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Abstract
We study a hierarchical model of non-overlapping cubes of sidelengths 2 j , j ∈ Z. The model
allows for cubes of arbitrarily small size and the activities need not be translationally invariant.
It can also be recast as a spin system on a tree with a long-range hard-core interaction.
We prove necessary and sufficient conditions for the existence and uniqueness of Gibbs
measures, discuss fragmentation and condensation, and prove bounds on the decay of two-
point correlation functions.

Keywords Existence and uniqueness of Gibbs measures · Exponential decay of
correlations · Condensation · Hierarchical model
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1 Introduction

The present article is an addendum to the article [13]. There, the first author introduced a
discrete polymer model of non-overlapping cubes of unbounded size. At every scale j ∈ N0,
one places a tiling of Z

d consisting of translates of the prototypical j-block {1, . . . , 2 j }d in
such a way that different blocks only overlap if one is contained in the other. The model is
inspired by hierarchical structures in the theory of the renormalisation group [3, 8].

Herewe complement the analysis from [13] by addressing infinite-volumeGibbsmeasures
and decay of correlations. In addition, we extend themodel in two directions: (a) the activities
need not be scale-wise constant (same-size cubes may have different activities); (b) we allow
for arbitrarily small cubes of side-lengths 2− j , j ∈ N. The second extension is motivated
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by Mandelbrot’s fractal percolation model, see e.g. [4, 15–17], and the question whether the
random sets in that model can be constructed with Gibbs measures.

Our central result, Theorem 2.3, gives necessary and sufficient criteria for the existence
of a Gibbs measure and says that, if a Gibbs measure exists, it is unique. The criteria are
formulated as summability conditions on (effective) activities. Propositions 2.5 and 2.7 link
these conditions to the physical phenomena of fragmentation and condensation inwhichmass
escapes tomicroscopic cubes (fragmentation) ormacroscopic cubes (condensation).Roughly,
an infinite-volume Gibbs measure exists if and only if there is neither fragmentation nor
condensation. In particular, at the pointμ = μc of first-order phase transitions in [13, Sect. 5],
the Gibbs measure is unique—non-differentiability of the pressure and non-uniqueness of
Gibbs measures are not equivalent, contrary to the Ising model, see [9, Theorem 3.34].

An interesting subtlety shows up for small cubes and inhomogeneous activities: Theo-
rem 2.3 covers situations in which some finite-volume partition functions are infinite but
nevertheless a Gibbs measure exists. Clearly, “finite volumes”, as in bounded regions of R

d ,
generally contain an infinitude of small cubes and may have infinite partition function but
we can still define a Gibbs measure with the GNZ conditions from the theory of Gibbs point
processes ([18, Theorems 2 and 2’], [2, Equation (1)]), see Definition 2.1. (An alternative
point of view, based on a reinterpretation of our model as a spin system on a tree, is sketched
below.) With this definition already the existence of finite-volume Gibbs measures becomes
a non-trivial issue.

As a minor observation, Mandelbrot’s fractal percolation is not given by one of our Gibbs
measures (Proposition 2.4).

Turning back to the scale-wise homogeneous setting, we investigate decay of correlations
(Theorems 2.8 and 2.9). This is motivated by standard results for spin systems on Z

d , where
we expect exponential decay of truncated correlations away fromphase transitions and slower
decay at the point of phase transition, e.g. algebraic at critical points ([1, 7, 9]); “exponential”
refers to bounds of the type C exp(−γ ||i − j ||) as the Euclidean distance ||i − j || between
the sites indexing spins σi , σ j goes to infinity. In our model the Euclidean distance is replaced
by an ultrametric distance D(B, B ′) = 2d lcs(B,B′) between blocks, with lcs(B, B ′) ∈ Z the
scale of the smallest block containing both B and B ′. In the gas phase, correlations decay as
exp(−const D(B, B ′)) (Theorem 2.8); for a concrete class of models with a first-order phase
transition, the decay at the point of phase transition is instead subexponentially bounded by
exp(−const D(B, B ′)α), α ∈ (0, 1), (Theorem 2.9).

To conclude we highlight an alternative point of view on our model as a spin system on
a tree. The set of admissible cubes has a natural tree structure. By drawing edges from any
block to those it contains one scale below, our cube set becomes a regular 2d -ary tree (also
called Cayley tree or Bethe lattice of degree/branching number 2d ) whose edges we prefer
to think of as oriented toward decreasing scales, see Fig. 1 (cf. also [14] with regard to this
tree structure arising via the successively refined tiling of R

d with cubes). Each vertex of
the tree comes with a {0, 1}-valued spin variable. The interaction is a long-range hard-core
interaction: if a vertex (block) is occupied (spin 1), then all descendants and ancestors in the
tree must be unoccupied (spin 0).

There is an extensive body of literature related to the theory of Gibbs measures on trees
and their relationship with tree-indexed Markov chains, the fundamentals of which can be
found in Georgii [11, Chapter 12]. More recent developments include the articles [5, 6] by
Coquille, Külske and Le Ny. The general theory is not applicable to our context because of
the interaction’s long range. Our Gibbs measures are not described as tree-indexed Markov
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Fig. 1 A hierarchical cube configuration in dimension d = 1. The top part shows a truncated portion of the
set B of admissible cubes (intervals) with mid-point nodes and dashed lines emphasising the implicit binary
tree structure. Occupied cubes are highlighted in scale-dependent colours, both in the tree structure (top) and
on the real line (bottom). The shaded areas visualise excluded volume effects

chains, instead we provide a concrete characterisation as hierarchical measures (defined in
Lemma 3.3).

Our results easily generalise to similar trees. The most obvious modification simply
replaces the cube sidelength base/subdivision parameter M = 2 by any larger integer. All our
results then carry over mutatis mutandis and, in particular, the relationship of scaling limits
and fractal/Mandelbrot percolation with its Galton-Watson construction remains intact.

The remainder of this article is organised as follows. In Sect. 2 we first give the formal
definition of our model and then formulate our main result, Theorem 2.3, and the observation
onMandelbrot percolation not being representable via one of our Gibbs measures (Sect. 2.1).
Next we explain the relation with condensation and fragmentation in Sect. 2.2 and analyse
decay of correlations in Sect. 2.3. Proofs are given in Sect. 3.

2 Main Results

2.1 Existence and uniqueness of infinite-volume Gibbsmeasures

Fix a dimension d ∈ N. We define the set of admissible blocks to be the union B = ⋃
j∈Z

B j

where
B j := {

k + [0, 2 j )d | k ∈ 2 j
N
d
0

}

denotes the set of blocks of scale j or simply j-blocks. Thus B j consists of non-overlapping
cubes of sidelength 2 j all contained in the non-negative orthant R

d+ = [0,∞)d . Allowing
for k ∈ 2 j

Z
d instead results in a model on R

d in which different orthants do not interact.
Cubes may be arbitrarily small or large—we do not impose any bounds on j .
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Fig. 2 A hierarchical cube configuration in dimension d = 2 consisting of occupied cubes (squares) on
finitely many colour-coded scales. The small points in the squares’ bottom left corners mark the respective
k-parameters from the definition of B, the squares’ closed sides (bottom and left) are emphasised with darker
lines

Blocks interact through a hard-core potential that forbids overlap. Thus B ∈ B cannot
occur alongside any additional block B ′ from

IB := {B ′ ∈ B | B ′ ∩ B �= ∅},

the set of blocks that intersect B. Prohibiting, in particular, block multiplicities other than 0
or 1, our configuration space � = P(B) consists of the collection of all subsets B ⊂ B. It is
equipped with the σ -algebra generated by the sets {B ∈ � | B � B}, B ∈ B.

In the following, the symbol ω stands not only for elements ω ∈ � but also for the
configuration-valued random variable given by the identity map ω 	→ ω. This allows us to
use notational shorthand from probability theory, e.g., the above generating events are written
as {ω � B}.

We define infinite-volume Gibbs measures through the GNZ equation ([18, Theorem 2,
Eq. (3.3) or Theorem 2, Cond. (3)], [2, Eq. (1)]), borrowed from the theory of Gibbs point pro-
cesses rather than the usual DLR conditions. We discuss the relation between the definitions
toward the end of this subsection.
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Definition 2.1 A probability measure P on� is a Gibbs measure for the activity z : B → R+
if

E

[∑

B∈ω

F(B, ω)
]

=
∑

B∈B

z(B) E

[
1l{ω∩IB=∅} F(B, ω ∪ {B})

]
.

for all measurable F : B × � → R+. The set of Gibbs measures is denoted G(z).

By standard arguments, it is enough to consider functions F that are indicators of measurable
sets of the form {B0} × A ⊂ B × �. Moreover, F is only ever evaluated on pairs (B, B)

with B ∈ B so A can be chosen to only depend on the configuration outside {B0}. Thus, P

is in G(z) if and only if

P
(
ω � B, ω \ {B} ∈ A) = z(B) P

(
ω ∩ IB = ∅, ω \ {B} ∈ A)

(1)

for all B ∈ B and allmeasurable subsetsA ⊂ �. Of course, everyGibbsmeasure is supported
on the non-overlap event

� := {B ∈ � | ∀B, B ′ ∈ B : B �= B ′ ⇒ B ∩ B ′ = ∅}.
The grand-canonical partition function of a cube � ∈ B is a sum over configurations boxed
in by �, i.e., elements of the space

�� := {B ∈ � | ∀B ∈ B : B ⊂ �}.
Accounting for the activity and the non-overlap prescription, it is given by

	�(z) :=
∑

B∈��

1l�(B)
∏

B∈B
z(B).

The empty product is 1 by convention. In view of

1 +
∑

B⊂�

z(B) ≤ 	�(z) ≤
∏

B⊂�

(
1 + z(B)

)
, (2)

the partition function of� is finite if andonly if
∑

B⊂� z(B) < ∞. This also allows restricting
the sum defining 	�(z) to the (countably many) finite configurations in ��, a fact we use
without further comment.

Given a fixed block B ∈ B of scale j ∈ Z, its effective activity, cf. [13, Section 3], is

ẑ(B) := z(B)
∏

B′∈B j−1:B′⊂B 	B′(z)
. (3)

Here and throughout the rest of the paper, we employ the convention that fractions with
infinite denominators are zero.

If, on every individual scale j ∈ Z, the activity assigns the same value to all j-blocks, we
call the activity homogeneous or scale-wise constant and write z j and ẑ j rather than z(B)

and ẑ(B) for B ∈ B j , j ∈ Z.

Theorem 2.2 If the activity is homogeneous, then G(z) �= ∅ if and only if
∑

j∈N0

2d j z− j < ∞ and
∑

j∈N0

ẑ j < ∞.

If these conditions are satisfied, the Gibbs measure is unique: |G(z)| = 1.
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The second summability condition in Theorem 2.2 and its relation to the phenomenon of
condensation was discussed at length in [13]. There, negative scales were excluded, which
amounts to z j = 0 for all j < 0. The first summability condition, which simply ensures that
every block has finite partition function, is trivial in that situation.

Noting that “anchoring” the summability conditions of Theorem 2.2 at scales other than
0 changes nothing, said theorem is an immediate consequence of the following general
statement. Indeed, the first summability condition above, implying 	�(z) < ∞ for all
� ∈ B, makes Condition (i) below vacuously true while the second summability condition
above translates effortlessly into the subsequent Condition (ii).

Theorem 2.3 G(z) �= ∅ if and only if the following two conditions hold true:

(i) For all � ∈ B with 	�(z) = ∞,
∑

B⊂�:
	B (z)<∞

z(B) = ∞.

(ii) For every B ∈ B, ∑

B′⊃B

ẑ(B ′) < ∞.

If these conditions are satisfied, the Gibbs measure is unique: |G(z)| = 1.

Condition (i) is obviously satisfied when all finite-volume partition functions 	�(z), � ∈ B,
are finite. Perhaps surprisingly, however, Condition (i) does allow for	�(z) = ∞, as long as
the subcubes of�with finite partition function carry enoughmass. In the proof of Lemma 3.8,
we show that this happens precisely when � has disjoint subcubes �1,�2, . . . with finite
partition functions 	� j (z) < ∞ for all j ∈ N but infinite product

∏
j∈N

	� j (z) = ∞.
Regarding Condition (ii), note that its summability assertion only needs to be checked for

a single B ∈ B since the set {B ′ ∈ B | B ′ ⊃ B} changes only by finitely many blocks when
switching between any two choices for B. This is because we work on R

d+. On R
d , we would

need to check the condition for 2d blocks, one for each orthant. In particular, Condition (ii)
is automatically satisfied whenever some block � ∈ B has infinite partition function as one
then has ẑ(B) = 0 for all blocks B ⊃ �. Thus, no activity can fail both Conditions (i) and
(ii) in Theorem 2.3.

Example Let d = 1. Partition the unit interval as

[0, 1) =
[
0,

1

2

)
∪

[1

2
,
1

2
+ 1

4

)
∪ · · · =

⋃

j∈N0

[s j , s j+1)

with s j = ∑ j
k=1 2

−k for all j ∈ N0. Fixing some sequence (λ j ) j∈N0 in R+, let P be the
measure on � under which the events {ω � B}, B ∈ B, are independent with

P
(
ω � [s j , s j+1)

) = λ j

1 + λ j

for all j ∈ N0, and P(ω � B) = 0 for all other blocks. Then P is a Gibbs measure for the
activity

z(B) =
{

λ j if B = [s j , s j+1), j ∈ N0,

0 else.
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In particular, G(z) �= ∅ even if 	[0,1)(z) = ∏
j∈N0

(1 + λ j ) = ∞. In the latter case the
activity z is not uniquely determined by the measure P: Changing z in an arbitrary way on
the cubes B from {[s j , 1) | j ∈ N0} ∪ {[0, 2 j ) | j ∈ N} – i.e., those with infinite partition
function 	B(z) = ∞ – results in a new activity z′ for which P ∈ G(z′) as well. Of course,
similar constructions are possible in any dimension d ∈ N.

Remark When the infinite-volume Gibbs measure exists, volumes with infinite partition
function may be identified via the chain of equivalences

	�(z) = ∞ ⇔ P
({B ∈ ω | B ⊂ �} = ∅

) = 0

⇔ P
(|{B ∈ ω | B ⊂ �}| < ∞)

< 1

⇔ P
(|{B ∈ ω | B ⊂ �}| = ∞) = 1

that we mention without proof. The first equivalence is interesting because 1/	�(z) is
often thought of as an emptiness probability, thus infinite partition functions correspond
to zero probability for being empty. The last equivalence says that in fact such blocks then
automatically contain infinitely many blocks.

Let us briefly comment on our definition of Gibbsmeasures. Definition 2.1 corresponds to the
GNZ equation for Gibbs point processes. As noted in the introduction, they can be formulated
even when some finite-volume partition function 	�(z) is infinite, in which case a naive use
of the usual DLR conditions would be problematic.

However, theDLR conditions domake sense if we change perspectives, identify a configu-
rationB ∈ �with its indicator function 1lB ∈ {0, 1}B, and view ourmodel as a spin system on
a lattice. “Finite volume” then no longer refers to bounded regions in R

d+ but instead to finite
subsets L ⊂ B. The DLR condition, see e.g. [11, Definitions (1.23) and (2.9)], associated to
a singleton reference volume L = {B} boils down to the following requirement:

P
(
ω � B, ω \ {B} ∈ A)

= z(B)

1 + z(B)
P
(
ω ∩ IB \ {B} = ∅, ω \ {B} ∈ A)

(4)

for all B ∈ B and allmeasurableA ⊂ �, wherewe note that the denominator Z{B} = 1+z(B)

is just the (finite) partition function in finite (lattice) volume L = {B} (with empty boundary
condition). This is easily seen to be equivalent to Eq. (1): Given P, z, B, A, and substituting
the latter by

{ω ∈ � | ω ∩ IB = ∅} ∩ A,

Eq. (1) implies

P
(
ω ∩ IB \ {B} = ∅, ω \ {B} ∈ A)

= (1 + z(B)) P
(
ω ∩ IB = ∅, ω \ {B} ∈ A)

while, conversely, Eq. (4) yields

P
(
ω ∩ IB = ∅, ω \ {B} ∈ A)

=
(

1 − z(B)

1 + z(B)

)

P
(
ω ∩ IB \ {B} = ∅, ω \ {B} ∈ A)

= 1

1 + z(B)
P
(
ω ∩ IB \ {B} = ∅, ω \ {B} ∈ A)

.
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Thus, Definition 2.1 is equivalent to the single-site DLR conditions for the model treated as
a lattice spin system. It is known in some cases that the single-site DLR conditions already
imply the full DLR conditions, see [11, Theorem 1.33] (that general theorem is not applicable
here, nevertheless ourmeasures do satisfy the full set ofDLRequations). InterestinglyGeorgii
presented theGNZ characterisation as a continuum analogue to that fact, see the first sentence
of [10, Section 3].

We conclude this section with an example that is not a Gibbs measure. The example is
related toMandelbrot’s percolation process, cf. [4, 15–17], and it was proposed as a candidate
scaling limit for finite-volume Gibbs measures in the context of continuous phase transitions
in [13, Section 5.3]. Let p ∈ (0, 1]. Define a measure on configurations of blocks contained
in [0, 1)d as follows: Pick the top-level block [0, 1)d with probability p. If the block has
been chosen, stop. Otherwise, for each of the 2d blocks B ∈ B−1 contained in [0, 1)d , decide
independently for each of them whether to keep them or not, and then move to the next
scale below. After n iterations, we obtain a random collection Bn ⊂ B0 ∪ · · · ∪ B−n . We let
B := ⋃

n∈N0
Bn and let Pp be the distribution of B.

Proposition 2.4 There is no activity z : B → R+ such that Pp ∈ G(z).

Proof The GNZ Eq. (1) with A = � reads

P(ω � B) = z(B) P(ω ∩ IB = ∅)

which, upon choosing P = Pp and B = [0, 1)d , becomes

p = z
([0, 1)d)

∏

B′∈B:
B′⊂[0,1)d

(1 − p).

Since p ∈ (0, 1], the former identity absurdly states p = 0, no matter the choice of z. ��
The case p = 0 is excluded because P0(ω = ∅) = 1 and, hence, P0 is trivially in G(0).

2.2 Fragmentation and condensation

The standard procedure for constructing Gibbs measures is to consider finite-volume Gibbs
measures (or specification kernels) and pass to the limit. In this spirit, we may start from a
finite volume � ∈ B and consider an upward truncation of the activity

z�(B) :=
{
z(B) if B ⊂ �,

0 else,

as well as downward truncations z(n), n ∈ Z, given by

z(n)(B) :=
{
z(B) if B ∈ ⋃

j≥−n B j ,

0 else.

By standard arguments, the (essentially finite-volume) Gibbs measure for the two-sidedly
truncated activity z(n)

� is

P
(n)
�

(
ω = B) = 1l�(B)

∏
B∈B z(n)(B)

	�(z(n))
, B ∈ ��.

Our first result in this section addresses the limit n → ∞ at fixed � when Condition (i) in
Theorem 2.3 fails.
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Proposition 2.5 If the activity z violates Condition (i) in Theorem 2.3, then there exists an
infinite set V(z) ⊂ B such that, for all �, B ∈ V(z) with B ⊂ �,

lim
n→∞ P

(n)
� (∃B ′ ⊂ B : ω � B ′) = lim

n→∞ P
(n)
� (∃B ′ ⊂ B : ω ∩ V(z) � B ′) = 1

but also
lim
n→∞ P

(n)
� (ω � B) = 0, lim

n→∞ P
(n)
� (∃B ′ ⊂ B : ω\V(z) � B ′) < 1.

Roughly, if Condition (i) in Theorem 2.3 fails, then a positive fraction of mass is lost to
“infinitely small blocks” alongV(z)whose individual contributions all vanish in the limit. The
most extreme instances of this phenomenon occur when the latter set contains all blocks B ⊂
�. In fact, this case always applies to homogeneous activities violating the first summability
condition in Theorem 2.2.

Corollary 2.6 Suppose the activity z is scale-wise constant, given by (z j ) j∈Z, such that∑
j∈N0

2d j z− j = ∞. Then

lim
n→∞ P

(n)
� (ω � B) = 0, lim

n→∞ P
(n)
� (∃B ′ ⊂ B : ω � B ′) = 1

for every � ∈ B and all blocks B ⊂ �.

Our second result in this section is about the limit� ↑ R
d+ whenCondition (ii) in Theorem2.3

fails, assuming Condition (i) holds true. It follows from Theorem 2.3 that, for every � ∈ B,
there is a uniquely defined Gibbs measure P� ∈ G(z�)—no need to assume 	�(z) < ∞ or
to downward truncate the activity.

In the following, the limit � ↑ R
d+ refers to limits along growing sequences �1 ⊂ �2 ⊂

. . . in B with
⋃

n∈N
�n = R

d+, and the limit statements hold true for every such sequence
(�n).

Proposition 2.7 If the activity satisfies Condition (i) but not Condition (ii) in Theorem 2.3,
then, for every block B ∈ B,

lim
�↑R

d+
P�(ω � B) = 0, lim

�↑R
d+

P�(∃B ′ ⊃ B : ω � B ′) = 1.

The interpretation is that all mass escapes to ever larger cubes and no mass at all remains
with finite-size cubes. Moreover, as our configurations do not allow for infinite blocks, we
see that P� at best converges to the measure concentrated on the empty configuration. This
measure is not in G(z) because the failure of Condition (ii) from Theorem 2.3 excludes the
trivial case z = 0.

2.3 Decay of correlations

In this subsection,we take a look at howoccurrence events for pairs of distinct blocks correlate
under a Gibbs measure when the blocks are, in a certain sense, far from each other.

For the sake of concreteness, we consider the homogeneous case only and fix an activity
z via a sequence (z j ) j∈Z. By Theorem 2.2, the existence of a (necessarily unique) Gibbs
measure for z also implies that both the pressure

p := lim
j→∞ 2−d j log	[0,2 j )d (z) =

∑

j∈Z

2−d j log(1 + ẑ j )
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and the stability threshold
θ∗ := lim sup

j→∞
2−d j log z j

are finite with θ∗ ≤ p < ∞, cf. [13, Theorem 3.1]. (The proofs from [13], written for models
without small scales, can be adapted to the present setup.)

For B, B ′ ∈ B, let

lsc(B, B ′) := min{ j ∈ Z | ∃B ′′ ∈ B j : B ′′ ⊃ B, B ′′ ⊃ B ′}
denote the lowest scale at which there is a block covering both B and B ′, and set

D(B, B ′) := 2d lsc(B,B′)1l{B �=B′}.

Weview D(B, B ′) as an (ultra-)metric on the set of blocks and call it the hierarchical distance
(or metric).

Theorem 2.8 Suppose that z admits a Gibbs measure P. Then θ∗ ≤ p < ∞ and, for all
disjoint B, B ′ ∈ B,

P(ω ⊃ {B, B ′}) − P(ω � B) P(ω � B ′) = P(ω � B) P(ω � B ′) Rlcs(B,B′)

where R j = ∏
k≥ j (1 + ẑk) − 1, j ∈ Z, satisfies R j ↓ 0 as j ↑ ∞ as well as

lim sup
j→∞

2−d j log(R j ) = lim sup
j→∞

2−d j log(̂z j ) = θ∗ − p ∈ [−∞, 0].

Note that the conclusions of the above Theorem 2.8 in particular yield an exponential decor-
relation of the form

|P(ω ⊃ {B, B ′}) − P(ω � B) P(ω � B ′)| ≤ Clcs(B,B′)(θ) e−(p−θ) D(B,B′)

for all θ ∈ (θ∗, p) and disjoint B, B ′ ∈ B with lim j→∞ C j (θ) → 0. Assuming now
θ∗ > −∞, for θ = θ∗, i.e. for the supremal rate p − θ∗ ≥ 0, we can only guarantee

lim sup
j→∞

2−d j log(C j (θ
∗)) = 0

but we have no generally available bound on lim sup j→∞ C j (θ
∗).

Exponential decay of correlations usually involves some Euclidean distance between lat-
tice sites (for spin systems) or, in stochastic geometry, a Hausdorff distance on the set of
non-empty compact subsets of R

d (“particles” or “grains”), cf. [1, Sect. 3.3]. Our theorem
instead works with the hierarchical distance. Note that if the Euclidean or Hausdorff metric
between B and B ′ is large then so is the hierarchical distance,

2lcs(B,B′) ≥ sup
x∈B,x′∈B′

max{|xk − x ′
k | | k ∈ {1, . . . , d}},

but the converse is false; at fixed (positive) Hausdorff distance, lcs(B, B ′) can be made
arbitrarily large and, for prescribed lcs(B, B ′), the blocks can be chosen to have arbitrarily
small Hausdorff distance.

The strict inequality θ∗ < p, implicitly needed for the described exponential decay,
characterises the gas phase in the original paper, cf. [13, Proposition 4.3] in particular. While
the condensed phase is marked by the absence of Gibbs measures, the existence of a Gibbs
measure with θ∗ = p < ∞ defines the coexistence region.

A situation that naturally lends itself to a refinement of the above analysis is the one
encountered in [13, Sect. 5.4] where the activity, tuned via a chemical potential, yields a
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parametrised system possibly undergoing a phase transition at a critical chemical potential
that may or may not admit a Gibbs measure with θ∗ = p < ∞. For simplicity and concrete-
ness, we henceforth only consider parametric homogeneous activities z = z(μ, J , α) given
by

z j (μ, J , α) =
{
exp

(
2d j μ − 2αd j J

)
if j ∈ N0,

0 otherwise,

with chemical potential μ ∈ R, coupling constant J ∈ R and fractional exponent α ∈ (0, 1).
The fractional exponent reflects surface corrections and should be thought of asα = (d−1)/d
(if d ≥ 2), see [13, Example 5.8].

By [13, Lemma 5.1(b)] and Theorem 2.2, if J is sufficiently large, the system undergoes
a first-order phase transition as μ increases. Precisely, the following holds true: There exists
a unique μc = μc(J , α) ∈ R ∪ {+∞} (necessarily positive in fact) such that

(a) for all μ < μc, z admits a Gibbs measure with

μ = θ∗(μ, J , α) = θ∗ < p = p(μ, J , α) < ∞,

(b) for μ = μc, z satisfies μ = θ∗ = p < ∞,
(c) for all μ > μc, z satisfies μ = θ∗ = p < ∞ and G(z) = ∅.

Furthermore, there exist finite thresholds J1 = J1(α) ≥ 0 and J2 = J2(α) ≥ J1 such that

(1) for all J < J1 (and for J = 0), μc = ∞ (cf. [13, Theorem 5.3, Corollary 5.4]),
(2) for all J ∈ (J1, J2), μc < ∞ with G(z(μc, J , α)) = ∅,
(3) for all J > J2, μc < ∞ with G(z(μc, J , α)) �= ∅ (cf. [13, Theorem 5.6, Corol-

lary 5.7(b)]).

In case (2) the parametric system undergoes a continuous phase transition while, in case (3),
the phase transition is of first order (see [13, Section 5]). (We do not address the questions
of whether or not J1 > 0 or J2 > J1 and what happens at J = J1 or J = J2.)

Theorem 2.9 Let J ∈ R and α ∈ (0, 1). Suppose that μ ≤ μc is such that z admits a Gibbs
measure P. Then the conclusions of Theorem 2.8 hold true and, if additionally J > 0, then

lim
j→∞

(
log(R j ) + 2d j (p − θ∗) + 2αd j J

)
= 0.

If J and α are such that z admits a Gibbs measure at μ = μc < ∞ (in particular J > 0, see
above), then, for disjoint B, B ′,

|P(ω ⊃ {B, B ′}) − P(ω � B)P(ω � B ′)|

≤
{
Clcs(B,B′)(θ∗) exp

(−(p − θ∗) D(B, B ′)
)

if μ < μc,

C ′
lcs(B,B′) exp

(−J D(B, B ′)α
)

if μ = μc,

with lim j→∞ C j (θ
∗) = 0 and lim j→∞ C ′

j = 1. Note that the previously problematic supre-
mal rate p− θ∗ is now achieved with constants C j (θ

∗) that are not only bounded but exhibit
an explicit subexponential decay.

The theorem illustrates that the decay of correlations at the point of phase transition can
be slower than in the gas phase. In this example, we end up with stretched exponential decay
of the order of exp(−constD(B, B ′)α).
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3 Proofs

Here we prove our results. For the existence result, proven in Sect. 3.1, we first transform the
GNZ Eq. (1) into a one-sided conditional property along the hierarchy of B (Eq. (8)). Next
we observe that Conditions (i) and (ii) in Theorem 2.3 are indeed necessary and that there
is only one candidate for a Gibbs measure: the hierarchical measure (defined by Eq. (11)).
Plugging this measure back into the GNZ equation, we ultimately derive the sufficiency of
Conditions (i) and (ii) in Theorem 2.3.

Propositions 2.5 and 2.7 are subsequently proved in Sect. 3.2 by expressing the relevant
finite-volume Gibbs states as hierarchical measures.

Finally, Sect. 3.3 closes with the proofs of Theorems 2.8 and 2.9. By again writing Gibbs
measures as hierarchical probabilities, the covariances of interest are easily factorised, after
which purely analytical arguments reminiscent of [13] finish the job.

3.1 Proof of Theorem 2.3

For the proofs, we introduce some additional notation. The set IB of blocks intersecting B is
the union of the sets

AB := {B ′ ∈ B | B ′ ⊃ B} and BB := {B ′ ∈ B | B ′ ⊂ B}
of blocks above and, respectively, below B, including B itself. Starred sets exclude the block
B,

I
∗
B := IB\{B}, A

∗
B := AB\{B}, B

∗
B := BB\{B}.

We extend the notation to subsets B ⊂ B by

IB :=
⋃

B∈B
IB , I

∗
B :=

⋃

B∈B
I
∗
B , etc.

Note that the event of non-overlap between blocks can be written as

� = {B ∈ � | B ∩ I
∗
B = ∅} = {ω ∩ I

∗
B = ∅}

and that the same characterisation holds true when replacing I
∗
B by either A

∗
B or B

∗
B. For

ζ : B → R+ and B ⊂ B we set
ζB :=

∏

B∈B
ζ(B),

the empty product is 1 and infinite products are defined as the obvious limits which are going
to exist, possibly infinite, in all subsequent uses of this notation.

Nextwe record a few simple facts. ForP ∈ G(z), the univariateEq. (1) immediately implies
the bound P(ω � B) ≤ z(B) and, via a straightforward induction, also the multivariate
equation, cf. [2, Lemma 2.1],

P(ω ⊃ B, ω \ B ∈ A) = 1l�(B) zB P(ω ∩ IB = ∅, ω \ B ∈ A), (5)

valid for all finite subsets B ⊂ B and all measurable A ⊂ �.
The partition functions satisfy a recurrence relation, cf. [13, Eq. (3.1)]: for � ∈ B j ,

	�(z) = z(�) +
∏

�′∈B j−1:
�′⊂�

	�′(z) = (
1 + ẑ(�)

) ∏

�′∈B j−1:
�′⊂�

	�′(z). (6)
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The products are over the 2d subblocks of � that are exactly one scale below �. Set

ρ̂z(B) := ẑ(B)

1 + ẑ(B)
,

cf. [13, Lemma 4.5(i)], and note that the recurrence relation (6) yields the alternative expres-
sion

ρ̂z(B) = z(B)

	B(z)
. (7)

Gibbsmeasures satisfy a property that reflects a top-downconstruction implicit in the proof
of [13, Theorem 3.2]: Conditional on the configuration at scales k ≥ j +1, the configuration
at scale j is that of blocks placed independently with probabilities ρ̂z(B) or zero, depending
on the compatibility with higher-up scales. We formulate a slightly different version that
relates the conditional probability of seeing a fixed block, given the state of all blocks that
do not lie beneath it. (Cf. also the definition of Pp in Proposition 2.4.)

Given ρ̂ : B → [0, 1], we say that a measure P satisfies the top-down condition for ρ̂ if

P(ω � B, ω \ BB ∈ A) = ρ̂(B) P(ω ∩ A
∗
B = ∅, ω \ BB ∈ A) (8)

for all B ∈ B and all measurable A ⊂ �.
Comparing Eq. (8) to Eq. (1), the former seems to look like a version of the latter where

the void probability onBB = IB \A
∗
B was somehow absorbed into the prefactor. Let us make

rigorous sense out of this intuition.

Lemma 3.1 Every P ∈ G(z) satisfies the top-down condition for ρ̂z .

Proof Let P ∈ G(z), B ∈ B and A ⊂ � measurable. By the GNZ Eq. (1),

P(ω � B, ω\BB ∈ A) = z(B) P(ω ∩ IB = ∅, ω\BB ∈ A)

so, using Eq. (7), it suffices to prove

P(ω ∩ IB = ∅, ω \ BB ∈ A) = 1

	B(z)
P(ω ∩ A

∗
B = ∅, ω \ BB ∈ A). (9)

Essentially choosing A = �, we henceforth omit the specification ω \ BB ∈ A for better
readability but the same argument goes through with the latter event reinserted everywhere.
Write

P
(
ω ∩ A

∗
B = ∅, |ω ∩ BB | < ∞) =

∑

B⊂BB :
|B|<∞

P
(
ω ∩ A

∗
B = ∅, ω ∩ BB = B)

and use the multivariate GNZ Eq. (5) to express each summand as

P
(
ω ∩ A

∗
B = ∅, ω ∩ BB = B)

= 1l�(B) zB P
(
ω ∩ A

∗
B = ω ∩ IB = ω ∩ BB \ B = ∅

)

= 1l�(B) zB P(ω ∩ IB = ∅).

Thus, we get

P
(
ω ∩ A

∗
B = ∅, |ω ∩ BB | < ∞) = 	B(z) P(ω ∩ IB = ∅). (10)

If	B(z) is infinite, then the probability on the right side must be zero because, otherwise, the
probability on the left would be infinite. Thus, both sides in Eq. (9) vanish and the equation
holds true.
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If 	B(z) is finite, then we may omit the requirement |ω ∩ BB | < ∞ on the left side in
Eq. (10). Indeed, as seen in Eq. (2), 	B(z) < ∞ implies

∑
B′∈BB

z(B ′) < ∞ and hence also
∑

B′∈BB

P(ω � B ′) < ∞.

By the Borel–Cantelli lemma, said finiteness condition holds P-almost surely. Therefore, we
may omit it from Eq. (10), then divide by the (finite) partition function on both sides and
obtain Eq. (9). ��
Remark Note that, in the case 	B(z) = ∞, Eq. (10) actually necessitates

P
(
ω ∩ A

∗
B = ∅, |ω ∩ BB | = ∞) = P

(
ω ∩ A

∗
B = ∅

)
.

and, if the right-hand side is positive,
∑

B′∈BB
P(ω � B ′) = ∞ by the Borel–Cantelli lemma.

If P ∈ G(z), the latter sum is bounded from above by
∑

B′∈BB

ρ̂z(B
′) ≤

∑

B′∈BB

ẑ(B ′) ≤
∑

B′∈BB :
	B′ (z)<∞

z(B ′),

where we used Lemma 3.1 and Eq. (8), followed by the definitions of ρ̂z and ẑ. In view of
the upcoming Lemma 3.2, applied to ρ̂ = ρ̂z < 1, we see that both Conditions (i) and (ii) in
Theorem 2.3 are indeed necessary for G(z) �= ∅.

Naturally, the next question is that of existence of solutions to Eq. (8). We start by deducing
necessary conditions.

Lemma 3.2 Let P satisfy the top-down condition for ρ̂ : B → [0, 1]. Then
P(ω ∩ AB = ∅) = (1 − ρ̂)AB

and
∑

B∈AB ρ̂(B) < ∞ for all finite B ⊂ B.

Proof Fix a finite B ⊂ B. Without loss, assume that B ∈ � since one may anyway pass to

min(B) := {B ∈ B | ∀B ′ ∈ B : B ′ ⊂ B ⇔ B ′ = B} = B\A
∗
B ∈ �,

the subset of theminimal cubes inBwith respect to inclusion. Now, for any B ∈ B = min(B),
one has AB ∩ BB = {B} and Eq. (8) yields

P(ω ∩ AB = ∅) = P(ω ∩ AB \ {B} = ∅) − P(ω � B, ω ∩ AB \ {B} = ∅)

= (1 − ρ̂(B)) P(ω ∩ AB \ {B} = ∅)

= (1 − ρ̂(B)) P(ω ∩ AB′ = ∅)

with B′ = min(AB \ {B}) differing from B \ {B} by at most the unique block in min(A∗
B).

Inductively, we obtain

P(ω ∩ AB = ∅) = (1 − ρ̂)AB\AB P(ω ∩ AB = ∅)

for all B ∈ AB since AB\AB is finite.
Hence, it remains to consider the case B = {B} for a fixed block B ∈ B j . Denote by Bn

the unique element of AB ∩ B j+n for every n ∈ N0. Then we have

P(ω ∩ ABm = ∅) = (1 − ρ̂)ABm \ABn P(ω ∩ ABn = ∅)
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for all m, n ∈ N with m ≤ n and

lim
n→∞ P(ω ∩ ABn = ∅) = 1

because the (increasing) union of the above events contains the event
⋂

B′∈B

{ω � B ′ ⇒ ω ∩ A
∗
B′ = ∅} = {ω ∩ A

∗
ω = ∅} = �

of P-measure one, cf. Eq. (8). Thus,

P(ω ∩ AB = ∅) = (1 − ρ̂)AB

and limn→∞(1 − ρ̂)ABn = 1, yielding
∑

B′∈AB

ρ̂(B ′) =
∑

n∈N0

ρ̂(Bn) < ∞.

The lemma follows from combining the latter results with the initial argument for arbitrary
finite B ⊂ B. ��
Combining Lemmas 3.1 and 3.2 and the remark in between, we see that, for any Gibbs
measure to exist, ρ̂z must be summable over all sets AB , B ∈ B, which is in fact equivalent
to Condition (ii) in Theorem 2.3, and Condition (i) must also hold true. Furthermore, the first
part of the latter lemma actually limits our options for candidate Gibbs states down to one of
the following type.

Lemma 3.3 Let ρ̂ : B → [0, 1]. There is a uniquely defined probability measure Hρ̂ such
that

Hρ̂

(
ω ⊃ B) = 1l�(B) ρ̂B (1 − ρ̂)A

∗
B (11)

for all finite sets B ⊂ B.

We call the measure Hρ̂ the hierarchical measure associated with ρ̂.

Proof First off, Eq. (11) determines the probabilities of the events of the form {ω ⊃ B}where
B runs through the finite subsets ofB. These events form a generating π-system of the σ -field
of �; the π–λ theorem implies uniqueness.

Let P
Ber
ρ̂ be the probability measure on � under which the occupation numbers B 	→

1l{B�B} are independent Bernoulli random variables with

P
Ber
ρ̂ (ω � B) = ρ̂(B).

The Bernoulli measure P
Ber
ρ̂ allows for configurations with overlapping blocks but we keep

only some of them: For B ⊂ B, let

max(B) := {B ∈ B | ∀B ′ ∈ B : B ′ ⊃ B ⇔ B ′ = B} = B\B
∗
B ∈ �

be the set of cubes that are maximal in B with respect to the partial order of inclusion. Then

P
Ber
ρ̂

(
max(ω) ⊃ B) = P

Ber
ρ̂

(
ω ⊃ B, ω ∩ A

∗
B = ∅

) = 1l�(B) ρ̂B (1 − ρ̂)A
∗
B

for all finite B ⊂ B. Therefore the image of P
Ber
ρ̂ under the map B 	→ max(B) is the unique

choice for Hρ̂ that satisfies Eq. (11). ��
Remark Note that the measure Pp from Prop. 2.4 is just the hierarchical measure associated
with ρ̂ = p 1lB[0,1)d .
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If any measure satisfies the top-down condition, it is the hierarchical one.

Lemma 3.4 Let ρ̂ : B → [0, 1] with ∑
B′∈AB

ρ̂(B ′) < ∞ for all B ∈ B. Then Hρ̂ is the
unique solution to the top-down equations for ρ̂.

Proof We begin by showing that Hρ̂ , by its construction in the proof of Lemma 3.3, indeed
satisfies the top-down condition. For fixed B ∈ B andA ⊂ � measurable, we first note that,
for all B ⊂ B, the set

max(B)\BB = B\(B∗
B ∪ BB

) = (B\{B})\(B∗
B\{B} ∪ B

∗
B

)

is unaffected by whether or not B ∈ B. Therefore, the left-hand side of Eq. (8) for P = Hρ̂

reads

Hρ̂ (ω � B, ω \ BB ∈ A) = P
Ber
ρ̂ (ω � B, ω ∩ A

∗
B = ∅, max(ω) \ BB ∈ A)

= ρ̂(B) PBer
ρ̂ (ω ∩ A

∗
B = ∅, max(ω) \ BB ∈ A).

On the other hand, for any B ⊂ B, we have max(B)∩A
∗
B = ∅ if and only if B∩A

∗
B is either

empty or infinite. Since
∑

B′∈A
∗
B

ρ̂(B ′) < ∞, the Borel–Cantelli lemma yields

Hρ̂ (ω ∩ A
∗
B = ∅, ω\BB ∈ A) = P

Ber
ρ̂ (ω ∩ A

∗
B = ∅, max(ω)\BB ∈ A).

Hence, P = Hρ̂ satisfies Eq. (8).
Conversely, let P solve the top-down equations for ρ̂. As noted in the proof of Lemma 3.2,

P(�) = 1 and, for every finite B ∈ � and any B ∈ B,
P(ω ⊃ B) = ρ̂(B) P(ω ∩ A

∗
B = ∅, ω ⊃ B\{B}).

By induction,
P(ω ⊃ B) = 1l�(B) ρ̂B

P(ω ∩ A
∗
B = ∅)

for all finite B ⊂ B and, by Lemma 3.2, the latter expression equals the right-hand side of
Eq. (11). Lemma 3.3 then yields P = Hρ̂ . ��
Remark If

∑
B′∈AB

ρ̂(B ′) = ∞ for some (and hence all choices of the) block B ∈ B, the
hierarchical measure is a Dirac on the empty configuration, Hρ̂ = δ∅, and it does not satisfy
the top-down equations. Indeed, for P = δ∅ the top-down equations with A = � yield
0 = ρ̂(B) · 1 for all B ∈ B, contradicting the initial assumption.

By now, we know that, if G(z) �= ∅, then both Conditions (i) and (ii) in Theorem 2.3 must
be satisfied and G(z) = {Hρ̂z }. We now turn to the question of when a hierarchical measure
is actually Gibbsian.

Lemma 3.5 Let ρ̂ : B → [0, 1] with ∑
B′∈AB

ρ̂(B ′) < ∞ for all B ∈ B. Then Hρ̂ ∈ G(z) if
and only if

ρ̂(B) = z(B) (1 − ρ̂)BB (12)

for all B ∈ B.

Proof In view of the proofs of Lemmas 3.3 and 3.4 and a standard extension argument via
the π–λ theorem, Hρ̂ satisfies the GNZ equation if and only if, for all B ∈ B and every finite
B ⊂ B\{B}, the terms

Hρ̂ (ω ⊃ {B} ∪ B) = 1l�({B} ∪ B) ρ̂{B}∪B (1 − ρ̂)A
∗
B∪A

∗
B
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and
z(B) Hρ̂ (ω ∩ IB = ∅, ω ⊃ B) = z(B) 1l�({B} ∪ B) ρ̂B (1 − ρ̂)IB∪A

∗
B

coincide. Note that the conjunction of B ∩ IB = ∅ and B ∈ � is indeed equivalent to
{B} ∪ B ∈ �, which also implies A

∗
B\A

∗
B = A

∗
B\IB . It hence suffices to compare the above

terms in the case B = ∅, that is, Hρ̂ ∈ G(z) if and only if Eq. (12) holds true for all B ∈ B

such that
(1 − ρ̂)A

∗
B = Hρ̂ (ω ∩ A

∗
B = ∅) > 0.

Of course, for any given B ∈ B, Eq. (12) implies ρ̂(B) < 1 while the summability con-
dition on ρ̂ yields the existence of some B ′ ∈ A

∗
B with (1 − ρ̂)AB′ > 0. Combining these

observations, one inductively obtains

(1 − ρ̂)A
∗
B = (1 − ρ̂)AB′ (1 − ρ̂)A

∗
B\AB′ > 0

whenever Hρ̂ is a Gibbs measure. The lemma now follows. ��

Remark Note that Lemma 3.5 generalises Proposition 2.4. The proof of the latter also pro-
ceeds by inserting the measure P = Pp into the GNZ Eq. (1) (with B = [0, 1)d andA = �).
Since Pp = Hρ̂ for ρ̂ = p 1lB[0,1)d , the identity that fails in said proof is precisely Eq. (12).

By plugging ρ̂z into Lemma 3.5, we are set on the path to deriving the sufficiency of Condi-
tions (i) and (ii) in Theorem 2.3.

Lemma 3.6 The map ρ̂ = ρ̂z : B → [0, 1] satisfies Eq. (12) for all B ∈ B if and only if

	B(z) = (1 + ẑ)BB (13)

for all B ∈ B.

Proof By definition, 1 − ρ̂z = 1/(1 + ẑ). Given any B ∈ B, applying the former together
with Eq. (7) turns Eq. (12) into

z(B)

	B(z)
= z(B)

(1 + ẑ)BB
,

which certainly holds true whenever Eq. (13) does.
Conversely, suppose that Eq. (12) holds true for all B ∈ B. Fix some � ∈ B and observe

that Eq. (12) still holds true for all B ∈ B when z, ẑ and ρ̂ = ρ̂z are replaced by

z� = z 1lB�
, (̂z�) = ẑ 1lB�

and ρ̂z� = ρ̂z 1lB�
,

respectively. Hence, given any B ∈ B, we may assume without loss that
∑

B′∈A
∗
B

ρ̂z(B ′) = 0
and that, by Lemma 3.5, Hρ̂z is a Gibbs measure for which Eq. (9) with A = � reads

1

(1 + ẑ)BB
= 1

	B(z)

since ẑ and ρ̂z are assumed to vanish on A
∗
B . The latter identity is obviously just Eq. (13). ��

Cubes with finite partition function always satisfy Condition (13).

Lemma 3.7 For all � ∈ B with 	�(z) < ∞, one has 	�(z) = (1 + ẑ)B� .
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Proof For n ∈ Z, set
B

(n) :=
⋃

j≥−n

B j , B
(n)
� := B� ∩ B

(n).

By the recurrence relation (6) for partition functions, for every n ∈ Z with −n − 1 at most
the scale of �,

	�(z) = (1 + ẑ)B
(n)
�

∏

B∈B�∩B−n−1

	B(z).

When z vanishes for blocks at scale below −n, the partition functions on the right side are
equal to 1 and can be omitted from the previous equation. Thus, let us consider the truncated
activity

z(n)(B) :=
{
z(B) if B ∈ B

(n),

0 else,

and write ẑ(n)(B) for the associated effective activity. Then

	�

(
z(n)

) = (
1 + ẑ(n)

)B� (14)

and only finitely many terms on the right side, namely those for B ∈ B
(n)
� , may differ from

1. The left side converges monotonically to 	�(z) as n → ∞. For the right side, we note
that ẑ(n)(B) → ẑ(B) for each B ∈ B and ẑ(n)(B) ≤ z(n)(B) ≤ z(B) with

∑

B∈B�

log
(
1 + z(B)

) ≤
∑

B∈B�

z(B) ≤ 	�(z) < ∞.

Dominated convergence allows us to pass to the limit on the right side of Eq. (14). ��
This leaves blockswith infinite partition function, forwhichEq. (13) turns out to be equivalent
to Condition (i) in Theorem 2.3.

Lemma 3.8 If � ∈ B such that 	�(z) = ∞, then 	�(z) = (1+ ẑ)B� holds true if and only
if

∑
B∈B�:	B (z)<∞ z(B) = ∞.

Proof If 	�(z) = (1 + ẑ)B� = ∞, then we must have
∑

B∈B�:
	B (z)<∞

z(B) ≥
∑

B∈B�

ẑ(B) = ∞.

Conversely, suppose that
∑

B∈B�:	B (z)<∞ z(B) = ∞ holds true. Let

F�(z) := {B ∈ B� | 	B(z) < ∞} and M�(z) := max(F�(z))

be the relevant set of blocks below � with finite partition function and the set of its maximal
elements with respect to inclusion, respectively, cf. the proof of Lemma 3.3. Writing

F�(z) = BM�(z) =
⋃

M∈M�(z)

BM ,

where the last union is over mutually disjoint sets of cubes, we obtain

(1 + ẑ)B� = (1 + ẑ)F�(z) =
∏

M∈M�(z)

(1 + ẑ)BM =
∏

M∈M�(z)

	M (z).
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In the last linewe have applied Lemma 3.7 to the blocksM ∈ M�(z). The product of partition
functions is bounded from below by

∏

M∈M�(z)

(
1 +

∑

B∈BM

z(B)
)

≥ 1 +
∑

B∈F�(z)

z(B) = ∞.

Thus
∏

M∈M�(z) 	M (z) is infinite and so is (1 + ẑ)B� . ��
At this point, the proof of our main result on the existence and uniqueness of Gibbs measures
comes down to collecting the partial results derived so far.

Proof of Theorem 2.3 By Lemmas 3.1, 3.2 and 3.4, any P ∈ G(z) satisfies the top-down
condition for ρ̂z and is hence equal to Hρ̂z with

∑

B′∈AB

ρ̂z(B
′) < ∞

for all B ∈ B. This covers both the uniqueness of theGibbsmeasure aswell as the necessity of
Condition (ii) in Theorem 2.3, the latter being equivalent to the above summability assertion
for ρ̂z = ẑ/(1 + ẑ).

As previously noted, the necessity of Condition (i) in Theorem 2.3 also follows from the
arguments proving Lemmas 3.1 and 3.2. Nevertheless, it now suffices to prove the following:
given that the above summability condition on ρ̂z (i.e. Condition (ii) in Theorem 2.3) holds
true, one has Hρ̂z ∈ G(z) if and only if Condition (i) in Theorem 2.3 is met. But this is
essentially the content of Lemmas 3.5 through 3.8. ��
This concludes the proof of our main result. The explicit representation of Gibbs states as
hierarchical measures is of interest in its own right and very useful for subsequent proofs.

3.2 Proofs of Propositions 2.5 and 2.7

Recall that, given an activity z : B → R+ and � ∈ B, we denote by z� = z 1lB�
the finite-

volume restriction of z to blocks below � and by P� ∈ G(z�) the corresponding (unique)
finite-volume Gibbs-measure whenever it exists. If it does exist, then, by Lemmas 3.1, 3.2
and 3.4, it is just Hρ̂z�

, the hierarchical measure associated with ρ̂z� = ẑ
1+̂z 1lB�

, cf. also the
proof of Lemma 3.6.

For n ∈ Z, recall the further restriction z(n)
� = z 1l

B
(n)
�

of the activity to the finite set

B
(n)
� := B� ∩

⋃

j≥−n

B j ,

see also the proof of Lemma 3.7. Adding Lemmas 3.5 and 3.6 to the mix, the correspond-
ing Gibbs-measure P

(n)
� for z(n)

� exists unconditionally and is, of course, nothing but the
hierarchical measure for ρ̂

z(n)
�

.

Lemma 3.9 One has

lim
n→∞ P

(n)
� (ω = ∅) = 1

	�(z)
and lim

n→∞ P
(n)
� (ω ⊃ B) = Hρ̂z�

(ω ⊃ B)

for all finite B ∈ B.
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Proof Since, by the preceding discussion,

P
(n)
� (ω = ∅) = P

(n)
�

(
ω ∩ B

(n)
� = ∅

) = 1
(
1 + ẑ(n)

�

)B
(n)
�

= 1

	�

(
z(n)
�

)

for all n ∈ Z, the first statement follows by monotone convergence. As an immediate conse-
quence,

lim
n→∞ ρ̂

z(n)
�

(B) = lim
n→∞

z(n)
� (B)

	B
(
z(n)
�

) = z�(B)

	B(z�)
= ρ̂z�

for all B ∈ B so we also get

lim
n→∞ P

(n)
� (ω ⊃ B) = lim

n→∞ 1l�(B) ρ̂B
z(n)
�

(1 − ρ̂
z(n)
�

)A
∗
B

= 1l�(B) ρ̂B
z� (1 − ρ̂z�)A

∗
B

= Hρ̂z�
(ω ⊃ B).

for all finite B ∈ B where we note that effectively only finitely many blocks, namely those
in AB ∩ B�, contribute to the above products. ��
Remark When equipping� ∼= {0, 1}B with the product topology, with each factor viewed as
discrete, the second part of Lemma 3.9 obtains a new meaning: it says that Hρ̂z�

, the unique
candidate for the finite-volume Gibbs measure P�, is always the weak limit of the truncated
finite-volume Gibbs measures P

(n)
� .

Next, recall the set F�(z) = {B ∈ B� | 	B(z) < ∞} from the proof of Lemma 3.8. The
implications of the representation

F�(z) = BM�(z) =
⋃

M∈M�(z)

BM (15)

with M�(z) = max(F�(z)) are particularly relevant to the last parts of the proof of the next
lemma.

Lemma 3.10 One has

lim
n→∞ P

(n)
� (ω ∩ F�(z) = ∅) = 1

(1 + ẑ)B�
.

If 	�(z) = ∞ and
∑

B∈F�(z) z(B) < ∞, one additionally has

lim
n→∞ P

(n)
� (ω\F�(z) = ∅) = 0.

Proof We prove the first statement in two steps. On the one hand, one trivially has

lim sup
n→∞

P
(n)
� (ω ∩ F�(z) = ∅) ≤ inf

m∈Z

lim sup
n→∞

P
(n)
�

(
ω ∩ F�(z) ∩ B

(m)
� = ∅

)
.

In view of Lemma 3.9, B
(m)
� being finite and ẑ vanishing on B�\F�(z), the probability in

the upper bound actually converges to

lim
n→∞ P

(n)
�

(
ω ∩ B

(m)
� = ∅

) = lim
n→∞

1
(
1 + ẑ(n)

)B
(m)
�

= 1

(1 + ẑ)B
(m)
�
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whose infimum over m ∈ Z is just 1/(1 + ẑ)B� .
On the other hand, we obtain a lower bound via

P
(n)
� (ω ∩ F�(z) = ∅) =

∑

B⊂B
(n)
� \F�(z):
B∈�

ρ̂B
z(n)

(
1 − ρ̂z(n)

)B
(n)
� \BB

≥
∑

B⊂B
(n)
� \F�(z):
B∈�

ρ̂B
z(n)

(
1 − ρ̂z(n)

)B
(n)
� \(BB∪F�(z))

(
1 + ẑ(n)

)F�(z)

= 1
(
1 + ẑ(n)

)F�(z)
.

While the summands in thefirst sumare hierarchical probabilities of the events {ω∩B
(n)
� = B},

the last equality comes about because, by Eq. (15), the numerators in the second sum are the
corresponding hierarchical probabilities of the events {ω ∩ B

(n)
� \F�(z) = B}. Lemmas 3.7

and 3.8, together with monotone convergence, yield
(
1 + ẑ(n)

)F�(z) = 	�

(
z(n) 1lF�(z)

) → 	�

(
z 1lF�(z)

) = (1 + ẑ)F�(z)

as n → ∞ (even if the limiting terms on the right are infinite) so we now observe

lim inf
n→∞ P

(n)
� (ω ∩ F�(z) = ∅) ≥ 1

(1 + ẑ)F�(z)
= 1

(1 + ẑ)B�
,

the term on the right coinciding with our upper bound.
For the additional claim of the lemma, we write

P
(n)
� (ω\F�(z) = ∅) = 1

(
1 + ẑ(n)

)B�\F�(z)
=

(
1 + ẑ(n)

)F�(z)

(
1 + ẑ(n)

)B�
,

cf. again Eq. (15). Building on previous arguments, the numerator and denominator on the
right respectively converge to (1 + ẑ)F�(z) and 	�(z) and the additional claim follows. ��
Having completed our preparation, Proposition 2.5 is easy to deal with.

Proof of Proposition 2.5 Unsurprisingly, we choose

V(z) =
⎧
⎨

⎩
� ∈ B

∣
∣
∣
∣ 	�(z) = ∞,

∑

B∈F�(z)

z(B) < ∞
⎫
⎬

⎭

= {
� ∈ B | 	�(z) = ∞, (1 + ẑ)B�(z) < ∞}

and assume Condition (i) in Theorem 2.3 to fail, i.e. V(z) �= ∅. Fix � ∈ V(z), observe that

B� ∩ V(z) = {B ∈ B� | 	B(z) = ∞} = B�\F�(z)

and that this intersection must be infinite by virtue of Eq. (6), cf. also the beginning of the
proof of Lemma 3.7.

From Lemmas 3.9 and 3.10, we already obtain

lim
n→∞ P

(n)
� (ω � B) = Hρ̂z�

(ω � B) ≤ ρ̂z(B) = z(B)

	B(z)
= 0
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for all B ∈ B� ∩ V(z) and, specifically for B = �,

lim
n→∞ P

(n)
� (ω ∩ BB �= ∅) = 1 − 1

	�(z)
= 1 = lim

n→∞ P
(n)
� (ω ∩ BB ∩ V(z) �= ∅)

as well as

lim
n→∞ P

(n)
� (ω ∩ BB\V(z) �= ∅) = 1 − 1

(1 + ẑ)B�
< 1.

The latter restriction is easily overcome by writing

P
(n)
� (ω ∩ BB ∩ X �= ∅) = (

1 − ρ̂z(n)

)A
∗
B∩B�

P
(n)
B (ω ∩ BB ∩ X �= ∅)

with X ∈ {B, V(z), B\V(z)} and noticing that the product over the finite set A
∗
B ∩ B�

converges to 1 whenever B ∈ B� ∩ V(z). ��
With fragmentation out of theway,we turn to condensation. There is no additional preparation
needed but we reiterate that taking limits as � ↑ R

d+ simply means taking limits as � runs
through an increasing sequence �1 ⊂ �2 ⊂ . . . of cubes in B with

⋃
n∈N

� = R
d+.

Proof of Proposition 2.7 Suppose that z satisfies Condition (i) in Theorem 2.3. Then, for any
given � ∈ B, P� exists and is just the hierarchical measure associated with ρ̂z� = ρ̂z 1lB�

.
In particular, one has

P�(ω � B) = 1lB�
(B) ρ̂z(B) (1 − ρ̂z)

A
∗
B∩B� = 1lB�

(B)
ẑ(B)

(1 + ẑ)AB∩B�

and

P�(ω ∩ AB �= ∅) = 1 − (1 − ρ̂z)
AB∩B� = 1 − 1

(1 + ẑ)AB∩B�

for all�, B ∈ B, cf. also Lemma 3.2. Since Condition (ii) in Theorem 2.3 can be equivalently
phrased as

1

(1 + ẑ)AB
= lim

�↑R
d+

1

(1 + ẑ)AB∩B�
> 0

for all (or, equivalently, some) B ∈ B, the proposition follows. ��
Remark In analogy with the remark following the proof of Lemma 3.9, it is easy to show
that, provided their existence, the finite-volume Gibbs measures P� always converge weakly
to the unique candidate Gibbs state Hρ̂z as � ↑ R

d+. The crux of the issue is yet again the
extension of this convergence to appropriate void probabilities.

3.3 Proofs of Theorems 2.8 and 2.9

Finally, let us tackle the exponential decay of block covariances. Although we formulated
these results for homogeneous activities, the factorisation they are based on holds for all our
Gibbs measures.

Lemma 3.11 Suppose that z admits a Gibbs measure P. Then, for all distinct B, B ′ ∈ B,

P(ω ⊃ {B, B ′}) = 1l�({B, B ′}) P(ω � B) P(ω � B ′) (1 + R(B ′′))

where {B ′′} = min(A∗
B ∩ A

∗
B′) and R(B ′′) = (1 + ẑ)AB′′ − 1 ↓ 0 as B ′′ ↑ R

d+.
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Proof Fix two blocks B, B ′ ∈ B. By the results of Sect. 3.1, P = Hρ̂z and the relevant
probabilities are given by

P(ω ⊃ {B, B ′}) = 1l�({B, B ′}) ρ̂z(B) ρ̂z(B
′) (1 − ρ̂z)

A
∗
{B,B′}

as well as

P(ω � B) = ρ̂z(B) (1 − ρ̂z)
A

∗
B and P(ω � B ′) = ρ̂z(B

′) (1 − ρ̂z)
A

∗
B′ .

The result follows by inserting

(1 − ρ̂z)
X = 1

(1 + ẑ)X
, X ∈ {A∗

B , A
∗
B′ , A

∗
{B,B′} = A

∗
B ∪ A

∗
B′ },

and observing that Condition (ii) in Theorem 2.3 yields (1 + ẑ)AB ↓ 1 as B ↑ R
d+. ��

What is left in the proofs of Theorems 2.8 and 2.9 is mainly the asymptotic analysis of the
factor R(B) as B ↑ R

d+. Clearly, R(B) = (1 + ẑ)AB − 1 has the same (multiplicative)
asymptotics as

∑
B′∈AB

ẑ(B ′) whenever either expression is finite but we can be far more
precise than that. The following simple analytical observation will prove helpful.

Lemma 3.12 Let r > 0 and b > 1. Then

e−r b j ≤
∑

k≥ j

e−r bk ≤ e−r b j
(

1 + 1

r log(b) b j

)

for all j ∈ Z.

Proof Fix some arbitrary j ∈ Z. Then

∑

k≥ j+1

e−r bk ≤
∫ ∞

j

dx

er bx
=

∫ ∞

r b j

dy

log(b) y ey
≤ e−r b j

r log(b) b j

and the lemma follows. ��

Recall that we are considering homogeneous activities and may write

R(B) = R j =
∏

k≥ j

(1 + ẑk) − 1

for B ∈ B j , j ∈ Z. Note also that we may write

ẑ j = z j e
−2d j p j−1 with p j =

∑

k≤ j

2−dk log(1 + ẑk)

for all j ∈ Z, cf. [13, Theorem 3.1].

Lemma 3.13 Suppose that z admits aGibbsmeasureP. Then θ∗ ≤ p < ∞, lim j→∞ 2d j (p−
p j−1) = 0 and

lim sup
j→∞

2−d j log(R j ) = lim sup
j→∞

2−d j log(̂z j ) = θ∗ − p ∈ [−∞, 0].
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Proof Theorem 2.2 readily implies

0 ≤ p =
∑

j∈Z

2−d j log(1 + ẑ j ) ≤
∑

j∈N

2d j z− j +
∑

j∈N0

ẑ j < ∞

as well as
0 ≤ 2d j (p − p j−1) =

∑

k≥ j

2d( j−k) log(1 + ẑk) ≤
∑

k≥ j

ẑk ↘ 0

as j ↑ ∞. Furthermore,

−∞ ≤ θ∗ = lim sup
j→∞

2−d j log(z j )

≤ lim sup
j→∞

2−d j log
(
	[0,2 j )d (z)

)

= p,

see also Lemma 3.7. Thus, we have

lim sup
j→∞

2−d j log(̂z j ) = lim sup
j→∞

2−d j log(z j ) − p = θ∗ − p ∈ [−∞, 0].

Finally, observe that lim j→∞ R j = 0 clearly entails

lim sup
j→∞

2−d j log(R j ) ≤ 0

and that the latter superior limit is equal to lim sup j→∞ 2−d j log(̂z j )by applyingLemma3.12
with b = 2d and the bounds

ẑ j ≤
∑

k≥ j

ẑk ≤ R j =
∏

k≥ j

(1 + ẑk) − 1 ≤ (1 + R j )
∑

k≥ j

ẑk,

valid for all j ∈ Z. ��
This concludes the proof of our first decorrelation theorem.

Proof of Theorem 2.8 Simply combine Lemmas 3.11 and 3.13. ��
The proof of our second decorrelation theorem is essentially an extension of the final argu-
ments above, using the specific choice of z.

Proof of Theorem 2.9 For what remains to be shown, we fix μ ∈ R, J > 0 and α ∈ (0, 1)
such that

∑
j∈N0

ẑ j < ∞ with

ẑ j = ẑ j (μ, J , α) = exp
(
2d j (μ − p j−1) − 2αd j J

)
1l{ j≥0}

for all j ∈ Z. Recall that θ∗ = μ in the present setting. Adapting the arguments from the
end of the proof of Lemma 3.13, we have

ẑ j e
2d j (p−θ∗) ≤ R j e

2d j (p−θ∗) ≤ (1 + R j )
∑

k≥ j

ẑk e
2dk (p−θ∗),

where we used p − θ∗ ≥ 0 in the second bound. Note that, for all j ∈ Z,

ẑ j e
2d j (p−θ∗) = exp

(
2d j (p − p j−1) − 2αd j J

)
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and that, again, Lemmas 3.11 and 3.13 respectively yield

lim
j→∞ R j = 0 and lim

j→∞ 2d j (p − p j−1) = 0.

In conclusion, we obtain

lim
j→∞

(
log(R j ) + 2d j (p − θ∗) + 2αd j J

)
= lim

j→∞ 2d j (p − p j−1) = 0

from another application of Lemma 3.12 with r = J and b = 2αd . ��
At the very end, let us briefly indicate how to extend the exponential decay from covariances
of blocks to covariances of (finite sub-)configurations. Some readers might expect an expo-
nential mixing statement resembling [12, Corollary 7.9, Theorem 7.12, Definition 9.5] but
we stick with a formulation that is more in line with the theory of Gibbsian point processes.

Most of Lemma 3.11 is easily generalised to the following statement: For all P ∈ G(z)
and all disjoint finite subsets B,B′ ⊂ B,

P(ω ⊃ B ∪ B′) = 1l�(B ∪ B′) P(ω ⊃ B) P(ω ⊃ B′) (1 + R(B′′))

where B′′ = min(A∗
B ∩ A

∗
B′) and R(B′′) = (1 + ẑ)AB′′ − 1 with

∑

B∈AB′′
ẑ(B) ≤ R(B′′) ≤ (1 + R(B′′))

∑

B∈AB′′
ẑ(B),

∑

B∈AB′′
ẑ(B) ≤ |B′′| max

B∈B′′

∑

B′∈AB

ẑ(B ′), 1 ≤ |B′′| ≤ min{|B|, |B′|},

and
1 ≤ (1 + R(B′′)) ≤

∏

B∈B′′
(1 + R(B)) ≤ max

B∈B′′(1 + R(B))|B′′|.

Assuming homogeneous z and B ∪ B′ ∈ �, the analysis yielding the proof of Theorem 2.8
then yields

|P(ω ⊃ B ∪ B′) − P(ω ⊃ B) P(ω ⊃ B′)| ≤
P(ω ⊃ B) P(ω ⊃ B′) min{|B|, |B′|} cB,B′(θ) e−(p−θ) D(B,B′)

for all finite θ ∈ [θ∗, p) where

D(B,B′) = 2d lcs(B,B′) 1l{B∩B′=∅} = max
(B,B′)∈B×B′ D(B, B ′)

is just the hierarchical distance between the sets B and B′ and

cB,B′(θ) ≤ (1 + Rlcs(B,B′))
min{|B|, |B′|}−1 clcs(B,B′)(θ)

with lim sup j→∞ 2−d j log(c j (θ)) = θ∗ − θ ∈ [−∞, 0].
The above decorrelation result should be seen as an analogue to [1, Theorem 2]. The

rigorous link consists in the fact that, in our setting of simple point processes on the discrete
space B, implicitly equipped with the counting measure, the sequence of point process theo-
retic factorial moment measures (αp)p∈N0 and their densities (ρp)p∈N0 , customarily called
correlation functions, can be identified with

∑

B⊂B:|B|<∞

P(ω ⊃ B) δB and B 	→ P(ω ⊃ B),

respectively. In our model, the latter objects are supported on finite configurations in �.
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