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Integrity of the circadian clock determines regularity of high-
frequency and diurnal LFP rhythms within and between
brain areas
Paul Volkmann 1,2,5,6✉, Annika E. I. Geiger1,6, Anisja Hühne-Landgraf1, Nina Miljanovic3, Jessica Bly2, Tobias Engl1, Heidrun Potschka3,
Moritz J. Rossner 2,4 and Dominic Landgraf 1

© The Author(s) 2024

Circadian clocks control most physiological processes of many species. We specifically wanted to investigate the influence of
environmental and endogenous rhythms and their interplay on electrophysiological dynamics of neuronal populations. Therefore,
we measured local field potential (LFP) time series in wild-type and Cryptochrome 1 and 2 deficient (Cry1/2−/−) mice in the
suprachiasmatic nucleus and the nucleus accumbens under regular light conditions and constant darkness. Using refined
descriptive and statistical analyses, we systematically profiled LFP time series activity. We show that both environmental and
endogenous rhythms strongly influence the rhythmicity of LFP signals and their frequency components, but also shape neuronal
patterns on much smaller time scales, as neuronal activity in Cry1/2−/− mice is significantly less regular but at each time more
synchronous within and between brain areas than in wild-type mice. These results show that functional circadian rhythms are
integral for both circadian and non-circadian coordination of neuronal ensemble dynamics.
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INTRODUCTION
Many medical conditions, most notably psychiatric disorders, are
based on dysfunctions of the brain and its numerous areas and
structures that are interconnected and collectively generate and
control all behavior and multiple physiological processes [1].
Optimal functioning of processes within and communication
between different brain regions requires temporal coordination
[2]. This includes adaptation to the environment and its recurring
changes over the 24-hour day to which an organism is exposed
[3]. Organisms can react spontaneously to the changes in
environmental conditions and adapt their behavior and bodily
functions to them repeatedly. However, in order to anticipate the
daily recurring changes and not just spontaneously tune behavior
and body functions to them, many have evolved endogenous
systems to generate autonomous 24-h oscillations that are
synchronized to environmental rhythms - so-called circadian
(from Latin circa, around, and dies, day) clocks [4–7]. Endogenous
clocks increase or decrease the activity of virtually all physiolo-
gical processes, depending on requirements that prevail during a
given period of the day. Among others, these processes are
known to include gene expression, metabolism, cardiovascular
function, the immune system, neuronal activity, and behavior
[8–10]. At a cellular level, rhythmicity emerges from the molecular
interplay of so-called core clock genes and proteins that form a
transcription-translation feedback loop, in short TTL [4].

Fundamental elements of this system in mammals are CLOCK
and BMAL1 [11] that drive transcription of two other sets of
genes, Period 1, 2, and 3 (Per1/2/3) and Cryptochrome 1 and 2
(Cry1/2) [12], yet more regulatory elements are involved. The
mammalian hypothalamus is the site of the suprachiasmatic
nucleus (SCN), which is considered the main pacemaker of the
circadian system and the most important interface between
rhythmic light signals from the environment and circadian clocks
in the body [13]. The neuronal activity of the SCN is rhythmic and
transmits its own rhythmicity to other tissues, including other
brain regions, whose own neuronal activity in turn oscillates in a
24-h rhythm [14, 15].
The electrical activity of the brain can be observed at different

micro-, meso-, and macroscales, e.g., by electrophysiological
recordings on the single cell level or electroencephalograms able
to cover different brain areas [16]. Previous studies have been able
to identify an interplay between single neuron dynamics [17–21]
or multi-unit activity [14, 22] and the circadian clock. In contrast,
local field potentials (LFP), known to capture the summation of
roughly 1,000 neurons in cortical recordings in the form of
extracellular potential changes as ensemble activity [23, 24], have
proven to be a valuable measure of activity levels within many
different subregions. Circadian LFP oscillations have been
reported to occur in the SCN [25, 26] as well as in the cerebellum
and striatum [27].
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Many brain areas harbor their own autonomous circadian clocks
[28]. In addition, multiple structures of the brain receive direct or
indirect signals from the retina about whether it is light or dark in
the environment [29]. However, it is not known to what extent 24-
h rhythms of electrical activity are driven either endogenously or
exogenously, and to what extent rhythms from different brain
regions, e.g., those of the SCN and subordinate brain regions, are
interrelated [30]. Furthermore, it remains unclear whether
endogenous circadian rhythms and exogenous light rhythms
and their interplay, beyond the imposition of 24-h rhythms,
influence integrity of high-frequency brain electrical activity. We
hypothesize that these factors contribute to the interaction of
neuronal signals between brain regions and suggest that the
presence of endogenous and exogenous diurnal oscillations not
only determines 24-h periodic overall activity levels, but also
influences non-circadian patterns and the composition of
neuronal activity within and between brain regions.
To approach these assumptions in a hypothesis testing study,

we examined LFP signals with implanted telemetric small-sized
electrodes from two brain regions of freely behaving mice with
four combinations of different genetic and light conditions that
decipher the respective influence of endogenous and exogenous
rhythms and their interplay on electrical brain activity. As brain
regions, we chose the SCN as the core pacemaker of the circadian
system and the nucleus accumbens (NAc), a region with SCN-
independent rhythmicity [28] and only indirect connections to
the SCN [31]. To test the mere influence of endogenous clocks on
electrical activity in these two regions, we compared LFP signals
from wild-type and endogenously arrhythmic Cry1/2−/− mice
under constant darkness (DD). To examine exogenous influences,
we subjected the same Cry1/2−/− mice to 12:12 light-dark
(LD) conditions. Finally, to investigate the interaction of
endogenous and exogenous influences, we used the same wild-
type mice in a 12:12 LD regimen as a fourth condition. Our results
show that both endogenous and exogenous rhythms as well as
their interplay influence the 24-h oscillation of concerted
electrical activity in both brain regions and furthermore
determine regularity and complexity of LFPs within and
between them.

METHODS
Ethics approval
All animal experiments were carried out in accordance with institutional
guidelines and regulations approved by the Regierungspräsidium Ober-
bayern, ROB Munich, Germany under the license ROB-55.2-2532.Vet_02-16-
179. All further study procedures were performed in accordance with
institutional guidelines and safety regulations.

Animals
Cry1/2−/−; Per2Luc mice with C57BL/6 J background were kindly provided
by Michael Hastings, MRC Laboratory of Molecular Biology, Cambridge, UK.
Mice were backcrossed to C57BL/6 J background mice from our stock
every 5 to 10 generations. Pairing of littermates was carried out to obtain
two experimental groups of five male animals each: Cry1/2−/−; Per2Luc (in
this study referred to as Cryptochrome 1 and 2 deficient / Cry1/2−/−) and
Cry1/2+/+; Per2Luc (in this study referred to as wild-type) mice. In total,
seven animals per group ran through all experiments to finally get five of
these animals per group (W1-W5 and C1-C5), whose recording data were
used for statistical analyses. Two animals per group had to be excluded
(see below). Surgery and recordings were conducted between the age of 8
to 14 weeks. Mice were group-housed (maximum of six animals) in
ventilated cages (Tecniplast S.p.A, Italy) before and kept separated after
surgery to avoid injuries. Food and water were provided ad libitum. Mice
were maintained under a 12-hour light:12-hour dark cycle (LD), with lights
being switched on at 7AM. After recording under LD conditions, mice were
kept under constant darkness (DD). The assignment of animals was not
randomized; experimenters were not blinded to animal’s genotype.
Minimal number of animals necessary was determined by power analyses,
aiming at an effect size > 2 (in order to primarily detect differences in fitted

sine wave amplitudes), an intended power of 0.9, and an error probability
of 0.05, yielding a required sample size of at least 5 animals.

Implantation of transmitter and LFP probes
For recordings, we used the Data Sciences International (DSI, USA)
telemetry system. The transmitter HD-X02 was prepared as described
previously [32]. For creating electrodes, we used a single full hard PFA
coated stainless steel wire (Science Products GmbH, Germany) with a
diameter of 102 µm for both SCN and NAc [33, 34] and a calculated
impedance around 150 kΩ. The transmitter implantation was carried out as
described previously [35, 36]. Briefly, animals were allowed to habituate in
the experimental room for 30min before start of the surgery. Mice were
anesthetized by injecting an intraperitoneal mix of Midazolam (5 mg/kg),
Medetomidin (0.5 mg/kg), and Fentanyl (0.05mg/kg). Depth of anesthesia
was secured throughout surgery by checking the toe pinch reflex, body
temperature, and respiratory rate. Eyes were covered with Dexpanthenol
(Bepanthen, Bayer, Germany) to avoid dehydration. To expose the surgical
field, the head was shaved down to the left side of the back. Mice were
then fixed in a stereotactic frame (Stoelting, Germany). Negative leads
were wrapped around a screw (slotted cheese head machine screws BN
650, Bossard, Germany) that was fixed on the skull above the cerebellum.
Electrodes were inserted into the left SCN and the right NAc with leads
attached. More specifically, they were implanted at −0.35mm AP;
0.20mmML; −5.60mm VD for SCN and +1.94 mm AP; −0.60mmML;
−4.70mm VD for the NAc in accordance with a reference atlas [37].
Paladur (Kulzer, Germany) was used to form an isolating coating around
the electrodes, leads, and screw. The skin was then laid around the formed
hat and closed with the appropriate amount of suture. To reverse
anesthesia at the end of surgery, mice were injected with a mix of
Atipamezole (2.5 mg/kg), Flumazenil (0.5 mg/kg), and Naloxone (1.2 mg/
kg) intraperitoneally. Mice were also given Carprofen (5 mg/kg) subcuta-
neously on the first, second, and third postoperative day.

LFP recordings
After surgery, animals were allowed proper time to recover (minimum of
two weeks) in individual home cages. For recordings, mice were
transferred to metabolic cages (TSE Systems, Germany) in which we also
recorded locomotor activity by means of infrared beams with a 15-minute
time resolution for one animal of each genotype (W5 and C5). The cages
were placed on top of a receiver plate (DSI) catching the live signal of
implanted transmitters. LFP recordings were obtained at a sampling rate of
500 Hz using Ponemah software (DSI). After 5 days of habituation,
recordings under LD condition took place for three days. This was
followed by a 5-day period of habituation to DD conditions and then
recording under DD for three days.

Imaging of brain slices
After deeply anesthetizing mice with 4% isoflurane and perfusion by
intracardial injection of 1× phosphate-buffered saline and then 4%
paraformaldehyde (PFA), the entire brain was removed and stored at
4 °C in 4% PFA for 24 h, then in a 15% sucrose solution for 24 h, afterwards
in a 30% sucrose solution for three days or until it sank, and finally frozen
at −80 °C. For imaging, brains were serially sliced at 40 µm using a cryostat
microtome (Leica Biosystems, Germany). Brain slices were stained with
hematoxylin-eosin. The correct location of probes was confirmed
microscopically.

Data processing
Raw LFP recordings were high-pass filtered at 0.5 Hz and visually inspected
for artifacts, both with and without the help of the automatic artifact
detection of the NeuroScore software (DSI). No animal displayed more than
30 artifacts in the analyzed time window, all artifacts exceeding the
threshold of 1 mV were removed. Two wild-type and two Cry1/2−/−

animals were excluded on pre-established criteria after inspecting the raw
LFP traces and displaying them as spectrogram before any further analyses
took place as they showed flat LFP signals without distinct frequency
content. Subsequent histological examination showed hemorrhage around
the tip of the electrodes for the excluded animals which could explain the
lack of signal, and which was not present in included animals.
Traces were then decomposed into their frequency components by fast

Fourier transformation [38] using NeuroScore. More specifically, we
obtained the spectral power of frequency bands for each delta
(0.5–4 Hz), theta1 (4–6 Hz), theta2 (6–8 Hz), alpha1 (8–11 Hz), alpha2
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(11–14 Hz), sigma (14–16 Hz), beta1 (16–18 Hz), beta2 (18–32 Hz), gamma1
(32–48 Hz), and gamma2 (48–70 Hz) within 1 s bins (for cross- and
autocorrelation) or 4 s bins (for all other analyses of spectral data),
respectively. We obtained data in 4-second bins as this provided a good
compromise between frequency resolution of spectral power and time

resolution but used 1-second bins for cross- and autocorrelation to capture
their relevant dynamical time windows.
High-pass filtered raw LFP traces were used for a limited number of

analyses: at their sampling rate of 500 Hz (for displaying raw LFP traces,
continuous wavelet transforms, and coherence measurement), within

P. Volkmann et al.

1861

Molecular Psychiatry (2025) 30:1859 – 1875



1-second bins (for cross- and autocorrelation), and within 4-second bins
(for all other analyses).
After data was processed as described, the complete recording period

was displayed as spectrogram (see below) and the first undisturbed and
uninterrupted 24-hour period starting at 7AM corresponding for both brain
regions was used for each light regimen for every individual animal for
consecutive analyses (except for Lomb-Scargle analyses for which we used
the entire length of each light regimen’s three consecutive recording days).

Statistical analyses
All analyses of processed data presented in this study were carried out
using R version 4.2.2 [39] and RStudio (RStudio, USA). Details of statistical
tests are indicated in the figure legends and can be found in the Suppl.
File. All analyses included the same n= 5 animals per genotype, all animals
were included in every analysis. All outcome measures of our study are
reported. Secondary measures describing properties of time series derived
from our analyses (such as, for example, block count, sine wave amplitude,
or correlation values – see below) which met normality (as determined by
Q-Q plots) were compared using Type II ANOVA (or unpaired student’s t-
test, respectively). When normality was not assumed (e.g., deviation of
peaks from 24 h where data is necessarily right-skewed) or met (e.g.,
Euclidean distance), a general multivariate regression model (or Wilcoxon
rank-sum test, respectively) was used. Sample size was identical for each
group compared in every test. Therefore, variance of groups was not
compared as the parametric tests used are robust against differences in
variances in this case [40]. Differences were considered significant when
p < 0.05.
Where single representative animals are shown, we always display the

same wild-type (W1) and Cry1/2−/− (C1) animal. The only exceptions are
the raw LFP traces in Fig. S2A–C to show our recordings are not
contaminated by locomotor activity as we only recorded metabolic cage
activity data for animals W5 and C5, as well as the time-frequency plane in
Fig. S3A. The experimenter was not blinded to the groups during data
analysis.

Plotting. Most plots were created using the R function ggplot from the
ggplot2 package [41]. For spectrograms, LFP relative amplitude series, and
matrix generation, the R function pheatmap from the pheatmap package
[42] was used. Sine waves, cross-/autocorrelation, and continuous wavelet
transform were plotted using the plot function of the graphics package.

LFP analyses. Spectrograms for exemplary raw LFP traces shown in
Fig. 1A, S2A–C, and S3C were created using R function specgram from the
package signal [43] with a Fourier transform window size of 32.
The area under the curve of the fast Fourier transformed LFP signal in

Fig. 1E was calculated by integrating over the absolute values of the
transformed 4-second binned 24-hour time series of individual animals
and pooling the respective results.

Continuous wavelet transform. We computed the continuous wavelet
transform [44, 45] of raw LFP traces using Morlet wavelets with a width of 7
cycles [46] to obtain representative information about the occurrence of
neural oscillatory events using the wt function of R package biwavelet [47]
which we show in Fig. S3. This was carried out for every individual animal
both during LD and DD in the SCN and NAc at ZT0, ZT6, ZT12, and ZT18
over the course of 6 min at each chosen Zeitgeber time. We then
determined significance levels of the detected wavelet events and
thresholded at a significance level of 1.96. We counted the occurrence
of bouts above threshold for every individual period (frequency) and
identified two frequencies – 66.8 and 8.3 Hz – centered around which we
found local maxima for both genotypes. We show this quantification in

Fig. S3A. We then calculated the percentiles of power within individual
frequencies of analyzed traces and defined events as peaks that exceed
the 98th percentile in the time-frequency plane within their frequency [46].
From this data, we derived the frequency span of neural oscillatory events
in the identified frequencies and displayed it in Fig. S3B as histogram. We
then used filtered LFP traces (8–11 Hz for alpha1, 48–70 Hz for gamma2) to
detect local maxima of neural oscillatory events for both regions in an
example animal and identified times with high density of such maxima. We
used this information to depict exemplary traces of neural oscillatory
events in Fig. 1A and S3C. We further quantified event duration and
interval and displayed them as density plots in Fig. S3D. We also quantified
event power as fraction of the frequency specific median and again
displayed them as density plots Fig. S3E based on peaks that exceed the
98th percentile.

Z-scoring. Data for 24 h spectral band spectrograms in Fig. 1A and S4A,
24 h relative LFP amplitude time series in Fig. S4B, sine wave analyses in
Fig. 2A–D and S5A–D, correlation count plots in Fig. 3D and S6C, slope
analysis in Fig. 4C, D and S8B, and mean frequency time series in Fig. S4E
were z-scored for each individual frequency band or LFP time series for
every animal individually (by subtraction of mean and division by standard
deviation). This was done to compare phenomena beyond absolute values
of either spectral power or LFP amplitude, but instead relative to activity
levels throughout the 24-hour day.
For spectrogram block analysis that is displayed and quantified in

Fig. 1B, C and S4C, after z-scoring (leading to the mean being 0) all values
above 0 were equated to 1000, all values below 0 to −1000. Using R
function rollmeanr of the zoo package [48], the rolling average was
calculated over a window of 250 values. Afterwards, again all values above
0 were equated to 1000, all values below 0 to −1000. This was done in
order to quantitatively enhance the contrast between relatively high and
low power events and reproduce the impression of activity blocks visually
observed from the spectrograms that we were then able to quantify.
Colors correspond to spectrograms as depicted in Fig. 1A. R’s base function
rle was then used to count the number of blocks per frequency band and
animal.

Sine wave fit. For sine wave fit in Fig. 2A and S5A, B, a linear fit to the
pooled data of each genotype within the same brain area and light
regimen was carried out using:

A� sinð2π=24 � Zeitgeber timeÞ þ cosð2π=24 � Zeitgeber timeÞ

with A being either a frequency band’s spectral or a LFP 4-second binned
(pooled) time series over 24 h. To achieve single animal resolution for our
corresponding quantitative descriptions of amplitudes in Fig. 2B–E and S5C,
D, we derived likewise calculated fits for each animal’s individual time
series in respective brain areas and light regimens by then detecting each
curve’s maximum and the corresponding Zeitgeber time.

Lomb-Scargle periodogram. Lomb-Scargle periodogram data displayed in
Fig. 2E–G and S5E, which estimates frequency spectra of time series based
on a least-squares fit of sinusoids, was created using lsp function from lomb
package [49] and obtained from full and undisrupted recording periods
(excluding habituation) with a duration of up to 72 h of the 4-second
binned spectral and LFP data. Derived quantitative comparisons in Fig. 2E,
2G, and S5E utilized exclusively each animal’s highest peak of the
respective Lomb-Scargle periodogram data, regardless of its amplitude.

Linear correlation. Linear correlations were carried out as Pearson
correlation between a frequency band’s spectral or a LFP 4-second binned
time series of both brain areas under a certain light regimen, pooled for

Fig. 1 Disruptions of endogenous and environmental circadian rhythms increase fragmentation and intensity of LFP activity over 24 h.
A Individual spectrograms of z-scored 24-hour SCN frequency activity of all animals. Color graded values refer to standard deviation. For W5
and C5, their corresponding locomotor activity levels are depicted. For C1, exemplary 3.6 s raw LFP traces under LD showing alpha1 (left,
ZT18.1555) and gamma2 (right, ZT17.5065) oscillatory events in the SCN are displayed. The top trace is the raw signal, the middle trace the
signal filtered at 8-11 Hz (alpha1) or 48-70 Hz (gamma2), respectively. The corresponding spectrograms are at the bottom. B Example 24-h
block spectrograms (SCN under LD). Grey blocks at the beginning are a calculation artifact of the rolling average (the first 250 bins).
C Comparison of number of blocks counted from block spectrograms. D 24-h time series of LFP amplitude with mean ± standard deviation
within one-hour bins. E Area under the curve of the fast Fourier transformed LFP signal. Boxplots show median and whiskers indicating 1.5-
fold distance of inter-quartile range (IQR) to the upper/lower quartile. White and black bars represent light and dark, respectively. Asterisks in
(C) and (E) refer to Type II ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001; n.s. = not significant. a.u. = arbitrary unit.
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Fig. 2 Endogenous and environmental circadian rhythms together generate and shape 24-hour rhythmicity of LFP activity and its low-
frequency components. A Linear sine wave fit for pooled z-scored 24-h gamma1 SCN activity of all animals. B Comparison of wild-type and
Cry1/2−/− sine wave amplitudes of z-scored data. Individual connected points represent matched frequency – light regimen – brain area pairs.
C As in (B), but boxplots for both genotypes in LD and DD. D 24-hour circular graphs with arrows pointing at the averaged Zeitgeber time of
the highest amplitude of individual animals’ fitted sine waves. Arrow length indicates inverted standard deviation. E Timing of Lomb-Scargle
peaks and matching sine wave amplitudes of individual animals for every frequency – light regimen – brain area pair. Point size corresponds
to power of respective Lomb-Scargle peak. F Lomb-Scargle periodograms of gamma1 time series of all individual animals in the SCN.
G Absolute deviation of largest Lomb-Scargle power peaks from 24 h. Median values are shown in red. Asterisks in (B) refer to student’s t-test,
in (C) to Type II ANOVA, in (G) to a general multivariate regression model.
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Fig. 3 Endogenous circadian clocks determine the temporal sequence of LFP activities and its low-frequency components across brain
regions. A Pearson correlation of pooled theta1 activity from all animals with density plots for point clouds. B Pearson correlation of pooled
LFP amplitude from all animals. C Pearson correlation color matrix for frequency pairs from each genotype’s averaged data. Correlation
coefficients were obtained for the first (ZT0-12, subjective day, upper right corner) and second half (ZT12-0, subjective night, lower left corner)
of the 24-h day. D Correlation count plot for z-scored LFP amplitude (for graphical explanation, see Suppl. Fig. 4B) between both regions under
LD. Occurrences of datapoints for respective conditions within each 3-hour time bin were counted, point size and color refer to the number of
occurrences. E Cross-correlation of sigma activity between SCN and NAc under LD. Each bar refers to a correlation value with a multiple of a
1-second time-lag. Values on the x-axis signify the lag in seconds for the corresponding correlation value. F Autocorrelation of sigma activity in
the SCN under LD. Depiction as in (E). Asterisks in (C) refer to a Type II ANOVA of unpooled coherence coefficients (correlation values only of
matching frequency bands) of all individual animals.
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Fig. 4 Endogenous and environmental circadian rhythms together increase uniformity and steadiness of low-frequency LFP component
activities within and between brain regions and between animals. A Euclidean distance matrix for distances (a.u.) between every
combination of every time series from single animals (for each genotype listed once as numbers 1 to 5), averaged across all frequencies.
B Quantification of all Euclidean distances, grouped by the different variables. C Histograms of all slope parameters of SCN LD alpha1 time
series, counting occurrences within a binwidth of 20. D Curve fit to the histograms in (C). Inlay panel: comparison of skewness values of slope
parameter histograms for all frequency – light regimen – brain area pairs. E Sample entropy of all LFP amplitude time series. F Sample entropy
of frequency time series pooled for all frequencies. Asterisks in (B) refer to a general multivariate regression model, in (E) and (F) to Type II
ANOVA, in (D) to a paired Wilcoxon rank-sum test.
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each genotype as shown in Fig. 3A, B or for individual representative
animals shown in Fig. S6A. Correlation matrices in Fig. 3C and S6B were
obtained by calculating the Pearson correlation coefficient for different
combinations of frequency bands within the same light regimen for each
animal individually and then averaging over corresponding values. The
creation of the correlation count plot in Fig. 3D and its four categories is
explained in Fig. S6C.

Cross- and autocorrelation. Cross- and autocorrelations displayed in
Fig. 3E, F and S6D–G were calculated using R function ccf of the tseries
package [50]. Each correlation was calculated using 24-hour spectral or LFP
data for LD and DD (and in case of autocorrelation each SCN and NAc)
separately and averaged over all animals within the same genotype.
For quantitative comparison of correlations shown in Fig. S6G, we took

all cross- and autocorrelation values, respectively, for every multiple of
1-second lag (as displayed in the plots described before) and averaged
them within four time bins (two with negative, two with positive lag) for
each animal individually from 1-second binned recordings of either
spectral frequency bands or LFP signal. This was done for each light
regimen and, in the case of autocorrelation, for each brain area
individually.

Coherence measurement. Coherence measurements of Fig. S7 were
performed using R function coh of the package seewave [51]. More
specifically, raw LFP traces at four different Zeitgeber times (ZT0, 6, 12, and
18) over the course of 6 min each were divided into three bins of 108 s
with an overlap of 36 s each. The coherence at each Zeitgeber time was
then averaged over the three bins and plotted using linear smoothing
(implemented in geom_smooth within ggplot) with 95% error bands,
averaged for the different parameters specified in Fig. S7.

Euclidean distance. Euclidean distance for each time series pair was
calculated using the formula

f A; Bð Þ ¼
XZT24

ZT0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBxZTn � AxZTn Þ2

q
þ ðByZTn � AyZTn Þ2

with A and B being two time series and, for example, AyZTn being the
y-coordinate of a defined time point ZTn of time series A, such that only
the distance of corresponding time points was calculated. Our final metric
reduces this distance between each combination of compared time series
to one single measure with higher values indicating higher distance and
lower values lower distance. We show one matrix that averages all
frequencies in Fig. 4A and an example matrix for gamma1 in Fig. S8A. For
quantitative comparisons in Fig. 4B, the entire data was split into three
groups for each binary variable (light regimen, brain area, or genotype,

respectively). For example, for light regimen all Euclidean distances
between pairs of two time series both under LD would form the first group,
all Euclidean distances between pairs of two time series where one was
under LD and the other under DD form the second group, and all
Euclidean distances between pairs of two time series both under DD form
the third group.
For Euclidean distance of PCA results depicted in Fig. 5B, all possible

pair-wise combinations of datapoints for principal components 1 and 2
(PC1 and PC2) within each genotype were used accordingly. The
occurrence of obtained values was displayed as histograms with a
binwidth of 2e-10.

Slope analysis. Slope values were calculated for every two consecutive
z-scored time series points by dividing their difference in spectral power by
the time bin step size. Occurrences of slope values were then counted and
displayed as histogram in Fig. 4C and S8B. X-axes were truncated for values
between 0 and 3,000 (left plot) and values between 3,000 and 9,000 (right
plot). Skewness of histogram distributions was assessed using the skewness
function of R package moments [52] for every frequency-light regimen-
brain area combination and compared between genotypes in Fig. 4D.

Sample entropy. Sample entropy [53] was calculated using the FastSam-
pEn function of the TSEntropies package [54] and, briefly, assesses
complexity and self-similarity of time series by identifying similar epochs
and assigning higher values indicating lower regularity and lower values
indicating increased self-similarity. This analysis yields a single value for
each individual 24-hour time series analyzed. These single measures are
displayed as boxplots for all 4-second binned LFP in Fig. 4E and for the
pooled frequency time series in Fig. 4F, separated for brain area, light
regimen, and genotype.

Granger causality. Granger causality was calculated for the compiled time
series of each genotype under each light regimen in each brain region
using grangertest of the package lmtest [55] with results displayed in
Table 1. The function carries out a Wald test comparing whether a time
series A is only explained by (the lags of) A itself or by (the lags of) both
time series A and B.

PCA. For Principal Component Analysis, the prcomp function from R
package stats was used. Briefly, PCA transforms data into a new coordinate
system in a way that its greatest variation is captured along the axes. Time
bins were treated as observations, spectral power bands as variables.
Plotting was carried out using ggplot and ggbiplot from the ggbiplot
package [56], the latter for overlay of the variable (frequency) arrows.
Figure 5A and S9B show results for one-hour binned activity, while Fig. S9A
shows results for 4-second binned data of all frequency bands. Euclidean

Fig. 5 Disruption of endogenous circadian rhythms increases the variance of LFP constituents in multi-dimensional analysis. A PC1 vs
PC2 of a PCA of the complete dataset of one-hour binned activity with variable (frequency) arrows and density plots of point clouds.
B Histogram of distribution of Euclidean distance values for all combinations of datapoints within each genotype shown in (A). Asterisks in (B)
refer to a two-sample Kolmogorov-Smirnov test.
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distance was calculated using the 1-hour binned data for every possible
datapoint pair within genotypes.

Fold-change heatmap. For every measure obtained in this study, we
calculated fold-changes relative to wild-type animals under LD and
displayed them as heatmap in Fig. 6. LFP amplitude derives its values from
Fig. 1E, Pearson correlation from Fig. 3C, Cross-correlation and Auto-
correlation from Fig. S6G, Skewness slope values from Fig. 4D, Block count
from Fig. 1C, PCA (Euclidean Distance) from Fig. 5B, Euclidean distance
from Fig. 4A, Sample entropy from Fig. 4F, Sine wave amplitude from
Fig. 2C, and Period deviation from Fig. 2G. In each case, all available data
from all frequencies and, where applicable, both brain regions were
averaged for each of these four groups: wild-type under LD, wild-type
under DD, Cry1/2−/− under LD, and Cry1/2−/− under DD. Relative changes
to wild-type under LD were then calculated for the other three groups.
Where the relative change was negative, directionality of the change was
inverted to paint a coherent picture in the heatmap.

RESULTS
Disruptions of endogenous and environmental circadian
rhythms increase fragmentation of LFP activity over 24h
We recorded LFP signals with stereotactically placed electrical
probes in the SCN and NAc of five wild-type and five Cry1/2−/−

animals (Fig. S1A, B). Raw traces of our LFP recordings and the
corresponding spectrogram show contamination-free recordings
under both LD and DD (Fig. S2A, B) that are stable in amplitude
and quality over the entire recording period (Fig. S2C). To ensure
that we are describing real underlying neuronal oscillatory

phenomena and not only irregular transients with high amplitude
[57], we computed the continuous wavelet transform [44, 45] for
selected sections of our raw LFP traces using Morlet wavelets
(Fig. S3A). The captured LFP signals contain neural oscillatory
events occurring in the entire frequency range analyzed through-
out our study (and less so below and above this range). However,
we identified two frequencies which stood out in displaying
pronounced peaks in the time-frequency plane: one in the alpha1
and one in the gamma2 range (Fig. S3A). Oscillations at these two
frequencies largely extend over ± 10 Hz, with only minor differ-
ences between the two genotypes (Fig. S3B). In exemplary traces
of neural oscillatory events, we observe that in the alpha1 range
they have a longer duration, while those in the gamma2 range are
rather short (Fig. 1A, S3C) which is confirmed in a density plot of
their event duration distribution (Fig. S3D). Properties of neural
oscillatory events show little differences between the two brain
areas in the alpha and remarkable differences in the gamma
range, with the SCN displaying shorter durations (Fig. S3D) and
more low-power events (Fig. S3E). Intervals between events of
both frequencies, however, depend on the light regimen (shorter
during LD) (Fig. S3D). Finally, wild-type animals display more high-
power events in the gamma range, while Cry1/2−/− mice show
more of them in the alpha range (Fig. S3E). These initial results
demonstrate that our recordings capture neural oscillatory events
instead of just spectral noise. Events occur especially pronounced
in the alpha and gamma range. Our results also show how these
events are modulated differentially contingent on the brain area
from which they are recorded and on diurnal rhythms, with

Table 1. Granger causality shows prediction accuracy more strongly in the direction from SCN to NAc.

Wild-type Cry1/2−/−

SCN → NAc NAc → SCN SCN → NAc NAc → SCN

p-value summary p-value summary p-value summary p-value summary

LD < 2E-16 *** < 2E-16 *** < 2E-16 *** 0.3386 n.s.

DD 0.0001637 *** 0.4216 n.s. < 2E-16 *** 0.2793 n.s.

Granger causality for each genotype’s pooled time series between the two brain regions in both directions with each p-value of F-statistics representing the
likelihood of finding causality if no causality was present between the samples.

Fig. 6 Disruption of endogenous and exogenous clocks affects properties of LFP and its spectral content across all time scales. Heatmap
summarizing the parametrized main findings of our study as displayed in Figs. 1–5. Values were derived by pooling measures described on the
left side of the heatmap for all frequency bands (except for LFP amplitude) and both brain regions (where applicable) within four groups: wild-
type and Cry1/2−/− animals under LD and DD each; and calculating the mean within these four groups. We then used wild-type mice under LD
as reference to calculate relative fold-changes in Cry1/2−/− animals under LD (endogenous), wild-types under DD (exogenous) and Cry1/2−/−

animals under DD (endogenous × exogenous). All measures displayed here are represented throughout the other figures. Descriptions on the
right side of the heatmap are a suggestion for how to understand the obtained measures in a neurophysiologically meaningful way.
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differences in neural oscillatory power being dependent on
endogenous clock function and intervals being modulated by
the light regimen.
Exemplary raw traces of detected neural oscillatory events in

the SCN for animal C1 (Fig. 1A) emphasize that our spectral data is
capturing underlying neuronal ensemble phenomena that con-
stitute the basis for our further analyses. To now obtain a general
impression of 24-hour dynamics of the LFP time series of the SCN
and the NAc under the influence of endogenous and exogenous
rhythms, we used a graphical visualization of the z-scored activity
within all frequency bands and fast Fourier transformed LFP
amplitude of an exemplary ZT0-ZT24 epoch for each animal under
LD and DD conditions. For both brain regions, these graphs show
a rough division of frequency specific activity and LFP amplitude
into homogenous blocks (Fig. 1A, S4A, B). Under LD conditions, a
clear demarcation line of frequency distribution is visible at ZT12
for all wild-type animals, defined by a switch from relatively low to
overall higher gamma activity (and vice versa in the remaining
frequency bands) (Fig. 1A top left, S4A top left). In the same
animals, the day-night switch between frequency specific activity
is preserved under DD conditions, however due to individual free-
running periods of the animals without a comparably clear line
after the first 12 h of the recording section shown (Fig. 1A top
right, S4A top right). Also, in Cry1/2−/− mice, the frequency-
specific activity under LD conditions appears to be different in the
light and dark phases of the LD cycle, although no such clearly
defined demarcation line as in wild-type animals is evident (Fig. 1A
bottom left, S4A bottom left). However, in DD Cry1/2−/− animals
do not display any obvious diurnal patterns (Fig. 1A bottom
right, S4A bottom right). Beyond that, the recorded signals
very accurately reflect changes between increases and decreases
of locomotor activity, as shown for animals W5 and C5 (Fig. 1A,
S4A).
The optical impression of a demarcation line between light and

dark or active and inactive phase arises primarily from different
relative activity distribution patterns within frequency bands
specific to the respective time of day, which appear especially in
wild-type animals in the form of temporally extended, homo-
geneous blocks and are contrasted by a fragmentation of blocks in
Cry1/2−/− animals. To be able to quantify this merely visual
phenomenon, after binary splitting of z-scored values, we
calculated the rolling average of each animal’s time series and,
again, split the obtained values with regards to their relation to
the mean. This reproduced the visually identified distribution
pattern of blocks (Fig. 1B) where each block type corresponds to
relatively high or low spectral power or LFP amplitude,
respectively. Counting the number of blocks confirms that wild-
type animals have fewer blocks than Cry1/2−/− mice in LD,
indicating a less fragmented distribution of frequency activity
(Fig. 1C) and LFP amplitude (Fig. S4C). In contrast, Cry1/2−/−

animals more often alternate between the two block types and
both types occur with the same probability regardless of the time
of day. Furthermore, the analysis shows that, independently of
genotype, the light regimen significantly affects the number of
blocks with fewer blocks in LD than in DD, and that during the
light phase (LD) or subjective day (DD) the frequency activity is
more fragmented than during the dark phase / subjective night.

Disruption of endogenous circadian rhythms increases LFP
amplitude
LFPs reflect local electrical currents caused by aggregation of
neuronal ensemble activity [23]. Hence, their intensity is
hypothesized to be indicative of the level of synchronicity of
these ensembles, with higher intensities indicating higher
synchronicity [58, 59].
Depiction of LFP amplitude of both brain areas also shows no

diurnal pattern in Cry1/2−/− animals, but in wild-type animals,
especially under LD conditions. Interestingly, their LFP amplitude

in SCN and NAc shows an antiphasic circadian rhythm (Fig. S4B).
Accordingly, averaged one-hour bins of the fast Fourier trans-
formed LFP signal show a dip around ZT12 in the SCN that is
weakly preserved under DD (Fig. 1D, S4D), but an increase around
ZT12 in the NAc. The similar applies to the investigation of
frequency-specific activity, e.g., gamma1 (Fig. S4E). Here, wild-type
animals, especially in contrast to Cry1/2−/− animals under DD,
consistently show narrow standard deviation margins and a steep
increase or decrease in activity around ZT12.
Moreover, quantifying the area under the curve of the fast

Fourier transformed LFP signal shows higher values for Cry1/2−/−

animals under both light regimens in the SCN as well as the NAc
(Fig. 1E), implying higher synchronicity of local neuronal activity
when the endogenous clock is disrupted. Furthermore, the
analysis shows that LFP amplitude in the NAc is consistently
higher than that of the SCN regardless of genotype and light
regimen.

Endogenous and environmental circadian rhythms together
generate and shape 24-hour rhythmicity of LFP activity and its
low-frequency components
In order to investigate more precisely and systematically the
influence of endogenous and environmental diurnal rhythms on
electrical properties of neurons and their circadian rhythmicity, we
carried out linear fitting of a 24-hour sine wave for the different
z-scored time series to compare the amplitudes as a surrogate for
the strength of 24-h rhythmicity (Fig. 2A, S5A, B; for statistics, see
Suppl. File). Comparison of all amplitudes of these wave fits
between wild-type and Cry1/2−/− mice for all single frequencies
(for SCN and NAc under LD and DD each) shows that, with a few
exceptions, the amplitudes of Cry1/2−/− mice are always lower
than those of wild-type mice, with some of their amplitudes being
close to 0 (Fig. 2B and S5C). The highest amplitudes of 24-h
rhythms are found in wild-type animals in LD (Fig. 2C). In DD,
when only the influence of endogenous rhythms remains, the
amplitudes of the individual frequencies of wild-type mice
decrease significantly. Interestingly, the magnitude of these
amplitudes is then very similar to that of Cry1/2−/− mice in LD,
where only exogenous rhythmic signals are present – suggesting
that endogenous and exogenous time signals each have a
similarly strong influence on circadian neuronal activity rhythms.
When both rhythmic influences, endogenous and exogenous, are
omitted, as is the case in Cry1/2−/− mice in DD, the amplitudes of
the frequencies hardly exceed 0 overall.
Interestingly, circular plotting of the 24-h sine wave fit phase

shows that in the SCN and the NAc of wild-type mice some
frequencies predominantly peak between ZT15-16, i.e., in the
activity phase (Fig. 2D). This effect is predominantly carried by
gamma frequency bands, which are associated with attention and
consciousness in the cortex, offering a potential explanation to
why their peak occurs during the animals’ active phase [60, 61].
Besides, there is another cluster in the SCN in the opposite phase
at around ZT5, in which mainly theta, alpha, and sigma
frequencies are present, which are associated with decreased
activity, relaxation, and sleep [62]. In contrast, in Cry1/2−/− mice,
neither in the SCN nor in the NAc are times discernible at which
certain frequency peaks are particularly pronounced. With
additional consideration of the light regimen, these patterns are
found to be essentially maintained in wild-type mice, but with
less pronounced peak clustering in DD (Fig. S5D). Similar to wild-
type mice but with less pronounced patterning, the peaks of
gamma frequencies in the SCN of Cry1/2−/− mice under LD are
clustered between ZT15-16 and of sigma at around ZT6. This
pattern is absent in SCN under DD and in NAc under both LD
and DD.
As the sine wave fit inherently assumes 24-h rhythmicity, we

additionally drew Lomb-Scargle periodograms for each animal for
every frequency under both light regimens [63] to investigate
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which other periods naturally occur. The combined examination of
24-h sine wave fit amplitudes and the timing and power of the
detected dominant periods of the Lomb-Scargle analysis illus-
trates that the periods of wild-type animals predominantly cluster
in the circadian range, i.e., around 24 h, whereas Cry1/2−/− animals
show a broader period range and less powerful rhythms (Fig. 2E).
With explicit consideration of exogenous influences by the light
regimen, it shows that rhythms with circadian period and strong
power can especially be found in wild-type animals in LD and with
lower power in DD, whereas they are hardly present in Cry1/2−/−

animals, especially in DD, here exemplified for gamma1 power of
the SCN (Fig. 2F). Accordingly, the dominant period of all SCN
frequencies of wild-type mice in LD almost never deviates from
24 h, and predominantly deviates only little in DD towards periods
slightly longer than 24 h (Fig. 2G, top left). In contrast, dominant
periods in Cry1/2−/− SCNs mostly differ by about 5 h in LD and
deviate so much that they no longer fall within the range of
circadian periods in DD (Fig. 2G, top right), although the animals
show strong 24-h masking in behavior. The NAc exhibits similar
patterns (Fig. 2G, bottom), however, unlike in the SCN, stronger
deviations from 24 h are present in wild-type animals in both LD
and DD, which is especially evident in alpha2, sigma, and beta1
frequencies in DD, whose periods deviate nearly 20 h from 24-h
rhythms. Similarly, LFP amplitude of both brain regions deviates
strongly from 24-h rhythmicity in Cry1/2−/− animals, especially in
DD, but less so in wild-type animals (Fig. S5E). Thus, again, both
genotype and light regimen have a striking effect on electrical
activity rhythms within brain areas, with loss of endogenous and
exogenous timing cues each leading to greater variance in rhythm
periods.

Endogenous circadian clocks determine the temporal
sequence of LFP activities and its low-frequency components
across brain regions
As we recorded local field potentials from the SCN and the NAc of
each mouse simultaneously, we were able to assess correlation of
activity and carrier waves between the two brain regions. Using
different scaling approaches (linear, exponential, and logarithmic)
to our variables led to comparable R-squared values in our
correlational analysis. Because of the cloud-like distribution of data
points, and its biological meaningfulness and ease of under-
standing, we chose a linear model.
Under LD, we observe similar positive correlations between SCN

and NAc in both wild-type and Cry1/2−/− animals, but with higher
density of point clusters in wild-type animals (Fig. 3A; for statistics,
see Suppl. File). However, under DD conditions, the linear
regression lines clearly differ between wild-type and Cry1/2−/−

animals with a very pronounced positive correlation between SCN
and NAc in Cry1/2−/− animals and a flat correlation line in wild-
type animals. These findings, here exemplified by theta1, are
consistent across the various frequency bands, and for LFP
amplitude in averaged and individual representative animals
(Fig. 3B, S6A, S6G; for statistics, see Suppl. File). To get an overview
over all frequency pair correlation values between and within SCN
and NAc, we then created a correlation matrix for each genotype,
light regimen, and (subjective) daytime, with the upper right side
displaying (subjective) daytime and the lower left side (subjective)
nighttime values. While the notion of only smaller discrepancies
between wild-type and Cry1/2−/− animals in LD is confirmed
across frequency pairs, in DD smaller linear correlation values
between SCN and NAc are prominent in wild-type animals, but not
in Cry1/2−/− animals (Fig. 3C, S6B). Statistical analysis of all
coherence coefficients (within our discrete bands) further confirms
a significant difference of correlation values between the two
genotypes.
Next, we asked whether the correlation patterns change

throughout the day, i.e., as a function of Zeitgeber time. For this,
we correlated the z-scored LFP amplitude of SCN and NAc and

counted the occurrence of four possible correlation constellations
of high and low SCN and NAc LFP amplitude (Fig. S6C for
visualization) according to their appearance within eight 3-hour
Zeitgeber time windows covering 24 h. Interestingly, wild-type
animals consistently display a distinct time course of correlation
values with relatively higher SCN activity accompanied by lower
NAc activity during daytime and lower SCN activity accompanied
by higher NAc activity during nighttime (Fig. 3D). In contrast, this
circadian pattern is almost completely lost in Cry1/2−/− animals in
which higher or lower SCN and NAc activity predominantly occur
together.
Communication between brain areas also occurs lagged.

Besides correlation of neuronal activity at the same timepoint,
certain state transitions might only be covered by larger time
intervals [64]. Therefore, we sought to investigate cross-
correlations within 1-second bins between SCN and NAc activity
covering a time lag of almost 60 s, here exemplified by sigma in
LD (Fig. 3E) and LFP amplitude in DD (Fig. S6D). In wild-type
animals, highest correlation between SCN and NAc occurs at the
same time point, i.e., time lag 0. However, at time points before
and after, a relatively high correlation between SCN and NAc is
also evident. In contrast, Cry1/2−/− animals show a sharp and
compared to wild-type animals higher peak at 0 s time lag and,
additionally, all time points before and after appear flatter. Hence,
within the same time bin, electrical activity of the SCN and the
NAc is excessively synchronized in Cry1/2−/− animals, whereas in
wild-type animals it is more non-synchronous meaning that
correlative levels of neuronal activity between the two brain
regions remain stable for a longer time period. The same pattern
is also recognizable in autocorrelations within the same brain
region, here shown for sigma in LD (Fig. 3F, S6D, E) and LFP
amplitude in LD in the NAc (Fig. S6D) and is stable across
frequencies with the only exception being delta in LD (not
displayed). The described patterns and strengths of correlation
are not observable in a negative control correlation (Fig. S6F).
Finally, this pattern is stable across frequencies in both light
regimens and can be quantified for both cross- and autocorrela-
tion (Fig. S6G).
To describe the synchrony of carrier waves between SCN and

NAc more detailed and beyond spectral power of frequency
bands, we also assessed coherence measurements [65] of our raw
LFP traces which assess linear association as a degree of
synchronous oscillations between two signals such as time series.
Averaged traces over LD and DD as well as the four Zeitgeber
times assessed (ZT0, 6, 12, and 18) for all individual animals reveal
clear differences between the two genotypes. Most noticeably,
Cry1/2−/− animals show a unified peak around 10 Hz (Fig. S7 top)
which is even more pronounced under DD. These observations
confirm our previously shown results of excessive synchronization
of activity between SCN and NAc in absence of endogenous and
exogenous clocks from linear correlations of the binned spectral
power (Fig. 3A, C). Pooling measurements across genotypes and
light regimens for individual animals further validates the 10 Hz
peak in Cry1/2−/− animals (Fig. S7 middle). Adding Zeitgeber time
to this depiction shows that of all variables analyzed, genotype is
the best predictor of the coherence measurement curve’s shape
(Fig. S7 bottom).
Taken together, correlation analyses display remarkable differ-

ences between wild-type and Cry1/2−/− animals. Especially, but
not exclusively under DD conditions, Cry1/2−/− animals show
higher correlation values between SCN and NAc that we interpret
as an excessive synchronization of activity in the absence of a
circadian pacemaker. Between- and within-region electrical
activity of wild-type animals, in contrast, appears more non-
synchronous and coordinated over the course of many seconds.
Thus, our data exposes the presence of an endogenous circadian
clock as a powerful determinant on consistency of activity
between and within two regions of the brain.
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Endogenous and environmental circadian rhythms together
increase uniformity and steadiness of low-frequency LFP
component activities within and between brain regions and
between animals
To further interrogate the influence of circadian rhythms on the
nature of 24-h time course activity of LFP components, we
obtained an estimate of the similarity of frequency band time
series 1) across both genotypes, 2) across the different light
regimens, 3) across SCN and NAc, and 4) across individual animals.
Cross- and autocorrelation, as shown above, have revealed that
neuronal activity over the course of many seconds in wild-type
animals shows more consistency of concerted activity between
and within brain areas when compared to Cry1/2−/− animals. In
order to obtain a measure for regularity and similarity of the time
series over the course of an entire 24-h period, as a next step, we
therefore calculated the Euclidean distance between individual
time series. Euclidean distance provides information about how
close or far data points of two individual time series are from each
other at every given time point, i.e., how similar the two curves
are. We assessed the Euclidean distance between all the different
combinations of time series of all individual animals for each brain
area, light regimen, and light/dark phase as one single measure
per time series pair each. A matrix was generated for every
frequency band individually (as shown for gamma1 in Fig. S8A).
We then calculated one average value from all frequency matrices
for every datapoint to get a comprehensive matrix (Fig. 4A).
Furthermore, we extracted the cumulative effects of our main
variables (light regimen, brain region, and genotype) from the
matrix (Fig. 4B). We see that regardless of genotype, the similarity
of the time series depends significantly on the light regimen
(Fig. 4B, top) and also on the brain area (Fig. 4B, middle). In LD, the
time series are much more similar to each other than in DD and
also more similar than in the LD-DD comparison. Likewise,
Euclidean distances are very small for comparisons within the
SCN, whereas they are much larger in the NAc, and the values of
the SCN-NAc comparison are intermediate.
However, the most striking difference of the distance matrix

constitutes an uneven color gradient from the upper left, where
the values of the wild-type animals are clustered, to the lower
right corner, where the Cry1/2−/− data is located. This gradient is
indicative of overall lower distance values, i.e., higher similarity, for
within-wild-type comparisons than within-Cry1/2−/− comparisons.
A quantification of the respective distances comparing genotypes
indeed confirms lower distances for wild-type than for Cry1/2−/−

animals (Fig. 4B, bottom). Interestingly, even when comparing
wild-type with Cry1/2−/− animals, the distances are lower than
distances within the Cry1/2−/− group. In addition, there is a
relevant interaction of genotype and light regimen, with DD
further increasing the distances in Cry1/2−/− mice. Thus, taken
together it appears that wild-type time series are generally
steadier, even among each other, and less variable than those of
Cry1/2−/− animals.
A further surrogate for variability and regularity of a time series

is the slope value for each consecutive time point pair, i.e., the
(vertical) distance from one measuring point to the next. As a
representative example, we have plotted the obtained slope
values for all alpha1 time series in LD in the SCN as histograms,
with slopes from 0–3,000 to visually show counts of occurrences of
rather flat slopes, and from 3,000–9,000 to show the range of
incidences of steeper slopes (Fig. 4C, S8B). We see that wild-type
mice show quantitatively more flat slope values and fewer
frequently steep slopes compared to Cry1/2−/− animals, in which
the overall distribution of slopes appears flatter and broader
(Fig. 4D). This impression can be quantified and confirmed by the
skewness of the histogram. Comparing the skewness values of the
histograms for all frequency bands reveals that, overall, wild-type
mice display higher skewness values than Cry1/2−/− mice
indicating that the transitions from one measuring point to the

next within their time series are smoother than in Cry1/2−/−

animals (Fig. 4D, inserted panel).
Lastly, an additional parameter assessing self-similarity of time

series is sample entropy, an analysis tool developed for the
examination of biological time series [53]. This method identifies
similar epochs and assigns a value to every time series with higher
values indicating lower regularity and reduced self-similarity.
Sample entropy analysis of both genotypes’ LFP time series of SCN
and NAc shows higher values for Cry1/2−/− animals than for wild-
type animals equally for both brain regions and for LD and DD,
again demonstrating endogenously lower regularity and less self-
similarity in neuronal activity of Cry1/2−/− animals (Fig. 4E).
Comparing every frequency band’s time series of the two brain
regions under both light regimens yields similar results, with
significant differences between the two genotypes, but in this
case also between brain areas and frequencies (Fig. 4F and S8C).
Beyond mere similarity of the individual time series, we also

wanted to interrogate, whether the signals we had obtained from
SCN and NAc contained any information that would relate them to
one another beyond all previous analyses. We therefore deter-
mined Granger causality, a measure of the capability of one time
series to predict another one, between the two brain regions’
averaged signals of each genotype. Our analysis reveals high
explanatory power of the SCN LFP signal for the NAc LFP signal for
both genotypes in both light regimens (Table 1, Fig. S8D).
Interestingly, in contrast, the LFP signal of the NAc has only limited
significant explanatory power for the SCN LFP signal. Only in wild-
type animals in LD can the NAc LFP forecast LFP signal of the SCN,
which is not the case in DD and in Cry1/2−/− animals in both LD
and DD. This result is interesting for several reasons, showing first
that the regularity of neuronal activity in the SCN and NAc of wild-
type mice is so high that the signal of one brain region can predict
that of the other brain region. Second, it shows that this prediction
is particularly accurate in the direction from SCN to NAc (which is
true for both genotypes), indicating that the well-established
hierarchical order between SCN and other brain regions seems to
hold also at the level of non-circadian high frequency electrical
activity. And third, rhythmic factors from the environment, here
the light regimen, also have significant influence on the time-of-
day dependent interplay between brain regions.
In conclusion, both endogenous and environmental circadian

rhythms increase steadiness and smoothness of 24-h LFP time
series and its frequency components within brain regions.
Interestingly, this influence extends to the degree that the
trajectories of LFP frequency components of individual wild-type
animals and animals kept in LD are much more comparable to
each other than to those of Cry1/2−/− animals and those
kept in DD.

Disruption of endogenous circadian rhythms increases the
variance of LFP constituents in multi-dimensional analysis
Finally, to account for the complex and multidimensional nature
of the recordings, we evaluated the frequency components of
each animal’s LFP signal for all time points at once using principal
component analysis (PCA) [66]. PCA identifies an axis system in the
multidimensional data space in which the directions of the axes,
the principal components, correspond to the main directions in
which the data vary, i.e., along which the data points separate
best. Therefore, it allowed us to test, by which factors the variance
within all our animals’ recorded datasets would actually be driven,
and to evaluate the contribution of every frequency component.
Displaying the separation of data along the first two principal
components (with PC1 explaining 90.5% and PC2 5.7% of total
variance in the data) shows a more pronounced data point
separation for Cry1/2−/− animals than for wild-type animals
(Fig. 5A, S9A). Whereas data points of wild-type animals cluster
strongly, data points of Cry1/2−/− animals are more separated
along the two axes, again confirming higher similarity of
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frequency band activity within individual wild-type animals and
higher variance within Cry1/2−/− animals. In order to actually
quantify the difference in separation of datapoints between both
genotypes, we measured the difference in variance by analysis of
the Euclidean distance of every individual datapoint pair within
both genotype groups (Fig. 5B). This analysis shows a significant
discrepancy of the histogram distributions with more occurrences
of high distances for Cry1/2−/− animals. The separation of
datapoints appears to be mainly driven by activity in the NAc,
as it is NAc datapoints that separate more prominently along PC1
(Fig. S9B), and it is not exclusively caused by any single frequency
as all frequency components contribute to the overall variance in
similar fashion, indicated by the corresponding directions of the
frequency band arrows (Fig. 5A, S9B). Only gamma1 and 2 appear
to deviate from this general alignment, emphasizing that they
might convey complementary information. Taken together, PCA
shows that variance in our data is primarily driven by genotype
whereas light regimen and brain area contribute to a lesser extent.
This increased variance of the spectral content of LFPs confirms

the reduced self-similarity and consistency of neuronal ensemble
activity in Cry1/2−/− animals in the multidimensional variable
space. While variance is higher amongst frequency bands in the
NAc, those in the SCN in turn appear to be more consistent and
homogenous in activity, especially in wild-type animals. PCA also
shows that variation within the spectral content of LFPs largely
arises along one dimension (PC1, evidenced by its high
explanatory power of 90.5% and the alignment of most frequency
arrows) – the dimension which also separates both genotypes
best. As PCA incorporates all frequency components of any given
point in time into one measure, it emphasizes the robustness of
our reported findings.

Disruption of endogenous and exogenous clocks affects
properties of LFP and its spectral content across all time scales
Our deep analysis of local field potentials and their spectral
content shows that disruption of endogenous and exogenous
rhythms not only influences circadian but also ultradian processes
across time scales. To summarize our findings, we calculated the
mean of the most informative measures obtained in this study for
our four experimental groups (wild-type and Cry1/2−/− animals
under LD and DD each) and displayed fold-changes in relation to
wild-type mice under LD (Fig. 6). While cross- and autocorrelation
are more dominantly affected by perturbation of endogenous
clocks, exogenous clocks play a bigger role for Euclidean distance.
The interaction of both clocks most prominently has its biggest
influence on LFP amplitude, as well as sine wave amplitude and
period deviation. This synopsis of our findings captures how our
interventions differentially affect (the spectral content of) LFPs on
different time scales.

DISCUSSION
We had based our study on three hypotheses. First, endogenous
and exogenous 24-h rhythms and their interplay control circadian
rhythms of neuronal activity within brain regions. Second, these
factors moreover regulate the interaction between brain regions
throughout the day. And third, the presence of endogenous and
exogenous circadian rhythms influences the properties of
neuronal activity beyond its circadian aspect.
Our data show a distinct diurnal distribution of homogenous

blocks of neuronal activity and a well-defined 24-h rhythm of LFP
amplitude in the SCN and the NAc. Interestingly, the blocks of
neuronal activity correspond to phases of locomotor activity and
inactivity and thus reflect the rhythmic and arrhythmic behavior of
wild-type and Cry1/2−/− mice, respectively. In wild-type animals,
rhythms occur under LD and DD conditions, however, under DD,
their amplitude is significantly reduced and the phase of
individual LFP frequencies is more variable. In contrast, in

Cry1/2−/− animals, no rhythms can be detected in DD. However,
LD-cycles are also able to induce rhythms in endogenously
arrhythmic animals that are as pronounced in amplitude as those
of wild-type mice in DD. This means that endogenous and
exogenous timing cues are each similarly strong drivers of
rhythms of neuronal activity that act additively in wild-type
animals in LD.
Endogenous and environmental rhythms also influence the

interplay between SCN and NAc. In LD, LFP intensities and
individual LFP components of SCN and NAc correlate strongly in
both genotypes. However, this correlation decreases remarkably
in wild-type animals under DD but remains almost unchanged in
Cry1/2−/− animals. When these correlation values are assigned to
binned Zeitgeber intervals over 24 h, it becomes clear that in wild-
type mice, the NAc is often inactive during the light phase when
the SCN is active and vice versa during the dark phase. This
observation is consistent with the predominantly inhibitory role of
the SCN [67, 68] and its increased activity in the light phase
when nocturnal animals such as mice are inactive. Interestingly, in
Cry1/2−/− animals, despite rhythmic behavior in LD, this pattern of
opposing activity of SCN and NAc is not evident and both brain
regions are predominantly active or inactive simultaneously. Thus,
while endogenous and exogenous factors can equally generate
rhythmicity, endogenous clocks appear to be necessary for the
precise choreography of SCN activity and activities of subordinate
brain regions over the course of the day.
Most surprisingly, the presence of endogenous and exogenous

circadian rhythms not only affects circadian baseline changes in
neuronal activity within and between brain regions, but also their
intrinsic nature and quality on a much shorter time scale. One of
these changes is the constant increase of the fast Fourier
transform of the LFP signal in Cry1/2−/− animals which could be
attributed to a higher synchronicity of local neuronal ensembles
[58]. This assumption is supported, in one way, by the increased
synchronization between SCN and NAc activity within the same
time bin in Cry1/2−/− animals. In contrast, LFP amplitude and LFP
components of Cry1/2−/− mice show decreased cross-correlation
between SCN and NAc and autocorrelation within the two brain
regions indicating a reduction in coherent state dependent
activity over larger time intervals. Hence, modulated by endo-
genous rhythms, activity consistency between brain regions
displays a differential regulation across different time scales.
Overall, these results suggest that in the absence of endogenous
circadian clocks, neuronal responses to each other are predomi-
nantly synchronized and to some extent more stereotypical in
Cry1/2−/− animals than in wild-type animals, where they are rather
non-synchronous and generally more stable, as would be
expected for physiological signals traveling through the healthy
brain [69].
At the same time, the dynamics of the LFP signal and its

frequency components over time appear to be less organized and
well-structured in Cry1/2−/− animals than in wild-type animals.
Whereas in wild-type mice successive signals are rather similar,
resulting in smoother time series, the differences from one
measuring point to the next in the time series in Cry1/2−/− mice
are more drastic and the signal is characterized by greater
entropy. Due to the increased steadiness of the time series in wild-
type animals, they are more similar among each other and to
Cry1/2−/− animals than Cry1/2−/− animals amongst themselves.
Likewise, LD is able to reduce differences between time series.
Thus, in the context of an animal population, circadian clocks
together with environmental rhythms create more uniformity
among individuals at the level of brain activity, which presumably
translates into greater consistency of behavior across the day in
the group. The robustness of this notion is further supported by
the stronger separation of Cry1/2−/− animals’ activity in the
multidimensional dataspace and similar contributions of all
frequency components to this variance. In general, we were able
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to observe consistent effects of disruptions of both endogenous
and exogenous clocks on the different frequency components of
our LFP recordings across all analyzed parameters.
To ensure that our recordings actually capture underlying

neuronal ensemble phenomena, we screened them for neural
oscillatory events. Being able to detect them throughout our data
demonstrates that the captured spectral time series contain true
LFP frequency components and therefore allowed us to study
their modulation in the SCN and NAc over the course of 24 h in
freely moving animals. In contrast, most previous research on
neuronal ensemble activity and network oscillations has focused
on cortex and hippocampus, only examined single frequency
bands, explored only short time scales, and investigated their
relation to specific tasks [27, 70–72].
Our results show that similar to the 24-hour regulation of

spectral activity, the properties of the underlying neural oscillatory
events in the SCN and the NAc are also modulated by circadian
factors. Endogenous clocks have influence on the oscillatory
power and the light regimen affects event intervals.
While our study design allowed us to identify remarkable

differences across all frequency bands analyzed, alpha and
gamma bands stand out in several spectral time series analyses
and appear as pronounced frequencies in neural oscillatory
events. This is of particular interest as they have already been
extensively addressed in previous studies and our data can
complement these results which have been rather inconsistent so
far. One experimental paradigm revealed that alpha-gamma cross-
frequency phase synchrony correlates with mental arithmetic task
demand [73], suggesting functional cohesion. In contrast, in
human spatial attention experiments, alpha and gamma have
been shown to display differential temporal modulation relative to
a task stimulus and, in addition, to encode distinct features of task
predictability [74], suggesting an independent mode of action.
Finally, investigations in humans and macaques have revealed
that alpha waves phasically modulate gamma activity and
suppress neuronal firing [75], arguing for a hierarchical
relationship.
Our analyses of alpha and gamma show for the first time that

they are differentially modulated throughout the day in freely
behaving animals which can be interpreted as accordance with
the findings of [74]. Linear correlation between alpha and gamma
frequency bands displays the lowest values. And in PCA, their
alignment is orthogonal, which emphasizes that they might
convey complementary information beyond the cortex, and that
this might be the case throughout the entire 24-hour day. The
latter is supported by the fact that circadian sine-wave oscillations
of alpha and gamma peak in antiphase in wild-type animals. As
revealed by PCA, both alpha bands show the biggest contribution
to variation in our data and substantially distinguish wild-type
from Cry1/2−/− animals with their decrease in linear correlation
during DD. Accordingly, coherence measurements show that
noticeable differences occur predominantly in the alpha bands
(around 10 Hz), with increased coherence in Cry1/2−/− animals
during DD. Both gamma bands, on the other hand, show the
highest sine-wave amplitudes, the lowest deviation from 24-hour
periods in wild-type animals, and the lowest sample entropy
values. Our sine wave analyses reveal that their individual
circadian pattern is dependent on an intact endogenous circadian
clock and environmental rhythms. Thus, we identify alpha and
gamma frequency contents as promising targets for further
dissection of spectrally directed connectivity [76], especially in
the context of its circadian modulation.
In addition to the new insights gained from our study it raises

questions how these complex dynamical activity changes of
groups of neurons emerge from the molecular clock deficiency in
Cry1/2−/− animals and to what extent the changes in neuronal
activity based on circadian disturbances might be related to the
development of pathologies. Previous studies have described the

importance of gap junctions in SCN neurons [77], coupling and
synchronizing their electrical activity. It has also been shown that
action potentials in SCN neurons contribute to maintaining
population synchronicity [78]. As we recorded from the extra-
cellular space, we can only make inferences about individual
neurons’ activity. Based on the assumption that their synchronicity
and the directedness of their activity shapes the LFP we recorded
[58], one might still speculate about network properties within the
SCN. In Cry−/− animals, we saw increased LFP amplitude and
abnormal rhythms at the same time. Here, the molecular
machinery for cellular oscillations is abolished, so mutual
dynamics between neurons to reinforce synchronicity and
rhythmicity, as described for the intact SCN [79], cannot persist.
The interceptive and corrective dynamics of individually firing SCN
neurons in wild-type animals [80] pointing in different directions
and partially cancelling each other out might cause their relatively
lower LFP amplitude. Blunt coupling of impulsive neuronal activity
without individual dynamics, on the other hand, leads to higher
overall synchronicity on a population level, but less rhythmicity
and regularity over 24-h timespans in Cry1/2−/− animals. Finally,
several independent studies could establish connections between
expression of components of the TTL and the regulation of ion
channels in the SCN [17], hinting towards possible explanatory
frameworks for the increase of LFP amplitude observed in this
study. Yet, it remains unclear how the individual elements of the
molecular machinery synergistically give rise to circadian patterns
of electrical activity in the SCN.
The NAc, on the other hand, has been found to mainly consist

of neurons that do not generate spontaneous firing and that
largely depend on inputs from other brain regions such as the
cortex or limbic areas [81]. One study could establish a functional
role for gap junctions in the NAc [82], however, it seems unlikely
that they play a similar role as reported for the SCN. NAc neurons
show rhythmic behavior, as further evidenced by our study, and
also their gene and protein expression have been shown to be
under circadian regulation [28, 31, 83]. Interestingly, in a different
study ClockΔ19 mice were shown to display deficits in low-gamma
cross-frequency phase coupling and neuronal phase locking in the
NAc [84] and dysfunctional gamma oscillatory tuning was linked
to reduced anxiety in these animals [85], further emphasizing the
functional connection between the endogenous clock, neuronal
activity, and behavior. While only insufficiently characterized
indirect projections from the SCN to the NAc exist, the NAc
seems to play an independent role in sleep-wake regulation [86].
Our experiments did not specifically test any functional organiza-
tion of the two areas. Yet, the results from Granger causality
analysis hint towards a hierarchical relationship between SCN and
NAc, where SCN activity dictates broad activity levels in the NAc
over the course of the day.
Studies on different neurophysiological systems have already

shown that LFPs are not simple passive representations of a
systems’ dynamical state, but can actively guide information
processing [87, 88] and have explanatory value for neuropsychia-
tric conditions [76]. It is known that in humans both endogenous
circadian characteristics, caused by polymorphisms of clock genes,
and exogenous disturbances, such as shift work, often significantly
increase the probability of developing, e.g., mental disorders
[89–91]. Likewise, exogenous circadian perturbations in rodents
can cause behavioral deficits resembling neuropsychiatric dis-
orders [92–94]. Specifically related to our model, recent studies
have shown that Cry1/2−/− animals display anxiety-like behavior
and restlessness [95, 96] as well as reduced alcohol preference
with an increased motivation to obtain it [92]. Our present study
now shows that in these mice, even when kept in LD, local
neuronal activity and its frequency components are significantly
affected in diurnal distribution of activity, circadian periods,
amplitude, and phase. We have previously suggested that such
changes may disrupt cross-communication between brain regions
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due to perturbation of temporal synchronization or separation of
their activities and lead to impaired behavior and susceptibility to
pathologies [97]. Taken together, the changes in circadian and
non-circadian neuronal activity patterns, as shown here in the
NAc, could, for example, contribute to the above-mentioned
reward-related deficits of Cry1/2−/− mice [92, 98, 99].
In summary, our study describes for the first time that integrity

of both endogenous circadian and environmental diurnal rhythms
is fundamental for electrical coordination of neuronal ensemble
dynamics in the SCN and the NAc and that it affects a multitude of
emergent properties, such as circadian rhythmicity, LFP amplitude
as well as correlation, regularity, and entropy of their electrical
activity. Interestingly, this involves not only the temporal
coordination of neuronal activity over the time span of a day,
but also in the range of hours, minutes, seconds, and milliseconds.
It also involves properties of neuronal functions within a brain
region, between brain regions, and even between individual
animals in a group. Thus, from our point of view, the scope of how
circadian disturbances influence brain activity and directly link to
the development of neuropsychiatric disorders becomes clearer
and more evident. Conversely, it also shows that chronother-
apeutic measures aiming at exogenous stabilization of circadian
rhythms can have positive effects of great magnitude on brain
functionality.
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