
Qg (.
< ONYPJOI XL 40 [ (N -+ 1) 712 S S R (s)
< ONJIOIPN (1 + ko) [lEn ()17 - (4.69)

Therefore, we arrive with (4.36), (4.68) and (4.69) for (4.64) for all Aks <1 at

Ty,
‘<€N(S)a MRN&(S)>
< CNNYIONIP (1 + o) llén (s)II + OO + 1) 2en(s)* - (4.70)
that is of the desired form. Together with (4.53), we thus get for (4.38) that
2Re(¢n (s), M(s)En (s))

> (CAOl(ks + 1) = ) (En(s), Non(s)) + C(NA® + /\)Ifzv(S)I(Z?l)

With the choice
ks = 2[0[e“CT + O] (77N — 1) (4.72)

yielding 95[|En(s)]> > —C (A + NA3)||En(s)|?, we arrive with Gronwall’s in-
equality at the lower bound of Lemma 4.2.

The upper bound follows with similar ideas, replacing the lower with
upper bounds and ks with —k. O

4.3. Step 3

We recall that we are left with computing the expectation value w.r.t. to
the ground state 1o of the quadratic Hamiltonian Q given by (2.15). In this
step, we will show that the ground state is approximately given by eZ()Q,
that is, a an generalized Bogoliubov transform applied to the vacuum vector.
Furthermore, we show that e?(*) acts on the observable ¢, (h) as a Bogoliubov
transform, i.e., that e" ("¢, (h)eP®™ can be approximated by ¢, (f) with f
given by (1.15). The main difficulty in this step here is that all quantities are
formulated w.r.t. to modified creation and annihilation operators for which the
action of the Bogoliubov transform is not explicitly given. However, we use
(2.51) and (2.52), (2.53) and Lemmas 3.5-3.9 to prove the following Lemma.

Lemma 4.3. Let k > 0. Under the same assumptions as in Theorem 1.2,
there exist constants C1,Co > 0 and K1,k2 > 0 such that for all 0 < A <
min{1/(k1[[Of]), 1/(r2[|Oll)} we have

<w o exmm(g)/%anHlMeA\/N¢+<g)/2¢Q>

< DN 1 AVNG4(1)/2miIOIINGT MRS (£)/2) (4.73)
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resp.
<¢ o, ewmn(g)/ze—mmommexﬁ¢+<g)/2¢g>

> 6—02(N>\3+>\)<Q7 eAW¢+(f)/26—AH2||\O\I\N+eA\/N¢+(f)/QQ> (4.74)

where [ is given by (1.15).

Proof. We start with the proof of the lower bound. The upper bound then
follows with similar arguments as in the previous steps. As the generalized
Bogoliubov transform (1.28) is a unitary operator, we write

<wg7 exmm(gv%dnmonwmeAW¢+<g)/2¢Q>

By, VNP g, (g)/2e7 B0
e HlONeP Ny e B0 AVNeB g (9)e™ B /2 By, oy (4.75)

The final goal is to compare the r.h.s. with the r.h.s. of the lower bound
(4.74). To this end, we perform three steps: We first show that we can replace
the exponent —ﬁeB(“)N+e_B(“) with ko for sufficiently large o > 0. Sec-
ond, we show that the exponent eZ( ¢ (g)e*B(") can be effectively replaced
by ¢4 (f) with f given by (1.15), again paying a sub-leading price. As a third
and last step, we then show that we can replace e? (“)wg with an interpolation
argument (similarly as in the proof of Lemma 4.2) by .

Step 3.1. Similarly as in the previous steps, we define for s € [0, 1] the vector
£1(s) = e—(l—S)/\mHIOIHN+e—SHIHO\HeB(“)Nw’B(“)eA\/NeBW¢+(9)€’B(“)/263(u)¢g

(4.76)
where k1 > 0 is chosen later. By definition, we have
112 = (B W g, HVNPM o4 (9)/2e7 P00 —r|OfePUIN =P
VNP4 (9)em P /2 B(w) y, (4.77)
and
1EL(0)]2 = (P Wpg, VN 4(0)/2e750 o AmIONIN
e/\\/ﬁeB(‘”¢>+(9)e*3(“)/263(u)¢Q> (4.78)
and we control their difference by computing the derivative
Osll€1(s)]1* = 2Re(€1(s), Ds&a(s)) = (€a(s), Ma(s)€1(s)) (4.79)

with
Mi(s) = =2&)|O]|| + Ae™ X A=)5lIONNL o= B () A7, B A=9)m1llONINL L\ O]V
(4.80)
From (2.51), we find

e BUIN B — Z (02 + (V2 + 02)biby) + 20,7, (b, + byb_p))
pGAi“F
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+ ) (dilypbp + 0pb”,) +hoe. + didy) (4.81)
PEAT

We recall that here we used the notation 7, := cosh(u,) and o, = sinh(u,)
with g, given by (1.16). Since 0 <o € *(A%) we get leeller(ay < € and thus
o € (*(A%) and v € £>°(A%). Hence for the first line of the r.h.s. of (4.81), we
use again Propositions 3.2,3.1 and get similarly as in the previous steps

(&1 (s), e 2E=9)millONIN

x Z (0';27 + (vﬁ + Ug)b;bp) + 2ap7p(b;b*—p + bpb—p)) eiA(lis)NlmomNJrfl ()]
pEAT

< (CAO] + Cy [IO1PN?) (€1 (s) (N4 + 1)éa(s))

< CAOII(€1(s) (N + 1)E1(s)) + Cy NXP[O)[l€n (5)]] - (4.82)

where C’,C’m > 0 and C > 0 does not depend on k1. For the second
line of the r.h.s., we proceed similarly using Lemma 3.6 and (2.52), (2.53)

instead of Proposition 3.2 and (2.28). In fact, Lemma 3.6 and (2.52), (2.53)
are applicable as by assumption the norm ||u|| sufficiently small. Thus, we find

A& (s), e rA=omlloNN
X Z 'Ypb + opbT p) + h.c. + d;dp) ef)x(lfs)n1|\|o|”/\f+§1 ()|
PEA*
< CAO]|{€1(s) (N3 + 1)81(s)) + Co, NAY[ O [en ()] - (4.83)

with C,Cy, > 0 and C > 0 independent of x;. Summarizing, we find from
(4.82) and (4.83) by choosing k1 > 0 sufficiently large

Asller()[1* = (1 = C)ANON{Er(s), Ni&i(s)) = Coy (VN + D)[IEa(s)II?
> —Coy N+ 1)[E1(5)]1? - (4.84)
We finally arrive at
(o, 6>\\/ﬁ¢+(g)/2e*>\f<IHOIIW+ek\/ﬁm(g)/?w@
> 670(NA3+1)<EB(#)1/JQ, AVNP W (g)/2e7 B

e~ FllOING AVNEP W 6 (9)e™ P00 /2, B(1) y, o) (4.85)

Step 3.2. Next we show that in the limit N — oo, we can replace the operator
B, (g)e BW by ¢, (f)/2 where f is defined in (1.15), i.e., that there
exists ko, Cy > 0 such that

<613(#)¢Q7 AVNE W (g)/2e7 B0 —ri[|OJING AVNEP W g (g)e™ P /2 B(#)wg>
S ¢~ COCNAD) (B0 ARG ()22 lIOIING A4 (5)/2 B0 5
(4.86)
To this end, we define for s € [0, 1]
£a(s) = e~ FONOING (A= INN61 (1)/2g AN W o ()20 2,B(0) ) (4.87)
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where & : [0,1] — Ry is a positive, differentiable function with (1) = &1
chosen later. Since

[€2(D)|J2 = (eBWypg, XVNeW ér(a)/2e7%1) —rallOlIN

AVN Wb (@)e™ W /2,B(w) y, (4.88)

and

||§2(0)||2 = <eB(H)¢Q7 e/\\/ﬁ¢+(f)/2e—f’~(0)IHOIHN+eM/ﬁqﬂ(f)/?eB(u)wQ), (4.89)

it suffices to control the derivative

Bsll€2(s)[I” = (€2(s), Ma(s)éa(s)) (4.90)
with
Ma(s) = =i [|OfIVS
1L AW Ne #@IOING (A=)AN4 (£)/2 (eBw) #(9)eBW — f)>
% e(1=ANN61(£)/2,=r()IOIIN+ (4.91)

As before, the idea is to bound the first term w.r.t. the second term paying a
price that is O(A3>N). To that end, we observe first that from (2.51) we have

W)W —6(f) = D g [y +dp] =dg) + (9 (492)

pGAj

Since p, g € 2(A%) and thus f € (2(A%), it follows from (2.52) and Lemma 3.5
that

AN |(Ea(s), e FENOING (1= N - ()72
(d(g) + d*(g)) e MVNEL(N)/2=R(NOIING ¢, ()|
< CMIONING +1)2& ()7 + Cr IOIPA (N + 1) 26 (s)|?
+ Co, NA[OIP 1€ (s)]? (4.93)

where C' > 0 is a positive constant that, in contrast to C,_, does not depend
on kg. Thus,
. 1/2 3
Osll&2(5)17 = AOII(C = &) IING2(5) 1 = Cre, (NN O] + >\|||0|)||£2E8)||2)'
4.94

s

We choose ka(s) = —k1 + (1 — s)ky for sufficiently large k2 > 0 so that
Billéz(s)II* = —Cre, (NNIOII° + AllOI 1€2() - (4.95)

and the desired estimate (4.86) follows.
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Step 3.3. Finally, we prove that we can replace e? (“)wg with the vacuum vec-
tor €2, that is, the ground state of the diagonal Hamiltonian D. More precisely,
we show that there exists k3, C' > 0 such that

<eB(u)¢ 0, VN2 M2llOIN+ AVNG1(1)/26B ()., Q>

> e O+ 1 AVNGL(1)/2,-MsllOING ARG (D/20) - (4.96)

To this end, we define for s € [0, 1] the ground state 1o,y of the Hamiltonian
Q(s) =D+ sRog (4.97)

with corresponding eigenvalue E(s) and furthermore the vector
&5(s) = 6*/\5(5)IHOIHN+/26>\\/N¢>+(f)/2¢Q(S) (4.98)

with differentiable x(s) : [0,1] — Ry satisfying (1) = k2 that we choose later.
Since

||§3(1)||2 — <6B(M)7//Q7 ek\/ﬁdwr(f)/?e—)\ﬁzHIOHIN+e*\/ﬁaﬂ(f)/?eB(u)wQ) (4.99)

and
1€5(0)]12 = (2, AVNGL(£)/2 = AR(0)[|OfIN e/\f¢+(f)/29> (4.100)
, it suffices to control the derivative
35 1€3(s)[I” = 2Re(&s(s), Ms(s)Es(s)) (4.101)
with
— o M()IONING /2 AW%(}‘)B%R AN (f)/2
Ms(s)=e 2 06) - B o€
eMEMOIN/2 _ i N0V«
= Mﬁg — kA0 (4.102)
Q(s) — E(s)

where we introduced the notation

Q(S) — e*M(S)HIOHIN+/26>\\W¢+(f)/2Q(S)ez\\/ﬁm(f)/2€/\'~”~(8)||\OHW+/2 (4.103)
and @Q( L =e /\N(S)HIOIHN+/2e>\\/ﬁ¢+(f)/2qwg( )ez\\/ﬁm(f)/2€AH(S)\I\O\\IN+/2 resp.

ﬁg _ G*AK(S)IHO\HN#?@A\/NM(f)/2RQe>\\W¢+(f)/26M(S)HIOIHN+/2 . (4.104)
First note that it follows from Lemmas 3.4, 3.9 that for any formalized ¢ €

<N
.7:1[10

. (Qs) ~ B(s)) )

>

(¥, (Q(s) = E(s)) ¥) = CAVNJ|O|[[|(Ny + 1)'/2¢[| = CNN?[|O]*
(4.105)

Therefore, there exists €, C. > 0 such that by Proposition 2.2
(. (8(s) — B(s)) ) > (C = e)w, Ny — C-NJJOIPN* . (4.106)
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and consequently
Do _
|V + )22y < CNVENON + Dl vl - (4.107)
Q(s) — E(s)
We can prove a similar bound not only for the square root but for the number
of particle operator. For that we write with the resolvent identity

Tpoe) N P Wae) N Do) Pae)
~ —_— Jr —~ +~7 .
Q(s) — E(s) Q(s) — E(s) Q(s) — E(s)
We use Proposition 2.2 for the first and the resolvent identity for the second
term and arrive at

ool o+ s (0 0) |

f (4.108)

Q(s) - E s) — E(s) Q(s) — E((s) |
4.109
From Proposition 2.2, we find
ffwg(s) ~ =~ aﬂ’g(g
20yl < Clgvoc ol + C|l (Qls) = Qs)) =222y,
A mmid B e [COREO) e ] \1{10)
and furthermore since v € ¢*(A%) from Lemma 3.4, 3.9
a’/}g(s)
Ny ——"""—
I g =5
~ E]v s
< C(1+ NXON o o1+ OWVRION [N+ 27172 522 s
(4.111)
With the first bound (4.107), we thus arrive at
_Bee_yll < ool + 1)a 4.112
1 50 2 = CONION + Dlfdver, vl - (4.112)

With these estimates (4.107), (4.112), we can now bound Ms3(s) defined in
(4.102). We define the operator

Ary, =Rg - Ro (4.113)
that we can bound with Lemmas 3.9, 3.10 by

G _
IAre 50 = el = ONA3|||0|3|%(3)53<5>@
_ Mo
+ONON s+ D gt (1

and thus with (4.112)

Z]va(s)

A [ S —
Mre 5 - BG)

&) < CNNOIP + Doy, &3 (s)ll
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< C(NAYONI + D)llés(s)] - (4.115)

In order to control the contribution of Rg in Ms3(s) in (4.102), we use Lem-
mas 3.5, 3.10 that show

s Ejﬂ’gu) s
|<§3( )s Rgié(s)—E(s)&)( )>|

< ONTV Wi+ 1) 2 (]| M+ 1) 5222 (s)

< O VN JOIP (W4 + )M 2E3(s)ll1€3()]
< CAIONIIIN+ + 1) /2&5(5)|* + Crga) (NNYJ[ONIP + D)Iés(s)]° . (4.116)

Hence, we find from (4.102) choosing k(s) = k3s+ r4(1 —s) and k4 sufficiently
large

Aullea(s)I1> = (CIIO| — A(OIMINT s3] — ONX s (s)]1
> ~Cruty (OO + Dllea(s) 1 (4.117)

and thus the desired estimate follows. O

4.4. Step 4

In the last step, we compute the remaining expectation value in the vacuum.
The following lemma follows immediately from [22, Lemma 3.3].

Lemma 4.4. Let k > 0. Under the same assumptions as in Theorem 1.1, there
exist constants Cy,Cqy > 0 such that for all 0 < XA < 1/(k[|O|||) we have

In(Q, AVNGL()/2 mMONING e/\x/ﬁfb+(f)/2g>

<N (AQlfHQ + Aol ) + ol (4.118)
resp.
In(Q, AVNG+(D/2,=RMIOIING = WN64 (/20
>N <A2”2f|2 — 02>\3||O|||3> — Cof|O]Ix (4.119)
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