
Eur. Phys. J. Plus         (2024) 139:884 
https://doi.org/10.1140/epjp/s13360-024-05664-4

Review

Prompt-gamma imaging in particle therapy

Marco Pintoa

Department of Experimental Physics - Medical Physics, Ludwig-Maximilians-Universität (LMU) München, Garching bei München, Germany

Received: 19 February 2024 / Accepted: 14 September 2024
© The Author(s) 2024

Abstract Prompt-gamma imaging has been a source of intensive research over the years since its first proposal in 2003. Several
detection approaches have been researched and developed, and many studies on prompt-gamma imaging have been conducted on its
feasibility, detection systems optimisation, and possible workflows. Now, this form of particle therapy monitoring is finally arriving
in clinical settings and showing impressive results. Prompt-gamma imaging may be the key to enabling crucial improvements in
particle therapy, namely when considering more complex workflow scenarios, like adaptive radiotherapy using ion beams. Herein,
several aspects related to prompt-gamma imaging are introduced, covering both its advantages and limitations. The need for particle
therapy monitoring, the different prompt-gamma radiation detection systems, the difficulties with dealing with low emission yields
and with the tools used to simulate it, the prediction tools for prompt-gamma radiation, and the translation into clinical applications
are presented and discussed. Finally, some considerations are also made on the future of prompt-gamma imaging and what it may
bring into particle therapy, ultimately benefiting patients worldwide.

1 Introduction

Ions are known for their superior ballistic properties compared to photons [4, 62, 100], which gives particle therapy better tumour
conformity when compared to photon radiotherapy for the same number of beams. Furthermore, higher tumour conformity and
fewer beams lead to a lower total dose delivered to the healthy tissues [23]. However, the same physics processes that make particle
therapy advantageous from a ballistic point of view also make particle therapy more susceptible to range uncertainties [57, 61].

Prompt-gamma imaging was proposed in the year of 2003 in a submission to the 39th Particle Therapy Co-Operative Group
(PTCOG) Conference by Jongen and Stichelbaut entitled “Verification of the proton beam position in the patient by the prompt
gamma rays emission”. The words written back then still resonate today, and it is good to remember them [53]:

“Several authors have studied the production of PET isotopes by therapeutic proton beams. The goal is to use a PET scanner
to verify the location of the proton beam in the patient body immediately after the treatment. But, when protons are stopped
in the patient body, they produce also copious amounts of prompt gamma rays, which could be imaged during the irradiation
using a classical gamma camera. This would allow visualizing the proton energy deposition in the patient. We have conducted
Monte Carlo simulations of this problem using the GEANT Code. These simulations indicate that this method could offer a
real potential in proton therapy treatment quality assurance.”

Since that first proposal, the field has evolved considerably regarding competing approaches but always with the same goal of
obtaining indirect information about ion ranges and thus improving the quality assurance (QA) of particle therapy treatments.
Nevertheless, many challenges and open questions remain, especially concerning clinical implementation and workflow. These
headwinds have translated into a poor adoption of this form of treatment monitoring so far.

This paper aims to give an overall view of the prompt-gamma (PG) imaging field, how we arrived here and some hints of where it
may be headed. Several aspects described and discussed herein apply to particle therapy as a whole, but most of the content focuses
on proton therapy. The research and developments of PG imaging in the context of proton therapy are more mature than in other
types of particle therapy, for example, carbon ion therapy.

2 The need for particle therapy monitoring

Theoretically, ions allow for precise local dose deposition with their characteristic depth-dose curve (Bragg curve) and its Bragg peak.
However, the finite range of ions in matter and the underlying physics processes make particle therapy more prone to a mismatch
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between the intended and delivered dose distribution. This possibility of mismatch brings the concept of range uncertainties [57, 65,
102]. In his review paper in 2012, Paganetti [102] listed the sources of range uncertainties as imaging, patient setup, beam delivery
and dose calculation. The clinical approach to dealing with these uncertainties has been adding margins at the treatment planning
phase that can ideally enclose such range deviations, ensuring proper dose delivery to the target volumes. The choice of margins
differs among clinical facilities, and it is typically presented as a proton range-dependent margin plus an absolute margin. Even
though cautioning for possible larger margins in specific treatment scenarios, Paganetti [102] presented proton range-dependent
margins ranging from 2.5% up to 4.6% and absolute margins in the range of 1.0 to 3.0 mm. Tattenberg et al. [158] approximate
the clinical margins to a single proton range-dependent component of 4%. This value of 4% translates into an additional margin of
8 mm, considering a proton range of 20 cm. Additional margins affect the clinical exploitation of the ballistic advantages provided
by ions by unnecessarily irradiating healthy tissues, which can lead to increased toxicity effects [126, 148].

Range uncertainties can also be tackled by asserting plan robustness. For example, the work of Unkelbach et al. [168] proposes
a method for treatment plan optimisation based on the worst-case dose distribution by assuming that the proton range may vary
within some interval. Pflugfelder et al. [115] extended the work of Unkelbach et al. to allow any objective function in the worst-
case optimisation and by including the possibility of setup uncertainties. Chen et al. [20] developed a multi-criteria optimisation
framework in which the optimisation is performed under several robustness criteria. Finally, in this list of examples, it is noteworthy
to include the work of Souris et al. [152], where the authors conceived a Monte Carlo approach in which systematic and random
errors are randomly sampled from possible scenarios based on 4D imaging data. Such an approach allows for a comprehensive
Monte Carlo simulation of setup and range errors, variation of the breathing motion, and interplay effect.

The issue of range uncertainties is not limited to the effects of adding margins. The uncertainty on the position of the Bragg peak
and, consequently, the possibility of overshooting into an organ-at-risk (OAR) located in the proximity of the target volumes created
the clinical practice of avoiding the position of an OAR immediately after the distal edge of the ion beam. This constraint in the
beam angle arrangements can have a detrimental impact on the quality of the treatment when compared to alternatives without such
a constraint. A clear example is the prostate proton treatment. Unless the patient has undergone hip replacement, current clinical
practice generally uses lateral fields so that OARs in this anatomical region can be spared. However, this beam arrangement exhibits
poorer quality in several dosimetric quantities than the alternative anterior-oblique beams [97, 157]. The arrangement with lateral
fields is not necessarily an inferior solution since it ultimately depends from case to case. The concern is that anterior-oblique beams
cannot often be considered due to range uncertainties.

Regardless of the impact of range uncertainties on the overall quality of a particle therapy treatment, it is essential to mention
that some authors see their magnitude and consequences as sometimes misunderstood and overestimated when dealing with clinical
applications [78]. Careful selection of the beam angle arrangements can avoid many situations where OARs are close to the distal
edge, and the critical structures can then be spared using the lateral edges, which are usually less sharp than the distal one [57, 78]. If
Bragg peaks are obtained in water, the distal edge fall-off is indeed steep and justifies much of the concerns regarding the potential
impact of misplacing it in the patient. However, the patient heterogeneities can have a striking effect on the dose distributions, thus
blurring the distal edge [78]. The example shown in [78] depicts a clinical case where the lateral fall-off is sharper than the distal
one. These views do not downplay range uncertainties, nor that they should not be considered. Understanding that current practice
has tools and approaches that can minimise their effects is essential. On the other hand, the issues posed by range uncertainties may
increase when trying to improve the status quo in the field. Approaches like adaptive radiotherapy or hypofractionation schemes are
two examples that could greatly benefit from the mitigation of range uncertainties.

3 Secondary-radiation monitoring and PG emission

A possible approach to tackle range uncertainties is to employ some form of treatment monitoring relying on secondary radiation
that can escape the patient and be detected. Hereafter, only the term treatment monitoring will be used to refer to the monitoring
form mentioned above. Other methods do exist, for example, rectal balloons with detectors [19, 42], MR imaging [33, 57, 183]
or ionoacoustics [7, 18]. Treatment monitoring techniques do not reduce range uncertainties since these uncertainties are linked
to imaging used for planning, patient setup, beam delivery and dose calculation [102]. This reality contrasts with other strategies
like the usage of Monte Carlo tools for dose calculation [102] or ion imaging for planning [27], which can effectively reduce range
uncertainties. Treatment monitoring gives, with some uncertainty dependent on statistics and technique, an assessment of the quality
of the treatment delivered.

Secondary radiation can be created via electromagnetic or nuclear interactions. The former is the basis of secondary-electron-
bremsstrahlung (SEB) imaging, which is a technique that detects the photons escaping the patient after being created by the
bremsstrahlung of secondary electrons [179, 180]. It is not yet used in clinical applications, but it has been experimentally demon-
strated for both proton [179] and carbon ion [180] beams. Nuclear interactions produce a wealth of secondary radiation and
radionuclides that can be used for treatment monitoring. Figure 1 shows a sketch of possible nuclear interactions in particle therapy.

Regarding radionuclides, we are specifically interested in positron-emitting radionuclides, where the two annihilation photons can
be detected after positron emission and consequent electron-positron annihilation. Such a technique gives rise to positron emission
tomography (PET) monitoring, the first approach routinely employed in a clinical setting [13, 103, 108–110]. Due to the nature of
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Fig. 1 Top: sketch of a possible nucleon-nucleus reaction in proton therapy, whereby a neutron and a photon are created. Bottom: sketch of nucleus-nucleus
reaction in heavy ion therapy with creation of light fragments and photons. Reproduced from [61] under the terms of the Creative Commons Attribution
License (CC BY, https://creativecommons.org/licenses/by/4.0/)

using delayed radiation, PET monitoring has specificities regarding detection, namely the detection time frame (in-beam, in-room
and offline [147]) and washout [5, 37, 95], the physiological process that removes positron-emitting radionuclides from the place of
creation. Exploring PET monitoring is outside of the scope of this manuscript. However, it is essential to highlight how important
the experience and lessons obtained in that context shape the entire field of treatment monitoring.

Another form of secondary-radiation monitoring built on top of nuclear interactions is interaction vertex imaging (IVI) [38, 47,
98]. In this case, the aim is to detect secondary protons escaping the patient and to reconstruct the vertex position of said secondary
protons. Light fragments may also escape and be detected, but their fraction is tiny in comparison to secondary protons [139]. This
method can only be used when delivering heavier ions since it relies on creating secondary protons that can escape the patient. IVI
has been primarily researched in the context of carbon ion therapy.

When excited nuclei created in nuclear interactions release excess energy, PG radiation may be emitted. For practical purposes
in particle therapy, PG emission occurs where nuclear interaction happens since PG radiation is emitted almost instantly. Thus,
the emission distribution is not affected by any physiological process (washout) nor by physical processes that may interfere with
determining the location of the nuclear interaction, for example, the positron path before electron-positron annihilation. Figure 2
depicts the stages of a nuclear interaction between a proton and a target nucleus in the energy range relevant to proton therapy.
The PG radiation energy spectrum is characterized by the continuum and the discrete components. The origin of prompt gammas
was eloquently summarized by Le Fouhler et al. [69] and reproduced here: “the continuum energy spectrum can be divided into
three components. High energy gamma-rays (E > 30 MeV) are mainly produced during nucleon-nucleon bremsstrahlung at the
very beginning of the reaction. Between 10 and 30 MeV, prompt-gamma rays are emitted during the decay of giant resonances,
mostly Giant Dipole Resonances (GDR), a collective oscillation between protons and neutrons in the nucleus. Below 10 MeV, the
main contribution for gamma production is statistical photons coming from the remaining excited fragments at the final stage of the
reaction. Lastly, at the end of the evaporation cascade, photons with discrete energies are emitted. The prompt-gamma ray spectrum
is dominated by statistical photons whose energy ranges from a few keV up to 10–15 MeV” [69]. The discrete, or characteristic,
emission is particularly interesting because it can be associated with specific target nuclei, and its yield can be estimated using
proton energy. These features offer the possibility of extracting relevant PG-related information for monitoring purposes, which
will be covered later. In Verburg et al. , one can find a table with a comprehensive compilation of the most important characteristic
emissions in proton therapy [170].

As nuclear interactions ensue almost all along the entire path of the beam, it allows for monitoring the range of its particles,
assuming that the nuclear interactions can be correlated with the energy deposition behaviour along the beam path, namely around
the end of the particle range. PG emission can happen with incident proton energies of a few MeV [170] for typical target nuclei
in a patient body, which puts the location of the end of the PG emission very close to the end of the proton range. A comparison
of dose and PG distributions can be observed in Fig. 3. This figure was obtained with Monte Carlo (MC) simulations using two
computed tomography (CT) datasets of the same patient but taken at different times during a radiotherapy treatment. It mimics a
relevant clinical scenario where anatomical changes occur and the resulting impact on dose and PG distributions.
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Fig. 2 Schematic showing the stages in a nuclear interaction between a proton and a target nucleus in the energy range relevant to proton therapy. The
time scale of the different steps and energy of the interacting particle are also displayed. Reproduced from [61] under the terms of the Creative Commons
Attribution License (CC BY, https://creativecommons.org/licenses/by/4.0/)

Fig. 3 MC simulations using two CT scans of the same patient taken at different times. Dose (left) and PG (right) distributions of the same pencil beam on
the two CT scans are shown. Additionally, the figure depicts the search region (dashed boxes) where the sum of the squared errors between distributions is
calculated to estimate the dose and PG shift between the two CT scans. Reproduced from [165] under the terms of the Creative Commons Attribution 3.0
licence (CC BY, https://creativecommons.org/licenses/by/3.0/)

Fig. 4 Measured PG energy spectra for 226.7 MeV (black) and 162.0 MeV (blue) proton beam energies. The ground state transition in 16O, 11B and 12C
are pointed out, including their respective single (SE) and double escape peaks (DE). PG ray transitions from 10B, 11C and 1H(n,γ )2H are also visible in the
low energy part. The spectra shown had no background subtraction procedure. The authors used the energy window between 3 and 5 MeV for subsequent
analysis. Reproduced from [176] under the terms of the Creative Commons Attribution 3.0 licence (CC BY, https://creativecommons.org/licenses/by/3.0/)

One aspect that makes PG imaging challenging is the broad PG energy spectrum, which requires specialised detection devices.
The energy spectrum can be considered up to 10 MeV for practical purposes, even though higher energies, albeit at a low yield,
are also present. Contrary to PET monitoring, where the energy of the two photons emitted is well defined, PG radiation poses
severe conditions on the detector design, regardless of the approach followed. A comparison of measured PG energy spectra for
two proton energies is depicted in Fig. 4. The spectra were obtained at the University Proton Therapy Dresden (UPTD) using a
CeBr3 scintillation crystal coupled to a Hamamatsu R13089-100 photomultiplier tube. The target was a homogeneous polymethyl
methacrylate (PMMA) phantom [176]. Werner et al. [176] mentioned that another study [138] using a similar crystal found an
energy resolution of 2.21% (full width at half maximum, FWHM) at 4.44 MeV.
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Another aspect that makes PG imaging demanding is the relatively low PG emission yields. Still, the PG radiation signal exhibits
approximately ten times higher emission yields than the PET monitoring signal and 60–80 times if washout and acquisition time
delay are considered in the calculation in the context of proton therapy [96]. However, commercial PET scanners that can be used for
offline PET monitoring typically offer higher detector acceptance and efficiency than most, if not all, PG camera devices proposed
thus far. Agodi et al. [1] reported experimental PG emission yields after irradiation of a PMMA phantom with an 80 − MeV/u
carbon ion beam of (2.32 ± 0.01stat ± 0.15sys) × 10−3 counts ion−1 sr−1 (values provided with estimated statistical (stat) and
systematic (sys) uncertainties). In turn, Pinto et al. [117] found experimental PG emission yields in a PMMA phantom equal
to (124 ± 0.7stat ± 30sys) × 10−6 for 95 MeV/u carbon ions, (79 ± 2stat ± 23sys) × 10−6 for 310 MeV/u carbon ions, and
(16 ± 0.07stat ± 1sys) × 10−6 counts ion−1 mm−1 sr−1 for 160 MeV protons. When Pinto et al. [117] adapted their results to
the conditions detailed in Agodi et al. [1], the results for 80 and 95 MeV/u from the two independent groups agreed remarkably
well within the estimated uncertainties. Pinto et al. [117] went further and, based on treatment plan cases found in the literature,
estimated a total of 800 ±4stat ±50sys and 8±0.2stat ±2sys counts mm−1 sr−1 for a spot in proton and carbon ion treatment plans,
respectively. The statistical level for a spot is relevant since, ideally, PG imaging aims to monitor single spots for higher treatment
quality assurance. In the case of Pinto et al. [117], the authors considered that a typical spot comprises 5×107 protons or 1×105

carbon ions depending on the ion employed for the treatment.
After the proposal of Jongen and Stichelbaut [53] based on MC simulations, the first experimental verification of PG imaging

in particle therapy was reported in 2006 by Min et al. [93]. In this seminal work, Min et al. used a CsI(Tl) scintillator inside a
massive shielding arrangement comprising paraffin, lead and boron carbide sections to scan a water phantom longitudinally with
an impinging proton beam. The photons were allowed to reach the scintillator through a hole in the shielding structure; hence,
the shielding structure also acted as a collimator. They observed a clear correlation between the PG distribution fall-off close to
the end of the proton range and the measured depth-dose distribution for each proton energy considered (100, 150 and 200 MeV).
Furthermore, they also explored the issue of neutron and neutron-related events by measuring with and without paraffin and applying
minimum energy thresholds on the data postprocessing. The latter is based on the fact that most of the neutron interactions in the
detector and most of the neutron-induced events, namely after neutron-gamma interactions in any material in the path of neutrons, are
below a given energy. Such energy thresholds have minimal impact on the PG signal since a substantial signal is still available, thus
improving the signal-to-background ratio. At this time, and only until recently, neutrons were always considered as an undesirable
background because no clear correlation with the ion range was found. More on the recent paradigm shift regarding neutrons in
section 4.5.

The next breakthrough in the field of PG imaging was reported two years later, in 2008. Testa et al. [160] irradiated a PMMA
phantom with a 73 MeV/u carbon ion beam. The authors used a NaI(Tl) scintillator behind a collimator and shielding to scan
the PMMA phantom longitudinally. They again showed a clear correlation between the PG distribution fall-off and the end of the
ion range. This experiment employed a carbon ion energy below clinical energies, but as a feasibility experiment, it permitted the
assessment of PG signals while keeping the background manageable. However, a significant novelty these authors brought was
how the problem of neutron background was addressed: utilising time-of-flight (TOF) techniques to discriminate between PG and
neutron-related events. Actually, without TOF techniques and only with energy thresholds as in [93], it was not possible to achieve
an SBR allowing for a meaningful PG distribution, even at such low carbon ion energy.

4 PG imaging approaches

The complexity of PG imaging is a double-edged sword: it makes the research, development and deployment of any PG-based
measurement device challenging, but, on the other hand, allows for a wide variety of approaches. The different approaches can
be grouped into categories associated with the main focus on the PG emission analysis, ultimately leading to a metric or metrics
correlated to the ion range: PG radiation spatial distribution, PG energy spectroscopy, PG timing and PG emission yields.

It is important to note that, from a technical point of view, not all approaches result in an image. Thus, the term “PG imaging” is
not entirely correct for all cases discussed. Nevertheless, PG imaging, PG-based range monitoring and PG monitoring will be used
interchangeably since the terms herein mainly refer to the field instead of specific monitoring solutions.

4.1 Spatial distribution of PG radiation

PG radiation is emitted after nuclear interactions, and those interactions can only occur in locations where the beam is present and
almost until the end of the particle range. This phenomenon creates the opportunity to probe the beam’s location, including the end
of the range, by measuring the spatial distributions of PG emission. The location of the end of the ion range is the most relevant
quantity in treatment quality assurance in the context of range uncertainties. Therefore, substantial research was put into retrieving a
one-dimensional (1D) PG emission profile along the beam path. This simplified approach also allows for working with distributions
exhibiting higher statistical levels, which, in theory, contributes to higher confidence levels on retrieved metrics.

Min et al. [93] and Testa et al. [160] pioneer experiments aimed at having spatial distributions of PG radiation by employing
mechanical collimation. In their cases, a single hole and a single slit, respectively, were used, and the phantom was scanned
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longitudinally by positioning the phantom on top of a moving stage. In a clinical application of this technique, moving the patient
is inconceivable. Therefore, the detector configuration should be sufficiently large to measure PG radiation, at least over the region
where the PG distribution fall-off is expected, but, ideally, sufficiently large to detect the entire ion range. The reason for detecting
PG radiation over the entire path boils down to the interpretation of the PG distributions measured: if only a small region around the
PG distribution fall-off is available, in order to correlate this fall-off with the end of the ion range, then one needs to rely on in-room
alignments and different coordinate systems, and assume that no patient setup error occurred. With the entire PG distribution,
inferring the PG distribution entrance is possible, and this entrance can be correlated with the position where the ion beam enters
the patient. The difference between PG distribution fall-off and entrance is an absolute measure of the length of the PG distribution,
thus directly correlated with ion range without relying on other sources of information that may carry uncertainties. As an exemplary
scenario, if the patient is mispositioned by 1 mm in the beam direction and only the PG monitoring data of the expected end of the
ion range is available, then the PG distribution will show around 1 mm shift, even though there is no anatomical change. When the
entire beam path is imaged, the PG radiation distribution will show around 1 mm shift at the end of the ion range and around 1 mm
shift at the beginning of the distribution. In this scenario, the case where only the expected end of the ion range is imaged is not
entirely hopeless to detect the problem: the PG monitoring data of every spot will be shifted by around 1 mm, and such a global
shift may lead to infer that a patient setup error occurred. The potential advantage of PG cameras that image the entire path only
pertains to the setup errors in the beam direction. In the presence of a patient setup error in the lateral direction, both approaches will
likely observe changes compared to the expected distributions simply because the ion path will differ for each spot. Furthermore,
the theoretical argument that only relying on the PG distributions is the ideal scenario (i.e. PG camera able to image the entire
beam path) is disputed since the entrance can be obtained using other imaging modalities, like X-ray imaging, cone-beam CT, or
optical trackers, and the plan information without the added cost, weight and footprint of a PG camera able to measure the entire
range [150]. The retrievable information from the PG entrance is also less precise than the one at the distal fall-off [118], and such
a fact must be considered when assessing the real advantages of using a much longer PG camera.

4.1.1 Mechanical collimation

Outside of proof-of-principle detection system arrangements employed only in experimental campaigns, the first prototype of an
actual PG camera followed a design resembling a nuclear medicine pinhole camera [17]. This strategy falls into the category of PG
cameras detecting PG radiation only around the PG distribution fall-off (unless two independent cameras are used, which does not
bring apparent benefits compared to just relying on other imaging modalities). Even though it cannot provide information on the
entrance, it brings advantages relevant to clinical implementation.

The main advantage is the footprint of such a device. It may sound less important than camera precision, resolution or efficiency,
but if a PG camera is supposed to be positioned next to the patient in the treatment room, how bulky and heavy the device is matters
significantly. Additionally, a smaller footprint is often associated with a more favourable ease of handling for the clinical staff, and
a heavier system may pose severe constraints on the positioning ability due to weak spots on the treatment room floor or difficulty
mounting it on some structures in the room. These practical factors inevitably weigh on the adoption of such devices by clinical
facilities. An argument can be made that the treatment gantry, or other heavy structure in the room, can hold a hefty device for
treatment monitoring purposes [15], and it can be redesigned after careful engineering calculations. However, it is unrealistic to
assume that industrial partners will redesign their treatment gantry to allow early adoption of an unproven approach with an unclear
clinical workflow and with an unknown client base, even if, in theory, PG imaging brings significant benefits.

The other two advantages are detection acceptance and the ability to magnify the region of interest [17]. Favourable detection
acceptance is obtained with a large slit opening that completely discards any aim at improved image resolution. In this case, the
concept of image resolution is to distinguish the different PG emission features linked to ion energy and tissue composition. However,
this is a sensible approach for range shift detection: the goal is not to detect local, anatomical-related changes but the overall range
shift of the ions being delivered. Detecting that something moves does not necessarily require pristine resolution. Due to the shape
of the slit, the authors decided to call this camera a knife-edge slit camera.

Soon after, Smeets et al. [149] published their study on a knife-edge slit camera design and first experimental results. This PG
camera differed slightly from the first one proposed by Bom et al. [17] using Monte Carlo simulations since it abandoned the usage
of a conical-shaped collimator. This design difference allows for easier manufacturing and, arguably, for a smaller footprint. The
knife-edge slit shape remained the same. The work of Smeets et al. [149] was massive and had significant repercussions in the
field: the authors delved into almost all aspects of the usage of this camera. They described fundamental research associated with the
development of the camera (for example, energy spectra measurements and neutron background assessment), postprocessing analysis
regarding energy thresholds and background subtraction, a design study based on MC simulations, optimisation of collimator and
detection system distances from each other and beam axis, correlation assessment of PG distribution shift and proton range shift,
the correlation between range shift estimation and the number of protons, electronics development, and clinical considerations.
This work was followed by several others where the knife-edge slit camera was further improved, thoroughly tested, and an entire
workflow developed [80, 112, 127–129] so that clinical translation could become a reality. Figure 5 depicts a 3D drawing of the
entire knife-edge slit camera setup and a photo of the knife-edge slit collimator.
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Fig. 5 Knife-edge slit camera prototype. The complete trolley positioning system is drawn on the left, and a photo of the knife-edge slit collimator is shown
on the right. Reproduced from [150] under the terms of the Creative Commons Attribution License (CC BY, https://creativecommons.org/licenses/by/4.0/)

The first usage of the knife-edge slit camera in a patient was finally reported in the year of 2016 from the proton therapy centre
at the Universitäts Protonen Therapie Dresden (UPTD) at OncoRay (Dresden, Germany), where a patient undergoing a passive
scattered proton therapy treatment had the PG camera monitoring the treatment [134]. The treatment was a mix of photons and a
proton boost for seven fractions. During those seven fractions, the patient was monitored for six while the remaining one was done
with the collimator closed to assess the background. Three CTs were acquired during that period to enable an understanding of
whether any anatomical change that could potentially lead to a range shift was present while monitoring.

The first clinical application of the knife-edge slit camera using a pencil beam scanning delivery was reported one year after
by Xie et al. [178], where a patient being treated at the Roberts Proton Therapy Center, Philadelphia, Pennsylvania, USA, was
monitoring for six fractions in the last three weeks of treatment (twice per week). The possibility of treatment monitoring spot by
spot was clinically confirmed, and the authors stated that a shift retrieval precision of 2 mm could be achieved [178].

After these two pioneer studies, many more patients have had their proton therapy monitored through PG imaging, which has
contributed to the improvement of workflows and to the development of new approaches using PG monitoring data acquired from
the knife-edge slit camera [14].

Most of the research and development associated with the knife-edge slit camera was made in collaboration with the industrial
partner Ion Beam Applications (IBA). To this day, this system is the only PG camera ever used to monitor a particle therapy treatment
on a patient.

The knife-edge slit camera is not the only mechanically collimated system proposed for PG imaging. The teams behind the two
first experimental verifications of PG imaging, Min et al. [93] and Testa et al. [160], had a different design in mind: a multi-slit
collimator camera (or sometimes also called a multi-slab collimator camera). In this design, an array of slabs of material are placed
together to form a collimator with multiple openings (slits) in a row. The openings are oriented perpendicularly to the beam axis,
allowing the passage of photons while keeping the correlation with the position from where they were emitted. This arrangement
creates a one-dimensional detected PG distribution in which each opening, and thus each detector segment, can be correlated with
a well-defined location along the ion beam path inside the patient [118]. Figure 6 depicts a schematic representation of a dual-head
multi-slit collimator camera which was used for an MC-based study for the development of a machine learning algorithm to create
optimized treatment-specific classifiers that detect discrepancies between planned and delivered dose [35]. An interesting aspect
of this figure is the existence of a beam tagging device for PG imaging, envisioning the use of TOF techniques. It should also be
noted that the multi-slit collimator camera depicted does not allow for the detection of the PG signal at the entrance, which would
necessarily either be extended farther or shifted towards the nozzle.

Between the knife-edge slit camera and the multi-slit collimator camera, it is difficult to answer which PG camera approach is
better. Huisman et al. reported that, when using an optimized multi-slit collimator camera, this device will outperform a knife-edge
slit camera in realistic conditions [46]. In turn, in a different study where a multi-slit collimator camera was designed following
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Fig. 6 Schematic representation of the simulation setup using a dual-head multi-slit collimator PG camera. Protons coming from the nozzle trigger the
beam-tagging device for TOF applications. PG radiation is collimated by the tungsten slabs (in light grey), while the BGO scintillator crystals (dark grey)
detect the photons in an Anger-like fashion. Adapted from [35] under the terms of the Creative Commons Attribution 3.0 License (https://creativecommons.
org/licenses/by/3.0/)

the constraints imposed by an optimized design of a knife-edge slit camera (for example, enforcing the same attenuation efficiency
of the collimator for both camera designs), the knife-edge slit camera performed better or equally well as the multi-slit collimator
camera [150]. The second study mentioned may seem unfair because the comparison is between an optimized knife-edge slit camera
and a subpar design of the multi-slit collimator camera. However, the purpose of the authors of the second study was to compare
the two PG camera designs in “conditions of equal performance” [150]. Regardless of the conclusions derived from MC-based
studies, the final answer will come when multi-slit collimator cameras are deployed in a clinical setting and data from patient PG
monitoring are available for analysis and comparison to knife-edge slit camera data.

Min et al. [94] reported an optimization study on a multi-slit collimator camera using CsI(Tl) scintillators and experimental
results on a simplified setup. Pinto et al. [118] presented an MC-based optimization study based on experimental data, while
Krimmer et al. [63] used a simplified setup of a multi-slit collimator to test multi-detector configurations experimentally. More
recently, Ku et al. [66] reported an improved design for a multi-slit collimator camera over the previous prototype of Park et al.
[106]. The new design overcomes the limitations of its predecessor by enhancing PG detection sensitivity and incorporating a
precise camera positioning system [106]. Ku et al. [66] also developed algorithms able to estimate ion ranges based on PG radiation
detection with their device, and this system offers good prospects of becoming the first multi-slit collimator PG camera to be used
with patients. Malekzadeh et al. [87] presented an intriguing proposal where a PG camera could be built using a combination of
multi-slit and knife-edge slit collimators. Finally, recently Sun et al. [155] proposed a two-dimensional (2D) PG camera that allows
for the acquisition of 2D PG images. The authors reported exciting results in this MC-based study, showing that the system performs
well for proof-of-principle conditions (idealized beam, simulated background). High-quality 2D PG distributions are shown, along
with the data analysis used to retrieve range shifts. More data is needed to assert how well this approach will succeed, but it
demonstrates interest in innovative solutions for PG imaging.

4.1.2 Electronic collimation

The systems with electronic collimation use the Compton scattering process and are termed Compton cameras. They comprise a
scatterer and an absorber detector in the most straightforward design possible. Ideally, the incident photon scatters in the scatterer
and is then fully absorbed in the absorber. The scatterer absorbs the recoil electron, and its energy is measured. With the knowledge
about recoil electron and photon energies, the scattering angle can be derived based on Compton scattering kinematics, and a cone is
formed with all possible positions from where the photon has originated. The direction of the photon after being scattered (between
the scatterer and the absorber) defines the cone’s axis. Figure 7 shows a schematic representation of this process. The accumulation of
events makes each cone intersect, and reconstruction methods are employed to build the image. From all approaches in PG imaging,
Compton cameras are the only system that allows for 3D imaging with a single device. In a rough approximation, this reconstruction
process is similar to the one used for PET imaging, but instead of a line-of-response, there is a cone-of-response. However, the
cone will be wrongly estimated if the photon or the recoil electron is not fully absorbed, and no cone will be derived if there is
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Fig. 7 Principle of operation of a two-stage Compton camera. Reproduced from [141] under a Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/)

no scattering in the first detector. To overcome this problem, some authors have proposed solutions where the photon undergoes
multiple scattering interactions or, at least, the multiple scatterers are used to increase the probability of a Compton interaction [91,
114, 132, 133, 136]. If the photon scatters twice or more, then it is possible to circumvent the need for complete absorption in the
absorber detector [114].

Several approaches have been proposed concerning the Compton camera design. Roellinghoff et al. [136] published a study
analysing the potentialities of a single-scattering Compton camera using multiple scatterers, while Richard et al. [133] proposed
two silicon detectors to act as scatterers in order to increase the camera efficiency by allowing double scattering (both studies
considered an absorber made of a scintillator crystal). Kurosawa et al. [67] presented the very first experimental PG distribution
after proton irradiation in a water phantom with a Compton camera. Their Compton camera distinguishes itself from other Compton
camera proposals by employing a gas chamber where the Compton scattering occurs [67]. Peterson et al. [114] optimised a 3-stage
Compton camera (two scatterers and one absorber), which was later used in a clinical beam. The report on clinical beam irradiation
was done by Polf et al. [123], where the authors irradiated a water phantom with two clinical energies at clinical dose rates. A
follow-up experiment reported by Draeger et al. [26] demonstrated the feasibility of 3D PG imaging with a Compton camera using
clinical beam conditions. Kormoll et al. [58] studied the performance of several Compton camera solutions for proton therapy
monitoring. They found that a design comprising cadmium zinc telluride (CdZnTe) layers as scatterers and an LSO scintillator as
an absorber could be a good candidate [58]. Llosá et al. [76] have developed a Compton camera prototype using only scintillator
crystals (LaBr3 and LYSO) for both scatterer and absorber with promising results for point-like sources [76]. The design was later
improved and the updated prototype features three layers, all made of LaBr3 scintillator crystals, and promising results, including
with test beams, have been reported [11, 12, 77]. Thirolf et al. [163] have developed a Compton camera that also tracks the recoil
electrons to increase the camera efficiency. The SiFi-CC project is researching and developing a Compton camera where both the
scatterer and absorber are comprised of a stack of scintillation fibres [55].

From a conceptual point of view, the Compton camera would be the perfect PG camera. Its electronic collimation makes the
detector acceptance substantially better than for cameras relying on mechanical collimation. In theory, the absence of mechanical
collimation could permit a small footprint device, which would be favoured for a clinical setting. Its inherent capability of yielding
3D images would bypass the need for multiple devices. Unfortunately, the reality is considerably more challenging. The absence
of any form of mechanical collimation also implies that the counting rate of both signal and background is exceptionally high,
which is taxing on the whole chain of the detection system [31, 91, 105]. The probability that scattering occurs is relatively low,
notwithstanding that it can be improved with different design choices [133]. Furthermore, the broad PG energy spectrum makes the
Compton camera design optimisation a daunting process: even if the absorber can be made sufficiently large to stop a majority of the
PG radiation, the design of a scattering system that, for example, works as well for 1-MeV photons as it works for 8-MeV photons is
hardly possible [3]. The application of Compton cameras for medical applications was first proposed in 1974 by Todd et al. [167],
and it is still in the development phase. Considering that said proposal was for nuclear medicine applications, which may be seen as
a more favourable radiation environment than proton therapy monitoring, it is no surprise that Compton cameras for PG imaging
pose formidable challenges (Fig. 8).

4.2 PG energy spectroscopy

Exploiting the energy information of the emitted PG is a growing interest due to the possibility of retrieving both ion range and tissue
composition. The rationale of this approach is built upon the characteristic emission from known nuclear transition levels, which
leads to the emission of photons with well-defined energy [170]. Since the transitions are associated with a given target nucleus, its
concentration will impact the yield of PG emitted. Polf et al. [121, 122] demonstrated that the 6.13 MeV PG emission line from the
proton on 16O nucleus reaction is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that
it is possible to determine the concentration of oxygen in tissues irradiated with proton beams by measuring this emission. A more
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Fig. 8 A An example of a 2D reconstruction of PG emission measured during the delivery of a 150 MeV proton beam (0 cm) and with the range shifted by
−3 mm and −5 mm. The dashed vertical line indicates the depth of distal 80% of the proton depth-dose profile in the target. B 1D profiles extracted from
five independent PG images for the full range (top), 3 mm (middle) and 5 mm (bottom) range shifted beams. Reproduced from [124] under the terms of the
Creative Commons Attribution License (CC BY, https://creativecommons.org/licenses/by/4.0/)

comprehensive study has been published by Magalhaes Martins et al. [84], where the authors looked into elemental concentration
determination made possible by PG spectroscopy not only in proton beams but also in helium and carbon ion beams. Specifically,
the authors derived oxygen, carbon, and calcium concentrations. They were able to identify elemental concentration changes of 1%
for calcium and 2% for oxygen in adipose, brain, breast, liver, muscle and bone-related tissue surrogates [84]. In a parallel study,
Magalhaes Martins et al. [85] proposed the usage of endorectal balloons filled with a silicon solution for the monitoring of prostate
radiotherapy treatments. When protons interact with the silicon atoms inside the endorectal balloon in a proton range shift scenario,
they emit PG radiation with a characteristic energy of 1.78 MeV. By using detectors searching for this energy signal, the authors
have shown the feasibility of employing this approach for single-spot monitoring as well as whole-treatment delivery [85].

Verburg and colleagues [169, 171] extended the usage of PG energy information to absolute ion range measurements. They
are developing a concept in which the PG emission yields of several characteristic lines correlate with the proton range. By
parameterising the expected ratios between different PG characteristic line yields, they created a method that can unequivocally
provide the information at which depth the field-of-view of their detector measures along the beam path [169]. To improve the SBR
of their distributions, they use TOF techniques to make the PG selection. The workflow in place can also retrieve carbon and oxygen
concentrations [159], and a full-scale prototype is ready to be deployed in a clinical scenario [44]. The research team behind this
PG camera has demonstrated that it applies to both passive [162] and active delivery irradiation [44, 159].

4.3 Exploring PG time features

The deeper the protons travel inside a patient’s body, the wider the time distribution of the PG signal will be. Furthermore, the
end of the time distribution of the PG signal is linked to how far the protons travelled, the so-called transit time. This idea of
varying time distributions depending on ion transit time is the rationale of the approach coined as PG timing, which was first
proposed by Golnik et al. [34]. This ingenious idea is as simple as it is elegant: a single, small detector may be able to provide
meaningful information regarding ion range shifts. Figure 9 depicts the concept behind this approach and some exemplary PG timing
distributions.

In a best-case scenario calculation, the authors estimated the ability to detect proton range shifts of 3 mm with the current
experimental setup. This setup can be further optimised to become a clinical prototype, and improvements may lead to precisions
on range shift assessment of 1–2 mm [43]. This approach is under active development [43, 176], and it may become one of the most
cost-effective and with the smallest footprint of all solutions for PG radiation-based monitoring.

Another exciting approach exploring the features of PG time distributions has been proposed by Jacquet et al. [49]. Therein, the
authors have reported the usage of a beam-tagging device for TOF trigger and a technique which reconstructs the PG vertex position
by employing many detectors placed at different positions. While PG timing detects range shifts by calibration methods [34], the
solution put forward by Jacquet et al. [49] tries and reconstructs the PG vertex position directly. Further research has been conducted,
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Fig. 9 (Left) Setup of the irradiation experiment with a graphite phantom using a 150-MeV proton beam. The phantom was irradiated at three positions:
A, B, and C. TOF examples of PG radiation at different positions are indicated. (Right) Experimental PG timing spectra for phantom positions A, B, and C
are depicted as histograms. Reproduced from [34] under the terms of the Creative Commons Attribution 3.0 licence (CC BY, https://creativecommons.org/
licenses/by/3.0/)

and a modified version of this solution was published [111]. In Jacquet et al. [49], an MC simulation of the beam-target interactions
is used to process the detection time and reconstruct the emission point of each detected PG. This MC simulation assumes knowledge
of the target and that range shifts are still, albeit indirectly, quantified through a calibration curve [49]. Therefore, Pennazio et al.
[111] propose to employ a maximum-likelihood expectation maximisation (MLEM) algorithm to bypass any knowledge regarding
the patient tissues in the reconstruction of PG vertex positions. Pennazio et al. named this form of reconstruction spatiotemporal
emission reconstruction [111].

4.4 Yields of PG radiation

The approach of PG timing aims to analyse the PG timing distributions based on position and width, essentially, the mean and sigma
of the PG timing distributions. A more straightforward method may be just integrating the amount of PG signal inside the TOF
region associated with the PG radiation (hereafter in this subsection referred to as PG TOF region). Krimmer et al. [64] proposed
such a solution, where they demonstrated that obtaining the PG radiation yield by integrating the PG signal in the time domain
leads to a detection system capable of identifying proton range shifts of 3 mm in a PMMA phantom. Krimmer et al. [64] tested
this approach using a proton passive delivery system where a modulator wheel changes the range of protons in a PMMA target. For
the different positions of the modulator wheel, the authors observed that the PG count rate inside the PG TOF region was different
and correlated with range. The authors attributed the change in PG count rate to two reasons: (1) the difference in the proton range
inside the target, hence a difference in the total number of PG emitted and (2) the loss of protons via scattering in the modulator
wheel depending on the amount of material traversed in the wheel. The authors called this approach prompt gamma peak integration
(PGPI) [64].

This method has been extended by introducing a beam-tagging device, in this case, a diamond detector, which results in a
significant improvement of the TOF analysis, thus enhancing the stability and sensitivity of this form of monitoring [88].

4.5 Multimodality and neutron imaging

The usage of multimodality in particle therapy monitoring has often been mentioned and discussed, but the challenges of dealing
with one approach alone have delayed comprehensive studies on this topic. However, recent concrete examples of the exploitation
of ion range assessment by combining PET and PG imaging have been reported. The work of Ferrero et al. [30], followed by the
work of Pennazio et al. [111] described in section 4.3, uses a PET scanner aimed at PET monitoring and adds the spatiotemporal
emission reconstruction for PG imaging. Figure 10 shows the simulation setup in Pennazio et al. [111], including the arrangement
of the PET detectors that are also used for PG imaging.

In turn, Choi et al. [21] published an MC-based study aiming at the integration of PG and PET monitoring and how to accomplish
it. They proposed that simply creating a ring of PG cameras and using a PET detection module could achieve this goal. In addition,
they made an extensive simulation study on the usage of background reduction techniques in such a PG-PET system, namely energy
window, depth-of-interaction (DOI), and TOF.

Neutrons were always seen as contributing to an undesirable background. Min et al. [93] created an extensive collimation
system where paraffin was also included to moderate neutrons. Testa et al. [161] also included setups with paraffin in carbon ion
irradiation experiments to reduce the neutron-related background. However, contrary to Min et al. [93], Testa et al. [161] also tried
to assess if ion range-related information could be obtained from neutrons. The authors used a liquid organic neutron scintillator,
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Fig. 10 Schematics of the simulated setup. The proton beam is impinging towards the positive Z direction in a homogeneous PMMA phantom in which an
air cavity of variable thickness can be present (a), and in an anthropomorphic phantom with soft tissues, bone, and brain-like materials (b). In both cases,
the phantom is surrounded by a half-circle of PET modules. In the inset in (a), the front view of a PET module is shown. Reproduced from [111] under the
terms of the Creative Commons Attribution License (CC BY, https://creativecommons.org/licenses/by/4.0/)

Fig. 11 a The conceptual design of the NOVO approach. Neutrons produced along the beam path in the water phantom may be converted to protons in the
converter material. b Protons reaching both tracking detectors give positional information used for reconstruction. Reproduced from [182] under the terms
of a Creative Commons Attribution 4.0 International License (CC BY, https://creativecommons.org/licenses/by/4.0/)

a BC501 detector, to extract any information from neutrons. After careful data analysis, the authors stated that “no evidence for a
prompt neutron component correlated with the primary ion range was found for the GANIL experiment, where a dedicated paraffin
collimation was used. Therefore, fast neutrons detected at 90°cannot be considered to provide useful information on the dose profile.
However, this does not imply that neutrons could not provide some information at a more forwarded angle, but this remains to be
investigated in another study” [161]. This research from 2010 shows that the neutron signal was subject to experimental campaigns,
even though those early investigations did not yield conclusive results. After Testa et al. [161], research groups working on PG
imaging continued to develop methods to reduce neutron background, from assumptions of constant background (for example, [149])
to energy thresholds and TOF. This reality changed recently when the NOVO collaboration was created and published their first
results [182]. Their method is based on converting the neutrons to protons in a converter layer and then tracking the protons using
at least two tracking detectors. The interaction points of the proton in the tracking detectors create a line that projects into the target
to get a reconstructed profile. Figure 11 depicts this neutron-detection logic.

An intriguing aspect of this approach can be deduced from Fig. 11: the goal is not necessarily to reconstruct an accurate neutron
distribution in the target but to have a profile correlated with the ion range. The authors use the concept of a range landmark, which
is the sum of the sample mean for the ensemble of reconstructed coordinates and their corresponding standard deviation [182].
Figure 12 shows the neutron, reconstructed and depth-dose distributions of three different energies and the landmark positions for
each case.

The reason for bringing the topic of neutron imaging into a manuscript reviewing PG imaging is that neutron imaging alone has
shortcomings for a feasible ion range monitoring device due to limited counting statistics for a typical clinical proton pencil beam [70,
92]. Lerendegui-Marco et al. [70] proposed a system inspired by a detector for industrial and nuclear security applications where PG,
and thermal and epithermal neutrons are detected in parallel. Soon after, the NOVO collaboration reported a similar approach [92]
in which the authors improved on the initial proposal of fast neutron detection only to now also include PG imaging in the same
detection system. In an MC-based study, the authors showed that the combination of neutron and PG imaging in their system is
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Fig. 12 The distributions of production depths for detected neutrons produced in 160 (a), 200 (b) and 230 (c) MeV proton beams are shown. The neutron
distributions obtained from MC simulations (dotted lines) and the reconstructed profiles (solid lines) are shown. All figures with vertical dashed lines indicate
the landmark for range verification. Reproduced from [182] under the terms of a Creative Commons Attribution 4.0 International License (CC BY, https://
creativecommons.org/licenses/by/4.0/)

expected to provide a sufficiently high sensitivity to fast neutrons and PG radiation and a much smaller footprint than the other
state-of-the-art proton monitoring systems [92].

5 The hard reality of PG emission yields

Avoiding the proverbial elephant in the room when discussing PG imaging is difficult: low PG counting statistics aggravated by a not-
insignificant background. In section 3, the work of Pinto et al. was mentioned, where they estimated 800 PG emitted per millimetre
and steradian for a representative pencil beam in a proton therapy treatment. For a 5-cm radius cylindrical detector positioned 50 cm
from the beam axis and assuming perfect efficiency, this implies less than 25 PG counts detected for each millimetre. No matter how
good the analysis workflow is, this level of statistics poses considerable challenges. However, arguably, the most critical challenge for
PG imaging is not these yields per se but what sometimes seems to be a lack of a profound understanding that this challenge exists
when translating PG imaging techniques into clinical practice. Feasibility or proof-of-concept studies are, by definition, studies
where idealised scenarios are explored so that correlations, trends, metrics or other quantities can be found. This type of study
often defines if a scientific path is worthwhile to pursue and, if so, to guide future developments. Therefore, MC or experimental
high-statistics scenarios are the most reasonable to consider at that stage. The same applies to studies aiming at yield or cross-section
analysis: the data should be of the highest quality possible and, thus, invariably associated with lower variance levels. In this context,
it is not uncommon to see the reported number of protons exceeding 1010 protons impinging on a target. For example, Smeets et al.
[149] state that 7.30×1010 and 1.70×1010 protons were delivered at 100 and 160 MeV, respectively.

When studies aiming at clinical implementation or with obvious clinical connection (for example, usage of patient CT data in a
simulation study) are reported, a clinically realistic statistical level is desired. By keeping the studies realistic, the community can
better assess what is and, more importantly, what is not possible with PG imaging. As a rule of thumb, a large-weight spot in a
typical proton therapy treatment should have around 108 protons, and only a few spots are around those values (for example, [149]).
It is safer and wiser to estimate PG imaging performances considering the interval of 107–108 protons per spot, but also knowing
that some spots will have less than that. A recommendation on the best approach is to follow what, for example, Smeets et al.
[149] or Roellinghoff et al. [137] reported, which is a PG shift detection precision as a function of the number of protons. In the
case of Smeets et al. [149], they reported simulated and experimental precisions from around 107 protons up to around 1010. This
type of plot indicates the limits of the technique and what is possible to achieve realistically. Claims have been made that particle
therapy monitoring, not only specific to PG imaging, could achieve submillimetre precision. With the current experience and data
acquired in clinical conditions, this claim is difficult to sustain in an actual clinical device when PG imaging is performed for each
pencil beam or even when monitoring is considered only on the pencil beams with higher weights in a typical plan. Excluding that
some approaches may achieve such a performance is impossible, namely if PG cameras with increased detection acceptance and
efficiency are developed or if novel techniques are utilised in the data processing. However, is submillimetre precision a necessity
when using PG imaging? The range of one to three millimetres of precision already offers a remarkable performance, which can
assist in, for example, reducing safety margins, hence providing the means to explore reductions in treatment toxicity [15]. Even
a worst-case scenario of a 5 mm precision in PG imaging (or particle therapy monitoring in general) would help reduce the 8 mm
safety margin mentioned in section 2 and allow for the research of novel irradiation strategies that require higher treatment QA,
such as hypofractionation schemes.
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Fig. 13 Experimental and simulated PG data. The simulated data were obtained with Geant4 using the BIC model for proton inelastic interactions. Reproduced
from [119] under the terms of the Creative Commons Attribution License (CC BY, https://creativecommons.org/licenses/by/4.0/)

In parallel to the problem of low yields and high background, general-purpose MC tools are notoriously recognised to fail when
dealing with PG imaging. Unfortunately, failing in this context means going towards a trend of more favourable conditions than in
reality: estimating higher PG yields and lower background, thus a considerably better SBR in simulations. Furthermore, one must
distinguish the simulation of characteristic emission lines alone and the simulation of the entire PG emission, thus, characteristic
emission plus continuum. The latter is more broadly relevant since most techniques use an energy range considering characteristic
emission and continuum. For example, the knife-edge slit camera being used today integrates all events recorded within 3–6
MeV [149].

There are three main general-purpose MC tools used in the field: Geant4 [2] (and the tools built on top of Geant4, like GATE [50],
GAMOS [6] or TOPAS [113]), FLUKA [29] and MCNP [135]. By far, Geant4 and its derivatives are the most benchmarked MC
packages. Dedes et al. [24] reported that “Geant4 simulations consistently overestimate the prompt-gamma yields by a factor of
about 1.8–2.8, over an energy range from 80 to 310 MeV/u for the case of 12C. For the case of 160 MeV protons, the integral of
the open/closed wall difference prompt-gamma energy spectrum from 1 to 10 MeV is overestimated by a factor of 1.7”. Pinto et al.
[119] found that, for proton irradiation, “Geant4 overestimates the prompt-gamma emission yields by 40.2±0.3%, even though it
predicts the prompt-gamma profile length of the experimental profile accurately”. A figure from Pinto et al. [119] illustrating the
problem of different yields between simulations and experimental data is shown in Fig. 13. Perali et al. [112] found for 100, 160
and 230 MeV proton beams using MCNPX that the “best match between measurements and simulations was obtained by scaling
the simulation for a factor 0.91, 0.76 and 0.74”. In turn, Verburg et al. [170] stated that “estimates of the total gamma emission
during proton irradiation of soft tissue and lung tissue, differed by a factor of about 2 near the end-of-range of the protons. At
higher incident proton energies, the models agreed within ∼25%”. When considering characteristic emission, in the same study of
Verburg et al. [170], the authors continue: “If specific discrete gamma lines are considered, the models variations can be larger”. It
should be noted that the considerations of Verburg et al. [170] are for Geant4 and MCNP6. Schumann et al. [145] reported that
when compared to experimental data, “Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%”. More
recently and focused on characteristic emission, Kelleter et al. [56] found that “obtained data are in reasonable agreement with the
cross section data from other experiments. Discrepancies were observed when comparing our experimental data to TALYS gamma
production cross sections, in particular an overshooting of the 16O(p; Xγ4.44MeV )12C contribution to the 4.44 MeV line close to its
threshold and an underestimation of all cross sections for higher proton energies”. A follow-up study reported in Wrońska et al.
[177] disclosed worrisome findings with the usage of different physics lists in Geant4 and newer Geant4 versions: “The comparison
of simulated and measured spectra shows that the QGSP_BIC_AllHP physics list does not reproduce the features of the experimental
spectra even qualitatively: the simulated spectra show an unrealistic shape evolution of the discrete lines along the proton path”
and “Modifications to prompt-gamma emission modelling in higher versions of the software increase the discrepancy between the
simulation results and the experimental data”.

It should be stressed that modelling the continuum component in the PG energy spectrum is tricky. The continuum contains both
PG signal and background events when conducting experimental work. Techniques can be employed to minimise the background,
like TOF, but the background is still part of it [56]. This reality makes the benchmarking and follow-up improvements of any model
very challenging.

Regarding background, Smeets et al. [149] observed much lower MCNPX-simulated backgrounds when compared to measured
data. They employed an offset method to compensate for the missing background. As a rough estimation by looking at figure 28 in
Smeets et al. [149], the authors used a ∼200% offset for measurements using 100 MeV protons and a ∼230% offset for 160 MeV
protons (offset estimated using the simulations baseline). Pinto et al. [118] applied an offset of ∼30% to TOF spectra obtained with
Geant4 (using physics list QGSP_BIC_HP) to bring the simulation baseline into agreement with the baseline in experimental TOF
spectra. Studies regarding neutron radiation fields present in the treatment room using extended-range Bonner sphere spectrometry
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systems show that iron-rich components in the room, such as the gantry cylinders, the gantry cone and the counterweight, contribute
to secondary neutron contamination [28, 89]. Including room models in the PG-imaging simulations is not a standard procedure,
which adds to the uncertainty of the background quantification.

When the community does not factor in the MC tool’s inaccuracies when designing their PG imaging systems or when performing
feasibility studies, it creates a false sense of achievement that is doomed to collide with a wall when experimental data starts to be
analysed. Improving system designs and approaches due to the lessons learned from experimental data is always good. However,
there is something to be gained if expectations are met with reality to some degree.

An example of improving approaches due to the lessons learned from experimental data is given in Xie et al. [178]. As mentioned
in section 4.1.1, Xie et al. were the first to use PG imaging to monitor a proton therapy using a pencil beam scanning delivery. Up to
that moment, PG imaging using the knife-edge slit camera on a spot-by-spot basis in a typical treatment plan was deemed possible.
However, the authors realised that the counting statistics were too low for a meaningful monitoring outcome. Therefore, they used
the method of spot aggregation, which had been previously suggested by Priegnitz et al. [127]. The study of Priegnitz et al. was part
of the research collaborations around the knife-edge slit camera, which made employing such a method in clinical data in Xie et al.
seamless. Spot aggregation artificially increases the spot statistics by including the PG radiation events from neighbouring spots.
Xie et al. [178] used a Gaussian-weighted aggregation to give higher weights to the spots closer in the aggregation procedure. This
procedure reduces the Poisson noise for each PG profile at the cost of degradation in lateral spatial resolution [178] and consequent
loss of lateral information. However, Xie et al. estimated that such an approach has a limited impact on the lateral spatial resolution
while improving the SBR [178], thus making it an acceptable trade-off for range monitoring when considering the knife-edge slit
camera. It is still unclear if spot aggregation has a detrimental and significant impact on other forms of PG imaging. By the nature of
its design, the knife-edge slit camera typically has lower spatial resolution when compared to other PG camera proposals, which can
limit the impact of even lower spatial resolution (this PG camera is designed to maximise detection acceptance and efficiency and
forego spatial resolution considerations). Furthermore, Gueth et al. [35] found that, when using a machine learning-based classifier
to detect discrepancies in PG profiles, including range shifts, the classifier worked best when the information available was not only
focused on the PG distribution fall-off and that information along the beam path can be crucial to find overall discrepancies [35]. The
quality of such information is linked to the PG imaging spatial resolution, which makes spot aggregation a technique that deserves
careful analysis when applied elsewhere.

Tian et al. [164–166] proposed a different method to deal with low PG yields: deliver more protons for a few selected spots.
The idea is quite simple, but this proposal’s pivotal aspect is selecting the spots to boost while ensuring that the treatment plan
is dosimetrically equivalent to the plan without boosting. Tian et al. developed a so-called PG-dose correlation, which aims to
correlate shifts in the depth-dose distribution to shifts in the PG distribution so that the PG signal could better indicate the presence
of an ion range shift. Better PG-dose correlation is favoured in this proposal, which then drives the spot selection procedure. Other
considerations are also made in the spot selection process, such as distance to air cavities, avoiding overlapping of selected spots to
minimise hot spots in the plan, smooth spot surface (to avoid boosting a spot distorted by significant tissue inhomogeneity), number
of selected spots, among others [164–166]. The authors demonstrated in clinical data that such a boosting procedure is feasible while
keeping the dose and linear energy transfer (LET) distributions dosimetrically equivalent to the original plan. Figure 14 depicts
some of the steps in selecting spots to boost. This solution envisages a future where PG-driven treatment planning can become a
reality, and that is being further explored in the project funded by the Deutsche Forschungsgemeinschaft (DFG, project number
441208898), which aims at incorporating PG range verification and biological effectiveness in terms of LET and RBE as new criteria
in a research proton planning system based on multicriteria optimisation (MCO).

Another approach to tackle low yields and high background levels is to use advanced selection (good PG events) and discrimination
(remove background) procedures. This approach does not improve the physics limitations of PG imaging but allows for higher-
quality data, which can be used to assess treatment QA. The research is focused on machine learning and artificial intelligence
methods. Gueth et al. [35] proposed an approach to detect possible discrepancies between planned and delivered doses based on a
machine learning classifier by using the PG distribution distal fall-off. Polf et al. [124] described a neural network that can identify
bad events arising from background noise during the measurement and correctly order the different PG interactions in the Compton
camera to help improve the fidelity of the data used for image reconstruction. A follow-up improved version of this approach was
reported in Clark et al. [22], where a different neural network architecture was used with significant impacts on the time needed to
run the model. Kozani and Magiera [60] published a study where they used several machine-learning approaches applied to Compton
camera data and where the algorithms were trained to recognise valid Compton events.

6 PG imaging prediction

6.1 Monte Carlo engines

MC engines have been ubiquitous in the particle therapy monitoring field. However, full-blown MC tools are computationally
demanding and require calculation times that extend for several days if a single computer is used and PG emission is sought [120].
An argument can be made that any clinical facility employing MC tools for patient QA will have a computational infrastructure, such
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Fig. 14 The PG-dose correlation and dose surface indicators are shown in this figure. The top left plot shows the beam’s eye view (BEV) of the spot-by-spot
PG-dose correlation for a head and neck patient. The BEV of the dose surface indicator is shown on the top right. The pencil beams without black rings are
identified as suitable spots to boost. The bottom left shows a selection of pencil beams to boost after fulfilling the different boosting criteria (blue circles)
and a selection of pencil beams that fail the boosting criteria (red circles). The rationale for selecting recommended and not recommended pencil beams is
for plan comparison. The bottom right shows the MC dose distribution of two selected pencil beams indicated by blue arrows. Reproduced from [165] under
the terms of the Creative Commons Attribution 3.0 licence (CC BY, https://creativecommons.org/licenses/by/3.0/)

as computing clusters, to speed up calculations. Nevertheless, that would limit the adoption of MC tools to the clinical institutions
able to afford such an infrastructure and personnel to run it and, by extension, increase the disparity among clinical institutions
of what is available to offer to the patients. Furthermore, general-purpose MC tools typically have a steep learning curve, often
requiring specialised staff to prepare, run and analyse the simulation results.

The user-friendliness of the different MC tools can be addressed in several ways. In-house developed solutions for MC engines
have tried to make the process as automatic as possible, thus requiring less user interaction (for example, [86, 172]). These solutions
may not be specifically designed for treatment monitoring prediction. However, they give insights regarding what can be done
to make complex codes and tools more widespread and easy to use even for the less information technology-savvy clinical staff
members.

More general solutions can be found in the derivatives from the general-purpose MC tools, for which the Geant4-based ecosystem
is a prime example. Geant4 is written in C++, often considered a more complex programming language than others. Ideally, the
programming language in which a tool for clinical applications is written should be irrelevant since the clinical staff should be
provided with a tool agnostic of its inner workings. Unfortunately, in emerging technologies such as PG imaging, the situation
may be like the egg and chicken scenario where no user-friendly tools are developed because there is no widespread PG imaging,
and there is no widespread PG imaging partially due to the non-existence of software tools to exploit it. Therefore, how accessible
general-purpose MC tools like Geant4 and its derivatives are matters when the community is at a stage of proving the usefulness
of PG imaging. In this context, the Geant4 developers already had in mind a feature implemented in the code base to assist in
developing solutions that people could use with barely any programming knowledge: they call such a feature a messenger class. In
layperson’s terms, a messenger is a type of class responsible for parsing a text file, and, based on expected text entries written in
that text file, it executes the predefined set of instructions. Compare the two cases below to create an isotropic point photon source
using the default Geant4 particle gun (see listing 1) and the General Particle Source (GPS, see listing 2), which relies heavily on the
usage of English-based text commands.
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Such an approach of using input text files, also known as macro files, to define the entire simulation properties (geometry, physics
models, source, scoring and scoring postprocessing) is behind, if not all, at least most of Geant4 derivatives. In the field of particle
therapy, GATE [50], GAMOS [6] and TOPAS [113] are especially noteworthy due to their adoption. In turn, instead of text-based
input files, the FLUKA MC tool [29] is associated with a graphical user interface called Flair [173], which avoids the usage of
Fortran for many of the tasks required to define the parameters for an MC simulation, hence replacing Fortran programming with
an intuitive, primarily point-and-click and input the required values, workflow.

Improving the user-friendliness of the different tools does not solve the issue of computational time. PG emission is derived
from nuclear interactions, and those are known for their computational demands. Speeding up the interaction modelling of the
stages of a nuclear reaction is rather complex unless more simplified hadronic models are used. Furthermore, parallelisation, namely
employing general-purpose computing on graphics processing units (GPGPU), is challenging primarily because of divergence in
the code execution that prevents full exploitation of the GPGPU (each parallel thread dealing with the nuclear interaction modelling
is doing something different). There are many implementations of GPGPU MC-based dose calculation engines for particle therapy
in the literature. Two examples are [51, 82]. However, hadronic interactions are typically not explicitly modelled but instead relevant
quantities sampled from simplified models or cross-section databases (for example, [130]). An exception is the work of Tseung and
Beltran [174] where the authors implemented an intranuclear cascade and evaporation simulation in GPGPU, and a follow-up study
where the hadronic interactions were included in a fast GPGPU Monte Carlo code for proton therapy dose calculations [175]. From
an implementation point of view, the simulation of PG emission does not require explicit nuclear interaction modelling. Suppose the
cross-sections for each reaction of interest and material are known. In that case, estimating PG emission is trivial when propagating
an ion through the medium and using the ion energy at each step, as it was done, for example, in Verburg et al. [172] or Sterpin et al.
[153]. However, it was also shown by Verburg et al. [170] that cross-section databases may not necessarily be the most accurate
source of data. Noteworthy examples of fast MC tools employed in proton therapy are MCsquare [151] and FRED [143], and
goCMC [130], MonteRay [81] and FRED [143] as fast MC-based dose engines for carbon ion therapy.

An alternative approach is to explore variance reduction techniques. El Kanawati et al. [54] proposed a dedicated variance
reduction technique for PG emission based on a track-length estimator. The authors reported efficiency gains in the order of 105.
A follow-up study from Huisman et al. [45] improved the work of El Kanawati [54] by extending it to voxelised volumes, hence
allowing for simulation in patient CT images.
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6.2 Analytical approaches

Analytical approaches may not offer the accuracy and flexibility of MC tools. However, similarly to the pencil beam algorithm
having its place in particle therapy, the prediction of PG distributions using analytical tools may have its place, too. MC tools, even
the fast ones, may still be too slow or difficult to maintain. Furthermore, as discussed in section 5, MC tools can deliver significantly
inaccurate results for PG radiation modelling. It must be stressed that the analytical approaches discussed below use MC data for their
development. The usage of MC data implies that any inaccuracy therein will likely be, at least partially, imparted into the analytical
approach. Therefore, the developers and users of such approaches should be aware of this fact. However, analytical approaches
might be easier to tweak with experimentally-driven ad-hoc adjustments than tailoring an MC tool with its extensive, generalised
and often complex code to reproduce experimental data.

The first analytical approach relevant to PG imaging to mention is the one behind PG distribution prediction when using a
knife-edge slit camera, which is based on the work of Sterpin et al. [154]. The authors built a database of PG distributions per target
nuclei using MC simulations. This database of PG distributions is employed to estimate the emission per CT voxel using a raytracing
algorithm along the beam axis. When associating a PG emission yield with a voxel, the value is weighted by the fraction of the target
nuclei in the voxel. To emulate the size of the spot and lateral distribution of PG, the authors use a Gaussian-weighted method to
distribute the PG emission perpendicularly to the beam axis. The energy of the proton is calculated based on a continuous slowing-
down approximation (CSDA), which in turn is used to estimate the PG energy spectrum per voxel in the range of 3–8 MeV based
on the PG emission cross-sections differential in the energy of International Commission on Radiation Units and Measurements
(ICRU) report 63 [48]. In the same workflow, Sterpin et al. also modelled the camera response using MC simulations. They created
a transfer function that can be used to estimate the camera response for the PG emission predicted by their analytical approach [154].
This elegant solution allows for the prediction of the PG emission and the prediction of the detected signal in the same software
solution. This prediction solution was integrated into the OpenReggui package (https://openreggui.org/), which enables the usage
of the prediction tools in a clinically oriented environment where Digital Imaging and Communications in Medicine (DICOM) files
input/output, picture archiving and communication system (PACS) access, image registration, MC dose calculation, and cone-beam
CT (CBCT) reconstruction co-exist in the same platform.

The second analytical approach to mention is the so-called filtering approach. Parodi and Bortfeld [107] created a mathematical
framework based on the following premise: there must exist a function that convolved with dose yields a positron emitter (PE)
distribution. Due to its resemblance to convolution filters (kernels) usage, the authors coined the method as the filtering approach.
They demonstrated that such a function exists and can be obtained from the convolution of a Gaussian with a power-law function,
known as a Q̃ν function. The authors were focused on PET monitoring when they proposed this method. It had a constraint, though:
the method is only meaningful to be considered if the filtering approach exhibits energy invariance, i.e. the relationship between PE
distribution and dose distribution does not change significantly so that the method can be employed in the entire clinical energy range.
The approach could still be used if strong energy dependency is observed. However, that would require multiple filter functions,
probably even one filter function per energy, which would boil down this approach to a parameterisation of PE distributions per
energy.

The usage of the filtering approach was reported several times after its initial proposal and invariably applied to PET monitoring [8,
32, 40, 110]. That changed in 2016 when Schumann [146] applied the filtering approach to PG monitoring for the first time. However,
Schumann et al. did not have the PG prediction as an end goal: they used the filtering approach as a step in the workflow to achieve
dose reconstruction using an evolutionary algorithm. Nevertheless, their work was the first to demonstrate the applicability of the
filtering approach for homogeneous water phantoms in the context of PG imaging and with outstanding results [146]. More on dose
reconstruction is discussed in section 7.

Pinto et al. [120] generalised the filtering approach to both PET and PG monitoring and integrated them into a research version of
the commercial TPS RayStation. The filtering approach is particularly suitable to be integrated into a TPS because, when analysing
the formalism of the pencil beam algorithm, it becomes evident that both dose and PE/PG distributions share the same governing
quantity, the particle fluence spectrum [120]. The fact that both cases rely on the particle fluence spectrum allows for the exploitation
of the entire TPS infrastructure, but rather than using laterally-integrated depth-dose profiles as input for the pencil beam algorithm,
laterally-integrated depth-PE/PG profiles are utilised instead. Pinto et al. [120] also included a method based on look-up tables
(LUT) to estimate the PG energy spectrum per CT voxel, which enables arbitrary energy selections, thus allowing for PG prediction
of characteristic PG emission or a range of energies, such as 3–8 MeV for the knife-edge slit camera [154]. The PE and PG
predictions using the filtering approach were benchmarked against full-blown MC simulations (PE was additionally benchmarked
against clinical offline PET monitoring images) [120], and comparison of PG prediction against measured PG data is ongoing.
Figure 15 depicts the comparison of MC and TPS for dose, PE and PG for four patients.

An advantage of the solution developed by Pinto et al. [120] is the direct implementation in the TPS. Such an implementation
allows for the highest level of clinical workflow integration possible. The same software where the clinical staff optimises and assesses
treatment plans, prepares dosimetry QA, and evaluates patient alignment (for example, using digitally reconstructed radiograph
(DRR) registration) is also used to calculate and review the expected PET and PG images if the plan is adequately delivered to the
patient. Figure 16 depicts the PG prediction module, the RayStation GUI with the dose, and the PE and PG predictions.
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Fig. 15 Comparison of distributions (dose, PE and PG from left to right) between TPS and MC distributions for all patients (P1 to P4 from top to bottom).
Reproduced from [120] under the terms of the Creative Commons Attribution 3.0 licence (CC BY, https://creativecommons.org/licenses/by/3.0/)

Even though the clinical use of the filtering PG module in RayStation has not been reported so far, the PET module has been
under intensive usage at the Shanghai Proton and Heavy Ion Center (SPHIC), and clinical research exploiting the solution developed
by Pinto et al. [120] has been published [184, 185].

6.3 Machine learning

Machine learning is routinely used in PG imaging for data analysis and selection. It is an approach widely employed in Compton
camera studies to assist in identifying good events (for example, [9, 10, 52, 59, 71]). However, machine learning-based solutions still
need to be proposed to predict PG distributions and intense research is ongoing. The approach is quite appealing: using the treatment
plan and the CT as input and an artificial intelligence model will immediately predict the PG distributions. Such an approach could
be a compelling alternative to analytical approaches.

Nevertheless, if the PET monitoring experience shows anything, those dedicated PG solutions will be developed and published
sooner or later. An introduction and discussion on using machine learning approaches for predicting and exploiting PET monitoring
images are outside this manuscript’s scope. However, such applications can be found in the literature (for example, [72, 75, 83]).

7 Translation into clinical applications

The best example of translational research employing PG imaging is currently being done at OncoRay and University Proton Therapy
Dresden (UPTD, Dresden, Germany). This team was the first to use the knife-edge slit camera for PG imaging in 2016 [134], and
since then, they have expanded its application and improved workflows. Their world-class work gives a glimpse of how PG imaging
can greatly impact the future of proton therapy. In their optimised workflows, the impact of using PG imaging to monitor the treatment
of a patient is minor: it implies adding one extra minute per field to the total irradiation duration for positioning the knife-edge slit
camera trolley [15]. Pietsch et al. [116] developed automatic detection and classification tools to assess treatment deviations in proton
therapy using realistically simulated PG imaging data on twelve head-and-neck cancer patients. The authors applied convolutional
neural networks and conventional machine-learning approaches on 386 investigated scenarios resembling relevant or non-relevant
treatment deviations simulated on planning and control CTs. They found that convolutional neural networks could detect treatment
deviations and identify their source (setup error, range prediction errors, or anatomical changes by CT voxel manipulation) with
good performance. A breakthrough follow-up study was reported soon after, with some of the tools and lessons derived from
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Fig. 16 Top: graphical user interface of the PG prediction module where the user can select the target nuclei and the energy range for PG prediction. Bottom:
graphical user interface of the RayStation research version used with the dose (left), PE (middle) and PG (right) predictions. The CT slice, dose, and prediction
data in this figure are the same as in Fig. 15, top row (patient P1), but shown in RayStation as it would be likely used in a clinical setting. For details refer to
Pinto et al. [120]

Pietsch et al. [116] being used in the PG-based monitoring of 15 prostate cancer patients [14] treated at the University Proton
Therapy Dresden (UPTD) centre. In this study, PG imaging measurements were performed during 105 fractions, corresponding to
201 fields, assisted by acquiring CT images using the in-room control CT scanner. The authors were able to demonstrate evidence
of the detection capability of anatomical changes in prostate cancer patients undergoing proton therapy using clinically acquired
PG imaging data [14]. Finally, the OncoRay team also published a study that arguably may have the most striking implications
for the future of proton therapy: testing the reduction of range uncertainty margins when using PG imaging [15]. Bertschi et al.
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[15] compared a reference case to cases with margin reduction when using PG imaging-based monitoring alone (case 1), and when
using PG imaging-based monitoring and volumetric imaging for setup (in-room CT scanner, case 2). The reference case considers
a patient setup uncertainty margin of 3 mm and a range uncertainty margin of 7 mm, while case 1 uses 3 mm and 3 mm (−57%)
and case 2 utilises 1 mm (−67%) and 3 mm (−57%), respectively. For the clinical cases studied, the authors demonstrated that
the margin reductions related to range uncertainty (from 7 to 3 mm) had a more significant effect on reducing the mean dose in
surrounding healthy tissue than the margin reduction allowed by the volumetric imaging for setup.

An exciting translation into clinical applications is dose reconstruction. Dose reconstruction aims to obtain the dose distributions
delivered to the patient using particle therapy monitoring information. The rationale for dose reconstruction is straightforward:
clinical staff in a particle therapy centre primarily work with (physical and biological) dose distributions and increasingly more
with LET distributions. Adding another layer of complexity by introducing the analysis of PG distributions in the clinical workflow
might hinder the adoption of PG imaging, namely when the PG distributions cannot be directly compared to dose ones and require
a chain of tools to conclude on treatment delivery quality. A robust, fast and accurate algorithm for dose reconstruction based on
PG imaging could pave the way for a smoother transition of PG-based solutions into clinical practice. Nevertheless, it must be said
that the work of excellence reported from OncoRay and UPTD also shows that dose reconstruction algorithms are not mandatory
to accomplish clinical implementations that ultimately benefit patients.

In PET monitoring applications, such a dose reconstruction concept has been subject to extensive research, for example, [41, 90,
131, 140]. In the case of PG-based monitoring, Schumann et al. [146] was the first report of dose reconstruction using PG imaging.
Therein, an evolutionary algorithm was used coupled with the filtering approach, and the authors demonstrated the feasibility of
performing PG-based dose reconstruction in homogeneous water phantoms for both pencil beams and spread-out Bragg peaks
(SOBP). In turn, Liu and Huang [74] relied on deep-learning approaches to accomplish the dose reconstruction. Mean Bragg peak
position errors of less than 0.4 mm were observed when considering different simulation conditions. However, the authors also
realised that the developed approach required high-quality PG images, and there are challenges when dealing with PG images with
low counts or with limited spatial resolution [74]. Finally, one of the projects of the Real-Time Adaptive Particle Therapy Of Cancer
(RAPTOR) consortium (https://raptor-consortium.com/) is tackling the dose reconstruction problem from a practical point of view,
i.e. not only developing methods that can perform PG-based dose reconstruction but also assessing which methods are the most likely
candidates to be deployed in a clinical setting due to, for example, accuracy, robustness, computation time or usage complexity.

8 The future of PG imaging

The future of PG imaging looks bright. The quantity of research on this topic is overwhelming, considering the number of particle
therapy centres worldwide. In the past years, a considerable amount of research has been devoted to reducing treatment uncertainties
by exploring different imaging modalities and protocols.

Proton CT can reduce imaging uncertainties by imaging the patient with the same radiation quality as the one used for treatment,
which means that radiation interaction in the patient’s body will be the same, albeit at higher energies. This radiation quality
equivalence leads imaging contrasts to relate closely to the quantity of interest, the relative stopping power [125]. Direct assessment
of relative stopping powers via proton imaging could give more accuracy on relative stopping power estimation [25] while delivering
the same or less imaging dose to the patients [144]. A competing approach to proton CT in order to estimate more accurate relative
stopping powers than conventional CT is dual-energy CT [25] or spectral CT [79].

Imaging protocols can also contribute to the reduction of patient setup uncertainties. Better usage of CBCT techniques or in-room
CT that can be used to assist in patient setup and positioning. The highest level of accuracy and precision using the in-room CT
occurs when coupled with robotic structures to transfer the patient from imaging to treatment and vice versa. Such approaches allow
for a high degree of reduction in safety margins associated with the patient setup. As mentioned in section 7, Bertschi et al. [15]
reduced setup margins from 3 mm to 1 mm, a reduction of 67% by employing volumetric imaging for positioning. Alternatively,
magnetic resonance imaging-guided (MRI-guided) proton therapy is a technique that, although still in its infancy, promises ionising
radiation-free in-vivo and online image-guided proton therapy [39]. A preliminary investigation of an MRI-guided proton beamline
has been presented recently at OncoRay [104, 142]. Insights on the usage of MRI-Linac machines relevant to the discussion herein
point to significant inter-fractional and intra-fractional target position variations of the pancreas, prostate, and oesophagus [16, 68,
101, 104].

Nevertheless, none of the proposals that allow for better tissue modelling, better positioning or better anatomical assessment
offers the possibility of in-vivo assessment of the actual dose delivered to the patient. All those approaches give the means for
better dose estimation but do not ensure that such estimation was the actual dose delivered. Planning, setup and online anatomic
(MRI, X-ray fluoroscopy [156] or proton radiography [36]) imaging modalities do reduce uncertainties and give higher levels of
confidence that what was planned is what was delivered. Still, they do not provide information about where the dose was delivered.
The benefits of using in-vivo online monitoring techniques, like PG-based monitoring, are clear: they give feedback on where the
dose was delivered or, at the very least, if the ion ranges were, within some technique-related uncertainty, as expected.

Regardless of the benefits that PG imaging might bring, it is paramount to remember that it is not some sort of ion range
uncertainty panacea. PG imaging is challenging and full of obstacles that must be overcome, from unfavourable physics (low PG
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radiation yields) to integration into the clinical workflow. For anyone who has ever worked in the PG imaging field, this is a lesson
that is not easily forgotten.

Adaptive radiotherapy protocols, or the more demanding online radiotherapy protocols, let the treatment plan be adapted for
each patient depending on their unique circumstances in the progress of their radiotherapy treatment [73, 99, 104, 181]. In-vivo
range monitoring approaches may hold the key to achieving the highest level of QA in an adaptive radiotherapy protocol, and it is
no surprise that the mounting of PG imaging devices in the treatment gantry is being considered [15]. With the increasing interest
in adaptive radiotherapy protocols, PG imaging will likely take a central role in fulfilling the dream behind adaptive radiotherapy:
fully bringing personalised, precise medicine approaches into particle therapy.
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