
Vol.:(0123456789)

KI - Künstliche Intelligenz (2024) 38:379–385
https://doi.org/10.1007/s13218-024-00864-7

SYSTEMS DESCRIPTION

Benchmarking Quantum Generative Learning: A Study on Scalability
and Noise Resilience using QUARK

Florian J. Kiwit1,2 · Maximilian A. Wolf1,2 · Marwa Marso1,2,3 · Philipp Ross2 · Jeanette M. Lorenz1,4 ·
Carlos A. Riofrío2 · Andre Luckow1,2

Received: 1 February 2024 / Accepted: 10 July 2024 / Published online: 19 August 2024
© The Author(s) 2024

Abstract
Quantum computing promises a disruptive impact on machine learning algorithms, taking advantage of the exponentially
large Hilbert space available. However, it is not clear how to scale quantum machine learning (QML) to industrial-level
applications. This paper investigates the scalability and noise resilience of quantum generative learning applications. We
consider the training performance in the presence of statistical noise due to finite-shot noise statistics and quantum noise due
to decoherence to analyze the scalability of QML methods. We employ rigorous benchmarking techniques to track progress
and identify challenges in scaling QML algorithms, and show how characterization of QML systems can be accelerated,
simplified, and made reproducible when the QUARK framework is used. We show that QGANs are not as affected by the
curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.

Keywords Quantum computing · Machine learning · Noise resilience · Generative modeling · Benchmark framework

1 Introduction

Systematic evaluation of quantum processors and algorithms
through benchmarking offers valuable insights into the cur-
rent capabilities and future potential of available quantum
processing units [1–9]. However, benchmarking quantum
computing is far from a straightforward task. The field is
characterized by a diversity of technologies [10], each with
unique requirements for precise and meaningful assessment.
As a result, current benchmarks often focus on specific
aspects of the technology, which can sometimes lead to an
incomplete picture of the end-to-end performance of quan-
tum computing.

The Quantum computing Application benchmark
(QUARK) framework [8] was explicitly developed for
challenges of application-oriented quantum computing.

QUARK’s benchmarking approach ensures a comprehen-
sive evaluation, covering the entire benchmarking pipeline
from hardware to algorithmic design for the problems under
investigation. Its versatility and modular implementation are
central to QUARK, allowing for component expansion and
customization. Additionally, it hosts benchmarks from the
domain of optimization [8] and machine learning [11].

In quantum machine learning (QML), scaling algorithms
and maintaining performance amidst noise are crucial for
practical applications, particularly in industries reliant on
generative models. This work shows an extension that ena-
bles us to include noisy simulations for QML applications.
It is important to understand the limitations and track the
development of current quantum hardware and algorithms
over time. Concretely, we present a comprehensive study
of the scalability of QML models, evaluating their intrinsic
robustness against statistical and quantum noise. We aim to
bridge the gap between theoretical QML advancements and
their practical implementation in real-world scenarios while
using the QUARK framework to accelerate and standardize
performance assessment.

 * Florian J. Kiwit
 f.kiwit@campus.lmu.de

1 Ludwig Maximilian Universität, Munich, Germany
2 BMW Group, Munich, Germany
3 Technical University, Munich, Germany
4 Fraunhofer Institute for Cognitive Systems IKS, Munich,

Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-024-00864-7&domain=pdf
http://orcid.org/0009-0000-4065-1535

380 KI - Künstliche Intelligenz (2024) 38:379–385

2 Quantum Generative Learning

Generative modeling is a growing area of interest across
all industries. Applications include anomaly detection,
text and image generation, or speech and video synthesis.
Ultimately, the objective of training a generative model
is to express the underlying distribution of a dataset by
a machine learning model. In QML, this model is typi-
cally represented by a parameterized quantum circuit
(PQC) [12]. The structure of a PQC typically comprises
sequences of quantum gates, each parameterized by real
values. These parameters govern the transformations
applied to qubits within the circuit, enabling the repre-
sentation of complex functions and distributions. During
the training of a quantum generative model, the probabil-
ity amplitudes of the quantum state vector generated by a
PQC are fitted to the probability distribution of the data-
set; see, for example, reference [13]. We will refer to the
probability mass function (PMF) of the dataset as p and to
that of the state generated by the PQC as q. The absolute
square values of the state vector give the PMF of the PQC.

Two popular training routines are the quantum circuit
Born machine (QCBM) [14] and the quantum generative
adversarial network (QGAN) [15], see [16] for a detailed
review of both methods. The QCBM tries to minimize the
Kullback–Leibler (KL) divergence, a well-known statis-
tical distance, between p and q by adapting the model
parameters via the covariance matrix adaption evolution-
ary strategy (CMA-ES) [17], a gradient-free optimizer.

Conversely, the QGAN follows the architecture of a clas-
sical GAN [18]. A GAN operates on the principle of adver-
sarial training in a minimax 2-player game, employing two
neural networks, the generator and the discriminator. The
generator creates synthetic data instances, while the dis-
criminator evaluates these generated samples alongside real
ones. The two networks engage in a continual feedback
loop, with the generator striving to improve its output and
the discriminator refining its ability to differentiate between
real and fake samples. Different architectures are proposed
for QGANs, but a typical approach is to replace the clas-
sical generator with a PQC. The model parameters of the
PQC are updated by gradient descent, and the parameter-
shift rule determines the gradients, for example, reference
[19]. The classical discriminator of the QGAN is optimized
with the ADAM [20] optimizer, and the gradients are deter-
mined via backpropagation.

3 Benchmarking Quantum Computing

In its most general form, benchmarking is the process of
comparing the performance of systems by a set of meas-
urements. The workloads used are referred to as bench-
marks [21], and the metrics are the criteria to compare the
performance. In quantum computing, these metrics should
characterize scale, quality, and speed [22]. Depending on
the scope of attributes a benchmark assesses, they can be
attributed to three categories [23]. (1) Physical Bench-
marks focus on the basic physical properties of quantum
hardware, such as the number of qubits and quantum gates.
Examples are T1 and T2 relaxation times, gate fidelity,
and readout fidelity; for example, see reference [24] for
an extensive review. (2) Aggregated benchmarks assess
the performance over a large set of device attributes.
Prominent examples are quantum volume [25] and circuit
layer operations per second [26]. (3) Application-oriented
benchmarks test the performance of quantum computers
in real-world scenarios. They simulate specific computa-
tional tasks that quantum computers are expected to per-
form, e. g., optimization, machine learning and chemistry
algorithms. These benchmarks are particularly important
for demonstrating the practical utility and efficiency of
quantum systems in solving complex, real-world problems
and are a key indicator of progress toward quantum advan-
tage. Examples include QPack [27], QED-C [6, 7, 28] and
Q-Score [29].

3.1 The QUARK Framework

The QUARK framework [30] orchestrates application-
oriented quantum benchmarks in a well-defined, stand-
ardized, reproducible and verifiable way. It remains ven-
dor-neutral to ensure unbiased application across different
quantum computing platforms. At the heart of QUARK are
three distinct modules: (1) the benchmark configuration is
defined with the Config Manager. Here, attributes such
as the number of qubits or the number of training iterations
can be selected. In the second step, the (2) benchmark
manager executes the configuration. Furthermore, the
data is collected by the Benchmark Record, which
contains information about the benchmark run (e. g., the
git revisions of the framework), as well as the performance
metrics and the configuration of a benchmark. In the fol-
lowing, we will describe the implementation of the genera-
tive modeling application in QUARK.

A benchmarking instance is defined by configuring six
distinct modules (see Fig. 1): In the (1) generative mod-
eling class, global properties, such as the number of qubits
n, are defined. Subsequently, a (2) continuous or discrete

381KI - Künstliche Intelligenz (2024) 38:379–385

dataset is selected. The discrete datasets are characterized
by a constraint on the bit string of length n, while the con-
tinuous datasets include both low-dimensional synthetic
and real data. The continuous datasets are passed to a (3)
transformation. This ensures the data is in a standard and
normalized form. The MinMax transformation maps the
marginal distributions to the interval [0, 1]. An alterna-
tive is the probability integral transformation (PIT), which
makes the marginal distributions uniformly distributed.
After applying the transformation, the data is mapped to
a discrete probability distribution with 2n bins. Next, the
architecture of the PQC is selected in the (4) circuit mod-
ule. The available quantum circuits include the copula cir-
cuit [31], which naturally respects the properties of data
transformed via the PIT, and can only learn a probability
distribution whose cumulative marginals are uniformly
distributed. In the subsequent step, the architecture is
mapped to the (5) Qiskit [32] or PennyLane [33] SDK.
The library-agnostic definition of the architecture of the
PQC enables comparative studies of quantum simulators
from different vendors. In the last step, a pre-trained PQC
is loaded for (6) inference or a training routine is config-
ured. Training routines include the QCBM and QGAN,

discussed in the previous section, but can be extended
to other QML models. After defining the benchmarking
instance, QUARK orchestrates the execution, data collec-
tion and visualization of the benchmark. For a detailed
report on the QUARK framework, see References [8, 11].

Furthermore, both noisy and noise-free simulators are
available. Depending on the individual requirements, one
can configure the backend of the circuit to include mul-
tiple sources of errors. This can be done in two ways: (1)
By specifying different error sources, like readout and
depolarizing errors or amplitude and phase damping and
chip-agnostic parameters, e. g., the coupling map, which
represents the connectivity of the qubits; the basis gates,
i.e., the gates that can be used on the backend. (2) We also
provide an implementation of Qiskit FakeBackends, which
are a predefined snapshot of the error rates, coupling map
and basis gates [34]. Additionally, the latest calibration
data of IBM’s quantum processors can be accessed using
qiskit_ibm_runtime. These backends include models of
error sources present in current quantum hardware. This
feature enables users to understand how quantum noise
might influence their selected applications and compare
them to an ideal environment or a real QPU.

Fig. 1 Illustration of the components of the QUARK framework for
quantum generative modeling with a detailed depiction of the noise
module. We start at the left by defining the application, in this case,
the training of a QML model. Then, the user defines the dataset for
training, followed by necessary data transformations, before choosing
the PQC ansatz to be used as a model. As explained in the main text,
QUARK offers great flexibility regarding quantum libraries for imple-
menting the circuit ansatz and training via QCBM or QGAN meth-

ods. At the bottom, we show the structure of the new Noise Simula-
tion module. This module is designed to offer both predefined noise
configurations and the flexibility to create entirely custom noise pro-
files and backend specifications. This allows for more accurate assess-
ments of the robustness and performance of quantum algorithms
under various noise conditions. The new modules are indicated by
bold solid lines in the figure. More details are given in the main text

382 KI - Künstliche Intelligenz (2024) 38:379–385

4 Methodology and Results

In this Section, we use the QUARK framework to study the
effects of statistical and quantum noise in QML applications.
First, we compare the training routines of the QCBM and
the QGAN. Next, we study the effects of quantum noise in
the training of QCBMs.

4.1 Scalability of Quantum Generative Models
Under the Influence of Statistical Noise

The training of the QCBM relies on estimating the full PMF
q generated by the PQC. As we scale the number of qubits,
n, the number of bins of the PMF scales exponentially. In the
following, we will describe how the number of circuit execu-
tions, nshots , scales, to keep the statistical error of the PMF,
|�i|2 , bounded, where �i are the probability amplitudes of the
quantum state vector generated by a PQC. The probability
of frequency ni in bin i is given by the binomial distribution
Bnshots,pi

(ni) , with
∑

ni = nshots and pi = ni∕nshots . Further-
more, pi is the estimator of |�i|2 . On average, if |�i|2 decays
exponentially with the number of qubits n, i.e. |�i|2 ∝ 1∕n2 ,
then the variance is proportional to �2(pi) ∝ 2n∕nshots . There-
fore, the number of circuit executions needs to scale expo-
nentially with the number of qubits to keep the statistical
error on each estimator of |�2

i
| bounded. For the QCBM,

the number of circuit executions of one epoch is given
by nshots ⋅ � . The population size � is a hyperparameter of
the CMA-ES optimizer and refers to the number of model
parameters evaluated at any given iteration.

Unlike the QCBM, the number of circuit executions of
the QGAN needed to update the model parameters does
not increase exponentially with the number of qubits. The
total number of circuit executions per epoch is given by
(2 ⋅ nparameters + 1) ⋅ nsamples . One circuit execution with the
model parameters is needed to generate synthetic samples
to update the discriminator. In the backward pass, two addi-
tional circuit executions per model parameter are necessary
to determine the gradients with the parameter-shift rule.

Experimental Design: To showcase the different scaling
behaviors of QCBMs and QGANs, we track the KL diver-
gence as a function of the cumulative number of circuit exe-
cutions, as depicted in Fig. 2. We fitted the copula circuit
with 12 qubits and a depth of one to a dataset resembling the
shape of the letter X, using the quantum noise-free Qiskit
AerSimulator. For the QCBM, we use a population size of
� = 5 and train the models with 4 ⋅ 105 and 1 ⋅ 106 circuit
executions to determine the PMF generated by the PQC. For

the QGAN, we use a batch size of 20 and alternately update
the generator and discriminator on each mini-batch. While
training the generative models with a shot-based simulator,
we report the KL divergence between the PMF1 of the PQC
and the target distribution. To compare the performance of
the trained models, we fit a stretched exponential function,
f (x) = � ⋅ exp(−�x�) + Cconv

KL
 , to the loss curves and report

the limit of the KL divergence Cconv
KL

.
Discussion: For the QCBM, increasing the number of cir-

cuit executions to estimate the PMF of the state generated by
the PQC from 4 ⋅ 105 to 1 ⋅ 106 leads to a slight decrease of
the KL divergence at convergence from Cconv

KL
= 0.49 ± 0.13

to Cconv
KL

= 0.44 ± 0.12 . The QGAN achieves faster conver-
gence than the QCBM, requiring more than one order of
magnitude fewer circuit executions. In addition to fewer
circuit executions, the KL divergence of the QGAN con-
verges to a lower limit with a value Cconv

KL
= 0.14 ± 0.01 . To

match the limit of the KL divergence of the QGAN with the
QCBM, we would need to increase the circuit executions
further, and the separation with respect to the circuit execu-
tions would become even more dominant.

Limitations: The QCBM was trained with the gradient-
free optimizer CMA-ES. However, a gradient-based training
of the QCBM [37] was not investigated and might lead to
faster convergence despite needing more circuit evaluations
per iteration to estimate the gradients. Furthermore, we used

Fig. 2 KL divergence, CKL , as a function of the cumulative
number of circuit executions for the QCBM and the QGAN.
The dashed lines indicate the stretched exponential function
f (x) = � ⋅ exp(−�x�) + Cconv

KL
 fitted to the loss curves. For the train-

ing of the QCBM we show results of experiments, where we used
0.4 × 106 and 1 × 106 circuit executions to determine the PMF gener-
ated by the PQC. The QGAN converges with more than an order of
magnitude fewer circuit executions than the QCBM to a lower limit.
Each model was trained ten times and mean values and standard error
on the mean �∕

√
10 are depicted as the solid lines and shaded areas,

respectively

1 Here we use the precise PMF, not the estimated PMF, to circum-
vent the influence of shot-noise when comparing the model perfor-
mance.

383KI - Künstliche Intelligenz (2024) 38:379–385

only one dataset; exploring how the findings generalize to
different datasets is an interesting path for future research.

4.2 Noisy Training of QCBMs

In the noisy intermediate-scale quantum (NISQ) era, the per-
formance of QML algorithms is impacted by the presence
of quantum noise [38, 39]. This noise stems from various
sources, such as decoherence, imperfect gate operations, and
environmental interference, and leads to a decreased fidel-
ity of the quantum state generated by a PQC; for a detailed
discussion of how noise can influence the training of PQCs,
see [40].

Experimental design: We investigate the robustness of
QCBMs against quantum noise to characterize the limits
of current quantum hardware. To this aim, we train the
QCBM and investigate the KL divergence at convergence
under varying noise conditions. We fit the copula circuit
with 6, 8, 10, and 12 qubits to a dataset that resembles the
shape of the letter X. We execute the circuit 1 ⋅ 104 times to
estimate the PMF. The gate set used for the copula circuit is
native to IonQ Harmony. The number of gates of the circuit
is reported in Table 1. We vary the probability of (a) readout
and (b) two-qubit depolarizing errors, as depicted in Fig. 3.
Readout errors are represented by a bit-flip channel, which
means that with a probability p10 (p01), the prepared input
state �1⟩ (�0⟩) yields the measurement outcome 0 (1). In our
experiments, we set p10 = p01 [39]. Two-qubit depolarizing

errors are characterized by the error rate, pdepol , that a two-
qubit gate creates the fully mixed state instead of the desired
output state of the operation.

Discussion: Figure 3a illustrates the influence of read-
out error on the KL divergence at convergence Cconv

KL
 . With

increasing error rate, Cconv
KL

 increases linearly. Even at an
error rate of 0.1, the QCBM maintains robustness against
readout errors, as the Cconv

KL
 is still below the random base-

line.2 Unsurprisingly, the two-qubit depolarising error shows
a stronger effect on Cconv

KL
 , as depicted in Fig. 3b for circuits

with more gates, as multiple operations are performed per
qubit, instead of measuring the state only once. The num-
ber of two-qubit gates increases with the circuit width (see
Table 1), so does the influence of pdepol on the performance
of the QCBM. The performance is still below the random
baseline for 6 qubits and pdepol = 0.2 . For 12 qubits, how-
ever, the model performance corresponds to random guess-
ing already for pdepol = 0.1.

Limitations: Our focus on readout and two-qubit depolar-
izing errors provides a foundation for understanding spe-
cific noise sources, but other factors, such as phase errors

Fig. 3 Mean KL divergence after 4 × 104 circuit evaluations as a
function of a the readout error and b the two-qubit depolarizing
error for different circuit widths of a QCBM with the standard error
(�∕

√
8). The vertical grey lines denote the error value of the IBM

Eagle processor (Median ECR error: 7.477 × 10−3 and readout error:

1 × 10−2 of IBM Sherbrooke [35]) and IonQ Harmony (SPAM error:
1.8 × 10−3 and two-qubit gate errors: 2.7 × 10−2 [36]). The colored
horizontal lines denote the KL divergence of the training data and a
uniform distribution

Table 1 The total number of the one-qubit gates (RZ, SX, RX, H) and
two-qubit gates (RXX, CX) of the compiled circuit for 6, 8, 10 and 12
qubits

nqubits 1-Qubit gates 2-Qubit gates

6 21 9
8 28 16
10 35 25
12 42 36

2 The random baseline denotes the KL divergence between the train-
ing set PMF and the uniform distribution.

384 KI - Künstliche Intelligenz (2024) 38:379–385

and crosstalk, are not considered. Our evaluation primar-
ily considers the noise levels of state-of-the-art trapped ion
quantum computers. However, the landscape of quantum
hardware is rapidly evolving, and the generalizability of our
findings to other quantum platforms with potentially dif-
ferent error characteristics needs further exploration. Incor-
porating mitigation and correction strategies for quantum
errors could offer additional insights into enhancing the
robustness of QCBMs in noisy quantum environments.

5 Conclusion and Future Work

In this work, we use and extend the QUARK benchmarking
framework and illustrate its functioning with two applica-
tions that consider different aspects of noise in QML: statis-
tical and quantum noise. The modular structure of QUARK
makes it a versatile tool for a broad spectrum of research
applications in QML and quantum computing in general.

Our experiments focused on the performance characteri-
zation of quantum generative models. A comparative analy-
sis of QCBMs and QGANs revealed differences in their effi-
ciencies. Remarkably, QGANs achieved faster convergence
with reduced computational demands. Despite the recent
advancements in QPU architectures leading to reduced error
rates, noise is still a limiting factor in the current NISQ era.
To effectively mitigate the impact of noise in QML, strate-
gies such as minimizing gate counts, employing QPUs with
lower noise profiles, and designing circuits with inherently
more resistant architectures must be pursued.

Our studies on the influence of noise on the training of
QCBMs are limited to readout and two-qubit depolarizing
errors. Future studies may benefit from incorporating a
more complete noise model, including noise sources such
as amplitude damping or crosstalk between qubit pairs.
Furthermore, extending our studies to different quantum
generative models, such as QGANs, would be interesting.
After simulating the influence of noise on the performance
of quantum generative models, conducting the experi-
ments on quantum hardware would be a natural step. One
compelling aspect to explore is investigating if a model
trained with a noisy simulator has learned to resist the
noise. Based on our experience, the QUARK framework
should be the tool of choice for future research.

Acknowledgements PR and CAR were partly funded by the German
Ministry for Education and Research (BMB+F) in the project QAI2-
Q-KIS under Grant 13N15583. AL was partly funded by the Bavar-
ian State Ministry of Economic Affairs in the project BenchQC under
Grant DIK-0425/03.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability The source code and configurations needed to repli-
cate the experiments are publicly accessible on GitHub [30].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Proctor T, Rudinger K, Young K, Nielsen E, Blume-Kohout R
(2022) Measuring the capabilities of quantum computers. Nat
Phys 18(1):75–79

 2. Erhard A, Wallman JJ, Postler L, Meth M, Stricker R, Martinez
EA, Schindler P, Monz T, Emerson J, Blatt R (2019) Character-
izing large-scale quantum computers via cycle benchmarking. Nat
Commun 10(1):5347

 3. Blume-Kohout Robin, Young Kevin C (2020) A volumetric frame-
work for quantum computer benchmarks. Quantum 4:362

 4. Mills Daniel, Sivarajah Seyon, Scholten Travis L, Duncan Ross
(2021) Application-motivated, holistic benchmarking of a full
quantum computing stack. Quantum 5:415

 5. Resch Salonik, Karpuzcu Ulya R (2021) Benchmarking quantum
computers and the impact of quantum noise. ACM Comput Surv
54(7):07

 6. Lubinski Thomas, Johri Sonika, Varosy Paul, Coleman Jeremiah,
Zhao Luning, Necaise Jason, Baldwin Charles H, Mayer Karl,
Proctor Timothy (2023) Application-oriented performance bench-
marks for quantum computing. IEEE Trans Quantum Eng 4:1–32

 7. Lubinski T, Goings JJ, Mayer K, Johri S, Reddy N, Mehta A,
Bhatia N, Rappaport S, Mills D, Baldwin CH, Zhao L, Barbosa
A, Maity S, Mundada PS (2024). Quantum algorithm exploration
using application-oriented performance benchmarks,

 8. Finžgar JR, Ross P, Holscher L, Klepsch J, Luckow A (2022).
QUARK: A framework for quantum computing application bench-
marking. In 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE). IEEE, 9

 9. Bowles J, Ahmed S, Schuld M (2024). Better than classical? the
subtle art of benchmarking quantum machine learning models,

 10. Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C,
O’Brien JL (2010) Quantum computers. Nature 464(7285):45–53

 11. Kiwit FJ, Marso M, Ross P, Riofrio CA, Klepsch J, Luckow A
(2023). Application-oriented benchmarking of quantum genera-
tive learning using quark. In 2023 IEEE International Confer-
ence on Quantum Computing and Engineering (QCE), volume 01,
pages 475–484,

 12. Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameter-
ized quantum circuits as machine learning models. Quantum Sci
Technol 4(4):043001

 13. Schuld M, Petruccione F (2021) Machine Learning with Quantum
Computers. Springer International Publishing, Quantum Science
and Technology

 14. Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo,
Vicente Leyton-Ortega, Yunseong Nam, Alejandro Perdomo-
Ortiz (2019) A generative modeling approach for benchmarking

http://creativecommons.org/licenses/by/4.0/

385KI - Künstliche Intelligenz (2024) 38:379–385

and training shallow quantum circuits. NPJ Quantum Inform
5(1):1–9

 15. Lloyd S, Weedbrook C (2018) Quantum generative adversarial
learning. Phys Rev Lett 121:040502

 16. Riofrío CA, Mitevski O, Jones C, Krellner F, Vučković A, Doetsch
J, Klepsch J, Ehmer T, Luckow A (2024). A characterization of
quantum generative models. ACM Transactions on Quantum
Computing, 04 . Just Accepted

 17. Hansen N, Akimoto Y, Baudis P (2019). CMA-ES/pycma on
Github Zenodo. https:// doi. org/ 10. 5281/ zenodo. 25596 34

 18. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville A, Bengio Y (2014). Generative adversarial
nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K.Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates, Inc.,

 19. Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019)
Evaluating analytic gradients on quantum hardware. Phys Rev A
99:032331

 20. Kingma D, Ba J (2015). Adam: A method for stochastic optimi-
zation. In International Conference on Learning Representations
(ICLR), San Diega, CA, USA,

 21. Jain R (1991) The art of computer systems performance analysis:
techniques for experimental design, measurement, simulation, and
modeling. Wiley, New York

 22. Amico M, Zhang H, Jurcevic P, Bishop LS, Nation P, Wack A,
McKay DC (2023). Defining best practices for quantum bench-
marks. In 2023 IEEE International Conference on Quantum Com-
puting and Engineering (QCE), volume 01, pages 692–702,

 23. Wang Junchao, Guo Guoping, Shan Zheng (2022) Sok: Bench-
marking the performance of a quantum computer. Entropy
24(10):1467

 24. Eisert J, Hangleiter D, Walk N, Roth I, Markham D, Parekh R,
Chabaud U, Kashefi E (2020) Quantum certification and bench-
marking. Nat Rev Phys 2(7):382–390

 25. Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM
(2019) Validating quantum computers using randomized model
circuits. Phys Rev A 100:032328

 26. Wack A, Paik H, Javadi-Abhari A, Jurcevic P, Faro I, Gambetta
JM, Johnson BR (2021). Quality, speed, and scale: three key
attributes to measure the performance of near-term quantum
computers,

 27. Mesman K, Al-Ars Z (2022) and Matthias Moller. Quantum
approximate optimization algorithms as universal benchmark for
quantum computers, Qpack

 28. Lubinski T, Coffrin C, McGeoch C, Sathe P, Apanavicius J, Ber-
nal N, David E (2023). Optimization Applications as Quantum
Performance Benchmarks

 29. Martiel Simon, Ayral Thomas, Allouche Cyril (2021) Benchmark-
ing quantum coprocessors in an application-centric, hardware-
agnostic, and scalable way. IEEE Trans Quantum Eng 2:1–11

 30. Quark (2023) A framework for quantum computing application
benchmarking. quarkGithub: https:// github. com/ QUARK- frame
work/ QUARK

 31. Zhu EY, Johri S, Bacon D, Esencan M, Kim J, Muir M, Murgai
N, Nguyen J, Pisenti N, Schouela A, Sosnova K, Wright K (2022)
Generative quantum learning of joint probability distribution
functions. Phys Rev Res 4:043092

 32. Qiskit contributors. Qiskit: An open-source framework for quan-
tum computing, 2023

 33. Bergholm V, Izaac J, Schuld M, Gogolin C, Alam MS, Ahmed
S, Arrazola JM, Blank C, Delgado A, Jahangiri S, et al. (2018)
Pennylane: Automatic differentiation of hybrid quantum-classical
computations. arXiv preprint arXiv: 1811. 04968,

 34. Winston E, Moreda D (2018). Qiskit backends: What they are and
how to work with them. Medium,

 35. Steffen M, Chow J, Sheldon S, McClure D (2024). IBM Research
A new eagle in the poughkeepsie quantum datacenter: Ibm quan-
tum’s most performant system yet,

 36. IonQ Collaborators. IonQ Harmony, 2024
 37. Liu Jin-Guo, Wang Lei (2018) Differentiable learning of quantum

circuit born machines. Phys Rev A 98:12
 38. Preskill John (2018) Quantum computing in the nisq era and

beyond. Quantum 2:79
 39. Nielsen MA, Chuang IL (2010) Quantum Computation and Quan-

tum Information: 10th Anniversary Edition. Cambridge Univer-
sity Press,

 40. Oliv M, Matic A, Messerer T, Lorenz JM (2022). Evaluating the
impact of noise on the performance of the Variational Quantum
Eigensolver, 9

https://doi.org/10.5281/zenodo.2559634
https://github.com/QUARK-framework/QUARK
https://github.com/QUARK-framework/QUARK
http://arxiv.org/abs/1811.04968

	Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK
	Abstract
	1 Introduction
	2 Quantum Generative Learning
	3 Benchmarking Quantum Computing
	3.1 The QUARK Framework

	4 Methodology and Results
	4.1 Scalability of Quantum Generative Models Under the Influence of Statistical Noise
	4.2 Noisy Training of QCBMs

	5 Conclusion and Future Work
	Acknowledgements
	References

