
Vol.:(0123456789)

KI - Künstliche Intelligenz (2024) 38:379–385 
https://doi.org/10.1007/s13218-024-00864-7

SYSTEMS DESCRIPTION

Benchmarking Quantum Generative Learning: A Study on Scalability 
and Noise Resilience using QUARK

Florian J. Kiwit1,2   · Maximilian A. Wolf1,2 · Marwa Marso1,2,3 · Philipp Ross2 · Jeanette M. Lorenz1,4 · 
Carlos A. Riofrío2 · Andre Luckow1,2

Received: 1 February 2024 / Accepted: 10 July 2024 / Published online: 19 August 2024 
© The Author(s) 2024

Abstract
Quantum computing promises a disruptive impact on machine learning algorithms, taking advantage of the exponentially 
large Hilbert space available. However, it is not clear how to scale quantum machine learning (QML) to industrial-level 
applications. This paper investigates the scalability and noise resilience of quantum generative learning applications. We 
consider the training performance in the presence of statistical noise due to finite-shot noise statistics and quantum noise due 
to decoherence to analyze the scalability of QML methods. We employ rigorous benchmarking techniques to track progress 
and identify challenges in scaling QML algorithms, and show how characterization of QML systems can be accelerated, 
simplified, and made reproducible when the QUARK framework is used. We show that QGANs are not as affected by the 
curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
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1  Introduction

Systematic evaluation of quantum processors and algorithms 
through benchmarking offers valuable insights into the cur-
rent capabilities and future potential of available quantum 
processing units [1–9]. However, benchmarking quantum 
computing is far from a straightforward task. The field is 
characterized by a diversity of technologies [10], each with 
unique requirements for precise and meaningful assessment. 
As a result, current benchmarks often focus on specific 
aspects of the technology, which can sometimes lead to an 
incomplete picture of the end-to-end performance of quan-
tum computing.

The Quantum computing Application benchmark 
(QUARK) framework [8] was explicitly developed for 
challenges of application-oriented quantum computing. 

QUARK’s benchmarking approach ensures a comprehen-
sive evaluation, covering the entire benchmarking pipeline 
from hardware to algorithmic design for the problems under 
investigation. Its versatility and modular implementation are 
central to QUARK, allowing for component expansion and 
customization. Additionally, it hosts benchmarks from the 
domain of optimization [8] and machine learning [11].

In quantum machine learning (QML), scaling algorithms 
and maintaining performance amidst noise are crucial for 
practical applications, particularly in industries reliant on 
generative models. This work shows an extension that ena-
bles us to include noisy simulations for QML applications. 
It is important to understand the limitations and track the 
development of current quantum hardware and algorithms 
over time. Concretely, we present a comprehensive study 
of the scalability of QML models, evaluating their intrinsic 
robustness against statistical and quantum noise. We aim to 
bridge the gap between theoretical QML advancements and 
their practical implementation in real-world scenarios while 
using the QUARK framework to accelerate and standardize 
performance assessment.
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2 � Quantum Generative Learning

Generative modeling is a growing area of interest across 
all industries. Applications include anomaly detection, 
text and image generation, or speech and video synthesis. 
Ultimately, the objective of training a generative model 
is to express the underlying distribution of a dataset by 
a machine learning model. In QML, this model is typi-
cally represented by a parameterized quantum circuit 
(PQC) [12]. The structure of a PQC typically comprises 
sequences of quantum gates, each parameterized by real 
values. These parameters govern the transformations 
applied to qubits within the circuit, enabling the repre-
sentation of complex functions and distributions. During 
the training of a quantum generative model, the probabil-
ity amplitudes of the quantum state vector generated by a 
PQC are fitted to the probability distribution of the data-
set; see, for example, reference [13]. We will refer to the 
probability mass function (PMF) of the dataset as p and to 
that of the state generated by the PQC as q. The absolute 
square values of the state vector give the PMF of the PQC.

Two popular training routines are the quantum circuit 
Born machine (QCBM) [14] and the quantum generative 
adversarial network (QGAN) [15], see [16] for a detailed 
review of both methods. The QCBM tries to minimize the 
Kullback–Leibler (KL) divergence, a well-known statis-
tical distance, between p and q by adapting the model 
parameters via the covariance matrix adaption evolution-
ary strategy (CMA-ES) [17], a gradient-free optimizer.

Conversely, the QGAN follows the architecture of a clas-
sical GAN [18]. A GAN operates on the principle of adver-
sarial training in a minimax 2-player game, employing two 
neural networks, the generator and the discriminator. The 
generator creates synthetic data instances, while the dis-
criminator evaluates these generated samples alongside real 
ones. The two networks engage in a continual feedback 
loop, with the generator striving to improve its output and 
the discriminator refining its ability to differentiate between 
real and fake samples. Different architectures are proposed 
for QGANs, but a typical approach is to replace the clas-
sical generator with a PQC. The model parameters of the 
PQC are updated by gradient descent, and the parameter-
shift rule determines the gradients, for example, reference 
[19]. The classical discriminator of the QGAN is optimized 
with the ADAM [20] optimizer, and the gradients are deter-
mined via backpropagation.

3 � Benchmarking Quantum Computing

In its most general form, benchmarking is the process of 
comparing the performance of systems by a set of meas-
urements. The workloads used are referred to as bench-
marks [21], and the metrics are the criteria to compare the 
performance. In quantum computing, these metrics should 
characterize scale, quality, and speed [22]. Depending on 
the scope of attributes a benchmark assesses, they can be 
attributed to three categories [23]. (1) Physical Bench-
marks focus on the basic physical properties of quantum 
hardware, such as the number of qubits and quantum gates. 
Examples are T1 and T2 relaxation times, gate fidelity, 
and readout fidelity; for example, see reference [24] for 
an extensive review. (2) Aggregated benchmarks assess 
the performance over a large set of device attributes. 
Prominent examples are quantum volume [25] and circuit 
layer operations per second [26]. (3) Application-oriented 
benchmarks test the performance of quantum computers 
in real-world scenarios. They simulate specific computa-
tional tasks that quantum computers are expected to per-
form, e. g., optimization, machine learning and chemistry 
algorithms. These benchmarks are particularly important 
for demonstrating the practical utility and efficiency of 
quantum systems in solving complex, real-world problems 
and are a key indicator of progress toward quantum advan-
tage. Examples include QPack [27], QED-C [6, 7, 28] and 
Q-Score [29].

3.1 � The QUARK Framework

The QUARK framework [30] orchestrates application-
oriented quantum benchmarks in a well-defined, stand-
ardized, reproducible and verifiable way. It remains ven-
dor-neutral to ensure unbiased application across different 
quantum computing platforms. At the heart of QUARK are 
three distinct modules: (1) the benchmark configuration is 
defined with the Config Manager. Here, attributes such 
as the number of qubits or the number of training iterations 
can be selected. In the second step, the (2) benchmark 
manager executes the configuration. Furthermore, the 
data is collected by the Benchmark Record, which 
contains information about the benchmark run (e. g., the 
git revisions of the framework), as well as the performance 
metrics and the configuration of a benchmark. In the fol-
lowing, we will describe the implementation of the genera-
tive modeling application in QUARK.

A benchmarking instance is defined by configuring six 
distinct modules (see Fig. 1): In the (1) generative mod-
eling class, global properties, such as the number of qubits 
n, are defined. Subsequently, a (2) continuous or discrete 
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dataset is selected. The discrete datasets are characterized 
by a constraint on the bit string of length n, while the con-
tinuous datasets include both low-dimensional synthetic 
and real data. The continuous datasets are passed to a (3) 
transformation. This ensures the data is in a standard and 
normalized form. The MinMax transformation maps the 
marginal distributions to the interval [0, 1]. An alterna-
tive is the probability integral transformation (PIT), which 
makes the marginal distributions uniformly distributed. 
After applying the transformation, the data is mapped to 
a discrete probability distribution with 2n bins. Next, the 
architecture of the PQC is selected in the (4) circuit mod-
ule. The available quantum circuits include the copula cir-
cuit [31], which naturally respects the properties of data 
transformed via the PIT, and can only learn a probability 
distribution whose cumulative marginals are uniformly 
distributed. In the subsequent step, the architecture is 
mapped to the (5) Qiskit [32] or PennyLane [33] SDK. 
The library-agnostic definition of the architecture of the 
PQC enables comparative studies of quantum simulators 
from different vendors. In the last step, a pre-trained PQC 
is loaded for (6) inference or a training routine is config-
ured. Training routines include the QCBM and QGAN, 

discussed in the previous section, but can be extended 
to other QML models. After defining the benchmarking 
instance, QUARK orchestrates the execution, data collec-
tion and visualization of the benchmark. For a detailed 
report on the QUARK framework, see References [8, 11].

Furthermore, both noisy and noise-free simulators are 
available. Depending on the individual requirements, one 
can configure the backend of the circuit to include mul-
tiple sources of errors. This can be done in two ways: (1) 
By specifying different error sources, like readout and 
depolarizing errors or amplitude and phase damping and 
chip-agnostic parameters, e. g., the coupling map, which 
represents the connectivity of the qubits; the basis gates, 
i.e., the gates that can be used on the backend. (2) We also 
provide an implementation of Qiskit FakeBackends, which 
are a predefined snapshot of the error rates, coupling map 
and basis gates [34]. Additionally, the latest calibration 
data of IBM’s quantum processors can be accessed using 
qiskit_ibm_runtime. These backends include models of 
error sources present in current quantum hardware. This 
feature enables users to understand how quantum noise 
might influence their selected applications and compare 
them to an ideal environment or a real QPU.

Fig. 1   Illustration of the components of the QUARK framework for 
quantum generative modeling with a detailed depiction of the noise 
module. We start at the left by defining the application, in this case, 
the training of a QML model. Then, the user defines the dataset for 
training, followed by necessary data transformations, before choosing 
the PQC ansatz to be used as a model. As explained in the main text, 
QUARK offers great flexibility regarding quantum libraries for imple-
menting the circuit ansatz and training via QCBM or QGAN meth-

ods. At the bottom, we show the structure of the new Noise Simula-
tion module. This module is designed to offer both predefined noise 
configurations and the flexibility to create entirely custom noise pro-
files and backend specifications. This allows for more accurate assess-
ments of the robustness and performance of quantum algorithms 
under various noise conditions. The new modules are indicated by 
bold solid lines in the figure. More details are given in the main text
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4 � Methodology and Results

In this Section, we use the QUARK framework to study the 
effects of statistical and quantum noise in QML applications. 
First, we compare the training routines of the QCBM and 
the QGAN. Next, we study the effects of quantum noise in 
the training of QCBMs.

4.1 � Scalability of Quantum Generative Models 
Under the Influence of Statistical Noise

The training of the QCBM relies on estimating the full PMF 
q generated by the PQC. As we scale the number of qubits, 
n, the number of bins of the PMF scales exponentially. In the 
following, we will describe how the number of circuit execu-
tions, nshots , scales, to keep the statistical error of the PMF, 
|�i|2 , bounded, where �i are the probability amplitudes of the 
quantum state vector generated by a PQC. The probability 
of frequency ni in bin i is given by the binomial distribution 
Bnshots,pi

(ni) , with 
∑

ni = nshots and pi = ni∕nshots . Further-
more, pi is the estimator of |�i|2 . On average, if |�i|2 decays 
exponentially with the number of qubits n, i.e. |�i|2 ∝ 1∕n2 , 
then the variance is proportional to �2(pi) ∝ 2n∕nshots . There-
fore, the number of circuit executions needs to scale expo-
nentially with the number of qubits to keep the statistical 
error on each estimator of |�2

i
| bounded. For the QCBM, 

the number of circuit executions of one epoch is given 
by nshots ⋅ � . The population size � is a hyperparameter of 
the CMA-ES optimizer and refers to the number of model 
parameters evaluated at any given iteration.

Unlike the QCBM, the number of circuit executions of 
the QGAN needed to update the model parameters does 
not increase exponentially with the number of qubits. The 
total number of circuit executions per epoch is given by 
(2 ⋅ nparameters + 1) ⋅ nsamples . One circuit execution with the 
model parameters is needed to generate synthetic samples 
to update the discriminator. In the backward pass, two addi-
tional circuit executions per model parameter are necessary 
to determine the gradients with the parameter-shift rule.

Experimental Design: To showcase the different scaling 
behaviors of QCBMs and QGANs, we track the KL diver-
gence as a function of the cumulative number of circuit exe-
cutions, as depicted in Fig. 2. We fitted the copula circuit 
with 12 qubits and a depth of one to a dataset resembling the 
shape of the letter X, using the quantum noise-free Qiskit 
AerSimulator. For the QCBM, we use a population size of 
� = 5 and train the models with 4 ⋅ 105 and 1 ⋅ 106 circuit 
executions to determine the PMF generated by the PQC. For 

the QGAN, we use a batch size of 20 and alternately update 
the generator and discriminator on each mini-batch. While 
training the generative models with a shot-based simulator, 
we report the KL divergence between the PMF1 of the PQC 
and the target distribution. To compare the performance of 
the trained models, we fit a stretched exponential function, 
f (x) = � ⋅ exp(−�x� ) + Cconv

KL
 , to the loss curves and report 

the limit of the KL divergence Cconv
KL

.
Discussion: For the QCBM, increasing the number of cir-

cuit executions to estimate the PMF of the state generated by 
the PQC from 4 ⋅ 105 to 1 ⋅ 106 leads to a slight decrease of 
the KL divergence at convergence from Cconv

KL
= 0.49 ± 0.13 

to Cconv
KL

= 0.44 ± 0.12 . The QGAN achieves faster conver-
gence than the QCBM, requiring more than one order of 
magnitude fewer circuit executions. In addition to fewer 
circuit executions, the KL divergence of the QGAN con-
verges to a lower limit with a value Cconv

KL
= 0.14 ± 0.01 . To 

match the limit of the KL divergence of the QGAN with the 
QCBM, we would need to increase the circuit executions 
further, and the separation with respect to the circuit execu-
tions would become even more dominant.

Limitations: The QCBM was trained with the gradient-
free optimizer CMA-ES. However, a gradient-based training 
of the QCBM [37] was not investigated and might lead to 
faster convergence despite needing more circuit evaluations 
per iteration to estimate the gradients. Furthermore, we used 

Fig. 2   KL divergence, CKL , as a function of the cumulative 
number of circuit executions for the QCBM and the QGAN. 
The dashed lines indicate the stretched exponential function 
f (x) = � ⋅ exp(−�x� ) + Cconv

KL
 fitted to the loss curves. For the train-

ing of the QCBM we show results of experiments, where we used 
0.4 × 106 and 1 × 106 circuit executions to determine the PMF gener-
ated by the PQC. The QGAN converges with more than an order of 
magnitude fewer circuit executions than the QCBM to a lower limit. 
Each model was trained ten times and mean values and standard error 
on the mean �∕

√
10 are depicted as the solid lines and shaded areas, 

respectively

1  Here we use the precise PMF, not the estimated PMF, to circum-
vent the influence of shot-noise when comparing the model perfor-
mance.
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only one dataset; exploring how the findings generalize to 
different datasets is an interesting path for future research.

4.2 � Noisy Training of QCBMs

In the noisy intermediate-scale quantum (NISQ) era, the per-
formance of QML algorithms is impacted by the presence 
of quantum noise [38, 39]. This noise stems from various 
sources, such as decoherence, imperfect gate operations, and 
environmental interference, and leads to a decreased fidel-
ity of the quantum state generated by a PQC; for a detailed 
discussion of how noise can influence the training of PQCs, 
see [40].

Experimental design: We investigate the robustness of 
QCBMs against quantum noise to characterize the limits 
of current quantum hardware. To this aim, we train the 
QCBM and investigate the KL divergence at convergence 
under varying noise conditions. We fit the copula circuit 
with 6, 8, 10, and 12 qubits to a dataset that resembles the 
shape of the letter X. We execute the circuit 1 ⋅ 104 times to 
estimate the PMF. The gate set used for the copula circuit is 
native to IonQ Harmony. The number of gates of the circuit 
is reported in Table 1. We vary the probability of (a) readout 
and (b) two-qubit depolarizing errors, as depicted in Fig. 3. 
Readout errors are represented by a bit-flip channel, which 
means that with a probability p10 ( p01 ), the prepared input 
state �1⟩ ( �0⟩ ) yields the measurement outcome 0 (1). In our 
experiments, we set p10 = p01 [39]. Two-qubit depolarizing 

errors are characterized by the error rate, pdepol , that a two-
qubit gate creates the fully mixed state instead of the desired 
output state of the operation.

Discussion: Figure 3a illustrates the influence of read-
out error on the KL divergence at convergence Cconv

KL
 . With 

increasing error rate, Cconv
KL

 increases linearly. Even at an 
error rate of 0.1, the QCBM maintains robustness against 
readout errors, as the Cconv

KL
 is still below the random base-

line.2 Unsurprisingly, the two-qubit depolarising error shows 
a stronger effect on Cconv

KL
 , as depicted in Fig. 3b for circuits 

with more gates, as multiple operations are performed per 
qubit, instead of measuring the state only once. The num-
ber of two-qubit gates increases with the circuit width (see 
Table 1), so does the influence of pdepol on the performance 
of the QCBM. The performance is still below the random 
baseline for 6 qubits and pdepol = 0.2 . For 12 qubits, how-
ever, the model performance corresponds to random guess-
ing already for pdepol = 0.1.

Limitations: Our focus on readout and two-qubit depolar-
izing errors provides a foundation for understanding spe-
cific noise sources, but other factors, such as phase errors 

Fig. 3   Mean KL divergence after 4 × 104 circuit evaluations as a 
function of a the readout error and b the two-qubit depolarizing 
error for different circuit widths of a QCBM with the standard error 
( �∕

√
8 ). The vertical grey lines denote the error value of the IBM 

Eagle processor (Median ECR error: 7.477 × 10−3 and readout error: 

1 × 10−2 of IBM Sherbrooke [35]) and IonQ Harmony (SPAM error: 
1.8 × 10−3 and two-qubit gate errors: 2.7 × 10−2 [36]). The colored 
horizontal lines denote the KL divergence of the training data and a 
uniform distribution

Table 1   The total number of the one-qubit gates (RZ, SX, RX, H) and 
two-qubit gates (RXX, CX) of the compiled circuit for 6, 8, 10 and 12 
qubits

nqubits 1-Qubit gates 2-Qubit gates

6 21 9
8 28 16
10 35 25
12 42 36

2  The random baseline denotes the KL divergence between the train-
ing set PMF and the uniform distribution.
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and crosstalk, are not considered. Our evaluation primar-
ily considers the noise levels of state-of-the-art trapped ion 
quantum computers. However, the landscape of quantum 
hardware is rapidly evolving, and the generalizability of our 
findings to other quantum platforms with potentially dif-
ferent error characteristics needs further exploration. Incor-
porating mitigation and correction strategies for quantum 
errors could offer additional insights into enhancing the 
robustness of QCBMs in noisy quantum environments.

5 � Conclusion and Future Work

In this work, we use and extend the QUARK benchmarking 
framework and illustrate its functioning with two applica-
tions that consider different aspects of noise in QML: statis-
tical and quantum noise. The modular structure of QUARK 
makes it a versatile tool for a broad spectrum of research 
applications in QML and quantum computing in general.

Our experiments focused on the performance characteri-
zation of quantum generative models. A comparative analy-
sis of QCBMs and QGANs revealed differences in their effi-
ciencies. Remarkably, QGANs achieved faster convergence 
with reduced computational demands. Despite the recent 
advancements in QPU architectures leading to reduced error 
rates, noise is still a limiting factor in the current NISQ era. 
To effectively mitigate the impact of noise in QML, strate-
gies such as minimizing gate counts, employing QPUs with 
lower noise profiles, and designing circuits with inherently 
more resistant architectures must be pursued.

Our studies on the influence of noise on the training of 
QCBMs are limited to readout and two-qubit depolarizing 
errors. Future studies may benefit from incorporating a 
more complete noise model, including noise sources such 
as amplitude damping or crosstalk between qubit pairs. 
Furthermore, extending our studies to different quantum 
generative models, such as QGANs, would be interesting. 
After simulating the influence of noise on the performance 
of quantum generative models, conducting the experi-
ments on quantum hardware would be a natural step. One 
compelling aspect to explore is investigating if a model 
trained with a noisy simulator has learned to resist the 
noise. Based on our experience, the QUARK framework 
should be the tool of choice for future research.
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