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Abstract

Statistical learning theory is often associated with the principle of Occam’s razor,
which recommends a simplicity preference in inductive inference. This paper distills
the core argument for simplicity obtainable from statistical learning theory, built on
the theory’s central learning guarantee for the method of empirical risk minimiza-
tion. This core “means-ends” argument is that a simpler hypothesis class or induc-
tive model is better because it has better learning guarantees; however, these guaran-
tees are model-relative and so the theoretical push towards simplicity is checked by
our prior knowledge.

1 Introduction

Statistical learning theory is the standard framework for the mathematical analysis
of machine learning methods (Shalev-Shwartz & Ben-David, 2014; Vapnik, 2000).
The framework offers theoretical learning guarantees for certain learning methods,
thus providing a basis for viewing such methods as good methods.

An old trope in machine learning, usually evoked under the label of Occam’s
razor, is that a shared trait of good methods is a bias towards simplicity (Alpay-
din, 2020; Duda et al., 2001; Goodfellow et al., 2016; Mitchell, 1997; Mohri et al.,
2018; Shalev-Shwartz & Ben-David, 2014). Occam’s razor, understood as the prin-
ciple that a simplicity preference is integral to good scientific or inductive reasoning,
is also a long-standing topic of debate in the philosophy of science (Baker, 2022;
Sober, 2015). The central question here is whether we actually have some epistemic
Jjustification for Occam’s razor. That is, we seek a rational reason for holding that a
simplicity preference helps us attain desirable epistemic ends, like minimizing error.

A step forwards in the wider debate would be a justification for Occam’s razor in
machine learning methods, and an obvious place to look for such a justification is
statistical learning theory. Indeed, formal results in this framework have been quoted
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in support of such a justification (e.g., Blumer et al,1987, Shalev-Shwartz and Ben-
David, 2014). On the other hand, computer scientists and philosophers alike have
also relied on formal results to argue against such a justification in this framework
(e.g., Domingos,1999, Herrmann, 2020).

In this paper, I integrate the intuitions and arguments from both sides into a quali-
fied epistemic justification for Occam’s razor from statistical learning theory. Impor-
tantly, the notion of simplicity in this justification pertains, not to individual clas-
sifiers or hypotheses, but to inductive models or classes of hypotheses. A further
important component of my account is the relativity to such inductive models of
the justification obtainable from theoretical learning guarantees, as highlighted by
Sterkenburg and Griinwald (2021). This model-relativity of learning-theoretic jus-
tification aligns well, I argue, with a broad tradition in the philosophy of science
which accepts the impossibility of absolute justification, and shifts attention to the
project of how to rationally proceed from our current beliefs and assumptions. A
final important characteristic of my account is the means-ends nature of the justifica-
tory reasoning. In one line, the means-ends justificatory argument says that in order
to have better model-relative learning guarantees, we need to codify our assump-
tions in the form of a simpler inductive model.

This argument is based on the first of the two “inductive principles” (Vapnik,
2000) central to statistical learning theory, namely the method of empirical risk min-
imization. 1 think this is the “core argument” for simplicity in statistical learning
theory, which further underpins the method of structural risk minimization and its
characteristic simplicity preference. I sketch this at the end of the paper.

The plan of the paper is as follows. In Sect. 2, I present the framework of statis-
tical learning theory and the main technical ingredients for the core argument for
Occam’s razor. These include the notions of empirical risk minimization, learnabil-
ity, uniform convergence, and VC dimension, and the fundamental theorem that ties
these notions together. In Sect. 3, I argue that VC dimension is a robust notion of the
simplicity of a hypothesis class. In Sect. 4, I discuss the theoretical justification for
empirical risk minimization and particularly its model-relative nature; and I show
how all of the previous comes together into a justificatory argument for simplicity. I
conclude in Sect. 5.

1.1 Motivation

Before starting, there is a worry about the paper’s general project that I should
acknowledge. This worry is that the project engages with a debate of a bygone era.
It has been well over a decade since Harman and Kulkarni (2007) initiated a small
wave of philosophical interest in statistical learning theory, and Steel 2011, p. 860
concluded that the theory is “worthy of further sustained interest from philosophers
of science.” This sustained interest has not exactly materialized, while the landscape
of machine learning has altered significantly. Especially the advent of deep neural
networks (DNN’s) has caused a shift in what seem the more pertinent epistemo-
logical issues: from the traditional questions around the reliability of inductive infer-
ence to questions around interpretability and explainability (Beisbart & Réz, 2022).
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Moreover, the advent of these algorithms has problematized the very utility of sta-
tistical learning theory. The theory seems simply not equipped to explain the gen-
eralization behaviour of learning methods like DNN’s (Belkin, 2021; Berner et al.,
2022; Hardt & Recht, 2022), prompting a “quest for a new framework for a ‘theory
of induction’” (Belkin, 2021, p. 217). Putting it bluntly: why a renewed philosophi-
cal engagement with the framework of statistical learning theory, if this framework
is starting to look like a thing of the past?

One plain answer is that it is still of interest if and how the standard framework
already offers justification for Occam’s razor. Curiously, statistical learning theory is
largely left out the modern shift of the philosophical debate towards various frame-
works in mathematical statistics (Baker, 2022, Sect. 5; Sober, 2015, Ch. 2), with
Sober (2015, p. 140, fn. 61) perceiving statistical learning theory to be “dramati-
cally” different from the “Bayesian and frequentist ideas” that have informed this
debate so far. The current project thus fills a gap in the philosophical literature. Sec-
ondly, I may above have put things overly bluntly: it is not at all clear that core
components of statistical learning theory will not continue to play an essential role
in newer theory (cf. Bartlett et al., 2021). In any case, finally, the current project is
a stepping stone towards the philosophical analysis of any new “framework for a
theory of induction” in machine learning. Belkin indeed evokes “a very pure form
of Occam’s razor” as the “guiding principle” in a new framework (2021, p. 218). To
assess the role and justification of simplicity in such an emerging new framework,
it will at the very least be helpful to actually have clarity on its role in the standard
framework. The “generalization puzzle” (Berner et al., 2022, p. 25) that is now hotly
debated in the machine learning community is indeed a modern reincarnation of
exactly those traditional philosophical questions around the reliability of induction.
Work like the current project can, I hope, offer a starting point for philosophers to
engage with this exciting but complex debate.

2 The Formal Ingredients
In my presentation of the framework of statistical learning theory, I mainly follow

Shalev-Shwartz and Ben-David (2014).!? I restrict attention to the most basic learn-
ing paradigm in this framework, the paradigm of binary classification.

! Their presentation is essentially a synthesis of Vapnik’s (1999; 1998; 2000) “general setting of learn-
ing” and Valiant’s (1984) model of “probably approximately correct” (PAC) learning (Shalev-Shwartz
& Ben-David, 2014, p. 28). The main concern in Vapnik’s setting is the statistical analysis of uniform
convergence of learning algorithms, and this approach is also simply called VC theory after the ground-
breaking early work of Vapnik and Chervonenkis (1971). The tradition initiated by Valiant is also called
computational learning theory [see Anthony & Biggs (1992); Kearns & Vazirani (1994)], and an essen-
tial component is the computational efficiency of learning. This computational component is separated
from the statistical component in Shalev-Shwartz and Ben-David’s presentation, and I will likewise not
be concerned with computational considerations in this paper.

2 A chapter-length introduction to statistical learning theory aimed at philosophers, that T also draw
from, is (von Luxburg & Scholkopf, 2011). A more basic philosophical introduction is (Harman &
Kulkarni, 2007).
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2.1 Binary Classification

In this type of learning problem, we have a domain X' of instances (say, images
of animals). We seek to assign these instances binary labels (say, cat or not cat).
More precisely, we seek a general classifier or hypothesis h : X — ) that maps all
instances in X to a label in the binary label set ).

This is a learning problem because we first draw a finite training sample of
labeled instances, on the basis of which we then seek to find—to learn—a general
hypothesis. The assumption in statistical learning theory is that there always is some
true but unknown distribution D over X' X )/, that governs both the sampling of
instances and (via the conditional D() | X)) the connection between instances and
labels. It is assumed we obtain labeled instances by repeatedly drawing from this
same distribution: the labeled instances are independently and identically distributed
(i.i.d.). In this way, we draw a training sample S, that is a finite ordered sequence of
input-label pairs. Based on the training sample, we seek to learn a good hypothesis.

To assess hypotheses, we use some error function. The standard choice in binary
classification is the 0/1 error function, that returns error O (error 1) for a correct
(incorrect) classification. Then the empirical error of h on a sample S is given by the
mean 0/1 error of instances,

. S:h
L(h) := [{(x,y) € - (x)#y}l. o

But what we are actually interested in is the quality of a classifier over all possible
instances. We express this as the expected error or risk of h with respect to the true
distribution D over X' X ),

Lp(h) = Exy)p|[Lor®)]. @

We thus seek to find a hypothesis, based on a training sample S, with a low risk with
respect to the true but unknown distribution D.

2.2 Hypothesis Classes and Learning Methods

In the framework of statistical learning theory, we are fully agnostic about the shape
of the distribution D. However (as I discuss in more detail later), we cannot get any-
where unless we impose restrictions elsewhere. The approach in statistical learning
theory is to make the analysis relative to some hypothesis class H. We then seek to
select a hypothesis 4 from H which has relatively low risk, among those hypotheses

3 Hypotheses are often called models in the machine learning literature. I will stick here to the terminol-
ogy of Shalev-Shwartz and Ben-David (2014), also to not risk confusion with the notion of inductive
model (class of hypotheses) in the model-relative justification I discuss in section 4.
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in H, with respect to true but unknown D. That is, we seek to select, based on train-
ing data, a hypothesis with risk close to minj, <y, Lp(#).*

This is a machine learning problem because we want to specify an automated
learning procedure or learning method to do this selection—this learning—of
hypotheses from samples. Formally, we treat a learning method as a function from
all possible samples to hypotheses.’

A basic such method is the procedure of empirical risk minimization (ERM) for
given hypothesis class H. This method simply selects for given sample S a hypoth-
esis in H with minimal error on the sample.

Definition 1 Empirical risk minimization for hypothesis class H, write ERM,,,
returns for each S € S a hypothesis in arg min Lg(h).
heM
What makes a learning method like ERM for 'H a good method? Given the indi-
cated goal of finding a relatively-low-risk hypothesis in H, method ERM,, can be
called good if it has some sufficiently strong guarantee of attaining this goal.

2.3 Learnability

The main formal guarantee of good learning is formulated in terms of the following
components.

First, we quantify the “relatively-low-risk” by an accuracy parameter e. This
€ bounds the difference between the best possible risk min,c;, Ly(h) and the risk
Lp(A4,(S)) of a hypothesis selected by method A,, on sample S. This difference is
also called the estimation error.

Second, because of the randomness in the generation of samples from D, any
guarantee can at best be probabilistic. Intuitively, we can only expect a learning
method to select a good hypothesis based on samples that are in fact representa-
tive of the true distribution D; but we cannot exclude that with small probability
we draw a sample that is not representative. Hence we also introduce a confidence
parameter o that quantifies this probability.

Finally, again due to the randomness in drawing samples, the quality of an esti-
mate is inevitably connected to the size of the sample. We will thus formulate our
guarantee as a relation between sample size, confidence, and accuracy.

This guarantee is probably approximately correct (PAC) learnability®—or sim-
ply, learnability. Hypothesis class H is learnable by a learning method A,, if for any

* This is what Shalev-Shwartz and Ben-David (2014 p. 23) call agnostic learning, as opposed to the
more specific paradigm of realizable learning, where we make the (very strong) assumption that H
already contains an i#* with zero true risk (ibid., def. 2.3). In computational learning theory this assump-
tion is actually standard.

> Again, I abstract away from computational considerations. A restriction of the framework to formal
computability [in which learning methods are actual algorithms, i.e., Turing-computable functions; a
framework only first studied recently, Agarwal et al. (2020)] does not appear to substantially change the
notions and results discussed here (Sterkenburg, 2022).

% This notion was formulated (with the additional component of computational complexity) by Valiant
(1984), while the term “pac-learning” appears to be due to Angluin and Laird (1988).
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given inaccuracy € and confidence 1 — 8, there is a large enough sample size m such
that for any m > m,, we have the following, no matter the true distribution D. With
probability at least 1 — 6 over the possible size-m samples S drawn i.i.d. from D,
method A,,, on receiving such a sample, returns a hypothesis with estimation error
below e. To rephrase,

Definition 2 (Learnability) A hypothesis class H is learnable if there exists a learn-
ing method A, : S — H and a sample size function m;, : (0, 1)> — N such that for
alle, 6 € (0, 1), for all m > my,(e, 6) and any distribution D over X'x ),

Probg_p» [LD(AH(S)) < min(Lp(h) + e] >1-8. 3)

Note that this guarantee (in particular, the minimum sample size my (e, §) for
given € and §) only depends on the hypothesis class H. In line with the agnostic
approach of statistical learning theory, it is a distribution-free guarantee: the sample
size does not depend on the true distribution D.

Learnability is much related to another property of a hypothesis class, namely
uniform convergence. The former, as we have seen, concerns the estimation error of
a learning method; the latter concerns the difference between the empirical errors
and the true risks of all hypotheses in the class. This property will allow us to relate
the ERM method to learnability.

2.4 Uniform Convergence and Empirical Risk Minimization

The law of large numbers already tells us that, for any fixed hypothesis 4, as we draw
larger and larger samples $™ i.i.d. from true distribution D, the empirical error of A
on $” will in probability converge to its true risk. However, in our learning problem,
we are not interested in fixing a particular hypothesis and estimating its true risk. We
are interested in the performance of a learning algorithm, which, depending on the
data, can select different hypotheses. For this we need something stronger, namely
a “uniform law of large numbers,” which bounds the difference between empirical
errors and true risks of all hypotheses uniformly—simultaneously.

For given hypothesis class H, call a training sample e-representative if simultane-
ously for all hypotheses i € 'H the difference between /’s empirical error Lg(h) on S
and A’s true risk Lp(h) is smaller than e,

(Vh € H)[|Lg(h) — Lp(h)| < €. (4)

On such a sample, all empirical errors give good indications of the true errors:
“what you see is what you get” (“wysiwyg”, terminology from Belkin, 2021). Now a
hypothesis class has the uniform convergence property if there is a “wysiwyg” guar-
antee of drawing such representative samples. Precisely,

Definition 3 (Uniform convergence) A hypothesis class H has the uniform conver-

gence property if there exists a sample size function m3; : (0, 1)> = N such that for
alle,6 € (0,1), forall m > m“HC(e, 6) and any distribution D over X' X ) we have
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Probg_p» [(Yh € H)[|Ls(h) — Lp(h)| < e]] > 1 - 6. )

To link this property to the ERM method, we first reformulate it. Namely, we
have stated it in terms of the minimum sample size m}; (e, 6) we need for given ¢ and
6; but we can also formulate it as the bound on ¢ we get for given 6 and sample size
m. Precisely, there is an accuracy function €};(m, €) such that for given 6 and m we
have with probability at least 1 — 6 that

(Vh € H)[ILp(h) — Lg(h)| < €}5(m, 8)]. (6)

which in particular gives a uniform upper bound on true risk in terms of empirical
error,

(Vh € H)|Lp(h) < Lg(h) + €5 (m, 5)]. (7

Now recall that the method ERM}, for given sample S of length m selects an & that
minimizes Lg(h). Since e;’{c(m, ) is a constant term for fixed m and 6, method ERM,,
can be seen to explicitly minimize this upper bound

Lp(h) < Lg(h) + €57 (m, 5) ®)

on the true risk. Thus, given H satisfies uniform convergence, ERM,, selects a
hypothesis with the sharpest uniform upper bound on its true risk.

This minimization property, under the assumption of uniform convergence,
allows us to derive that ERMj, learns H. Informally,” if we have a guarantee that
large enough samples are probably representative (uniform convergence), then in
particular the lowest-empirical-error hypotheses (selected by ERM,,) probably have
approximately lowest true risk, and so small estimation error (learnability).

Uniform convergence thus gives us a sufficient condition for learnability, and
learnability by ERM. However, this is still a rather abstract property, that does not
give much intuition for what kind of hypothesis classes satisfy it. Fortunately, it
turns out that there is a more concrete and intuitive property of hypothesis classes
that is equivalent to learnability, and in fact already equivalent to learnability by
ERM. This property is a criterion of the simplicity of a hypothesis class.

2.5 The VC Dimension

Take a finite set X = {x;,...,x,,} C X of unlabeled instances. There are several dif-
ferent ways in which we can label all instances in X; precisely, for binary labels,
there are 2 possible such labelings. Now take a hypothesis class H. Each hypoth-
esis /1 in 'H gives some such possible labeling of the instances in X. If the hypotheses

7 See Shalev-Shwartz and Ben-David (2014, Sect. 4.1, specifically lemma 4.2) for the (straightforward)
formal derivation.
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in H cover all possible labelings, that is, for each possible labeling of X, there is
some & € 'H that gives exactly this labeling, then we say that H shatters X.5

The crucial notion in demarcating classes that are and are not learnable relies
on the ability to shatter sets of instances. Namely, the Vapnik-Chervonenkis dimen-
sion (VC dimension, after Vapnik and Chervonenkis, 1971) of hypothesis class H is
defined as the largest size of a subset X of instances for which H can do so.

Definition 4 The VC dimension of hypothesis class H is the maximal size of a set
X C X that is shattered by H. If H shatters sets of arbitarily large size, then the VC
dimension of H is infinite. A VC class is a class with finite VC dimension.

In machine learning terminology, VC dimension is a measure of the capacity of
a hypothesis class.” It is a measure of the extent to which a hypothesis class cov-
ers—contains hypotheses with good fit on—possible data samples. In that sense
VC dimension is a notion of the “richness” or complexity of a hypothesis class; and
finiteness of VC dimension a criterion of a hypothesis class being sparse or simple. 1
discuss this simplicity interpretation in more detail in Sect. 3 below.

2.6 Bringing it All Together

The central result of statistical learning theory elegantly ties together the main
notions of the previous sections.

Theorem 5 (Fundamental theorem of statistical learning theory'®) The following are
equivalent:

o H has the uniform convergence property;
e His learnable;
e His learnable by ERM;,;

8 Slightly more formally, define the restriction of H to finite set X as the class Hx of functions
f : X = Y such that f(x) = h(x) for some 7 € H and all x € X. Then H shatters finite X C X if the
restriction of H to X contains all functions f : X — Y, that is, |H x| = 2¥.

° There exist several generalizations of VC dimension, like the Natarajan dimension in multiclass cat-
egorization (see Shalev-Shwartz and Ben-David 2014, ch. 29), and indeed altogether different capacity
notions in different paradigms, like the Littlestone dimension in realizable online learning (see ibid.,
sect. 21.1), and the parametric complexity in MDL inference (see Griinwald (2007)). An important alter-
native capacity notion to VC dimension for classification is Rademacher complexity, which can yield
stronger data-dependent bounds (see von Luxburg and Scholkopf, von Luxburg and Scholkopf (2011),
sect. 5.7 Shalev-Shwartz and Ben-David, 2014, ch. 26). The notion of the capacity of a function class and
its relation to generalization appears to have been introduced by Cover (1965).

10 In their pioneering work, Vapnik and Chervonenkis (1971) established the link between uniform con-
vergence, “consistency” of ERM, and their notion of VC dimension, proving a generalization of the “fun-
damental theorem of mathematical statistics,” the Glivenko-Cantelli theorem of the uniform convergence
of the empirical distribution function (see Devroye et al., 1996, ch. 12). The connection between VC
theory and computational learning theory (in particular, Valiant’s notion of PAC learnability) was first
spelled out by Blumer et al. (1986, 1989).
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e HisaVC class.

In particular, if, and only if, hypothesis class H has finite VC dimension, we have
a “wysiwyg” guarantee of a good indication of true risk (uniform convergence), and
a method, ERM;,, that is a good method, in the sense of satisfying a guarantee of
minimizing estimation error (learnability). We therefore have, for VC class H, a cer-
tain justification for the ERM,, method.!!

Actually, we can further fine-grain this picture within the finite VC dimension
regime. Namely, the VC dimension of class H gives a quantitative bound on the
sample size for uniform convergence and for learnability.

Theorem 6 (Fundamental theorem, quantitative Versionlz’”) For any VC class 'H,
there are constants C, C, such that, for any €, 5, we have

Cib < my (e, 8),my(e,8) < Cyb,

where

_ VCdim(H) - log §

b =

At bottom, the fundamental theorem expresses a certain relation between four
quantities (VC dimension, sample size, accuracy, and confidence), where, in particu-
lar, a lower VC dimension makes room for lower values of the other three quantities
(meaning, for stronger bounds). Thus, a lower VC dimension of H goes with a better
guarantee and therefore a stronger justification for the ERM,, method.

I discuss this justification, and how to further turn this into a justificatory argu-
ment for simplicity, in more detail in section 4 below. But first I will zoom in on the
relevant notion of simplicity, given by the formal notion of VC dimension.

"' In my presentation, I also follow Shalev-Shwartz and Ben-David (2014) in focusing on the epistemic
end of learnability (minimizing estimation error). I only note here that another important epistemic end
that is supported by the uniform convergence “wysiwyg” guarantees is model assessment, where we use
the training error to assess whether the model (the learned hypothesis or indeed the hypothesis class) is
actually good. (For instance, in the discussion of VC theory by Hastie et al., 2009, sect. 7.9, the emphasis
is rather on this end.)

12 See Shalev-Shwartz and Ben-David 2014, Thrm. 6.8.

13 This is a bound on the sample size in terms of given accuracy and confidence parameter (and VC
dimension); but we can also infer other bounds by making other choices in what quantities we take as
given and what quantity we then solve for. For instance, we can derive that there exists constant C such
that for any given m and é we have an accuracy bound

m, 6) < €y YCdim(PD) ~log & 9)
m
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3 The Notion of Simplicity

While, I will argue in this section, the notion of VC dimension does not give us a
handle on the simplicity of individual hypotheses (Sect. 3.1), it does constitute a
plausible and robust measure of the simplicity of hypothesis classes (Sect. 3.2).

3.1 Individual Hypotheses and Hypothesis Classes

Capacity notions like VC dimension apply to hypothesis classes, not individual
hypotheses. Yet in some discussions of simplicity, that also rely on the relation
between uniform convergence and small size or capacity of the hypothesis class, the
notion of simplicity invoked actually concerns individual hypotheses. These discus-
sions use a notion of the complexity of an hypothesis as its representational com-
plexity in some formal language.

An influential example is the argument of Blumer et al. (1987) that “under very
general assumptions, Occam’s Razor produces hypotheses that with high probability
will be predictive of future observations” (ibid., p. 378).!* An earlier example still is
Pearl (1978), who discusses the connection between simplicity and “credibility” of
hypotheses via different notions of capacity and generalization success—including
already VC dimension and uniform convergence (ibid., p. 2611f).

Pearl sets the stage as follows. We take some language L with an interpretation
function I that maps sentences in the language to hypotheses (ibid., pp. 256f). Then
we define some complexity measure on each sentence #, “which may represent either
the syntactic aspect of the sentence #, or the work required for the computation of
I(t)” (ibid., p. 257)." Further, “the complexity of a [hypothesis /] with respect to
a language L is defined as the complexity of the simplest sentence which repre-
sents that [hypothesis]” (ibid.). This allows us to take subsets of sufficiently simple
hypotheses: a “complexity bounded sublanguage of L is a sublanguage L. = (T,,1,)
such that T, C T, I. C I and C(h) < c for all h € I.” (ibid., p. 258, slight change in
notation).

Now the lower the complexity c, the smaller the size (and in particular, the capac-
ity) of the sublanguage (hypothesis class) LC.16 This, via reasoning as in section 2.6
above, leads to a better generalization guarantee or “credibility” of the estimated
hypothesis from this class. In this way, Pearl writes in his concluding discussion,
“accepted norms of credibility are correlated with [hypotheses’] simplicity” (ibid.,
p. 263). However, he immediately adds:

14 The relevant result is derived within Valiant’s PAC learning framework, and the requirement of com-
putational efficiency in the definition and generalization guarantee of the relevant “Occam-algorithm”
make it a bit more involved than the reasoning I discuss in this paper. For further expositions, see
Anthony and Biggs (1992, p. 591f) Kearns and Vazirani (1994, ch. 2); and for a rebuttal of the argument,
see Herrmann (2020).

15 The standard example is the two-symbol language of bits, where the complexity of a sentence (a bit
string) is defined as its length.

16 For instance, for the language of bits, there can only be 2"*! sentences (bit strings) of complexity
(length) up to n, hence at most 2*! hypotheses of complexity up to 7.
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From a philosophical viewpoint it is essential to note that in all cases exam-
ined the role of simplicity was only incidental to the analysis. We would have
gotten identical results if instead of L, being a complexity bounded sublan-
guage we were to substitute an arbitrary sublanguage with equal number of
[hypotheses]. It is not the nature of the [hypotheses] in /. but their number |/, |
(more precisely, the number of sample dichotomies induced by the members
of 1.) which affects the various plausibility measures considered.

In particular, whereas classes of hypotheses of low representational complexity must
be small, the converse does not hold. One can select small classes of (representa-
tionally) complex hypotheses, and the same capacity-based reasoning for good gen-
eralization still applies (cf. Mitchell, 1997, p. 65; Domingos, 1999, p. 410)."

A deeper problem still is that this notion of representational complexity depends
on the presupposed formal language and definition of sentence complexity. For any
hypothesis that is simple relative to one language, we can design a different lan-
guage that renders it complex.'® In that sense representation length does not give us
a robust or objective notion of simplicity of individual hypotheses.”

Given the bleak prospects for some general mathematical definition to settle what
counts as simple for individual hypotheses, one might at this point be inclined to
change tack and suggest that in practice, there is often no real problem. For many
specific learning problems, we do appear to have clear intuitions about natural rep-
resentations or parametrizations of hypotheses. In the standard curve-fitting problem
(see, e.g., Sober, 2015, pp. 88ff), where we seek to estimate a polynomial function,
there exists a natural parametrization by degree.”’ The linear functions of degree 1
are simpler than the quadratic functions of degree 2. Moreover, the class of all lin-
ear hypotheses is smaller (has lower capacity) than the strict superclass of quadratic
hypotheses. Some conception of simplicity of hypotheses is here already taken for
granted, which points to a natural ranking of hypothesis classes, and this ranking
neatly aligns with their capacity.’!

17 This is the main critique of Herrmann (2020) of the argument of Blumer et al. Herrmann derives a
parallel result for an “Anti-Occam algorithm” that selects small-cardinality classes of representationally
complex hypotheses.

'8 This language-relativity in describing individual hypotheses also clearly arises in some presentations
of the minimum description length (MDL) approach (e.g., Mitchell, 1997, Sect. 6.6; Shalev-Shwartz
& Ben-David, 2014, p. 65f). However, these presentations paint a rather, well, simplistic picture of the
approach: in “refined MDL,” the focus is on the design of “universal codes,” yielding again a robust
notion of complexity of hypothesis classes (Griinwald, 2007) that plays a role very similar to capacity
notions in statistical learning theory (ibid., Sect. 17.10).

19 It is sometimes held that “idealized MDL" or Kolmogorov complexity can offer an objective notion of
the representational complexity of individual objects (Li & Vitanyi, 2008). See Sterkenburg (2016) for a
critique of a suggested justification for Occam’s razor via this approach, and Sterkenburg (2018,Sect. 5.2)
for a critique of its promise of an objective notion of complexity.

20 Curve-fitting can be cast as a problem in binary classification by treating the curves as hypotheses
separating instances with the one label from instances with the other.

2l One might seek to base this conception on some formal definition of simplicity in terms of number of
adjustable parameters, a line going back at least to Jeffreys (1939). But this still does not suddenly give
us a robust and objective notion of simplicity of individual hypotheses: the “grue-like” problems of rep-
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If this is a common situation in practice, then, together with the formal connec-
tion between low capacity and generalization performance, we may have the basis
for an explanation of why preferring simple hypotheses generally seems to be a good
idea. But even if we accept as given, for many specific learning problems, a stand-
ard representation or parametrization of hypotheses, the formal connection between
low capacity and generalization performance still falls short of constituting a justifi-
cation for preferring simple hypotheses (for these specific learning problems). The
issue remains that the theory does not enforce a connection between simple indi-
vidual hypotheses (however specified) and classes of low capacity.

3.2 VCDimension as a Measure of Simplicity

In contrast to definitions of the complexity of an individual hypothesis, definitions
of the capacity of a hypothesis class (like VC dimension) do not depend on a spe-
cific representation or parametrization, and do therefore possess a certain objectivity
or robustness.?” But does VC dimension also give an objective or robust measure of
the simplicity of a hypothesis class?

One might deny this on exactly the grounds that VC dimension does not necessar-
ily align with natural parametrizations of individual hypotheses (Domingos, 1999, p.
413). In the case of the usual parametrization of polynomials, the higher the number
of free parameters, the higher the capacity of the corresponding hypothesis class;
but in other cases the two can come apart. The standard example is the class of sine
curves {h,},er With h,(x) = sinax (ibid.). The elements in this class are given by
only one parameter (and in that sense the function class is very simple), yet the class
has infinite VC dimension (Vapnik, 2000, p. 78).23

Of course, this objection relies on some claim that usual parameterizations do
(and exclusively do) track simplicity. But even aside from the ultimate non-robust-
ness of representational notions of complexity, there just exist different and some-
times conflicting intuitions. From one way of looking at it, the class of sine func-
tions is maximally complex: exactly because so many possible data configurations
can be fit by it (cf. Romeijn, 2017). This is the intuition of richness or complexity
(or also falsifiability**) made precise in a capacity measure. VC dimension is not the

Footnote 21 (continued)

resentation invariance remain (Priest, 1976). For a recent discussion and critique of defining simplicity
by number of parameters, see Bonk (2023).

22 More precisely, the capacity of a hypothesis class does not depend on how the individual hypotheses
are described: all that matters is their data coverage. Language-relativity only turns up when we start
redescribing the instance space (cf. Steel, 2009, p. 482).

23 Vapnik (1998, p. 698) himself writes that since Occam’s razor says that the explanation with “the
smallest number of features (free parameters)” is best, and since this is not supported by theoretical
results, “Occam’s razor principle is misleading and perhaps should be discarded in the statistical theory
of inference” (ibid., p. 699). Also see Cherkassky and Mulier (2007, p. 146ff).

24 Vapnik (2000, p. 42ff) links the capacity of hypothesis classes to Popper’s falsifiability of theories.
Popper famously equated simplicity with falsifiability, and introduced a quantitative notion of falsifia-
bility of theories that he claimed aligned with number of free parameters. Corfield et al. Corfield et al.
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measure, but it is a plausible and robust measure of the complexity of a hypothesis
class. This is enough for my purpose: if a justification is to be had for preferring
low capacity, then I think it is reasonable to call this a justification for preferring
simplicity—even if there are other reasonable conceptions of simplicity, and even
if (to stress again) this notion of simplicity pertains to hypotheses classes and not to
individual hypotheses.

4 The Justification for Simplicity

The fundamental theorem of statistical learning theory ties the simplicity—the VC
dimension—of a hypothesis class to its learnability, and indeed already to its learn-
ability by the ERM method. This result offers, first of all, a certain justification
for the ERM procedure; although this is a justification with several qualifications,
chief among them its model-relativity (Sect. 4.1). Nevertheless, I will argue that the
model-relative justification that learning theory can offer fits right in with a plausi-
ble broader epistemological perspective on machine learning methods (Sect. 4.2).
Finally, I will assemble from all of the previous elements a qualified justification for
a simplicity preference (Sect. 4.3).

4.1 The Justification for Empirical Risk Minimization

The fundamental theorem shows that ERM,,, for VC class H, is a good method. It is
good, and good epistemically, because it satisfies a guarantee of attaining a certain
epistemic goal. This guarantee therefore constitutes an epistemic justification for the
method.

An immediate qualification is that this picture of justification or not—learnability
or not—is overly black-white. The quantitative version of the fundamental theorem
tells us that a smaller VC dimension leads to a stronger guarantee, making ERM an
epistemically better method. So we have a graded guarantee that constitutes a graded
notion of epistemic justification.

But this step from theoretical guarantees to talk about justification comes with
several further qualifications still.

4.1.1 Qualifications

A first elementary point is that the fundamental theorem is a mathematical result.
Any epistemic justification derived from it, in the context of a real-world learning
problem, needs a story how it maps to this learning problem. Most obviously, for
any particular real-world problem, a meaningful application of the fundamental
theorem (and justificatory claims derived from it) depends on how well the prob-
lem can be modelled in the statistical learning theory framework. This includes the

Footnote 24 (continued)

(2009) and Harman and Kulkarni (2007, p. 50ff) argue that VC dimension is a better measure of falsifi-
ability, though these authors appear to resist linking VC dimension to simplicity.
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match of our prior assumptions with the formal assumption of i.i.d. sampling of data
from some unknown distribution, but also the match of our goals with the formal
choice of the 0/1 error function. The representation of a learning problem in the
formal framework of statistical learning theory already forces us to commit to and
codify various assumptions (von Luxburg & Scholkopf, 2011, p. 683f), and anything
that follows from the mathematics should be appraised with an eye to whether these
made sense for the original learning problem.

But even when there are no such modeling concerns, one need not accept that the
formal guarantees from the fundamental theorem are sufficiently strong or interest-
ing to warrant talk about justification. There are legitimate reservations one can have
about the usefulness of these guarantees.

One possible reservation is that these guarantees are quintessential frequentist
guarantees. They say something about what we can expect with high probability
before the sampling and the learning. In that sense we can call methods satisfying
these guarantees reliable (Harman & Kulkarni, 2007). But these guarantees do not
strictly say anything about what we can infer after the learning—about the hypoth-
esis that has actually been selected, other than that it has been selected by a reliable
method (von Luxburg & Scholkopf, 2011, p. 699f). For instance, the “wysiwyg”
guarantee of uniform convergence does not strictly say anything about what we have
gotten when we see the result. It is easy to misinterpret such guarantees.

A second possible reservation is that the guarantees may be overly weak. In par-
ticular, since the guarantees are agnostic about the true distribution, they are worst-
case bounds that for many real-world situations—where we feel we can exclude cer-
tain classes of (“pathological”) distributions—would be overly loose or pessimistic
(von Luxburg & Scholkopf, 2011, p. 680, pp. 6831“).25 This motivates, for instance,
the study of “fast rates” under further assumptions on the distributions®® and of
guarantees that hold for all distributions but are still distribution-dependent.?” These
studies yield a more complicated picture of the justification for ERM.

Still, the fundamental theorem gives at least a plausible theoretical justification
for the method of ERM. This does not exclude that one might (also) wish for differ-
ent kinds of justification, in any specific problem or in general. In any case, my aim
here is to flag the above qualifications, to make clear that accepting the justification
for ERM, and indeed the justification for simplicity to follow, presupposes accepting
those qualifications. One can reject the argument below simply by rejecting the pre-
suppositions of the statistical learning theory framework. For instance, the reasons
Kelly (2008, 2011) offers for rejecting arguments for Occam’s razor from statistical

25 That sample sizes can in practice be much smaller was already shown by early experimental results
(Cohn & Tesauro, 1992).

26 Or more precisely, on the relation between the distribution, hypothesis class, and loss function [see T.
van Erven et al. (2015)].

27 This is the idea of the “theory of universal learning” of Bousquet et al. (2021). Their motivation is
that the usual “distribution-independent definition of learnability is too pessimistic to explain practical
machine learning,” showing the need for alternatives that “better capture the practice of machine learn-
ing, but still give rise to a canonical mathematical theory of learning rates” (ibid., p. 533).
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learning theory are essentially a rejection of the predictive framework.?® But, T will
argue, conditional on those qualifications—including the presuppositions of the
framework—we can formulate a justificatory argument.

There is, however, a final aspect to this justification that requires more discussion.
Namely, it can be seen to cover only one side of an inevitable trade-off.

4.1.2 The Bias-Complexity Trade-Off

Recall that the notion of learnability of Sect. 2.3 above concerns learning a hypoth-
esis with relatively low risk among those hypotheses in given H. Formally, it con-
cerns finding h that minimizes the estimation error LD(fz) — miny,gy Lp(h).

Intuitively, this concerns the avoidance of overfitting. If a hypothesis class H has
overly high capacity, then for any given data sample, the empirically best hypothesis
in ‘H is likely to overfit to random noise in the sample, in which case it is actually
significantly worse than the best—lowest-risk—hypothesis in . Learnability basi-
cally concerns the avoidance of such overfitting, and the fundamental theorem then
says that overfitting is avoided if H is a VC class.

But this leaves out the other direction of error, namely the underfitting. Formally,
this concerns the approximation error, or the (absolute) risk min,g;, Lp(h) of the
best hypothesis in H. The absolute risk of the selected hypothesis can be trivially
decomposed as the sum of the two types of errors,

Lp(h) = min Lp(h)+ Lp(h) — min Lp(h).

—_— ———— (10)

approx. error est. error

The opposing pull of these two error terms is also referred to as the bias-complexity
trade-off. A lower complexity—lower capacity—class excludes more possibilities,
and as such embodies, in machine learning terminology, a stronger inductive bias.”’
The fundamental theorem yields a guarantee about finding the best in a given class,

28 Kelly (2008, p. 329) writes that Occam’s razor “should help one to select the true theory from among
the alternatives,” whereas arguments based on risk minimization do not concern “theoretical truth” but
“passive prediction” (ibid., 335). “But beliefs are for guiding action and actions can alter the world so
that the sampling distribution we drew our conclusions from is altered as well” (ibid.); moreover, “it is
clear that the over-fitting story depends, essentially, upon noise in the data [...] One would prefer that
the connection between simplicity and theoretical truth not depend essentially upon randomness” (ibid.).
These points are all well-taken [in particular the problem of distribution-shift has recently received more
attention, Wiles et al. (2022)], but are all already concerns about the scope of statistical learning theory
itself.

2 This is a bit more general than the bias-variance trade-off (see Hastie et al., 2009, Sects. 2.6, 2.9).
Complexity and (inductive) bias are here in the first instance used as informal terms (even if complexity
can be made precise as VC dimension, and some authors refer to the approximation error itself as the
bias), while the bias and variance in the latter are well-defined statistical terms in regression with mean
squared error.
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but this is inevitably a class with some inductive bias. The resulting justification
must therefore be relative to this class or inductive bias.*

4.1.3 Model-Relative Vs. Absolute Justification

In the terminology of Sterkenburg and Griinwald (2021), this is a model-relative jus-
tification. It is indeed a justification for a learning method, ERM, that is explicitly
model-dependent. The method of ERM is a general procedure—a “generic learn-
ing rule” (Shalev-Shwartz & Ben-David, 2014, p. 68)—yet one that must, by defini-
tion, on each application be supplied with further assumptions. We can view ERM
as instantiating a two-place function, that apart from a data sample, also takes a
particular hypothesis class. On each specific application, it must be supplied with
a hypothesis class or inductive model that constitutes further (context-dependent)
assumptions, the inductive bias. Correspondingly, the learnability guarantee for
ERM is model-relative, because the notion of learnability is relative to a given
inductive model or VC hypothesis class.

The analysis of Sterkenburg and Griinwald aims to explain how general learning-
theoretic guarantees for generic algorithms are consistent with the skeptical import
of the so-called no-free-lunch theorems of supervised learning (going back to Schaf-
fer, 1994; Wolpert, 1992, 1996). Modern versions of these results (Shalev-Shwartz
& Ben-David, 2014, p. 36ff; Sterkenburg & Griinwald, 2021, p. 9990f) say that there
can exist no universal learning algorithm: every particular algorithm is inadequate
in some possible learning situations, situations where another algorithm is adequate.
And since there can be no a priori justification for privileging particular learning
situations, so the further interpretation goes, there can be no theoretical justification
for any particular algorithm.

However, rather than the generic yet model-dependent ERM algorithm, the no-
free-lunch statement applies to any particular instantiation of ERM with an induc-
tive model H, any particular one-place “data-only” function ERM,,. The no-free-
lunch result of Shalev-Shwartz and Ben-David (2014, Thrm. 5.1) essentially states
that for any specific inductive model H, the data-only algorithm ERM,, is inade-
quate (i.e., with high probability suffers high absolute error) for some situations (i.e.,
for some true distributions; informally, those that do not match H’s inductive bias)
where another data-only algorithm, like ERM,, for another inductive model H’ (that
does match the situation), is adequate.3 !

30 Of course, the hypothesis class is not the only—or even the most important (von Luxburg &
Scholkopf, 2011, p. 684)—way in which assumptions or biases enter: as discussed in Sect. 4.1 above,
important modeling assumptions must already be made in the formalization of the learning problem
(including choice of feature space and loss function). But discussions of inductive bias (in particular
around the no-free-lunch theorems introduced shortly) usually assume that these elements are already in
place, and center on the further inductive assumptions required.

31" Another way of casting this result is that the class of all classifiers is not learnable: since, for any pos-
sible distribution, this class has minimum approximation error, its learnability (guarantee of low estima-
tion error) would guarantee low absolute error for any possible distribution. In fact, the proof of Shalev-
Shwartz and Ben-David (2014, thrm. 5.1) already shows the failure of learnability of classes with infinite
VC dimension, and the no-free-lunch theorem is in their presentation part of the proof of the fundamen-
tal theorem (ibid., pp. 45ff).
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In other words, while we can have a model-relative justification for model-
dependent algorithms (of the rough form, “for any instantiated inductive model of
the right form, works well relative to the model”), there is no absolute justifica-
tion (“works well whenever”) for any inductive model. The impossibility of such
absolute justification is also an important part of the argument of Domingos (1998,
1999) against a possible justification of Occam’s razor.

4.1.4 The Failure of an Absolute Justification for Simplicity

Domingos takes issue with what he calls the “second razor”: that “given two
[hypotheses] with the same [empirical] error, the simpler one should be preferred
because it is likely to have lower generalization error” (1999, p. 410). (To be dis-
tinguished from the “first razor,” that “the simpler [hypothesis] should be preferred
because simplicity is desirable in itself,” ibid.)*> He writes that theoretical “zero-
sum arguments’—no-free-lunch theorems—*"“imply that the second razor cannot
be true” (1999, p. 413). Namely, “they imply that, for every domain where a sim-
pler [hypothesis] is more accurate than a more complex one, there exists a domain
where the reverse is true, and thus no argument which is preferable in general can be
made” (ibid.).

This is true, and an expression of the impossibility of absolute justification,
applied to the choice of a simple single hypothesis.*> However, I already observed
that the relevant notion of simplicity attaches to hypothesis classes, not single
hypotheses. Domingos’s critique of the theoretical “PAC-learning argument” for the
second razor, which is also a no-free-lunch observation, is more relevant:

“ [uniform convergence results] only say that if we select a sufficiently small
set of [hypotheses] prior to looking at the data, and by good fortune one of
those [hypotheses] closely agrees with the data, we can be confident that it will
also do well on future data. The theoretical results give no guidance as to how
to select that [hypothesis class].” (1999, p. 410)

This is again true, and an expression of the impossibility of absolute justification,
applied to the choice of (ERM instantiated with) a simple hypothesis class. For a
sufficiently small (low-capacity) set of hypotheses, the fundamental theorem gives a
guarantee of probably finding the near-best hypothesis in the class. But this hypothe-
sis is only good in an absolute sense (has low risk and so “will also do well on future
data”) if the class of hypotheses was good to begin with (contains a hypothesis that
has low risk and so “closely agrees with the data”). By the no-free-lunch results, we
know that for any hypothesis class there are learning situations such that the class is
not good. And the theory does not guide us towards a good hypothesis class prior to
looking at the data.

32 We are here, of course, likewise concerned with an epistemic justification for Occam’s razor, not with
claims that simplicity is better because it points to hypotheses or theories that are easier to work with or
more aesthetically pleasing (cf. Sober, 2015, pp. 58f).

3 This point has also been brought out experimentally [e.g., Schaffer (1993); Webb (1996)].
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In sum, an absolute justification of (ERM with specific) choice of simple hypoth-
esis class is impossible. Nevertheless, this leaves a model-relative justification of
ERM. Such a justification, I will now argue, is still of epistemological interest, and
indeed points towards a qualified justification of simplicity.

4.2 Epistemology and Machine Learning Theory
4.2.1 “Model-Relative” Epistemology

Absolute justification is central to a general epistemological project where we are
concerned with the foundations of our knowledge. This is a project of turning back,
of retracing the justificatory basis for a statement or belief of interest. In the context
of machine learning algorithms, we ask: what is the basis, the justification, for trust-
ing what our learning algorithm returns? By the no-free-lunch theorems, we know
that our learning algorithm’s outputs are grounded in a particular inductive bias. So
we are led to ask: what is the foundation, the justification, for this inductive bias?
Accepting the Humean argument that neither deductive nor nondeductive justifica-
tion is forthcoming, we are ultimately led to skepticism (Sterkenburg and Griinwald,
2021, p. 9992ff).

Much of modern philosophy of science implicitly or explicitly views this gen-
eral epistemological project as a dead end. Reichenbach, in the words of van Fraas-
sen (2000, p. 254), thought that empiricist epistemology must reject “Rationalism’s
stringent criterion of adequacy: that an epistemology must show how absolutely
reliable knowledge is possible.” Van Fraassen (1989; 2000; 2004) himself offers an
outlook of an empiricism in explicit rejection of “defensive epistemology” which
“concentrates on justification, warrant for, and defence of one’s belief” (1989, p.
170). Peirce, in the words of Levi (1998, p. 177), “explicitly dismissed doxastic
skepticism when he observed that merely writing down a question challenging some
current assumption is not sufficient to create the sort of doubt that should occas-
sion an inquiry.” Levi (1980; 2004) himself further develops Peirce’s doubt-belief
model of inquiry in explicit rejection of “pedigree epistemology,” under which “one
is obliged to justify current beliefs” (2004, p. 11). The broad alternative project that
arises is a pragmatist one where we take seriously that one will always already start
with a body of beliefs that one at that time does not actively or genuinely doubt.
The interesting question is not whether one actually has an ultimate justification for
these beliefs. The interesting question is how to proceed from these beliefs: how to
improve these beliefs. This leads to an epistemological project that investigates how
to improve (refine, revise, update) beliefs in the light of new data. And in this project
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there is still an interesting question of justification: we can theorize about better and
worse ways of doing s0.>*°

The same sentiment can be found in the machine learning literature. Already
thirty years ago, Russell (1991, p. 45), after discussing the infeasibility of “tabula
rasa” learning, writes that “the picture that is currently fashionable in machine
learning is that of an agent that already knows something and is trying to learn
some more.” In similar vein, Domingos (2012, p. 81) himself, after attributing to
Hume and Wolpert the insight that “data alone is not enough,” writes that “induction
(what learners do) is a knowledge lever: it turns a small amount of input knowl-
edge into a large amount of output knowledge.” Importantly, these authors, like also
Shalev-Shwartz and Ben-David (2014, p. 94), do not just point out the impossibility
of inductive inference without assumptions. They presuppose that there is always
a starting point of initial knowledge, and put to one side the question of the actual
basis for this supposed knowledge. They instead take machine learning to be about
how to best proceed from initial knowledge: how to learn more, or turn input knowl-
edge into more output knowledge.

The model-relative guarantees derived within the theory of machine learning
serve exactly such a perspective. Model-relative guarantees concern algorithms that
presuppose the instantiation, in each application, of an inductive model, that codifies
specific prior knowledge. And these guarantees show that such algorithms are good
relative to the instantiated inductive model, relative to the prior knowledge. This
fits a picture where any real-world learning problem arises in a context where we
already take many things for granted, and are willing to accept as prior knowledge.
Given our starting point (our particular learning problem and goal, and the way we
codify prior knowledge in a formal inductive model), the relevant theoretical model-
relative guarantee advises us on how to proceed (what model-dependent algorithm
to use). Learning-theoretic results thus provide a normative component to this gen-
eral epistemological perspective on learning methods.

3% This broad epistemological approach is certainly not particular to the authors I sampled here. The
repudiation of quests for absolute justification is found in the writings of many other prominent philoso-
phers, like Popper (“[t]he piles are driven down from above into the swamp,” Popper, 2002/1959, p. 94);
the “model-relativity” of all our knowledge is not just central to modern authors on induction like How-
son (2000), but already to Carnap and indeed to Kant.

35 Sober (2015, pp. 86f) also sets apart, with reference to Neurath’s boat, a “foundationalist” picture
from a “more defensible” alternative picture where we “now have numerous beliefs about the world. Our
task is to take new observations into account so as to improve our system of beliefs. We don’t start from
zero; we start from where we are” (ibid., p. 87). Notably, though, he presents these two pictures as two
different versions of Bayesianism; there is no reference to these different epistemological views in his
discussion of frequentist ideas. Other authors, including Levi and van Fraassen, also assume a Bayesian
framework. I do not do that here: I am not after a formal account of the wider epistemic context of agents
using machine learning methods to inform their beliefs. I am here interested in the epistemological les-
sons we may draw from a formal account of the machine learning methods themselves, namely, machine
learning theory.

36 Following up on footnote 29, prior knowledge is not only instantiated in the inductive model qua
hypothesis class, but also already in the other formal components of the learning problem. But clearly
learning-theoretic guarantees must always be relative to these choices as well.
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4.2.2 The Theory and the Practice

In evoking a wider epistemological perspective on machine learning, we have a
responsibility to do justice, not only to the normative role of the theory, but also to
the actual practice of (modern) machine learning. Here arises a worry that the pre-
ceding picture is excessively neat. For one thing, it is not exactly standard machine
learning practice to carefully specify an inductive model strictly on the basis of
well-formulated domain-specific assumptions; the practice, say in deep learning, is
to a significant extent one of trial-and-error of different general architectures and
hyperparameters, that codify largely ill-understood inductive biases. For another, the
kind of justification that practitioners offer is less based on the (formal) properties
of the learning algorithm than on the empirical performance of the output classifier
(the trained model), in the first instance on a separate test data set or in a cross-
validation procedure.?’

A full reply to this worry would have to engage more systematically with the
relation between the theory and the practice of machine learning, which I do not
attempt in this paper. Here I will just observe the following. Whatever the several
back-and-forths of design and evaluation in an actual machine learning pipeline, the
core remains the training of an algorithm to return a classifier that generalizes well.
And if there is one theoretical lesson that will always stand, then it is that the algo-
rithm must possess restrictive inductive biases, and that the algorithm will only do
well if the inductive biases are appropriate. It is also nothing short of a practical
necessity to constrain, amidst all the further guesswork and trial-and-error, the pos-
sible inductive models to at least some extent; and this will still always involve at
least some amount of knowledge about what is likely to be appropriate in the current
problem. Going further, we can make the minimal normative point that it is indeed
better to try and implement inductive biases that are aligned with what we believe
or are prepared to assume about the relevant domain. With all the qualifications and
idealizations involved in linking the theory to the practice (which also ties back to
the qualifications listed in Sect. 4.1.1 above), if there is a normative role for the
theory to play, then it is in grounding learning procedures that can capitalize on an
inductive model encoding inductive assumptions, fitting in a broad “model-relative”
epistemological picture on machine learning methods.

4.2.3 “Means-Ends” Epistemology

The idea that theoretical learning guarantees provide the basis for a normative epis-
temology is also central to the philosophical tradition best known as formal learning
theory (Genin, 2018; Kelly, 1996, 2016; Schulte, 2017). I will briefly make a con-
nection to this tradition, in order to identify another crucial ingredient for the quali-
fied justification for a simplicity preference that I will propose after.

37 This turn away from explicit modeling and towards predictive performance is what is indeed often
seen to separate machine learning from “traditional” statistical inference (Breiman, 2001).
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The core principle of formal learning theory, which also has its roots in machine
learning theory,”® is that inductive problems call for a context-dependent means-
ends analysis of what epistemic notions of success (ends) are attainable with what
assumptions and methods (means). Schulte (1999) therefore also speaks of “means-
ends” epistemology.

This means-ends analysis is context-dependent in the sense that given a particular
learning problem, which usually comes with restrictive “background assumptions,”
the analysis does not question these assumptions (Kelly, 1996, p. 11; Schulte, 2017,
Sects. 1.1, 2.2). For a particular learning problem and notion of success, the analysis
is concerned with showing that certain methods can or cannot “solve” the problem
(can or cannot attain the notion of success), given the background assumptions. This
again fits a “model-relative” epistemological perspective (cf. Kelly, 2016, p. 713f),
where the analysis provides a model-relative justification (with the inductive model
constituted by the background assumptions) for methods that solve the problem.

However, this “problem solvability analysis” of whether and which methods
can solve a given learning problem is not the only possible direction of theoretical
analysis (Kelly, 1996, p. 37f). Indeed, each of the different parameters at play (the
learning problem, the background assumptions, the notion of success, the methods)
we can either vary or keep fixed (Kelly, 2016, p. 696). In particular, we can fix a
learning problem and notion of success, and ask what background assumptions are
needed for a method to possibly solve the problem. Here we are after characteriza-
tion results that give necessary and sufficient conditions for the attainability of (i.e.,
the existence of a method that attains) the relevant notion of success (Kelly, 1996, p.
74). In the words of Kelly (ibid.),

a characterization theorem isolates exactly the kind of background knowledge
necessary and sufficient for scientific reliability, given [...] the sense of suc-
cess demanded. To revive Kant’s expression, such results may be thought of
as transcendental deductions for reliable inductive inference, since they show
what sort of knowledge is necessary if reliable inductive inference is to be pos-
sible.

In the logical framework studied in formal learning theory, there arises a neat hierar-
chy where different notions of success are characterized by the topological structure
of the problem and background assumptions (Kelly, 1996). In the statistical learning
theory framework, the fundamental theorem characterizes the main notion of suc-
cess in terms of the combinatorial structure of the background assumptions: for a
method to have the success guarantee of learnability, the hypothesis class must have
finite VC dimension. Thus, adopting Kelly’s words, the fundamental theorem shows
what sort of knowledge (form of hypothesis class) is necessary for reliable inductive
inference (a learnability guarantee). This provides a means-ends reason for model-
ling, if we can, our background assumptions in the form of a class of hypotheses
with finite VC dimension, a simple class of hypotheses. From the combination of a

38 Specifically, the approach of algorithmic learning theory going back to Putnam (1965) and Gold
(1967); see Jain et al. (1999).
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model-relative perspective and a means-ends analysis thus arises a justification for
preferring simplicity—albeit with important qualifications.

4.3 A Qualified Justification for Simplicity

We can now assemble from the building blocks of the previous sections a justifica-
tory argument.

4.3.1 The Argument

We face a certain problem of classification, which we are prepared to model as a
problem in statistical learning. We enter this problem with further prior knowledge
still; and we are interested in a method that is good relative to this prior knowledge.
As a formalization of what it means for a method to be good relative to prior knowl-
edge, we adopt the model-relative notion of learnability. Now the fundamental theo-
rem tells us that for there to exist a method with this guarantee of learnability, we
need to formulate a hypothesis class, as formalization of our prior knowledge, that
is a VC class—that is simple. Only when the hypothesis class is simple, does there
exist a method with the guarantee of learnability relative to this hypothesis class.
This “transcendental deduction” gives us a means-ends justification for modeling, if
we can, our prior knowledge in the shape of a simple class of hypotheses.

The previous reasoning was based on the black-and-white picture of learnabil-
ity or no. The quantitative version of the fundamental theorem offers a more fine-
grained version; but the essence of the argument is the same. Accepting the guaran-
tee of learnability, we recognize that stronger bounds give a stronger guarantee, and
we take a method with a stronger guarantee to be better. Now the quantitative ver-
sion of the fundamental theorem tells us that a VC class of lower VC dimension—a
simpler hypothesis class—gives a stronger guarantee. This gives us a means-ends
justification for modeling, to the extent we can, our prior knowledge in the shape of
class that is maximally simple (of maximally low VC dimension).

4.3.2 Qualifications

The above argument comes with a series of presuppositions and restrictions in
scope, most of which I have discussed earlier. The argument only applies to learn-
ing problems that fit the statistical learning theory framework, and it presumes that
a learning method is (more) justified if it satisifies (stronger bounds for) the formal
criterion of learnability (Sect. 4.1). In particular, it presumes the epistemological
value of model-relative justification (as I have argued for in Sect. 4.2). And it pre-
sumes that the VC dimension of a hypothesis class is a plausible criterion of sim-
plicity (as I have argued for in Sect. 3.2).

But perhaps most importantly, the final step of the argument still comes with a
crucial qualifier. We have a means-ends justification for modeling our prior knowl-
edge in the form of a simpler class, to the extent we can. The theory can be seen
to push into one direction, towards simplicity. However, the actual context of the
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learning problem, and in particular our prior knowledge, acts as a check on this push
towards simplicity.

The prior knowledge we have in each instance is a crucial constraint in the argu-
ment. In line with the epistemological “model-relative” perspective sketched above,
we always enter a learning problem with informal prior knowledge (beliefs we have,
assumptions we are willing to make), and it is this informal prior knowledge that
we need to codify in some formal hypothesis class. There will always be some lee-
way here, simply because it will be a significant translation step from our informal
knowledge to the formal object of a hypothesis class, but it is still a constraint. It
will never be reasonable, for instance, to adopt a singleton hypothesis class (a maxi-
mally simple class of VC dimension 0), because that would mean there would not be
a learning problem to begin with. Without this constraint by informal prior knowl-
edge, the argument would lose the connection to the epistemic context of an actual
learning problem, and collapse into the useless advice to always choose a class of
VC dimension 0.

The downside is that there will be learning problems where this constraint, this
check from complexity, is too strong for the simplicity argument to still be meaning-
ful. There will be situations, in particular, where our prior knowledge is too weak to
plausibly translate into a class of VC dimension sufficiently small to still yield useful
bounds. If such situations are the rule rather than the exception, then this seems to
be a serious restriction in the scope of the argument.

The good news is that we can embed the argument into a more general setting,
presupposing a much weaker kind of prior knowledge. Namely, in rough terms, we
can simultaneously evaluate a (ranked) sequence of multiple VC classes, where the
theoretical push towards simplicity manifests itself again in a preference for lower-
VC-dimension classes; but one which is now checked by the classes’ empirical
error. In fact, this gives a trade-off which can be automated into a learning proce-
dure. This is Vapnik’s second “inductive principle,” or the method of structural risk
minimization.

4.3.3 Structural Risk Minimization

Indeed, rather than on uniform convergence and ERM, discussions of Occam’s razor
in statistical learning theory tend to focus on this method (Harman & Kulkarni,
2007, ch. 3; Kelly, 2008, p. 335; Shalev- Shwartz & Ben-David,2014, Sect. 7.3; Bar-
gagli Stoffi et al,2022). Moreover, this method is directly applicable to the prob-
lem of model selection, which takes center stage in the modern philosophical debate
about Occam’s razor (Forster & Sober, 1994; Sober, 2015). Very briefly, the formal
route to the method of structural risk minimization (SRM) is the following.

We start with a generalization of uniform convergence (Definition 3 above). This
generalization applies to a weighted countable sequence of VC classes, and gives
a uniform accuracy bound for each hypothesis which depends on the class that the
hypothesis is in (Shalev-Shwartz & Ben-David, 2014, Thrm. 7.4). Next, similar
to how the ERM method is defined as minimizing a uniform convergence bound,
which leads to a minimization of empirical risk (Sect. 2.4 above), the SRM method
is defined by minimizing a generalized uniform convergence bound, which leads to
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a minimization of a function of empirical risk and VC dimension (ibid., p. 62). This,
finally, translates into a bound on SRM’s performance; and we can also prove a cer-
tain weaker guarantee of nonuniform learnability (ibid., def. 7.1, thrm. 7.5).

I think that SRM can be understood as implementing a parallel application, over
multiple VC classes at the same time, of the core argument for simplicity that I gave
above. The theoretical push towards simplicity is again a push towards hypotheses
from classes of lower VC dimension. This push is again checked by the classes’ ade-
quacy for the learning problem, or the adequacy of the inductive assumptions they
codify. However, this is now not done by an informal evaluation of how well the for-
mal inductive assumptions match our background knowledge. Instead, this adequacy
is directly estimated by empirical error. This gives rise to a quantitative trade-off
between these two elements, which SRM automates. By taking into account empiri-
cal errors, SRM can thus be seen to automate the evaluation of the adequacy of the
inductive assumptions in individual VC classes; but of course the whole procedure
is still relative to an initial choice of a weighted sequence of VC classes, which now
constitutes the inductive model.

Clearly, it needs more work to spell out this view in the proper amount of detail,
including how it fits with earlier discussions of Occam’s razor in SRM, and with
the philosophical discussion of Occam’s razor in model selection methods. But that
work must wait for another occasion.

5 Conclusion

In this paper, I described a means-ends justificatory argument for Occam’s razor
from statistical learning theory, based on the method of empirical risk minimiza-
tion (ERM). I think this argument accomodates both intuitions and arguments in
the machine learning literature in favor of the possibility of such a justification (by
actually providing one) and those against (in its various qualifications). It is an hon-
est epistemic justification, that connects a simplicity preference to guarantees of
predictive accuracy; and it does not rely on any extra-theoretical assumptions about
the true or best hypotheses being simple. But it does presuppose acceptance of the
justificatory force of the statistical learning theory framework, including the model-
relative nature of the theoretical guarantees. And both the notion of simplicity (as
pertaining to classes rather than individual hypotheses) and the means-ends nature
of the argument (pushing for simplicity as a constraint on inductive assumptions,
rather than directly on inductive conclusions) is perhaps different and more minimal
than what one might have hoped from an argument for Occam’s razor.

In its essence, the argument capitalizes on a push from the mathematical theory
towards specifying a simple hypothesis class. The theoretical push towards simplic-
ity, however, is checked or indeed opposed by the informal knowledge one brings to
the learning problem, which will generally rather pull in the direction of complexity.
This points at a certain trade-off, which is in fact automated in the method of struc-
tural risk minimization (SRM); and this methods thus appears to directly implement
a simplicity preference in inductive inference. It is indeed this method that is usually
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brought up in discussions of Occam’s razor in statistical learning theory, also as
representative for a wider family of regularization techniques in machine learning;
further, it is closely related to the statistical methods for model selection discussed
in the modern philosophical debate. To complete the case that the current account
accomodates earlier arguments and intuitions pro and con, it therefore needs to be
spelled out how exactly it figures in the method of SRM. This I intend to do in future
work; but I think the core argument is already here.
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