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Abstract
Statistical learning theory is often associated with the principle of Occam’s razor, 
which recommends a simplicity preference in inductive inference. This paper distills 
the core argument for simplicity obtainable from statistical learning theory, built on 
the theory’s central learning guarantee for the method of empirical risk minimiza-
tion. This core “means-ends” argument is that a simpler hypothesis class or induc-
tive model is better because it has better learning guarantees; however, these guaran-
tees are model-relative and so the theoretical push towards simplicity is checked by 
our prior knowledge.

1  Introduction

Statistical learning theory is the standard framework for the mathematical analysis 
of machine learning methods (Shalev-Shwartz & Ben-David, 2014; Vapnik, 2000). 
The framework offers theoretical learning guarantees for certain learning methods, 
thus providing a basis for viewing such methods as good methods.

An old trope in machine learning, usually evoked under the label of Occam’s 
razor, is that a shared trait of good methods is a bias towards simplicity (Alpay-
din, 2020; Duda et al., 2001; Goodfellow et al., 2016; Mitchell, 1997; Mohri et al., 
2018; Shalev-Shwartz & Ben-David, 2014). Occam’s razor, understood as the prin-
ciple that a simplicity preference is integral to good scientific or inductive reasoning, 
is also a long-standing topic of debate in the philosophy of science (Baker, 2022; 
Sober, 2015). The central question here is whether we actually have some epistemic 
justification for Occam’s razor. That is, we seek a rational reason for holding that a 
simplicity preference helps us attain desirable epistemic ends, like minimizing error.

A step forwards in the wider debate would be a justification for Occam’s razor in 
machine learning methods, and an obvious place to look for such a justification is 
statistical learning theory. Indeed, formal results in this framework have been quoted 
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in support of such a justification (e.g., Blumer et al,1987, Shalev-Shwartz and Ben-
David, 2014). On the other hand, computer scientists and philosophers alike have 
also relied on formal results to argue against such a justification in this framework 
(e.g., Domingos,1999, Herrmann, 2020).

In this paper, I integrate the intuitions and arguments from both sides into a quali-
fied epistemic justification for Occam’s razor from statistical learning theory. Impor-
tantly, the notion of simplicity in this justification pertains, not to individual clas-
sifiers or hypotheses, but to inductive models or classes of hypotheses. A further 
important component of my account is the relativity to such inductive models of 
the justification obtainable from theoretical learning guarantees, as highlighted by 
Sterkenburg and Grünwald (2021). This model-relativity of learning-theoretic jus-
tification aligns well, I argue, with a broad tradition in the philosophy of science 
which accepts the impossibility of absolute justification, and shifts attention to the 
project of how to rationally proceed from our current beliefs and assumptions. A 
final important characteristic of my account is the means-ends nature of the justifica-
tory reasoning. In one line, the means-ends justificatory argument says that in order 
to have better model-relative learning guarantees, we need to codify our assump-
tions in the form of a simpler inductive model.

This argument is based on the first of the two “inductive principles” (Vapnik, 
2000) central to statistical learning theory, namely the method of empirical risk min-
imization. I think this is the “core argument” for simplicity in statistical learning 
theory, which further underpins the method of structural risk minimization and its 
characteristic simplicity preference. I sketch this at the end of the paper.

The plan of the paper is as follows. In Sect. 2, I present the framework of statis-
tical learning theory and the main technical ingredients for the core argument for 
Occam’s razor. These include the notions of empirical risk minimization, learnabil-
ity, uniform convergence, and VC dimension, and the fundamental theorem that ties 
these notions together. In Sect. 3, I argue that VC dimension is a robust notion of the 
simplicity of a hypothesis class. In Sect. 4, I discuss the theoretical justification for 
empirical risk minimization and particularly its model-relative nature; and I show 
how all of the previous comes together into a justificatory argument for simplicity. I 
conclude in Sect. 5.

1.1 � Motivation

Before starting, there is a worry about the paper’s general project that I should 
acknowledge. This worry is that the project engages with a debate of a bygone era. 
It has been well over a decade since Harman and Kulkarni (2007) initiated a small 
wave of philosophical interest in statistical learning theory, and Steel 2011, p. 860 
concluded that the theory is “worthy of further sustained interest from philosophers 
of science.” This sustained interest has not exactly materialized, while the landscape 
of machine learning has altered significantly. Especially the advent of deep neural 
networks (DNN’s) has caused a shift in what seem the more pertinent epistemo-
logical issues: from the traditional questions around the reliability of inductive infer-
ence to questions around interpretability and explainability (Beisbart & Räz, 2022). 
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Moreover, the advent of these algorithms has problematized the very utility of sta-
tistical learning theory. The theory seems simply not equipped to explain the gen-
eralization behaviour of learning methods like DNN’s (Belkin, 2021; Berner et al., 
2022; Hardt & Recht, 2022), prompting a “quest for a new framework for a ‘theory 
of induction’” (Belkin, 2021, p. 217). Putting it bluntly: why a renewed philosophi-
cal engagement with the framework of statistical learning theory, if this framework 
is starting to look like a thing of the past?

One plain answer is that it is still of interest if and how the standard framework 
already offers justification for Occam’s razor. Curiously, statistical learning theory is 
largely left out the modern shift of the philosophical debate towards various frame-
works in mathematical statistics (Baker, 2022, Sect.  5; Sober, 2015, Ch. 2), with 
Sober (2015,  p. 140, fn. 61) perceiving statistical learning theory to be “dramati-
cally” different from the “Bayesian and frequentist ideas” that have informed this 
debate so far. The current project thus fills a gap in the philosophical literature. Sec-
ondly, I may above have put things overly bluntly: it is not at all clear that core 
components of statistical learning theory will not continue to play an essential role 
in newer theory (cf. Bartlett et al., 2021). In any case, finally, the current project is 
a stepping stone towards the philosophical analysis of any new “framework for a 
theory of induction” in machine learning. Belkin indeed evokes “a very pure form 
of Occam’s razor” as the “guiding principle” in a new framework (2021, p. 218). To 
assess the role and justification of simplicity in such an emerging new framework, 
it will at the very least be helpful to actually have clarity on its role in the standard 
framework. The “generalization puzzle” (Berner et al., 2022, p. 25) that is now hotly 
debated in the machine learning community is indeed a modern reincarnation of 
exactly those traditional philosophical questions around the reliability of induction. 
Work like the current project can, I hope, offer a starting point for philosophers to 
engage with this exciting but complex debate.

2 � The Formal Ingredients

In my presentation of the framework of statistical learning theory, I mainly follow 
Shalev-Shwartz and Ben-David (2014).1,2 I restrict attention to the most basic learn-
ing paradigm in this framework, the paradigm of binary classification.

1  Their presentation is essentially a synthesis of Vapnik’s (1999; 1998; 2000) “general setting of learn-
ing” and Valiant’s (1984) model of “probably approximately correct” (PAC) learning (Shalev-Shwartz 
& Ben-David, 2014, p. 28). The main concern in Vapnik’s setting is the statistical analysis of uniform 
convergence of learning algorithms, and this approach is also simply called VC theory after the ground-
breaking early work of Vapnik and Chervonenkis (1971). The tradition initiated by Valiant is also called 
computational learning theory [see Anthony & Biggs (1992); Kearns & Vazirani (1994)], and an essen-
tial component is the computational efficiency of learning. This computational component is separated 
from the statistical component in Shalev-Shwartz and Ben-David’s presentation, and I will likewise not 
be concerned with computational considerations in this paper.
2  A chapter-length introduction to statistical learning theory aimed at philosophers, that I also draw 
from, is (von Luxburg & Schölkopf, 2011). A more basic philosophical introduction is (Harman & 
Kulkarni, 2007).
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2.1 � Binary Classification

In this type of learning problem, we have a domain X  of instances (say, images 
of animals). We seek to assign these instances binary labels (say, cat or not cat). 
More precisely, we seek a general classifier or hypothesis h ∶ X → Y that maps all 
instances in X  to a label in the binary label set Y.3

This is a learning problem because we first draw a finite training sample of 
labeled instances, on the basis of which we then seek to find—to learn—a general 
hypothesis. The assumption in statistical learning theory is that there always is some 
true but unknown distribution D over X × Y , that governs both the sampling of 
instances and (via the conditional D(Y ∣ X) ) the connection between instances and 
labels. It is assumed we obtain labeled instances by repeatedly drawing from this 
same distribution: the labeled instances are independently and identically distributed 
(i.i.d.). In this way, we draw a training sample S, that is a finite ordered sequence of 
input-label pairs. Based on the training sample, we seek to learn a good hypothesis.

To assess hypotheses, we use some error function. The standard choice in binary 
classification is the 0/1 error function, that returns error 0 (error 1) for a correct 
(incorrect) classification. Then the empirical error of h on a sample S is given by the 
mean 0/1 error of instances,

But what we are actually interested in is the quality of a classifier over all possible 
instances. We express this as the expected error or risk of h with respect to the true 
distribution D over X × Y,

We thus seek to find a hypothesis, based on a training sample S, with a low risk with 
respect to the true but unknown distribution D.

2.2 � Hypothesis Classes and Learning Methods

In the framework of statistical learning theory, we are fully agnostic about the shape 
of the distribution D . However (as I discuss in more detail later), we cannot get any-
where unless we impose restrictions elsewhere. The approach in statistical learning 
theory is to make the analysis relative to some hypothesis class H . We then seek to 
select a hypothesis h from H which has relatively low risk, among those hypotheses 

(1)LS(h) ∶=
|{(x, y) ∈ S ∶ h(x) ≠ y}|

|S|
.

(2)LD(h) ∶= �(X,Y)∼D

[
L(X,Y)(h)

]
.

3  Hypotheses are often called models in the machine learning literature. I will stick here to the terminol-
ogy of Shalev-Shwartz and Ben-David (2014), also to not risk confusion with the notion of inductive 
model (class of hypotheses) in the model-relative justification I discuss in section 4.
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in H , with respect to true but unknown D . That is, we seek to select, based on train-
ing data, a hypothesis with risk close to minh�∈H LD(h

�).4
This is a machine learning problem because we want to specify an automated 

learning procedure or learning method to do this selection—this learning—of 
hypotheses from samples. Formally, we treat a learning method as a function from 
all possible samples to hypotheses.5

A basic such method is the procedure of empirical risk minimization (ERM) for 
given hypothesis class H . This method simply selects for given sample S a hypoth-
esis in H with minimal error on the sample.

Definition 1  Empirical risk minimization for hypothesis class H , write  ERMH , 
returns for each S ∈ S a hypothesis in argmin

h∈H

LS(h).

What makes a learning method like ERM for H a good method? Given the indi-
cated goal of finding a relatively-low-risk hypothesis in H , method ERMH can be 
called good if it has some sufficiently strong guarantee of attaining this goal.

2.3 � Learnability

The main formal guarantee of good learning is formulated in terms of the following 
components.

First, we quantify the “relatively-low-risk” by an accuracy parameter � . This 
� bounds the difference between the best possible risk minh∈H LD(h) and the risk 
LD(AH(S)) of a hypothesis selected by method AH on sample S. This difference is 
also called the estimation error.

Second, because of the randomness in the generation of samples from D , any 
guarantee can at best be probabilistic. Intuitively, we can only expect a learning 
method to select a good hypothesis based on samples that are in fact representa-
tive of the true distribution D ; but we cannot exclude that with small probability 
we draw a sample that is not representative. Hence we also introduce a confidence 
parameter � that quantifies this probability.

Finally, again due to the randomness in drawing samples, the quality of an esti-
mate is inevitably connected to the size of the sample. We will thus formulate our 
guarantee as a relation between sample size, confidence, and accuracy.

This guarantee is probably approximately correct (PAC) learnability6—or sim-
ply, learnability. Hypothesis class H is learnable by a learning method AH if for any 

4  This is what Shalev-Shwartz and Ben-David (2014 p. 23) call agnostic learning, as opposed to the 
more specific paradigm of realizable learning, where we make the (very strong) assumption that H 
already contains an h∗ with zero true risk (ibid., def. 2.3). In computational learning theory this assump-
tion is actually standard.
5  Again, I abstract away from computational considerations. A restriction of the framework to formal 
computability [in which learning methods are actual algorithms, i.e., Turing-computable functions; a 
framework only first studied recently, Agarwal et al. (2020)] does not appear to substantially change the 
notions and results discussed here (Sterkenburg, 2022).
6  This notion was formulated (with the additional component of computational complexity) by Valiant 
(1984), while the term “pac-learning” appears to be due to Angluin and Laird (1988).
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given inaccuracy � and confidence 1 − � , there is a large enough sample size m0 such 
that for any m ≥ m0 , we have the following, no matter the true distribution D . With 
probability at least 1 − � over the possible size-m samples Sm drawn i.i.d. from D , 
method AH , on receiving such a sample, returns a hypothesis with estimation error 
below � . To rephrase,

Definition 2  (Learnability) A hypothesis class H is learnable if there exists a learn-
ing method AH ∶ S → H and a sample size function mH ∶ (0, 1)2 → ℕ such that for 
all �, � ∈ (0, 1) , for all m ≥ mH(�, �) and any distribution D over X × Y,

Note that this guarantee (in particular, the minimum sample size mH(�, �) for 
given � and � ) only depends on the hypothesis class H . In line with the agnostic 
approach of statistical learning theory, it is a distribution-free guarantee: the sample 
size does not depend on the true distribution D.

Learnability is much related to another property of a hypothesis class, namely 
uniform convergence. The former, as we have seen, concerns the estimation error of 
a learning method; the latter concerns the difference between the empirical errors 
and the true risks of all hypotheses in the class. This property will allow us to relate 
the ERM method to learnability.

2.4 � Uniform Convergence and Empirical Risk Minimization

The law of large numbers already tells us that, for any fixed hypothesis h, as we draw 
larger and larger samples Sm i.i.d. from true distribution D , the empirical error of h 
on Sm will in probability converge to its true risk. However, in our learning problem, 
we are not interested in fixing a particular hypothesis and estimating its true risk. We 
are interested in the performance of a learning algorithm, which, depending on the 
data, can select different hypotheses. For this we need something stronger, namely 
a “uniform law of large numbers,” which bounds the difference between empirical 
errors and true risks of all hypotheses uniformly—simultaneously.

For given hypothesis class H , call a training sample �-representative if simultane-
ously for all hypotheses h ∈ H the difference between h’s empirical error LS(h) on S 
and h’s true risk LD(h) is smaller than �,

On such a sample, all empirical errors give good indications of the true errors: 
“what you see is what you get” (“wysiwyg”, terminology from Belkin, 2021). Now a 
hypothesis class has the uniform convergence property if there is a “wysiwyg” guar-
antee of drawing such representative samples. Precisely,

Definition 3  (Uniform convergence) A hypothesis class H has the uniform conver-
gence property if there exists a sample size function muc

H
∶ (0, 1)2 → ℕ such that for 

all �, � ∈ (0, 1) , for all m ≥ muc
H
(�, �) and any distribution D over X × Y we have

(3)ProbS∼Dm

[
LD(AH(S)) ≤ min

h∈H
(LD(h)) + �

]
≥ 1 − �.

(4)(∀h ∈ H)
[
|LS(h) − LD(h)| ≤ �

]
.
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To link this property to the ERM method, we first reformulate it. Namely, we 
have stated it in terms of the minimum sample size muc

H
(�, �) we need for given � and 

� ; but we can also formulate it as the bound on � we get for given � and sample size 
m. Precisely, there is an accuracy function �uc

H
(m, �) such that for given � and m we 

have with probability at least 1 − � that

which in particular gives a uniform upper bound on true risk in terms of empirical 
error,

Now recall that the method ERMH for given sample S of length m selects an h that 
minimizes LS(h) . Since �uc

H
(m, �) is a constant term for fixed m and � , method ERMH 

can be seen to explicitly minimize this upper bound

on the true risk. Thus, given H satisfies uniform convergence, ERMH selects a 
hypothesis with the sharpest uniform upper bound on its true risk.

This minimization property, under the assumption of uniform convergence, 
allows us to derive that ERMH learns H . Informally,7 if we have a guarantee that 
large enough samples are probably representative (uniform convergence), then in 
particular the lowest-empirical-error hypotheses (selected by ERMH ) probably have 
approximately lowest true risk, and so small estimation error (learnability).

Uniform convergence thus gives us a sufficient condition for learnability, and 
learnability by ERM. However, this is still a rather abstract property, that does not 
give much intuition for what kind of hypothesis classes satisfy it. Fortunately, it 
turns out that there is a more concrete and intuitive property of hypothesis classes 
that is equivalent to learnability, and in fact already equivalent to learnability by 
ERM. This property is a criterion of the simplicity of a hypothesis class.

2.5 � The VC Dimension

Take a finite set X = {x1,… , xm} ⊂ X  of unlabeled instances. There are several dif-
ferent ways in which we can label all instances in X; precisely, for binary labels, 
there are 2m possible such labelings. Now take a hypothesis class H . Each hypoth-
esis h in H gives some such possible labeling of the instances in X. If the hypotheses 

(5)ProbS∼Dm

[
(∀h ∈ H)

[
|LS(h) − LD(h)| ≤ �

]]
≥ 1 − �.

(6)(∀h ∈ H)
[
|LD(h) − LS(h)| ≤ �uc

H
(m, �)

]
,

(7)(∀h ∈ H)
[
LD(h) ≤ LS(h) + �uc

H
(m, �)

]
.

(8)LD(h) ≤ LS(h) + �uc
H
(m, �)

7  See Shalev-Shwartz and Ben-David (2014, Sect. 4.1, specifically lemma 4.2) for the (straightforward) 
formal derivation.
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in H cover all possible labelings, that is, for each possible labeling of X, there is 
some h ∈ H that gives exactly this labeling, then we say that H shatters X.8

The crucial notion in demarcating classes that are and are not learnable relies 
on the ability to shatter sets of instances. Namely, the Vapnik-Chervonenkis dimen-
sion (VC dimension, after Vapnik and Chervonenkis, 1971) of hypothesis class H is 
defined as the largest size of a subset X of instances for which H can do so.

Definition 4  The VC dimension of hypothesis class H is the maximal size of a set 
X ⊂ X  that is shattered by H . If H shatters sets of arbitarily large size, then the VC 
dimension of H is infinite. A VC class is a class with finite VC dimension.

In machine learning terminology, VC dimension is a measure of the capacity of 
a hypothesis class.9 It is a measure of the extent to which a hypothesis class cov-
ers—contains hypotheses with good fit on—possible data samples. In that sense 
VC dimension is a notion of the “richness” or complexity of a hypothesis class; and 
finiteness of VC dimension a criterion of a hypothesis class being sparse or simple. I 
discuss this simplicity interpretation in more detail in Sect. 3 below.

2.6 � Bringing it All Together

The central result of statistical learning theory elegantly ties together the main 
notions of the previous sections.

Theorem 5  (Fundamental theorem of statistical learning theory10) The following are 
equivalent:

•	 H has the uniform convergence property;
•	 H is learnable;
•	 H is learnable by ERMH;

8  Slightly more formally, define the restriction of H to finite set X as the class H|X of functions 
f ∶ X → Y such that f (x) = h(x) for some h ∈ H and all x ∈ X  . Then H shatters finite X ⊂ X  if the 
restriction of H to X contains all functions f ∶ X → Y , that is, |H|X| = 2|X|.
9  There exist several generalizations of VC dimension, like the Natarajan dimension in multiclass cat-
egorization (see Shalev-Shwartz and Ben-David 2014, ch. 29), and indeed altogether different capacity 
notions in different paradigms, like the Littlestone dimension in realizable online learning (see ibid., 
sect. 21.1), and the parametric complexity in MDL inference (see Grünwald (2007)). An important alter-
native capacity notion to VC dimension for classification is Rademacher complexity, which can yield 
stronger data-dependent bounds (see von Luxburg and Schölkopf, von Luxburg and Schölkopf (2011), 
sect. 5.7 Shalev-Shwartz and Ben-David, 2014, ch. 26). The notion of the capacity of a function class and 
its relation to generalization appears to have been introduced by Cover (1965).
10  In their pioneering work, Vapnik and Chervonenkis (1971) established the link between uniform con-
vergence, “consistency” of ERM, and their notion of VC dimension, proving a generalization of the “fun-
damental theorem of mathematical statistics,” the Glivenko-Cantelli theorem of the uniform convergence 
of the empirical distribution function (see Devroye et  al.,  1996, ch. 12). The connection between VC 
theory and computational learning theory (in particular, Valiant’s notion of PAC learnability) was first 
spelled out by Blumer et al. (1986, 1989).
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•	 H is a VC class.

In particular, if, and only if, hypothesis class H has finite VC dimension, we have 
a “wysiwyg” guarantee of a good indication of true risk (uniform convergence), and 
a method, ERMH , that is a good method, in the sense of satisfying a guarantee of 
minimizing estimation error (learnability). We therefore have, for VC class H , a cer-
tain justification for the ERMH method.11

Actually, we can further fine-grain this picture within the finite VC dimension 
regime. Namely, the VC dimension of class H gives a quantitative bound on the 
sample size for uniform convergence and for learnability.

Theorem  6  (Fundamental theorem, quantitative version12,13) For any VC class H , 
there are constants C1,C2 such that, for any �, � , we have

where

At bottom, the fundamental theorem expresses a certain relation between four 
quantities (VC dimension, sample size, accuracy, and confidence), where, in particu-
lar, a lower VC dimension makes room for lower values of the other three quantities 
(meaning, for stronger bounds). Thus, a lower VC dimension of H goes with a better 
guarantee and therefore a stronger justification for the ERMH method.

I discuss this justification, and how to further turn this into a justificatory argu-
ment for simplicity, in more detail in section 4 below. But first I will zoom in on the 
relevant notion of simplicity, given by the formal notion of VC dimension.

C1b ≤ muc
H
(�, �),mH(�, �) ≤ C2b,

b =
VCdim(H) − log �

�2
.

11  In my presentation, I also follow Shalev-Shwartz and Ben-David (2014) in focusing on the epistemic 
end of learnability (minimizing estimation error). I only note here that another important epistemic end 
that is supported by the uniform convergence “wysiwyg” guarantees is model assessment, where we use 
the training error to assess whether the model (the learned hypothesis or indeed the hypothesis class) is 
actually good. (For instance, in the discussion of VC theory by Hastie et al., 2009, sect. 7.9, the emphasis 
is rather on this end.)
12  See Shalev-Shwartz and Ben-David 2014, Thrm. 6.8.
13  This is a bound on the sample size in terms of given accuracy and confidence parameter (and VC 
dimension); but we can also infer other bounds by making other choices in what quantities we take as 
given and what quantity we then solve for. For instance, we can derive that there exists constant C such 
that for any given m and � we have an accuracy bound

(9)𝜖uc(m, 𝛿) < C

√
VCdim(H) − log 𝛿

m
.
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3 � The Notion of Simplicity

While, I will argue in this section, the notion of VC dimension does not give us a 
handle on the simplicity of individual hypotheses (Sect.  3.1), it does constitute a 
plausible and robust measure of the simplicity of hypothesis classes (Sect. 3.2).

3.1 � Individual Hypotheses and Hypothesis Classes

Capacity notions like VC dimension apply to hypothesis classes, not individual 
hypotheses. Yet in some discussions of simplicity, that also rely on the relation 
between uniform convergence and small size or capacity of the hypothesis class, the 
notion of simplicity invoked actually concerns individual hypotheses. These discus-
sions use a notion of the complexity of an hypothesis as its representational com-
plexity in some formal language.

An influential example is the argument of Blumer et al. (1987) that “under very 
general assumptions, Occam’s Razor produces hypotheses that with high probability 
will be predictive of future observations” (ibid., p. 378).14 An earlier example still is 
Pearl (1978), who discusses the connection between simplicity and “credibility” of 
hypotheses via different notions of capacity and generalization success—including 
already VC dimension and uniform convergence (ibid., p. 261ff).

Pearl sets the stage as follows. We take some language L with an interpretation 
function I that maps sentences in the language to hypotheses (ibid., pp. 256f). Then 
we define some complexity measure on each sentence t, “which may represent either 
the syntactic aspect of the sentence t, or the work required for the computation of 
I(t)” (ibid., p. 257).15 Further, “the complexity of a [hypothesis h] with respect to 
a language L is defined as the complexity of the simplest sentence which repre-
sents that [hypothesis]” (ibid.). This allows us to take subsets of sufficiently simple 
hypotheses: a “complexity bounded sublanguage of L is a sublanguage Lc = (Tc, Ic) 
such that Tc ⊆ T  , Ic ⊆ I and C(h) ≤ c for all h ∈ Ic ” (ibid., p. 258, slight change in 
notation).

Now the lower the complexity c, the smaller the size (and in particular, the capac-
ity) of the sublanguage (hypothesis class) Lc.16 This, via reasoning as in section 2.6 
above, leads to a better generalization guarantee or “credibility” of the estimated 
hypothesis from this class. In this way, Pearl writes in his concluding discussion, 
“accepted norms of credibility are correlated with [hypotheses’] simplicity” (ibid., 
p. 263). However, he immediately adds:

14  The relevant result is derived within Valiant’s PAC learning framework, and the requirement of com-
putational efficiency in the definition and generalization guarantee of the relevant “Occam-algorithm” 
make it a bit more involved than the reasoning I discuss in this paper. For further expositions, see 
Anthony and Biggs (1992, p. 59ff) Kearns and Vazirani (1994, ch. 2); and for a rebuttal of the argument, 
see Herrmann (2020).
15  The standard example is the two-symbol language of bits, where the complexity of a sentence (a bit 
string) is defined as its length.
16  For instance, for the language of bits, there can only be 2n+1 sentences (bit strings) of complexity 
(length) up to n, hence at most 2n+1 hypotheses of complexity up to n.
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From a philosophical viewpoint it is essential to note that in all cases exam-
ined the role of simplicity was only incidental to the analysis. We would have 
gotten identical results if instead of Lc being a complexity bounded sublan-
guage we were to substitute an arbitrary sublanguage with equal number of 
[hypotheses]. It is not the nature of the [hypotheses] in Ic but their number |Ic| 
(more precisely, the number of sample dichotomies induced by the members 
of Ic ) which affects the various plausibility measures considered.

In particular, whereas classes of hypotheses of low representational complexity must 
be small, the converse does not hold. One can select small classes of (representa-
tionally) complex hypotheses, and the same capacity-based reasoning for good gen-
eralization still applies (cf. Mitchell, 1997, p. 65; Domingos, 1999, p. 410).17

A deeper problem still is that this notion of representational complexity depends 
on the presupposed formal language and definition of sentence complexity. For any 
hypothesis that is simple relative to one language, we can design a different lan-
guage that renders it complex.18 In that sense representation length does not give us 
a robust or objective notion of simplicity of individual hypotheses.19

Given the bleak prospects for some general mathematical definition to settle what 
counts as simple for individual hypotheses, one might at this point be inclined to 
change tack and suggest that in practice, there is often no real problem. For many 
specific learning problems, we do appear to have clear intuitions about natural rep-
resentations or parametrizations of hypotheses. In the standard curve-fitting problem 
(see, e.g., Sober, 2015, pp. 88ff), where we seek to estimate a polynomial function, 
there exists a natural parametrization by degree.20 The linear functions of degree 1 
are simpler than the quadratic functions of degree 2. Moreover, the class of all lin-
ear hypotheses is smaller (has lower capacity) than the strict superclass of quadratic 
hypotheses. Some conception of simplicity of hypotheses is here already taken for 
granted, which points to a natural ranking of hypothesis classes, and this ranking 
neatly aligns with their capacity.21

17  This is the main critique of Herrmann (2020) of the argument of Blumer et al. Herrmann derives a 
parallel result for an “Anti-Occam algorithm” that selects small-cardinality classes of representationally 
complex hypotheses.
18  This language-relativity in describing individual hypotheses also clearly arises in some presentations 
of the minimum description length (MDL) approach (e.g., Mitchell, 1997, Sect.  6.6; Shalev-Shwartz 
& Ben-David, 2014, p. 65f). However, these presentations paint a rather, well, simplistic picture of the 
approach: in “refined MDL,” the focus is on the design of “universal codes,” yielding again a robust 
notion of complexity of hypothesis classes (Grünwald, 2007) that plays a role very similar to capacity 
notions in statistical learning theory (ibid., Sect. 17.10).
19  It is sometimes held that “idealized MDL” or Kolmogorov complexity can offer an objective notion of 
the representational complexity of individual objects (Li & Vitányi, 2008). See Sterkenburg (2016) for a 
critique of a suggested justification for Occam’s razor via this approach, and Sterkenburg (2018,Sect. 5.2) 
for a critique of its promise of an objective notion of complexity.
20  Curve-fitting can be cast as a problem in binary classification by treating the curves as hypotheses 
separating instances with the one label from instances with the other.
21  One might seek to base this conception on some formal definition of simplicity in terms of number of 
adjustable parameters, a line going back at least to Jeffreys (1939). But this still does not suddenly give 
us a robust and objective notion of simplicity of individual hypotheses: the “grue-like” problems of rep-
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If this is a common situation in practice, then, together with the formal connec-
tion between low capacity and generalization performance, we may have the basis 
for an explanation of why preferring simple hypotheses generally seems to be a good 
idea. But even if we accept as given, for many specific learning problems, a stand-
ard representation or parametrization of hypotheses, the formal connection between 
low capacity and generalization performance still falls short of constituting a justifi-
cation for preferring simple hypotheses (for these specific learning problems). The 
issue remains that the theory does not enforce a connection between simple indi-
vidual hypotheses (however specified) and classes of low capacity.

3.2 � VC Dimension as a Measure of Simplicity

In contrast to definitions of the complexity of an individual hypothesis, definitions 
of the capacity of a hypothesis class (like VC dimension) do not depend on a spe-
cific representation or parametrization, and do therefore possess a certain objectivity 
or robustness.22 But does VC dimension also give an objective or robust measure of 
the simplicity of a hypothesis class?

One might deny this on exactly the grounds that VC dimension does not necessar-
ily align with natural parametrizations of individual hypotheses (Domingos, 1999, p. 
413). In the case of the usual parametrization of polynomials, the higher the number 
of free parameters, the higher the capacity of the corresponding hypothesis class; 
but in other cases the two can come apart. The standard example is the class of sine 
curves {h�}�∈ℝ with h�(x) = sin �x (ibid.). The elements in this class are given by 
only one parameter (and in that sense the function class is very simple), yet the class 
has infinite VC dimension (Vapnik, 2000, p. 78).23

Of course, this objection relies on some claim that usual parameterizations do 
(and exclusively do) track simplicity. But even aside from the ultimate non-robust-
ness of representational notions of complexity, there just exist different and some-
times conflicting intuitions. From one way of looking at it, the class of sine func-
tions is maximally complex: exactly because so many possible data configurations 
can be fit by it (cf. Romeijn, 2017). This is the intuition of richness or complexity 
(or also falsifiability24) made precise in a capacity measure. VC dimension is not the 

22  More precisely, the capacity of a hypothesis class does not depend on how the individual hypotheses 
are described: all that matters is their data coverage. Language-relativity only turns up when we start 
redescribing the instance space (cf. Steel, 2009, p. 482).
23  Vapnik (1998,  p. 698) himself writes that since Occam’s razor says that the explanation with “the 
smallest number of features (free parameters)” is best, and since this is not supported by theoretical 
results, “Occam’s razor principle is misleading and perhaps should be discarded in the statistical theory 
of inference” (ibid., p. 699). Also see Cherkassky and Mulier (2007, p. 146ff).
24  Vapnik (2000, p. 42ff) links the capacity of hypothesis classes to Popper’s falsifiability of theories. 
Popper famously equated simplicity with falsifiability, and introduced a quantitative notion of falsifia-
bility of theories that he claimed aligned with number of free parameters. Corfield et al. Corfield et al. 

resentation invariance remain (Priest, 1976). For a recent discussion and critique of defining simplicity 
by number of parameters, see Bonk (2023).

Footnote 21 (continued)
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measure, but it is a plausible and robust measure of the complexity of a hypothesis 
class. This is enough for my purpose: if a justification is to be had for preferring 
low capacity, then I think it is reasonable to call this a justification for preferring 
simplicity—even if there are other reasonable conceptions of simplicity, and even 
if (to stress again) this notion of simplicity pertains to hypotheses classes and not to 
individual hypotheses.

4 � The Justification for Simplicity

The fundamental theorem of statistical learning theory ties the simplicity—the VC 
dimension—of a hypothesis class to its learnability, and indeed already to its learn-
ability by the ERM method. This result offers, first of all, a certain justification 
for the ERM procedure; although this is a justification with several qualifications, 
chief among them its model-relativity (Sect. 4.1). Nevertheless, I will argue that the 
model-relative justification that learning theory can offer fits right in with a plausi-
ble broader epistemological perspective on machine learning methods (Sect.  4.2). 
Finally, I will assemble from all of the previous elements a qualified justification for 
a simplicity preference (Sect. 4.3).

4.1 � The Justification for Empirical Risk Minimization

The fundamental theorem shows that ERMH , for VC class H , is a good method. It is 
good, and good epistemically, because it satisfies a guarantee of attaining a certain 
epistemic goal. This guarantee therefore constitutes an epistemic justification for the 
method.

An immediate qualification is that this picture of justification or not—learnability 
or not—is overly black-white. The quantitative version of the fundamental theorem 
tells us that a smaller VC dimension leads to a stronger guarantee, making ERM an 
epistemically better method. So we have a graded guarantee that constitutes a graded 
notion of epistemic justification.

But this step from theoretical guarantees to talk about justification comes with 
several further qualifications still.

4.1.1 � Qualifications

A first elementary point is that the fundamental theorem is a mathematical result. 
Any epistemic justification derived from it, in the context of a real-world learning 
problem, needs a story how it maps to this learning problem. Most obviously, for 
any particular real-world problem, a meaningful application of the fundamental 
theorem (and justificatory claims derived from it) depends on how well the prob-
lem can be modelled in the statistical learning theory framework. This includes the 

(2009) and Harman and Kulkarni (2007, p. 50ff) argue that VC dimension is a better measure of falsifi-
ability, though these authors appear to resist linking VC dimension to simplicity.

Footnote 24 (continued)
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match of our prior assumptions with the formal assumption of i.i.d. sampling of data 
from some unknown distribution, but also the match of our goals with the formal 
choice of the 0/1 error function. The representation of a learning problem in the 
formal framework of statistical learning theory already forces us to commit to and 
codify various assumptions (von Luxburg & Schölkopf, 2011, p. 683f), and anything 
that follows from the mathematics should be appraised with an eye to whether these 
made sense for the original learning problem.

But even when there are no such modeling concerns, one need not accept that the 
formal guarantees from the fundamental theorem are sufficiently strong or interest-
ing to warrant talk about justification. There are legitimate reservations one can have 
about the usefulness of these guarantees.

One possible reservation is that these guarantees are quintessential frequentist 
guarantees. They say something about what we can expect with high probability 
before the sampling and the learning. In that sense we can call methods satisfying 
these guarantees reliable (Harman & Kulkarni, 2007). But these guarantees do not 
strictly say anything about what we can infer after the learning—about the hypoth-
esis that has actually been selected, other than that it has been selected by a reliable 
method (von Luxburg & Schölkopf, 2011, p. 699f). For instance, the “wysiwyg” 
guarantee of uniform convergence does not strictly say anything about what we have 
gotten when we see the result. It is easy to misinterpret such guarantees.

A second possible reservation is that the guarantees may be overly weak. In par-
ticular, since the guarantees are agnostic about the true distribution, they are worst-
case bounds that for many real-world situations—where we feel we can exclude cer-
tain classes of (“pathological”) distributions—would be overly loose or pessimistic 
(von Luxburg & Schölkopf, 2011, p. 680, pp. 683f).25 This motivates, for instance, 
the study of “fast rates” under further assumptions on the distributions26 and of 
guarantees that hold for all distributions but are still distribution-dependent.27 These 
studies yield a more complicated picture of the justification for ERM.

Still, the fundamental theorem gives at least a plausible theoretical justification 
for the method of ERM. This does not exclude that one might (also) wish for differ-
ent kinds of justification, in any specific problem or in general. In any case, my aim 
here is to flag the above qualifications, to make clear that accepting the justification 
for ERM, and indeed the justification for simplicity to follow, presupposes accepting 
those qualifications. One can reject the argument below simply by rejecting the pre-
suppositions of the statistical learning theory framework. For instance, the reasons 
Kelly (2008, 2011) offers for rejecting arguments for Occam’s razor from statistical 

25  That sample sizes can in practice be much smaller was already shown by early experimental results 
(Cohn & Tesauro, 1992).
26  Or more precisely, on the relation between the distribution, hypothesis class, and loss function [see T. 
van Erven et al. (2015)].
27  This is the idea of the “theory of universal learning” of Bousquet et al. (2021). Their motivation is 
that the usual “distribution-independent definition of learnability is too pessimistic to explain practical 
machine learning,” showing the need for alternatives that “better capture the practice of machine learn-
ing, but still give rise to a canonical mathematical theory of learning rates” (ibid., p. 533).
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learning theory are essentially a rejection of the predictive framework.28 But, I will 
argue, conditional on those qualifications—including the presuppositions of the 
framework—we can formulate a justificatory argument.

There is, however, a final aspect to this justification that requires more discussion. 
Namely, it can be seen to cover only one side of an inevitable trade-off.

4.1.2 � The Bias‑Complexity Trade‑Off

Recall that the notion of learnability of Sect. 2.3 above concerns learning a hypoth-
esis with relatively low risk among those hypotheses in given H . Formally, it con-
cerns finding ĥ that minimizes the estimation error LD(ĥ) −minh∈H LD(h).

Intuitively, this concerns the avoidance of overfitting. If a hypothesis class H has 
overly high capacity, then for any given data sample, the empirically best hypothesis 
in H is likely to overfit to random noise in the sample, in which case it is actually 
significantly worse than the best—lowest-risk—hypothesis in H . Learnability basi-
cally concerns the avoidance of such overfitting, and the fundamental theorem then 
says that overfitting is avoided if H is a VC class.

But this leaves out the other direction of error, namely the underfitting. Formally, 
this concerns the approximation error, or the (absolute) risk minh∈H LD(h) of the 
best hypothesis in H . The absolute risk of the selected hypothesis can be trivially 
decomposed as the sum of the two types of errors,

The opposing pull of these two error terms is also referred to as the bias-complexity 
trade-off. A lower complexity—lower capacity—class excludes more possibilities, 
and as such embodies, in machine learning terminology, a stronger inductive bias.29 
The fundamental theorem yields a guarantee about finding the best in a given class, 

(10)
LD(ĥ) = min

h∈H
LD(h)

�������
approx. error

+LD(ĥ) −min
h∈H

LD(h)

�����������������������
est. error

.

28  Kelly (2008, p. 329) writes that Occam’s razor “should help one to select the true theory from among 
the alternatives,” whereas arguments based on risk minimization do not concern “theoretical truth” but 
“passive prediction” (ibid., 335). “But beliefs are for guiding action and actions can alter the world so 
that the sampling distribution we drew our conclusions from is altered as well” (ibid.); moreover, “it is 
clear that the over-fitting story depends, essentially, upon noise in the data [...] One would prefer that 
the connection between simplicity and theoretical truth not depend essentially upon randomness” (ibid.). 
These points are all well-taken [in particular the problem of distribution-shift has recently received more 
attention, Wiles et al. (2022)], but are all already concerns about the scope of statistical learning theory 
itself.
29  This is a bit more general than the bias-variance trade-off (see Hastie et al., 2009, Sects. 2.6, 2.9). 
Complexity and (inductive) bias are here in the first instance used as informal terms (even if complexity 
can be made precise as VC dimension, and some authors refer to the approximation error itself as the 
bias), while the bias and variance in the latter are well-defined statistical terms in regression with mean 
squared error.
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but this is inevitably a class with some inductive bias. The resulting justification 
must therefore be relative to this class or inductive bias.30

4.1.3 � Model‑Relative Vs. Absolute Justification

In the terminology of Sterkenburg and Grünwald (2021), this is a model-relative jus-
tification. It is indeed a justification for a learning method, ERM, that is explicitly 
model-dependent. The method of ERM is a general procedure—a “generic learn-
ing rule” (Shalev-Shwartz & Ben-David, 2014, p. 68)—yet one that must, by defini-
tion, on each application be supplied with further assumptions. We can view ERM 
as instantiating a two-place function, that apart from a data sample, also takes a 
particular hypothesis class. On each specific application, it must be supplied with 
a hypothesis class or inductive model that constitutes further (context-dependent) 
assumptions, the inductive bias. Correspondingly, the learnability guarantee for 
ERM is model-relative, because the notion of learnability is relative to a given 
inductive model or VC hypothesis class.

The analysis of Sterkenburg and Grünwald aims to explain how general learning-
theoretic guarantees for generic algorithms are consistent with the skeptical import 
of the so-called no-free-lunch theorems of supervised learning (going back to Schaf-
fer, 1994; Wolpert, 1992, 1996). Modern versions of these results (Shalev-Shwartz 
& Ben-David, 2014, p. 36ff; Sterkenburg & Grünwald, 2021, p. 9990f) say that there 
can exist no universal learning algorithm: every particular algorithm is inadequate 
in some possible learning situations, situations where another algorithm is adequate. 
And since there can be no a priori justification for privileging particular learning 
situations, so the further interpretation goes, there can be no theoretical justification 
for any particular algorithm.

However, rather than the generic yet model-dependent ERM algorithm, the no-
free-lunch statement applies to any particular instantiation of ERM with an induc-
tive model H , any particular one-place “data-only” function ERMH . The no-free-
lunch result of Shalev-Shwartz and Ben-David (2014, Thrm. 5.1) essentially states 
that for any specific inductive model H , the data-only algorithm ERMH is inade-
quate (i.e., with high probability suffers high absolute error) for some situations (i.e., 
for some true distributions; informally, those that do not match H ’s inductive bias) 
where another data-only algorithm, like ERMH for another inductive model H′ (that 
does match the situation), is adequate.31

30  Of course, the hypothesis class is not the only—or even the most important (von Luxburg & 
Schölkopf, 2011, p. 684)—way in which assumptions or biases enter: as discussed in Sect. 4.1 above, 
important modeling assumptions must already be made in the formalization of the learning problem 
(including choice of feature space and loss function). But discussions of inductive bias (in particular 
around the no-free-lunch theorems introduced shortly) usually assume that these elements are already in 
place, and center on the further inductive assumptions required.
31  Another way of casting this result is that the class of all classifiers is not learnable: since, for any pos-
sible distribution, this class has minimum approximation error, its learnability (guarantee of low estima-
tion error) would guarantee low absolute error for any possible distribution. In fact, the proof of Shalev-
Shwartz and Ben-David (2014, thrm. 5.1) already shows the failure of learnability of classes with infinite 
VC dimension, and the no-free-lunch theorem is in their presentation part of the proof of the fundamen-
tal theorem (ibid., pp. 45ff).
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In other words, while we can have a model-relative justification for model-
dependent algorithms (of the rough form, “for any instantiated inductive model of 
the right form, works well relative to the model”), there is no absolute justifica-
tion (“works well whenever”) for any inductive model. The impossibility of such 
absolute justification is also an important part of the argument of Domingos (1998, 
1999) against a possible justification of Occam’s razor.

4.1.4 � The Failure of an Absolute Justification for Simplicity

Domingos takes issue with what he calls the “second razor”: that “given two 
[hypotheses] with the same [empirical] error, the simpler one should be preferred 
because it is likely to have lower generalization error” (1999, p. 410). (To be dis-
tinguished from the “first razor,” that “the simpler [hypothesis] should be preferred 
because simplicity is desirable in itself,” ibid.)32 He writes that theoretical “zero-
sum arguments”—no-free-lunch theorems—“imply that the second razor cannot 
be true” (1999, p. 413). Namely, “they imply that, for every domain where a sim-
pler [hypothesis] is more accurate than a more complex one, there exists a domain 
where the reverse is true, and thus no argument which is preferable in general can be 
made” (ibid.).

This is true, and an expression of the impossibility of absolute justification, 
applied to the choice of a simple single hypothesis.33 However, I already observed 
that the relevant notion of simplicity attaches to hypothesis classes, not single 
hypotheses. Domingos’s critique of the theoretical “PAC-learning argument” for the 
second razor, which is also a no-free-lunch observation, is more relevant:

“ [uniform convergence results] only say that if we select a sufficiently small 
set of [hypotheses] prior to looking at the data, and by good fortune one of 
those [hypotheses] closely agrees with the data, we can be confident that it will 
also do well on future data. The theoretical results give no guidance as to how 
to select that [hypothesis class].” (1999, p. 410)

 This is again true, and an expression of the impossibility of absolute justification, 
applied to the choice of (ERM instantiated with) a simple hypothesis class. For a 
sufficiently small (low-capacity) set of hypotheses, the fundamental theorem gives a 
guarantee of probably finding the near-best hypothesis in the class. But this hypothe-
sis is only good in an absolute sense (has low risk and so “will also do well on future 
data”) if the class of hypotheses was good to begin with (contains a hypothesis that 
has low risk and so “closely agrees with the data”). By the no-free-lunch results, we 
know that for any hypothesis class there are learning situations such that the class is 
not good. And the theory does not guide us towards a good hypothesis class prior to 
looking at the data.

32  We are here, of course, likewise concerned with an epistemic justification for Occam’s razor, not with 
claims that simplicity is better because it points to hypotheses or theories that are easier to work with or 
more aesthetically pleasing (cf. Sober, 2015, pp. 58f).
33  This point has also been brought out experimentally [e.g., Schaffer (1993); Webb (1996)].
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In sum, an absolute justification of (ERM with specific) choice of simple hypoth-
esis class is impossible. Nevertheless, this leaves a model-relative justification of 
ERM. Such a justification, I will now argue, is still of epistemological interest, and 
indeed points towards a qualified justification of simplicity.

4.2 � Epistemology and Machine Learning Theory

4.2.1 � “Model‑Relative” Epistemology

Absolute justification is central to a general epistemological project where we are 
concerned with the foundations of our knowledge. This is a project of turning back, 
of retracing the justificatory basis for a statement or belief of interest. In the context 
of machine learning algorithms, we ask: what is the basis, the justification, for trust-
ing what our learning algorithm returns? By the no-free-lunch theorems, we know 
that our learning algorithm’s outputs are grounded in a particular inductive bias. So 
we are led to ask: what is the foundation, the justification, for this inductive bias? 
Accepting the Humean argument that neither deductive nor nondeductive justifica-
tion is forthcoming, we are ultimately led to skepticism (Sterkenburg and Grünwald, 
2021, p. 9992ff).

Much of modern philosophy of science implicitly or explicitly views this gen-
eral epistemological project as a dead end. Reichenbach, in the words of van Fraas-
sen (2000, p. 254), thought that empiricist epistemology must reject “Rationalism’s 
stringent criterion of adequacy: that an epistemology must show how absolutely 
reliable knowledge is possible.” Van Fraassen (1989; 2000; 2004) himself offers an 
outlook of an empiricism in explicit rejection of “defensive epistemology” which 
“concentrates on justification, warrant for, and defence of one’s belief” (1989,  p. 
170). Peirce, in the words of Levi (1998,  p. 177), “explicitly dismissed doxastic 
skepticism when he observed that merely writing down a question challenging some 
current assumption is not sufficient to create the sort of doubt that should occas-
sion an inquiry.” Levi (1980; 2004) himself further develops Peirce’s doubt-belief 
model of inquiry in explicit rejection of “pedigree epistemology,” under which “one 
is obliged to justify current beliefs” (2004, p. 11). The broad alternative project that 
arises is a pragmatist one where we take seriously that one will always already start 
with a body of beliefs that one at that time does not actively or genuinely doubt. 
The interesting question is not whether one actually has an ultimate justification for 
these beliefs. The interesting question is how to proceed from these beliefs: how to 
improve these beliefs. This leads to an epistemological project that investigates how 
to improve (refine, revise, update) beliefs in the light of new data. And in this project 
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there is still an interesting question of justification: we can theorize about better and 
worse ways of doing so.34,35

The same sentiment can be found in the machine learning literature. Already 
thirty years ago, Russell (1991, p. 45), after discussing the infeasibility of “tabula 
rasa” learning, writes that “the picture that is currently fashionable in machine 
learning is that of an agent that already knows something and is trying to learn 
some more.” In similar vein, Domingos (2012,  p. 81) himself, after attributing to 
Hume and Wolpert the insight that “data alone is not enough,” writes that “induction 
(what learners do) is a knowledge lever: it turns a small amount of input knowl-
edge into a large amount of output knowledge.” Importantly, these authors, like also 
Shalev-Shwartz and Ben-David (2014, p. 94), do not just point out the impossibility 
of inductive inference without assumptions. They presuppose that there is always 
a starting point of initial knowledge, and put to one side the question of the actual 
basis for this supposed knowledge. They instead take machine learning to be about 
how to best proceed from initial knowledge: how to learn more, or turn input knowl-
edge into more output knowledge.

The model-relative guarantees derived within the theory of machine learning 
serve exactly such a perspective. Model-relative guarantees concern algorithms that 
presuppose the instantiation, in each application, of an inductive model, that codifies 
specific prior knowledge. And these guarantees show that such algorithms are good 
relative to the instantiated inductive model, relative to the prior knowledge. This 
fits a picture where any real-world learning problem arises in a context where we 
already take many things for granted, and are willing to accept as prior knowledge. 
Given our starting point (our particular learning problem and goal, and the way we 
codify prior knowledge in a formal inductive model), the relevant theoretical model-
relative guarantee advises us on how to proceed (what model-dependent algorithm 
to use). Learning-theoretic results thus provide a normative component to this gen-
eral epistemological perspective on learning methods.36

34  This broad epistemological approach is certainly not particular to the authors I sampled here. The 
repudiation of quests for absolute justification is found in the writings of many other prominent philoso-
phers, like Popper (“[t]he piles are driven down from above into the swamp,” Popper, 2002/1959, p. 94); 
the “model-relativity” of all our knowledge is not just central to modern authors on induction like How-
son (2000), but already to Carnap and indeed to Kant.
35  Sober (2015,  pp. 86f) also sets apart, with reference to Neurath’s boat, a “foundationalist” picture 
from a “more defensible” alternative picture where we “now have numerous beliefs about the world. Our 
task is to take new observations into account so as to improve our system of beliefs. We don’t start from 
zero; we start from where we are” (ibid., p. 87). Notably, though, he presents these two pictures as two 
different versions of Bayesianism; there is no reference to these different epistemological views in his 
discussion of frequentist ideas. Other authors, including Levi and van Fraassen, also assume a Bayesian 
framework. I do not do that here: I am not after a formal account of the wider epistemic context of agents 
using machine learning methods to inform their beliefs. I am here interested in the epistemological les-
sons we may draw from a formal account of the machine learning methods themselves, namely, machine 
learning theory.
36  Following up on footnote 29, prior knowledge is not only instantiated in the inductive model qua 
hypothesis class, but also already in the other formal components of the learning problem. But clearly 
learning-theoretic guarantees must always be relative to these choices as well.
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4.2.2 � The Theory and the Practice

In evoking a wider epistemological perspective on machine learning, we have a 
responsibility to do justice, not only to the normative role of the theory, but also to 
the actual practice of (modern) machine learning. Here arises a worry that the pre-
ceding picture is excessively neat. For one thing, it is not exactly standard machine 
learning practice to carefully specify an inductive model strictly on the basis of 
well-formulated domain-specific assumptions; the practice, say in deep learning, is 
to a significant extent one of trial-and-error of different general architectures and 
hyperparameters, that codify largely ill-understood inductive biases. For another, the 
kind of justification that practitioners offer is less based on the (formal) properties 
of the learning algorithm than on the empirical performance of the output classifier 
(the trained model), in the first instance on a separate test data set or in a cross-
validation procedure.37

A full reply to this worry would have to engage more systematically with the 
relation between the theory and the practice of machine learning, which I do not 
attempt in this paper. Here I will just observe the following. Whatever the several 
back-and-forths of design and evaluation in an actual machine learning pipeline, the 
core remains the training of an algorithm to return a classifier that generalizes well. 
And if there is one theoretical lesson that will always stand, then it is that the algo-
rithm must possess restrictive inductive biases, and that the algorithm will only do 
well if the inductive biases are appropriate. It is also nothing short of a practical 
necessity to constrain, amidst all the further guesswork and trial-and-error, the pos-
sible inductive models to at least some extent; and this will still always involve at 
least some amount of knowledge about what is likely to be appropriate in the current 
problem. Going further, we can make the minimal normative point that it is indeed 
better to try and implement inductive biases that are aligned with what we believe 
or are prepared to assume about the relevant domain. With all the qualifications and 
idealizations involved in linking the theory to the practice (which also ties back to 
the qualifications listed in Sect.  4.1.1 above), if there is a normative role for the 
theory to play, then it is in grounding learning procedures that can capitalize on an 
inductive model encoding inductive assumptions, fitting in a broad “model-relative” 
epistemological picture on machine learning methods.

4.2.3 � “Means‑Ends” Epistemology

The idea that theoretical learning guarantees provide the basis for a normative epis-
temology is also central to the philosophical tradition best known as formal learning 
theory (Genin, 2018; Kelly, 1996, 2016; Schulte, 2017). I will briefly make a con-
nection to this tradition, in order to identify another crucial ingredient for the quali-
fied justification for a simplicity preference that I will propose after.

37  This turn away from explicit modeling and towards predictive performance is what is indeed often 
seen to separate machine learning from “traditional” statistical inference (Breiman, 2001).
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The core principle of formal learning theory, which also has its roots in machine 
learning theory,38 is that inductive problems call for a context-dependent means-
ends analysis of what epistemic notions of success (ends) are attainable with what 
assumptions and methods (means). Schulte (1999) therefore also speaks of “means-
ends” epistemology.

This means-ends analysis is context-dependent in the sense that given a particular 
learning problem, which usually comes with restrictive “background assumptions,” 
the analysis does not question these assumptions (Kelly, 1996, p. 11; Schulte, 2017, 
Sects. 1.1, 2.2). For a particular learning problem and notion of success, the analysis 
is concerned with showing that certain methods can or cannot “solve” the problem 
(can or cannot attain the notion of success), given the background assumptions. This 
again fits a “model-relative” epistemological perspective (cf. Kelly, 2016, p. 713f), 
where the analysis provides a model-relative justification (with the inductive model 
constituted by the background assumptions) for methods that solve the problem.

However, this “problem solvability analysis” of whether and which methods 
can solve a given learning problem is not the only possible direction of theoretical 
analysis (Kelly, 1996, p. 37f). Indeed, each of the different parameters at play (the 
learning problem, the background assumptions, the notion of success, the methods) 
we can either vary or keep fixed (Kelly, 2016, p. 696). In particular, we can fix a 
learning problem and notion of success, and ask what background assumptions are 
needed for a method to possibly solve the problem. Here we are after characteriza-
tion results that give necessary and sufficient conditions for the attainability of (i.e., 
the existence of a method that attains) the relevant notion of success (Kelly, 1996, p. 
74). In the words of Kelly (ibid.),

a characterization theorem isolates exactly the kind of background knowledge 
necessary and sufficient for scientific reliability, given [...] the sense of suc-
cess demanded. To revive Kant’s expression, such results may be thought of 
as transcendental deductions for reliable inductive inference, since they show 
what sort of knowledge is necessary if reliable inductive inference is to be pos-
sible.

In the logical framework studied in formal learning theory, there arises a neat hierar-
chy where different notions of success are characterized by the topological structure 
of the problem and background assumptions (Kelly, 1996). In the statistical learning 
theory framework, the fundamental theorem characterizes the main notion of suc-
cess in terms of the combinatorial structure of the background assumptions: for a 
method to have the success guarantee of learnability, the hypothesis class must have 
finite VC dimension. Thus, adopting Kelly’s words, the fundamental theorem shows 
what sort of knowledge (form of hypothesis class) is necessary for reliable inductive 
inference (a learnability guarantee). This provides a means-ends reason for model-
ling, if we can, our background assumptions in the form of a class of hypotheses 
with finite VC dimension, a simple class of hypotheses. From the combination of a 

38  Specifically, the approach of algorithmic learning theory going back to Putnam (1965) and Gold 
(1967); see Jain et al. (1999).
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model-relative perspective and a means-ends analysis thus arises a justification for 
preferring simplicity—albeit with important qualifications.

4.3 � A Qualified Justification for Simplicity

We can now assemble from the building blocks of the previous sections a justifica-
tory argument.

4.3.1 � The Argument

We face a certain problem of classification, which we are prepared to model as a 
problem in statistical learning. We enter this problem with further prior knowledge 
still; and we are interested in a method that is good relative to this prior knowledge. 
As a formalization of what it means for a method to be good relative to prior knowl-
edge, we adopt the model-relative notion of learnability. Now the fundamental theo-
rem tells us that for there to exist a method with this guarantee of learnability, we 
need to formulate a hypothesis class, as formalization of our prior knowledge, that 
is a VC class—that is simple. Only when the hypothesis class is simple, does there 
exist a method with the guarantee of learnability relative to this hypothesis class. 
This “transcendental deduction” gives us a means-ends justification for modeling, if 
we can, our prior knowledge in the shape of a simple class of hypotheses.

The previous reasoning was based on the black-and-white picture of learnabil-
ity or no. The quantitative version of the fundamental theorem offers a more fine-
grained version; but the essence of the argument is the same. Accepting the guaran-
tee of learnability, we recognize that stronger bounds give a stronger guarantee, and 
we take a method with a stronger guarantee to be better. Now the quantitative ver-
sion of the fundamental theorem tells us that a VC class of lower VC dimension—a 
simpler hypothesis class—gives a stronger guarantee. This gives us a means-ends 
justification for modeling, to the extent we can, our prior knowledge in the shape of 
class that is maximally simple (of maximally low VC dimension).

4.3.2 � Qualifications

The above argument comes with a series of presuppositions and restrictions in 
scope, most of which I have discussed earlier. The argument only applies to learn-
ing problems that fit the statistical learning theory framework, and it presumes that 
a learning method is (more) justified if it satisifies (stronger bounds for) the formal 
criterion of learnability (Sect.  4.1). In particular, it presumes the epistemological 
value of model-relative justification (as I have argued for in Sect. 4.2). And it pre-
sumes that the VC dimension of a hypothesis class is a plausible criterion of sim-
plicity (as I have argued for in Sect. 3.2).

But perhaps most importantly, the final step of the argument still comes with a 
crucial qualifier. We have a means-ends justification for modeling our prior knowl-
edge in the form of a simpler class, to the extent we can. The theory can be seen 
to push into one direction, towards simplicity. However, the actual context of the 
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learning problem, and in particular our prior knowledge, acts as a check on this push 
towards simplicity.

The prior knowledge we have in each instance is a crucial constraint in the argu-
ment. In line with the epistemological “model-relative” perspective sketched above, 
we always enter a learning problem with informal prior knowledge (beliefs we have, 
assumptions we are willing to make), and it is this informal prior knowledge that 
we need to codify in some formal hypothesis class. There will always be some lee-
way here, simply because it will be a significant translation step from our informal 
knowledge to the formal object of a hypothesis class, but it is still a constraint. It 
will never be reasonable, for instance, to adopt a singleton hypothesis class (a maxi-
mally simple class of VC dimension 0), because that would mean there would not be 
a learning problem to begin with. Without this constraint by informal prior knowl-
edge, the argument would lose the connection to the epistemic context of an actual 
learning problem, and collapse into the useless advice to always choose a class of 
VC dimension 0.

The downside is that there will be learning problems where this constraint, this 
check from complexity, is too strong for the simplicity argument to still be meaning-
ful. There will be situations, in particular, where our prior knowledge is too weak to 
plausibly translate into a class of VC dimension sufficiently small to still yield useful 
bounds. If such situations are the rule rather than the exception, then this seems to 
be a serious restriction in the scope of the argument.

The good news is that we can embed the argument into a more general setting, 
presupposing a much weaker kind of prior knowledge. Namely, in rough terms, we 
can simultaneously evaluate a (ranked) sequence of multiple VC classes, where the 
theoretical push towards simplicity manifests itself again in a preference for lower-
VC-dimension classes; but one which is now checked by the classes’ empirical 
error. In fact, this gives a trade-off which can be automated into a learning proce-
dure. This is Vapnik’s second “inductive principle,” or the method of structural risk 
minimization.

4.3.3 � Structural Risk Minimization

Indeed, rather than on uniform convergence and ERM, discussions of Occam’s razor 
in statistical learning theory tend to focus on this method (Harman & Kulkarni, 
2007, ch. 3; Kelly, 2008, p. 335; Shalev- Shwartz & Ben-David,2014, Sect. 7.3; Bar-
gagli Stoffi et  al,2022). Moreover, this method is directly applicable to the prob-
lem of model selection, which takes center stage in the modern philosophical debate 
about Occam’s razor (Forster & Sober, 1994; Sober, 2015). Very briefly, the formal 
route to the method of structural risk minimization (SRM) is the following.

We start with a generalization of uniform convergence (Definition 3 above). This 
generalization applies to a weighted countable sequence of VC classes, and gives 
a uniform accuracy bound for each hypothesis which depends on the class that the 
hypothesis is in (Shalev-Shwartz & Ben-David, 2014, Thrm. 7.4). Next, similar 
to how the ERM method is defined as minimizing a uniform convergence bound, 
which leads to a minimization of empirical risk (Sect. 2.4 above), the SRM method 
is defined by minimizing a generalized uniform convergence bound, which leads to 
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a minimization of a function of empirical risk and VC dimension (ibid., p. 62). This, 
finally, translates into a bound on SRM’s performance; and we can also prove a cer-
tain weaker guarantee of nonuniform learnability (ibid., def. 7.1, thrm. 7.5).

I think that SRM can be understood as implementing a parallel application, over 
multiple VC classes at the same time, of the core argument for simplicity that I gave 
above. The theoretical push towards simplicity is again a push towards hypotheses 
from classes of lower VC dimension. This push is again checked by the classes’ ade-
quacy for the learning problem, or the adequacy of the inductive assumptions they 
codify. However, this is now not done by an informal evaluation of how well the for-
mal inductive assumptions match our background knowledge. Instead, this adequacy 
is directly estimated by empirical error. This gives rise to a quantitative trade-off 
between these two elements, which SRM automates. By taking into account empiri-
cal errors, SRM can thus be seen to automate the evaluation of the adequacy of the 
inductive assumptions in individual VC classes; but of course the whole procedure 
is still relative to an initial choice of a weighted sequence of VC classes, which now 
constitutes the inductive model.

Clearly, it needs more work to spell out this view in the proper amount of detail, 
including how it fits with earlier discussions of Occam’s razor in SRM, and with 
the philosophical discussion of Occam’s razor in model selection methods. But that 
work must wait for another occasion.

5 � Conclusion

In this paper, I described a means-ends justificatory argument for Occam’s razor 
from statistical learning theory, based on the method of empirical risk minimiza-
tion (ERM). I think this argument accomodates both intuitions and arguments in 
the machine learning literature in favor of the possibility of such a justification (by 
actually providing one) and those against (in its various qualifications). It is an hon-
est epistemic justification, that connects a simplicity preference to guarantees of 
predictive accuracy; and it does not rely on any extra-theoretical assumptions about 
the true or best hypotheses being simple. But it does presuppose acceptance of the 
justificatory force of the statistical learning theory framework, including the model-
relative nature of the theoretical guarantees. And both the notion of simplicity (as 
pertaining to classes rather than individual hypotheses) and the means-ends nature 
of the argument (pushing for simplicity as a constraint on inductive assumptions, 
rather than directly on inductive conclusions) is perhaps different and more minimal 
than what one might have hoped from an argument for Occam’s razor.

In its essence, the argument capitalizes on a push from the mathematical theory 
towards specifying a simple hypothesis class. The theoretical push towards simplic-
ity, however, is checked or indeed opposed by the informal knowledge one brings to 
the learning problem, which will generally rather pull in the direction of complexity. 
This points at a certain trade-off, which is in fact automated in the method of struc-
tural risk minimization (SRM); and this methods thus appears to directly implement 
a simplicity preference in inductive inference. It is indeed this method that is usually 
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brought up in discussions of Occam’s razor in statistical learning theory, also as 
representative for a wider family of regularization techniques in machine learning; 
further, it is closely related to the statistical methods for model selection discussed 
in the modern philosophical debate. To complete the case that the current account 
accomodates earlier arguments and intuitions pro and con, it therefore needs to be 
spelled out how exactly it figures in the method of SRM. This I intend to do in future 
work; but I think the core argument is already here.
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