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Deep learning still has drawbacks regarding trustworthiness, which describes a comprehensible, 
fair, safe, and reliable method. To mitigate the potential risk of AI, clear obligations associated 
with trustworthiness have been proposed via regulatory guidelines, e.g., in the European AI 
Act. Therefore, a central question is to what extent trustworthy deep learning can be realized. 
Establishing the described properties constituting trustworthiness requires that the factors 
influencing an algorithmic computation can be retraced, i.e., the algorithmic implementation 
is transparent. Motivated by the observation that the current evolution of deep learning models 
necessitates a change in computing technology, we derive a mathematical framework that enables 
us to analyze whether a transparent implementation in a computing model is feasible. The 
core idea is to formalize and subsequently relate the properties of a transparent algorithmic 
implementation to the mathematical model of the computing platform, thereby establishing 
verifiable criteria.
We exemplarily apply our trustworthiness framework to analyze deep learning approaches for 
inverse problems in digital and analog computing models represented by Turing and Blum-Shub
Smale machines, respectively. Based on previous results, we find that Blum-Shub-Smale machines 
have the potential to establish trustworthy solvers for inverse problems under fairly general 
conditions, whereas Turing machines cannot guarantee trustworthiness to the same degree.

1. Introduction

The core idea of machine learning, that is, to enable an algorithm to extract relevant information from an available data set to 
solve a given problem, coupled with an evolution of digital computing technology and power, led to a revolution in a wide range 
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of applications [1--3]. Even more, by further augmenting the machine learning models and the data sets, great advances have been 
made via the deep learning framework in fields such as natural language processing, which were expected to be amenable to this 
approach to a lesser degree due to their inherent complexity [4,5]. Deep learning [6--8] refers to a specific class of machine learning 
models, so-called (deep) artificial neural networks [9] that are adjusted and optimized on given training data via fairly simple loss 
functions and basic iterative methods such as stochastic gradient descent along with backpropagation [10].

Therefore, it is widely acknowledged that the success of deep learning can be attributed mainly to three pillars. First, the availability 
of vast amounts of data enabled the breakthrough of the deep learning approach by outperforming previous methods by a large 
margin [11]. Second, the advancements in digital computing hardware and the accompanying increase in computational power 
allowed for the effective processing of large data sets in the training phase resulting in larger and deeper networks that tend to be 
more capable. Hereby, the initial breakthrough relied on incorporating GPUs in the training of neural networks. By construction, 
GPUs are better equipped than purely CPU-powered computers to carry out the applied algorithms heavily depending on matrix 
multiplication operations [11,12]. The ongoing process of increasing training data sets and computing power cumulated at this stage 
in digital high-performance computing approaches optimized for implementing deep learning [13--15]. Third, the progress in neural 
network architecture from fully-connected feedforward over convolutional [11] and residual networks [16] to transformers [17] as 
well as in training methodology, e.g., incorporating techniques such as self-supervision [18] and reinforcement learning (with human 
feedback) [19], transferred the potential benefits of larger training sets and more computing power into practical improvements.

1.1. Energy and scaling limitations of deep learning

However, it is unclear how far the current approaches can be further scaled and improved under the deep learning framework. 
Indications suggest that this development may slow down or even halt [20,21]. The data sets employed to train state-of-the-art large 
language models already include a noteworthy fraction of (English) text on the internet [4]. Hence, even larger and more suitable 
databases need to be generated to train future models by combining different data types such as text, audio, and video. Besides, the 
ongoing digitization of the physical world via sensors, which observe and perceive aspects of their environment -- think of autonomous 
vehicles for instance --, leads to an accumulation of additional data but also greater demands in storing and throughput capacity [22].

Therefore, to process the collected data and to apply algorithmic methods such as deep learning more computing capacity is 
required, i.e., the necessary number of computational steps increases. Since at present there exists a direct connection between the 
number of computational operations and the total energy consumption of a (digital) computing device [23,24], it seems unlikely that 
the already immense energy consumption of the current deep learning models does not substantially increase in the future unless the 
applied techniques are structurally adjusted. Hence, dramatically more data and energy-e˙icient methods have to be incorporated 
or the underlying computing and processing paradigm needs to change so that more efficient but equally powerful computations can 
be carried out. One promising alternative to the present, purely digital computing approach is incorporating analog devices in the 
computing pipeline since analog computing offers potential benefits if its fault tolerance can be increased [22,25].

1.2. The need for trustworthy deep learning

Due to its ongoing advancements, the scope of tasks that deep learning models can successfully tackle is ever-increasing. On the 
one hand, existing models are tweaked to adapt to similar tasks of the same complexity. On the other hand, new, more capable 
model types are introduced -- the last one being foundational models [26] such as large language models -- that can solve previously 
unattainable problems. Mainly, current models still impact their environment indirectly by influencing human decisions but not by 
direct control of the physical environment. Large language models are a prime example of these interactions [27]. However, the 
increasing capabilities of deep learning models and the actual goal of artificial general intelligence [28,29] indicate that the type of 
interactions may change soon, e.g., autonomous vehicles with their sensing and decision-making powered by deep learning will act 
as physical agents and thereby cross the barrier from indirect to direct interactions with the physical environment. This is reflected 
by discussions on machine ethics in the context of autonomous driving, i.e., the questions of how algorithms should decide in certain 
situations [30--32]. While formulating and agreeing on a decision-making framework for (autonomous) physical agents is undeniably 
important, the question of how to implement and guarantee abidance by the chosen framework is equally relevant.

The latter goal is complicated by the black box, unreliable, non-accountable, and non-robust behavior of current deep learn
ing models [33--37]. A well-known failure in this regard is the non-robustness of artificial neural networks towards minimal input 
perturbations, which entails non-reliability on the network’s output [34,38--42]. These drawbacks can be summarized as a lack of 
trustworthiness [43--47] -- an umbrella term for privacy, security, resilience, reliability, and accountability [48]. Thereby, the notion 
of trustworthiness includes amongst others aspects such as

• robustness, i.e., resilience against a variety of challenges: changing environments or situations, noisy or incomplete data, and 
adversarial attacks;

• transparency and interpretability, i.e., clear justification and explanation of the decision-making process;
• fairness, ethical compliance, and privacy, i.e., avoidance of biases, equitable treatment of diverse user groups, and secure man

agement of sensitive information;
• safety and security, i.e., protection against potential threats and preventing unintended harmful consequences.
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Failing to establish trustworthiness in deep learning systems entails that no performance guarantees can be provided or, at least, 
circumstances may arise in which deep learning systems exhibit unexpected and potentially harmful behavior. This fact is well
acknowledged, even beyond the science community, since the present and future deep learning applications are expected to impact 
all of society. Therefore, policymakers already proposed guidelines and regulations that deep learning models need to satisfy. Among 
the most influential ones are certainly the European AI Act [49] and the G7 Hiroshima Leaders Communiqué [50], which describe 
various degrees of requirements and demands concerning the trustworthiness of deep learning systems. In particular, the European 
AI Act formulates a clear legal framework that might act as a blueprint for further regulation proposals. This raises the question of 
the extent to which trustworthiness can be achieved with the deep learning approach. The lack of trustworthiness in deep learning 
has persisted throughout its evolution since the fundamental approach remained unchanged. This is in contrast to other AI methods 
such as expert systems [51], which by design offer trustworthiness benefits, but fail to reach the capabilities provided by deep 
learning in other areas. Thus, an open problem is whether adapting key components of deep learning may change the trajectory of 
trustworthiness.

1.3. Our contributions

Since remedying energy concerns may require introducing and integrating novel computing technologies, we assess theoretical 
computational requirements to establish trustworthy deep learning models. For this purpose, different angles need to be considered.

First, trustworthiness lacks a universally acknowledged formal definition. Therefore, in Subsection 2.1 abstract principles and 
potential legal structures based on the introduced aspects of trustworthiness are discussed. Thereby, clear requirements on trustwor
thiness with a focus on the transparency condition are posed.

Second, the capabilities and limits of algorithms with deep learning models being a specific type can only be evaluated with respect 
to the hardware/computing paradigm. Consequently, we need to take into account the underlying computing model. To that end, in 
Subsection 2.2 we present two different computing models -- digital and analog -- and their respective promises for energy-e˙icient 
performance. By considering idealized mathematical abstractions illustrating the core idea of the computing approaches, we describe 
conditions that guarantee trustworthy deep learning implementations, i.e., we convert the introduced non-formal trustworthiness 
conditions into a mathematical framework.

Third, trustworthiness in deep learning is a broad topic. Hence, we restrict to a particular use case -- inverse problems -- which is 
specific enough to allow for a formal treatment but potentially enables us to draw more general conclusions. We define the inverse 
problem setting and the associated deep learning solvers in Section 3.

Subsequently, Section 4 applies the derived framework of trustworthy computations in the inverse problem use case. The basis of 
our analysis are [52] and [53], which treat the algorithmic solvability of inverse problems on idealized digital and analog hardware, 
respectively. We present and compare their respective findings and subsequently embed them in our framework. The results imply 
that digital and analog computing have diverging capabilities to enable trustworthy algorithms (and thereby deep learning systems): 
Digital computing modeled by Turing machines [54] has certain limitations that potentially can be avoided by analog computing 
modeled by Blum-Shub-Smale (BSS) machines [55].

1.4. Limitations

Can we transfer the observations in our framework about trustworthy algorithms from the field of inverse problems to a broader 
class of deep learning applications? Although each application requires in-depth consideration of its own, we try to motivate some 
general conclusions. The existence of a trustworthy algorithm solving a task may depend on the underlying computing model and 
different outcomes may indeed arise. In theory, analog computing may enhance the capacity for achieving trustworthiness and 
overcome some limitations arising on digital hardware. This pattern is especially relevant for tasks involving real-world physical 
processes or, more generally, tasks modeled and represented on continuous domains. The integrity between the intrinsically discrete 
digital computing model and the continuous problem description may be lost in these cases. In this sense, inverse problems are only a 
– well-studied and well-behaved -- representative example of a relevant class of problems tackled by deep learning. A decisive question 
is, whether analog computing that translates theoretical into practical benefits can be realized. We analyzed analog computing under 
the BSS model, but there is no universally accepted mathematical model precisely formalizing analog computations (as with the 
Turing model for digital computations). Hence, further research is required to establish appropriate theoretical models that include, 
for instance, error correction and approximate analog computing, i.e., computing models that can trade energy and computing time 
with accuracy (presumably how biological brains operate) [56--59].

The potential of a trustworthy algorithmic computation is evaluated via the notion of algorithmic solvability, which describes a 
correct, reliable, and accountable method to solve a given problem; see Section 4. Thus, algorithmic solvability may also provide a 
basis for verifying the abidance of legal requirements, in particular in the field of deep learning. We demonstrate that algorithmic 
solvability of inverse problems strongly depends on the specific problem formulation so that it may guide us toward descriptions 
that in principle allow for trustworthy solutions. However, inverse problems are a particular and restricted setting, e.g., the forward 
operator, which essentially contains the relevant information about the task and defines the ground truth, is known. Hence, inverse 
problems may neither represent a complex (and to some degree chaotic) real-world setting nor a typical deep learning task, where 
the solution approach crucially depends on a learning framework. Therefore, the conclusions derived in the inverse problem use case 
may not be transferable to other settings- or at least need to be further substantiated. Moreover, intricate and diverse real-world 
tasks that require advanced and rather general solution techniques may not be amenable to the notion of algorithmic solvability. 
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Either the generality of the tasks prevents algorithmic solvability directly or situations may arise in which decisions have to be made 
under incomplete or uncertain information so that no clear assignment of right and wrong behavior is feasible. The latter cases 
would be difficult to transfer to the introduced formalism and consequently, different tools may be necessary to derive statements 
about trustworthy algorithmic solutions. Nevertheless, the observation that even in a well-behaved setting like inverse problems 
limitations towards trustworthy algorithmic solutions on digital hardware exist suggests a generally occurring feature also affecting 
the previously described scenarios.

Algorithmic solvability is certainly not the only approach to gain a better understanding, but other methods to determine the 
trustworthiness of algorithms have been proposed; we’ll revisit this topic and discuss further approaches Subsection 1.5. The utilized 
notion of algorithmic solvability and the underlying computability concepts foremost guarantee the (technological) integrity of a 
system [48], which refers to a state in which the system in question resides within its specified margin of operation. Thus, the utilized 
computing machine does not (inadvertently) interfere with and influence the expected outcome of the performed computation. 
Therefore, adherence to a framework provided by legal regulations may be ensured via algorithmic solvability. Yet, in principle, 
using AI systems is feasible without adhering to algorithmic solvability if the arising drawbacks are acknowledged. In addition, if 
human intelligence is understood as an algorithm, it presumably may not fully guarantee algorithmic solvability and associated 
trustworthiness properties since it is subject to instabilities such as cognitive biases. As a result, a scenario is conceivable in which 
AI systems prevail without ensuring the aforementioned principles, for example by leading to better results on average than purely 
human intelligence. A concrete example is autonomous driving, which could prevail when the expectation is reached that autonomous 
vehicles could improve accident statistics. Nevertheless, the outlined scenario exhibits a severe lack of trustworthiness, which may 
cause liability issues in case of accidents and ultimately may prevent its occurrence.

1.5. Related work

The need to understand if an algorithmic method behaves in an intended manner is not new but has gained traction in recent 
years due to the rise of deep learning. The key innovation of deep learning that raises the complexity of this process is the learning 
part, which does not prescribe a fixed approach to tackle a problem but aims to extract a solution based on collected data about 
the problem. This contrasts with classical software, which ideally implements a provably correct method to solve a given task so 
inconsistencies only arise at the implementation level, i.e., development and design. The difficulty in avoiding inconsistencies and 
errors lies in software systems’ complexity, dependencies, and interconnectedness. Hence, proving the correctness of a software system 
is an intricate but in principle viable task in the sense of deductive verification/theorem proving. However, an automated verification 
process is desirable to manage resources effectively yet not fully realizable in practice (on digital hardware) as Turing’s initial work on 
the halting problem and the generalizations by Rice showed [54,60]. Therefore, various methods have been proposed, representing 
trade-offs on a spectrum from efficient to expressive. The most efficient approach is simple testing, i.e., trying to falsify the system on 
specific instances, whereas model checking at the cost of higher computational resources aims to verify the model of a system against 
its formal specification [61]. In general, even the most expressive (automated) methods do not guarantee correctness if errors are not 
found but provide an elevated degree of confidence in the system.

The heightened demands in deep learning were initially not accompanied by newly developed validation methods -- justified by the 
successes benchmarking by simple testing achieved. Nevertheless, problematic properties such as adversarial examples [34] indicating 
a mismatch between intended and actual behavior were discovered. These were either met with slightly adjusted learning procedures, 
e.g., adversarial training [62,63], to avoid the occurrence of the undesired properties or with explainability techniques aiming to make 
the (decision) process of deep learning models comprehensible for the user [64--68]. The proposed methods succeeded only partially 
and the (to a certain degree) negligible impact of the described mismatch in narrow use cases, now poses a significant challenge 
where deep-learning-based models tackle multi-task problems and are expected to power autonomous agents [26]. Hence, there is a 
need for appropriate benchmarking that goes beyond straightforward testing and guarantees ‘good’ behavior in complex real-world 
environments. Instead of establishing suitable measures that support the crucial step from benchmarks to real-world environments, 
the idea of deep learning models interpretable by design has been proposed [69]. The motivation is that it may not be feasible to assess 
certain requested properties after the development of the model but they can be taken into account in the design phase to enable 
their later occurrence [69]. Thus, the main innovation here is to develop deep learning models that are explicitly constructed with 
certain interpretability goals in mind (and possibly iteratively improved by incorporating the insights from specifically constructed 
tests and the mentioned explainability methods) [70,71].

Another blindspot of standard benchmarking based on testing are ethical and moral considerations. Deep learning models have 
displayed biased and unfair decision-making and also privacy concerns remain an issue [72--74]. To mitigate these drawbacks tech
nical adjustments have been proposed [75,76] but how to cope with them from an ethical or legal point of view is still unresolved 
[77--81]. Overall, the degree to which trustworthiness is required, i.e., the trust that a deep learning model acts in an intended manner 
(and avoids the mentioned technical and ethical pitfalls), depends on the circumstances. Safety-critical scenarios (possibly including 
autonomous agents) certainly require elevated trustworthiness standards ideally accompanied by some certification [82--84]. The 
main idea of this work is to establish a ‘trustworthy by design’ framework that precedes both classical and specific deep learning 
validation methods for safety-critical applications. This is achieved by providing an exact mathematical formulation of algorithmic 
transparency, which subsequently allows us to analyze questions of the form: Does the combined system of a given computing plat
form with a suitable algorithm represent a transparent algorithmic solution of a problem (and does such a solution exist under certain 
conditions)?
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1.6. Potential impact and extensions

In this paper, we propose a mathematical framework for algorithmic trustworthiness considerations based on computability theory, 
i.e., an approach to assess the possibility of a transparent algorithmic implementation of a problem given a computing model. Although 
it is not a universally applicable framework, it provides a step forward in the trustworthiness analysis of deep learning in the following 
sense: On the one hand, it allows us to assess whether transparency may in principle be attainable in a given scenario. Hence, 
further analysis can evaluate a potential trustworthy implementation or the seriousness of the lack of trustworthiness in a specific 
scenario needs to be considered. On the other hand, a trustworthiness analysis may steer the implementation of a problem by adapting 
associated parameters such as computing platform, expected accuracy, and generality so that a potentially trustworthy implementation 
becomes feasible. This approach can be used in a detail-oriented setting for a specific task as well as on a larger scale that asks for 
promising directions for establishing trustworthiness in a broader scope. In this sense, the present work may act as a starting point 
for future work studying a broader range of topics related to deep learning going beyond the inverse problem use case.

Concerning inverse problems, our analysis indicates that a trustworthy solver either presupposes a sufficiently narrow problem 
description or if a more general solver is envisioned, then computing capacities beyond digital computing may be necessary or certain 
limits need to be accepted, i.e., a provable trustworthiness certificate in the introduced framework is not feasible. Thus, our analysis 
enforces the observation that a shift from purely digital information processing (and especially computing) to novel approaches also 
comprising analog techniques seems inevitable -- not only due to demands on energy efficiency and data throughput [22] but also 
from the trustworthiness perspective. An emerging example of the changing paradigm is given by neuromorphic computing [85] with 
promising energy and processing gains, however, a trustworthiness analysis based on adequate computing models is still pending.

2. Trustworthiness framework

2.1. Societal and judicial requirements

Trustworthiness is a multifaceted property, where the individual features are partially overlapping and entail one another. Yet, it 
provides a comprehensive description of qualities potential guidelines may require. Hence, trustworthiness (and the implied abidance 
by an approved decision-making framework) can be seen as a prerequisite to implementing and operating deep leaning systems in 
certain scenarios, including safety-critical and high-leverage settings with direct influence on the physical environment such as 
autonomous driving. Due to a lack of technical assurances, abstract principles, codes of conduct, and legal regulations have been 
proposed such as Algorithmic Transparency, Algorithmic Accountability, and Right to Explanation for technology assessment in the 
context of trustworthiness [86,87]:

• Algorithmic Transparency (AgT) refers to the requirement of the factors determining the result of an algorithm-based decision 
being visible to legislators, operators, users, and other affected individuals.

• Algorithmic Accountability (AgA) refers to the question of which party, individual, or possibly system is to be held accountable 
for harm or losses resulting from algorithm-based decisions, particularly those that are deemed to be faulty.

• Right to Explanation (RtE) refers to the right of an individual who is affected by an algorithm-based decision to know the entirety 
of relevant factors and their specific expression that lead to the decision.

These notions may not capture all relevant nuances discussed in social, judicial, and political science. Still, they do guarantee or at 
least approach aspects of trustworthiness covered by robustness, interpretability, fairness, safety, etc. However, no widely accepted 
technological characterization in the form of standards and specifications exists at present. The need is accentuated by the fact that 
existing deep learning techniques do not result in models that satisfy AgT, AgA, and RtE and perform sufficiently well simultaneously. 
Therefore, the question is whether future methods can abide by these (potential) regulations, and if a positive answer is found to what 
degree. That is, can we expect future methods to solve trustworthiness issues in a broader context? In particular, are certain aspects 
that result in non-trustworthy behavior of deep learning models structurally inherent to the approach, or can suitable adaptations 
avoid them? We can make first strides in answering these questions by introducing formal (technical) requirements describing AgT, 
AgA, and RtE. Hereby, we focus on AgT since RtE can be considered as a direct application of AgT. Moreover, AgA is impossible 
without a clear understanding of the algorithm-based decision-making provided by AgT. Therefore, AgT is the backbone of the 
introduced trustworthiness notions.

An often neglected fact when discussing technological standards is the interplay between hardware platforms for computing, such 
as digital, neuromorphic, and quantum hardware, and the implemented algorithms representing the software side. Deep learning -- 
in essence, just a specific algorithm class -- needs to be expressed by a set of instructions in a (programming) language associated 
with the utilized hardware. Consequently, the capabilities of a given implementation also hinge on the power of the programming 
language, respectively the employed hardware. Thus, we analyze the potential impact of the hardware platform on trustworthy 
outcomes characterized by AgT based on two abstract computing models, namely the Turing model [54] for digital computing and 
the Blum-Shub-Smale (BSS) model [88] for (idealized) analog computing.

2.2. Transparency condition

An algorithmic computation of a problem ideally provides an explicit and reliable approach that is guaranteed to (or clearly 
describes the degree and the circumstances under which it) succeed(s). In mathematical terms, an algorithm is a set of instructions 



Applied and Computational Harmonic Analysis 77 (2025) 101763

6

H. Boche, A. Fono and G. Kutyniok 

that operate under the premises of some formal language characterizing the tackled problem. Thus, the specific definition of an 
algorithm depends on the considered formal language and the underlying computing model, e.g., digital and analog computations, 
which will be formally introduced in Subsection 2.2.1 and Subsection 2.2.2, respectively. A real-world physical problem can be 
translated into a mathematical model that describes its domain with feasible inputs, outputs, and operations of a potential algorithm. 
Hence, independent of the individual algorithmic steps, we can describe the abstract input-output relation characterized by a function 
on the identified domain that the algorithm needs to realize. Note that, in general, the domain of the algorithm may differ from the 
domain of the mathematical model of the physical problem; this behavior occurs, for example, in digital computing. By interpreting 
the mathematical model as a function describing the input-output relation of the problem, we can rely on the following notion of the 
realization of an algorithm tackling problems on continuous quantities described by real numbers.

Definition 2.1. Given a problem described by the input-output relation of a function 𝑓 ∶ ℝ𝑚 → ℝ𝑛, an algorithm  computing 𝑓
realizes a mapping 𝑓 ∶ℝ𝑚 →ℝ𝑛 with 𝑓 = 𝑓 .

Remark 2.2. The realization of an algorithm is particularly important for digital computing, where the computations are performed 
on representations of real numbers that constitute a specific subset of real numbers; see Subsection 2.2.1 for more details.

Subsequently, we will discuss the relevance of the realization of algorithms for AgT. The mathematical model (respectively the 
derived function) may act as the ground truth and serve as the foundation for the trustworthy requirements introduced in Subsec
tion 2.1. In particular, the mathematical model provides a basis to assess AgT by identifying the factors influencing the underlying 
problem. Factors outside the mathematical model may not impact the algorithmic computation and outcome, since the transparency 
of the algorithmic computation can then no longer be guaranteed. Although these considerations may seem trivial, implementing the 
algorithm on a given computing platform, which is subject to mathematical modeling itself, adds another layer of complexity. To 
execute the algorithm on a suitable hardware platform, the abstract problem (respectively the corresponding mathematical model) 
needs to be translated into a machine-readable language. However, the mathematical model of the problem and the mathematical 
model of the computing platform do not necessarily agree. Thus, the input and output expressions must be unambiguously translatable 
between these two systems to guarantee proper implementation of the algorithm abiding by AgT.

To illustrate this issue consider the machine-readable description of a real number such as 𝜋 in the digital computing model. 
Due to its infinite binary expansion, 𝜋 can only be represented by finite algorithms that approximate it to any desired precision on 
digital computers. Despite the difference in description as a mathematical entity and a machine-readable object, we can identify both 
representations as equally valid and translatable, yet not unambiguous, since a real number may have multiple -- equally valid -- 
machine-readable descriptions. Besides, it is well-known that not all irrational numbers possess an unequivocal digital representation 
[54]. Consequently, the properties of the applied computing device need to be considered when the feasibility of an algorithmic 
computation as well as its trustworthiness is evaluated.

Definition 2.3. An algorithmic implementation is transparent in a given computing model if the realization 𝑓 of some function 
𝑓 ∶ ℝ𝑚 → ℝ𝑛 by an algorithm  is not altered by its implementation in the computing model. We then say that 𝑓 allows for a 
transparent algorithmic implementation in the given computing model.

Remark 2.4. In general, if a real-world problem 𝑃 can be expressed as a function 𝑓 , then the input domain of 𝑓 necessarily represents 
every factor determining the outcome of 𝑃 . Hence, a transparent algorithmic implementation of a closed-form expression of 𝑓
guarantees that 𝑃 can be solved by an algorithm abiding AgT in the considered computing model since the realization of the algorithm 
solely relies on the factors constituting the problem. Consequently, the algorithmic decision-making can be retraced in principle to 
make providing AgT feasible. However, in deep learning a potential solver for 𝑃 is sought based on a (imperfect) data set describing 
𝑃 so that 𝑓 may not possess a closed-form expression or may be unknown, e.g., not all relevant factors determining 𝑃 are identified. 
Thus, the contribution of the individual factors affecting the solver may not be apparent due to the black box behavior of deep 
learning, i.e., assessing AgT requires a successive analysis, which presupposes a transparent algorithmic implementation. Therefore, 
a transparent algorithmic implementation can be seen as a minimum requirement to obtain AgT; the actual conditions depend on the 
chosen computing model and its formalization of an algorithm. For instance, in the digital case transparency requires the algorithm 
to be independent of the specific representation of a real number.

Just constructing a transparent algorithm does not suffice, since besides being comprehensible we also expect the algorithm to 
deliver a solution to the considered problem. Therefore, it is important to maintain the integrity between the mathematical model 
of the problem and the applied algorithm, i.e., the algorithmic solution needs to unequivocally reflect the ‘true’ solution of the 
mathematical model.

Observation 2.5. To attain AgT and provide the correct output, an algorithm must reside within its specified margin of operation, 
i.e., the algorithm preserves the input-output relation of the underlying problem specified by a mathematical model (respectively the 
derived function).
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In the subsequent analysis, our focus does not reside on the practical limitations of real-world hardware related to computation 
time, memory, and energy consumption. Via mathematical models of the considered computing paradigm -- the most prominent one 
certainly being digital computations --, we study the possibility of theoretical guarantees for trustworthiness.

2.2.1. Digital computations

The concept of digital machines is encapsulated by the mathematical model of Turing machines [54]. The widely accepted Church
Turing Thesis [89] implies that Turing machines are a definitive model of digital computers, describing their (theoretical) capabilities 
perfectly. Thus, Turing machines provide a framework for analyzing digital computations by taking into account their inevitable 
approximate behavior concerning irrational numbers. More exactly, Turing machines introduce a notion of effective computations in 
a finite number of steps on real numbers. Thereby effectiveness refers to the condition that a Turing machine not only computes an 
approximate solution but also guarantees that the solution is within some previously prescribed error bound, which can be arbitrarily 
small. Hence, the reliability and correctness of an obtained algorithmic solution are guaranteed by design.

Next, we shortly formalize effective computations via recursive functions [90], which constitute a special subset of the set 
⋃∞
𝑛=0{𝑓 ∶

ℕ𝑛 ↪ ℕ}, where ‘↪’ denotes a partial mapping. Recursive functions coincide with the functions 𝑓 ∶ ℕ𝑛 ↪ ℕ that are computable by 
Turing machines, i.e., there exists a Turing machine that accepts input 𝑥 ∈ ℕ𝑛 only if 𝑓 (𝑥) is defined, and, upon acceptance, computes 
𝑓 (𝑥) [91].

Lemma 2.6. A function 𝑓 ∶ℕ𝑛 ↪ℕ is a recursive function if and only if it is computable by a Turing machine.

We can identify the set of effectively computable real numbers via recursive functions. By introducing a machine-readable de
scription of real numbers, which was exemplarily demonstrated for 𝜋 in Subsection 2.2 and can be formally expressed via recursive 
functions [90], one can construct sequences of rational numbers converging (with error control) to the considered real numbers. In 
this way, the computations performed by Turing machines are reduced to the rational domain, where exact computations are feasible 
and simultaneously the accumulated error due to the non-exact representation of real numbers is controlled.

Definition 2.7. A sequence (𝑟𝑘)𝑘∈ℕ ⊂ℚ of rational numbers is computable, if there exist three recursive functions 𝑎, 𝑏, 𝑠 ∶ℕ→ℕ such 
that 𝑏(𝑘) ≠ 0 and

𝑟𝑘 = (−1)𝑠(𝑘) 𝑎(𝑘)
𝑏(𝑘) 

for all 𝑘 ∈ℕ.

A real number 𝑥 ∈ℝ is computable, if there exists a computable sequence (𝑟𝑘)𝑘∈ℕ of rationals such that

||𝑟𝑘 − 𝑥|| ≤ 2−𝑘 for all 𝑘 ∈ℕ.

We refer to the sequence (𝑟𝑘)𝑘∈ℕ as a representation for 𝑥.

Remark 2.8. The definition can be straightforwardly extended to vectors and complex numbers by considering each component and 
part individually, respectively.

Having established a formal notion of an algorithm via Turing machines, we can specify the characterization of a transparent 
algorithm from Definition 2.3. The key observation is that any Turing machine strictly operates on rational representations although 
the tackled problem may reside in the real domain, i.e., Turing machines map input representations to (computable) sequences. 
Hence, we can identify a Turing machine TM with an associated mapping ΨTM ∶𝑅→ 𝑆 , where 𝑅 and 𝑆 denote the representation 
space and the space of (computable) sequences, respectively, defined as

𝑅 ∶= {(𝑟𝑘)𝑘∈ℕ ∶ (𝑟𝑘)𝑘∈ℕ is a representation of some 𝑥 ∈ℝ}

and

𝑆 ∶= {(𝑠𝑘)𝑘∈ℕ ∶ (𝑠𝑘)𝑘∈ℕ ⊂ℚ is a sequence computed by a Turing machine on input

of a representation of some 𝑥 ∈ℝ}.

However, the transfer between the different domains -- the representation space and the real numbers -- shall not impact the algorithmic 
computation to preserve transparency.

Definition 2.9. An algorithmic implementation of a problem in the real domain is transparent in the Turing model if the associated 
Turing machine TM operates consistently on every input in the following sense: For any two representations (𝑟1

𝑘
)𝑘∈ℕ, (𝑟2𝑘)𝑘∈ℕ of an 

input instance 𝑥 ∈ ℝ𝑚, the output sequences ΨTM((𝑟1
𝑘
)𝑘∈ℕ) and ΨTM((𝑟2

𝑘
)𝑘∈ℕ) encode the same outcome in the underlying (real) 

problem domain, i.e., the outcome exclusively depends on 𝑥 but not on its specific representation and other factors.
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Remark 2.10. Consider a toy example in which an algorithm  realizes the real-valued function 𝑓 (𝑥) = 𝑎𝑥 + 𝑏 for some constants 
𝑎, 𝑏 ∈ℝ. Then transparency requires that the implementation of  in the Turing model is independent of the representation of inputs 
𝑥 ∈ℝ as well as of the representation of the constants 𝑎, 𝑏.

Finally, observe that a Turing machine TM with an associated mapping ΨTM does not necessarily constitute a well-defined algo
rithm  with realization 𝑓 on the real domain, i.e., ΨTM((𝑟𝑘)𝑘∈ℕ) may not represent a real number for an admissible input (𝑟𝑘)𝑘∈ℕ. 
The notion of computable functions, which essentially describes the effective computation of functions by Turing machines on real 
numbers, circumvents this issue.

Definition 2.11. A function 𝑓 ∶ℝ𝑚 →ℝ𝑛 is Borel-Turing computable, if there exists a Turing machine that transforms each represen
tation of a vector 𝑥 ∈ℝ𝑚 into a representation for 𝑓 (𝑥).

Remark 2.12. There exist different notions of computable functions on real numbers. We refer to [92--94] for an in-depth treatment 
of the topic and we highlight only the key properties of computable functions that help in providing an intuitive understanding. 
The need for approximate computations is closely related to the real-valued domain of 𝑓 . For functions operating on natural or 
rational numbers, exact computations can in principle be expected. Moreover, Borel-Turing computability can also be applied to 
complex-valued functions by identifying real and imaginary parts as real numbers.

Remark 2.13. Borel-Turing computability implies the existence of an algorithm  realizing a mapping 𝑓 ∶ ℝ𝑚 → ℝ𝑛, i.e., 𝑓 =
𝑓 , via the associated Turing machine. From a practical point of view, Borel-Turing computability can be seen as a requirement 
for an algorithmic computation of the input-output relation of a problem (described by a function) on perfect digital hardware in 
the following sense. In particular, the associated Turing machine, i.e., the algorithm, takes input representations and determines a 
sufficient input precision, i.e., suitable elements of the representations, so that the performed computation will terminate once an 
output within a prescribed worst-case error bound 𝜀 > 0 is obtained. Here, the input representation is itself a Turing machine, which 
can be queried with a precision parameter and provides an approximation of the ``exact'' input. In theory, by iteratively calling the 
algorithm with a declining sequence of error bounds 𝜀𝑘 = 2−𝑘 for a fixed representation of an input 𝑥 ∈ ℝ𝑚, one would obtain a 
(computable) representation encoding 𝑓 (𝑥).

Remark 2.14. In general, the representation of a computable vector 𝑥 is not unique. Hence, the representation of a Borel-Turing 
computable function 𝑓 at 𝑓 (𝑥) may depend on the representation of 𝑥 given as input to the Turing machine. A small wrinkle is added 
by the fact that not every real number has a description based on recursive functions, i.e., only the computable real numbers (indeed 
a proper subset of the real numbers) are considered admissible inputs in the Borel-Turing setting. In contrast, any real number can be 
approximated by a convergent sequence of rational numbers so that the concept of Borel-Turing computability can be extended to the 
whole real number domain under certain conditions. For our needs, these subtle differences and their implications can be neglected 
and we apply the notion of Borel-Turing computability introduced in the definition. We point to [95] for the treatment of the inverse 
problem use case under the adapted notion.

Aside from Turing machines, further abstractions of digital computations have been established, for instance, the Blum-Shub
Smale (BSS) machines represent a common heuristic formalization (in contrast to the precise model of Turing machines according 
to the Church-Turing thesis) [88]. Therefore, BSS machines do not provide a suitable starting point for our intended trustworthiness 
considerations on digital hardware by design. At the same time, it turns out that the BSS framework suits a different context via its 
relation to analog hardware. Although a widely accepted formalization equivalent to the Turing model for other types than digital 
hardware does not exist, the BSS framework is a candidate to (abstractly) model several forms of analog computing [96].

2.2.2. Analog computations

The study of analog hardware gained considerable traction in the last years due to the rapidly increasing demand for energy 
and storage of digital information processing and computing [21,20]. Even more, convincing arguments indicate that the scaling of 
computation and information processing at the current level is not sustainable if the same (digital) technologies are applied, i.e., a 
technological disruption based on the introduction of new (analog) approaches is necessary [22,25]. For instance, innovative memory 
and storage technology as well as novel approaches in world-machine interfaces that can sense, perceive, and reason based on low 
operational power and latency are required. This may only be realizable by incorporating analog (electronic) components in the 
(currently mostly digital) computing and information processing pipeline. A prime example is provided by neuromorphic computing 
and signal processing systems [97--102].

Neuromorphic systems are inspired by the structure and information processing of biological neural networks and can be re
alized in analog, digital, and mixed analog-digital fashion [85]. Digital computers typically follow the von Neumann architecture 
[103] that leads to inherently large time and energy overhead in data transport [104,105]. In contrast, neuromorphic computers 
incorporate emerging concepts such as ‘in-memory computing’, which avoid these bottlenecks by design [106--109]. At present, the 
main advantage of neuromorphic systems is the expected savings in energy consumption, in particular, by deploying artificial intelli
gence applications such as deep learning on neuromorphic hardware [97--101,110]. Further promising (but not yet realizable) analog 
computing paradigms comprise biocomputing [96,111--113] and (analog) quantum simulation [114,115].



Applied and Computational Harmonic Analysis 77 (2025) 101763

9

H. Boche, A. Fono and G. Kutyniok 

Moreover, analog computing may also provide benefits for the computability of certain problems. Important tasks in information 
theory, signal processing, and simulation are not Borel-Turing computable [116--122], whereas, computability on BSS machines has 
been established for certain applications [123--125]. Computability in BSS sense conveys the same concept as computability on digital 
devices but under a more general framework. BSS machines carry over complexity theory in the Turing machine model to a larger 
variety of structures by operating on arbitrary rings or fields, even infinite fields such as ℝ are feasible. In addition, BSS machines on 
ℤ2 = {{0,1},+, ⋅} recover the theory of Turing machines. Thus, BSS machines are a structure-wise similar, generalized abstraction of 
Turing machines. BSS machines operate as Turing machines on an infinite strip of tape according to a program illustrated by a finite 
directed graph with different types of nodes associated with operations such as input processing, computing, branching, and output 
processing. For a detailed introduction and comparison, we refer to [88,126] and the references therein. We only wish to highlight 
that a BSS machine, which operates on ℝ, processes real numbers (as entities) and performs field operations (‘+’,‘⋅’) via compute 
nodes and comparisons (‘<’,‘>’,‘=’) via branch nodes exactly. Thus, BSS machines offer a mathematical framework to investigate 
analog real number processing and computation. Hereby, BSS computable functions are simply input-output maps of BSS machines, 
i.e., the set of BSS computable functions precisely characterizes functions that can be computed (in finite time) by algorithmic means 
in the BSS model.

Definition 2.15. A function 𝑓 ∶ℝ𝑚 →ℝ𝑛 is BSS computable if there exists a BSS machine with an input-output relation described by 
𝑓 .

Remark 2.16. The output Ψ(𝑥) of a BSS machine  is defined if  according to its program terminates its calculations on input 
𝑥 ∈ ℝ𝑚 after a finite number of steps. The hereby introduced map Ψ ∶ ℝ𝑚 → ℝ𝑛 is the input-output function of , which directly 
relates to the realization of an algorithm (i.e., BSS machine) introduced in Definition 2.1.

Remark 2.17. The definition can be straightforwardly extended to complex functions, however, the representation of the complex 
field impacts the capabilities of corresponding BSS machines and thereby also the set of computable functions. BSS machines that 
treat complex numbers as entities can not perform comparisons of arbitrary complex numbers but only check the equality to zero 
at their branch nodes since ℂ is not an ordered field. As a consequence, elementary complex functions such as 𝑧↦ℜ(𝑧), 𝑧↦ℑ(𝑧), 
𝑧↦ 𝑧̄, and 𝑧↦ |𝑧| are not BSS computable in this setting [88]. Identifying ℂ with ℝ2 instead and employing BSS machines that 
take complex inputs 𝑧 in the form of (ℜ(𝑧),ℑ(𝑧)) entails that 𝑧↦ℜ(𝑧) and 𝑧↦ ℑ(𝑧) are computable since the corresponding BSS 
machine only needs to process the respective part of the representation of 𝑧.

The crucial property of the BSS framework is the handling of the elements of the associated ring or field as entities, which implies 
the exact storing and processing of real numbers in this computation model. Thus, the real BSS model can not be implemented on 
digital hardware. It is even unclear if and to what degree a computing device realizing the real BSS model can be constructed by 
(future) hardware technology due to physical constraints [127]. For instance, random noise in physical processes, which execute 
the mathematical operations in a hypothetical computing device, complicates or even prevents exact processing and computation. 
Moreover, the BSS model strongly focuses on algebraic properties, leading to the non-computability of trigonometric, logarithmic, 
and root functions in the BSS model on real numbers. These functions are typically considered elementary functions expected to be 
computable in a practical and useful computing model (as indeed is the case in the Turing model). Therefore, real BSS machines are 
a strongly idealized model and they may not capture the true capabilities of forthcoming analog computing devices so theoretical 
benefits may not turn into practical ones. Nonetheless, the study of BSS computable functions provides to a certain degree an outline 
of the limits of analog computations.

2.2.3. Computability and trustworthiness

Next, we will analyze under which conditions a trustworthy algorithmic solution of a problem described by an input-output rela
tion, i.e., an associated function, can be expected. The crucial step is establishing AgT because it is the basis for various trustworthiness 
considerations; see Subsection 2.1. In Observation 2.5, we derived via Definition 2.3 a necessary prerequisite to obtain AgT. Applying 
this framework to the Turing model, we can derive a necessary condition for a transparent algorithm on digital hardware.

Lemma 2.18. Given a problem with an input-output relation described by a function 𝑓 ∶ℝ𝑚 →ℝ𝑛, let  be an algorithm implemented on 
a Turing machine. If the algorithmic implementation is not transparent, then  does not realize 𝑓 .

Proof. Assume the algorithmic implementation of  on a Turing machine TM is not transparent. Thus, by definition, two represen
tations of some input instance 𝑥 ∈ ℝ𝑚 exist such that the computed output sequences by TM do not encode the same real number. 
Therefore, at least one of the (computable) output sequences does not represent 𝑓 (𝑥). Hence,  does not realize 𝑓 . □

We can immediately infer from Lemma 2.18 that Borel-Turing non-computability of a function prevents the existence of an 
algorithm complying with transparency in the digital computing model so that the following statement holds.

Theorem 2.19. There exists an algorithm  with transparent implementation in the Turing model realizing 𝑓 if and only if 𝑓 ∶ℝ𝑚 →ℝ𝑛
is Borel-Turing computable.
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Remark 2.20. An algorithm adhering to AgT is necessarily transparent, i.e., Borel-Turing computability of the tackled problem is a 
prerequisite for AgT. In contrast, Borel-Turing non-computability of a problem implies that any algorithmic approach implemented 
on digital hardware will have unavoidable flaws or at least certain limits: For any algorithm, there exists a representation of some 
input 𝑥 ∈ℝ𝑚 such that the computed output sequence does not converge at all or does not converge to 𝑓 (𝑥). Crucially, the integrity 
between the mathematical model of the problem and the mathematical model of the computing platform is lost. Hence, AgT via 
Observation 2.5 can not be guaranteed.

Similar reasoning can be adopted for BSS machines and BSS computable problems. In the BSS model algorithms directly operate 
on real numbers so that each real number is uniquely represented by itself. Thus, any problem that is BSS computable by definition 
fulfills the transparency condition. In contrast, the transparency of an algorithm successfully solving a problem immediately implies 
BSS computability of the problem.

Theorem 2.21. There exists an algorithm  with transparent implementation in the BSS model realizing 𝑓 if and only if 𝑓 ∶ℝ𝑚 →ℝ𝑛 is 
BSS computable.

Hence, by studying the computability of a problem or, more accurately, the computability of a function describing the problem 
in mathematical terms, we can formally assess the existence of trustworthy algorithms (based on AgT). Thus, we obtained a precise 
tool to decide whether trustworthiness in an algorithmic computation can be attained. We will apply the introduced framework to a 
specific use case of deep learning -- finite dimensional inverse problems --, aiming to derive broadly applicable observations.

3. Use case for trustworthiness analysis

3.1. Inverse problems

Inverse problems in imaging sciences, i.e., image reconstruction from measurements, is a recurrent task in industrial, scientific, 
and medical applications such as magnetic resonance imaging (MRI) and X-ray computed tomography (CT), where the measurements 
are acquired by the Fourier and Radon transform, respectively.

Definition 3.1. An inverse problem in the finite-dimensional, underdetermined, and linear setting can be formulated as:

Given noisy measurements 𝑦 =𝐴𝑥+ 𝑒 ∈ℂ𝑚 of 𝑥 ∈ℂ𝑁, recover 𝑥, (3.1)

where 𝐴 ∈ ℂ𝑚×𝑁,𝑚 < 𝑁 , is the sampling operator, 𝑒 ∈ ℂ𝑚 is a noise vector, 𝑦 ∈ ℂ𝑚 is the vector of measurements, and 𝑥 ∈ ℂ𝑁 is the 
object to recover.

Remark 3.2. In the context of the definition, a typical object to recover is a vectorized discrete image. Furthermore, the underdeter
mined setting 𝑚 <𝑁 with a limited number of measurements is standard in practice due to time, cost, power, or other constraints.

Due to the ill-posedness of (3.1) a typical solution strategy is to consider a mathematically more tractable description via an 
optimization problem. The simplest form is given by the least-squares problem

arg min
𝑥∈𝐶𝑁

‖𝐴𝑥− 𝑦‖𝓁2 .

Although the solution map is considerably simpler than the one of the original problem (3.1), the solution is generally not unique. By 
adding regularization terms to the optimization problem, one tries to steer the optimization process towards favorable solutions. For 
instance, sparse solutions tend to possess desirable properties but explicitly enforcing them via the 𝓁0 norm is typically intractable. 
However, incorporating regularization terms that promote sparsity in the recovery resulted in various solution techniques [128--138] 
for common approaches such as (quadratically constrained) basis pursuit [139,140]

arg min
𝑥∈ℂ𝑁

‖𝑥‖𝓁1 such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀 (BP)

and unconstrained square root lasso [141,142]

arg min
𝑥∈ℂ𝑁

𝜆‖𝑥‖𝓁1 + ‖𝐴𝑥− 𝑦‖𝓁2 , (Lasso)

where the magnitude of 𝜀 > 0 and 𝜆 > 0 controls the relaxation, respectively. In recent years, deep learning techniques led to a 
paradigm shift and were established as the predominant method to tackle inverse problems [143--150]. The core idea behind the 
deep learning approach is to learn the underlying relations of the reconstruction process based on data samples.
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3.2. Deep learning

In deep learning a structure called (artificial) neural network, loosely inspired by biological brains, is employed to approximate an 
unknown function via a set of given input-output value pairs. A neural network is essentially a parameterized mapping with properties 
and capabilities depending on its specific design [11,16,17]. The simplest form is feedforward neural networks, which we will focus 
on in the remainder.

Definition 3.3. A (feedforward) neural network Φ ∶ℝ𝑑 →ℝ𝑘 is given by

Φ(𝑥) = 𝑇𝐿𝜌(𝑇𝐿−1𝜌(…𝜌(𝑇1𝑥))), 𝑥 ∈ℝ𝑑 , (3.2)

where 𝑇𝓁 ∶ℝ𝑛𝓁−1 →ℝ𝑛𝓁 , 𝓁 = 1,… ,𝐿, are a˙ine-linear maps

𝑇𝓁𝑥 =𝑊𝓁𝑥+ 𝑏𝓁 , 𝑊𝓁 ∈ℝ𝑛𝓁×𝑛𝓁−1 , 𝑏𝓁 ∈ℝ𝑛𝓁 with 𝑛0 = 𝑑, 𝑛𝐿 = 𝑘,

and 𝜌 ∶ℝ→ℝ is a non-linear function acting component-wise on a vector. The matrices 𝑊𝓁 are called weights, the vectors 𝑏𝓁 biases, 
and the function 𝜌 activation function, with a common one being the basic ReLU activation 𝜌(𝑥) = max{0, 𝑥}.

Remark 3.4. In addition, a neural network can easily be adapted to work with complex-valued inputs by representing them as real 
vectors consisting of the real and imaginary parts.

By adjusting the network’s parameters, i.e., its weights and biases, according to an optimization process on available data samples, 
the network ideally learns to approximate the sought function. This process -- the standard technique is to apply stochastic gradient 
descent coupled with backpropagation [10] -- is usually referred to as the training of a neural network. We refer to [6--8] for an 
in-depth overview of deep learning.

3.3. Deep learning for inverse problems

Turning to inverse problems, deep learning techniques can be incorporated into the solution approach in various ways [151]. 
The most fundamental and generally applicable approach is to directly learn a mapping from measurements 𝑦 to reconstructions 𝑥
without making problem-specific assumptions. Hence, the goal is to obtain a neural network that for some fixed sampling operator 
𝐴 ∈ℂ𝑚×𝑁 and optimization parameter 𝜇 > 0 approximates the reconstruction map

Ξ𝑃 ,𝐴,𝜇 ∶ℂ𝑚 ⇉ℂ𝑁, 𝑦↦ 𝑃 (𝐴,𝑦,𝜇), (3.3)

where 𝑃 (𝐴,𝑦,𝜇) represents the set of minimizers of an optimization problem 𝑃 given a measurement 𝑦 ∈ ℂ𝑚. For instance, 𝑃 is 
described in (BP) for basis pursuit with 𝜇 ∶= 𝜀. Note that the reconstruction map is typically set-valued, denoted by ‘⇉’, since the 
corresponding optimization problem does not possess a unique solution. Therefore, it is not entirely correct to state that the goal is 
to compute a neural network that approximates the mapping Ξ𝑃 ,𝐴,𝜇 . We do not expect a neural network to reproduce all minimizers 
for a single input but it suffices if the network approximates one specific minimizer. In Section 4, we will return to and clarify this 
issue.

Ideally, the training process results in a neural network capable of solving instances of a particular inverse problem defined by 
the sampling operator 𝐴, the optimization problem 𝑃 , and the optimization parameter 𝜇. More powerful would be a neural network 
that can solve generic inverse problems under specific conditions, e.g., a network that approximates the reconstruction map

Ξ𝑃 ,𝑚,𝑁 ∶ℂ𝑚×𝑁 ×ℂ𝑚 ×ℝ>0 ⇉ℂ𝑁, (𝐴,𝑦,𝜇)↦ 𝑃 (𝐴,𝑦,𝜇) (3.4)

of any inverse problem of dimension 𝑚×𝑁 corresponding to an optimization problem 𝑃 . One can generalize the objective further by 
allowing the dimension and/or the optimization problem as additional inputs. However, it is a priori not even clear if networks that 
approximate Ξ𝑃 ,𝐴,𝜇 and Ξ𝑃 ,𝑚,𝑁 exist and can be found via the described deep learning framework. Whereas the former problem can 
be approached by an expressivity analysis of neural networks, which is already supported by a large body of literature [152--159], the 
latter problem is more intricate. Despite the existence of the sought networks, obtaining them based solely on data samples may not 
be feasible or the computation process may result in networks with unfavorable properties such as a lack of trustworthiness. Hence, 
we assess the possibility of computing neural networks that solve inverse problems under the introduced computability framework.

4. Algorithmic solvability of inverse problems

It is intuitively clear that the training and inference of neural networks are distinct problems with varying difficulty. For inverse 
problems, the training process targets a neural network, which approximates the mapping from measurements to the original data. 
In other words, one is interested in finding a neural network, i.e., suitable weights and biases, that realizes the mapping in (3.3) or 
(3.4). We focus on the more general case (3.4), where the associated optimization problem is given by (BP) or (Lasso). Before turning 
to the question if the desired network can be computed algorithmically, we wish to remark that once obtained the execution of said 
network on a given input can be performed reliably.
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Theorem 4.1 ([52,53]). A neural network Φ as defined in (3.2) is a Turing/BSS computable function given that the activation function 
𝜌 ∶ℝ→ℝ is Turing/BSS computable.

Proof Sketch. This follows from the fact that under the given conditions Φ is a composition of computable functions in both com
puting models. □

Remark 4.2. Note that we can extend the observation in the theorem to more advanced architectures such as convolutional networks 
[160]. In particular, the statement holds for any network architecture composed of basic computable building blocks, which indeed 
is true for many common variants. Furthermore, standard activations applied in practice such as ReLU are indeed computable.

Does a similar statement hold for the training phase? First, note that the mapping (3.4) targeted by the training process is gen
erally multi-valued since the solution of the associated optimization problem does not need to be unique. Thus, it neither fits in the 
introduced deep learning nor computability framework. However, we can circumvent this issue by establishing suitable single-valued 
functions that suit both frameworks. The underlying idea is that typically one is not interested in the whole solution set, but one 
particular element of the solution set or even an element reasonably close to the solution set suffices. Hence, of interest is not to 
compute the entire set described by the map Ξ𝑃 ,𝑚,𝑁 for given input (𝐴,𝑦,𝜇) in (3.4) but to compute one element of Ξ𝑃 ,𝑚,𝑁 (𝐴,𝑦,𝜇), 
i.e., exactly one minimizer of the optimization problem 𝑃 . In particular, it is not relevant which of the (possibly infinitely many) 
minimizers is obtained, since any of those is an appropriate solution.

Formally, this concept can be captured by single-valued restrictions of a multi-valued function 𝑓 ∶  ⇉ : For each input 𝑣 ∈
dom(𝑓 ) there exists at least one element 𝑧𝑣 ∈ 𝑓 (𝑣) ⊂ () so that the map

𝑓𝑠 ∶  →, 𝑣↦ 𝑧𝑣

is well-defined. We denote by 𝑓 the set of all the single-valued functions associated with the multi-valued function 𝑓 , i.e., all 
single-valued functions 𝑓𝑠 that are formed by restricting the output of a multi-valued map 𝑓 to a single value for each input.

Definition 4.3. A problem with an input-output relation described by a multi-valued function 𝑓 ∶  ⇉  is algorithmically solvable 
on a BSS or Turing machine if there exists a function 𝑓𝑠 ∈𝑓 that is computable on a BSS or Turing machine, respectively.

By applying the notion of algorithmic solvability, we reduced our task to evaluate the computability of well-defined single-valued 
functions. A task is deemed algorithmically solvable if at least one computable function in 𝑓 exists.

Remark 4.4. The presented approach is not the only viable option to assess the computability of a multi-valued mapping 𝑓 . The (non
)existence of algorithms can also be established via the distance to the solution set measured by an appropriate metric. Therefore, 
a hypothetical algorithm does not approximate a fixed element of the solution as the admissible distance to the solution set varies, 
which is the case in our approach via single-valued restrictions. Thus, a problem characterized by 𝑓 may not be algorithmically 
solvable in the introduced sense, but an algorithm obeying this distance description may still exist. Note that this case only arises if 
𝑓 is indeed a multi-valued and not a single-valued function. Moreover, the notion of algorithmic transparency needs to be adjusted 
to cover ‘the distance to the solution set’ approach. We refer to [95] for more details, where algorithmic solvability via this notion is 
pursued in the inverse problem setting.

Finally, we can apply the framework of algorithmic solvability to inverse problems described via basis pursuit and square root 
lasso. Indeed, we find differences in algorithmic solvability in the Turing and BSS model as we now detail.

4.1. Algorithmic non-solvability of inverse problems in Turing model

In the Turing setting, for a certain range of optimization parameters we not only establish algorithmic non-solvability but even 
non-approximability.

Theorem 4.5 ([52]). Consider the optimization problems (BP), (Lasso) and the associated mappings ΞBP,𝑚,𝑁 (⋅, ⋅, 𝜀) and ΞLasso,𝑚,𝑁 (⋅, ⋅, 𝜆), 
where 𝑁 ≥ 2 and 𝑚 <𝑁 , for fixed parameters 𝜀 ∈ (0, 1∕4) and 𝜆 ∈ (0, 5∕4) ∩ℚ, respectively. The problems described by ΞBP,𝑚,𝑁 (⋅, ⋅, 𝜀) and 
ΞLasso,𝑚,𝑁 (⋅, ⋅, 𝜆) are not algorithmically solvable on Turing machines.

Proof Sketch. The main step is to characterize algorithmic non-solvability conditions for functions Ξ𝑃 ,𝑚,𝑁 (⋅, ⋅, 𝜇), introduced in (3.4)
based on the solution set of the optimization problem 𝑃 with optimization parameter 𝜇. The idea is to ‘encode’ a recursively enu
merable but non-recursive set 𝐵 ⊂ ℕ in the domain of Ξ𝑃 ,𝑚,𝑁 (⋅, ⋅, 𝜇), i.e., a set such that there exists a Turing machine that takes 
numbers 𝑛 ∈ ℕ as input and confirms (after a finite amount of time) that 𝑛 is an element of 𝐵 if 𝑛 ∈ 𝐵 does indeed hold, but fails 
to decide whether 𝑛 ∈ 𝐵 or 𝑛 ∈ 𝐵𝑐 in general. To that end, a computable sequence (𝜉𝑛)𝑛∈ℕ ⊂ Ξ𝑃 ,𝑚,𝑁 (⋅, ⋅, 𝜇) is constructed so that 
{Ξ𝑃 ,𝑚,𝑁 (𝜉𝑛, 𝜇) ∶ 𝑛 ∈ 𝐵} can be distinguished from {Ξ𝑃 ,𝑚,𝑁 (𝜉𝑛, 𝜇) ∶ 𝑛 ∈ 𝐵𝑐} by algorithmic means provided that Ξ𝑃 ,𝑚,𝑁 (⋅, ⋅, 𝜇) is 
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Borel-Turing computable. However, one can construct a Turing machine that decides 𝑛 ∈ 𝐵 or 𝑛 ∈ 𝐵𝑐 for arbitrary 𝑛 ∈ ℕ, contra
dicting the non-recursiveness of 𝐵. Subsequently, the construction can be verified for the considered functions ΞBP,𝑚,𝑁 (⋅, ⋅, 𝜀) and 
ΞLasso,𝑚,𝑁 (⋅, ⋅, 𝜆). □

Remark 4.6. The statement in the theorem can be strengthened by providing a lower bound on the achievable algorithmic ap
proximability of the problem, i.e., how precise single-valued restrictions of the sought reconstruction map can be approximated by 
Borel-Turing computable functions. Note that the limitations do not arise due to the unboundedness of the input domain, but hold on 
a compact input set. Furthermore, algorithmic non-solvability is not connected to poor conditioning of the inverse problem instances; 
one can construct input domains consisting only of well-conditioned instances with the same limitations. For details, we refer to [52].

By invoking Theorem 2.19, we infer that no transparent algorithms to solve inverse problems exist on Turing machines.

Corollary 4.7. In the setting of Theorem 4.5, there does not exist a transparent algorithm solving inverse problems described by ΞBP,𝑚,𝑁 (⋅, ⋅, 𝜀)
and ΞLasso,𝑚,𝑁 (⋅, ⋅, 𝜆).

4.2. Algorithmic solvability of inverse problems in BSS model

In the BSS setting, a general algorithmic non-solvability statement does not hold. We indeed can establish algorithmic solvability 
under specific circumstances. To that end, we distinguish between a real and complex domain since BSS machines show distinct 
behavior depending on the underlying structure.

4.2.1. Real case

First, we consider the real case. Given a multi-valued mapping 𝑓 ∶  ⇉ , we denote by 𝑓ℝ its restriction to real inputs and 
outputs. Although only the complex domain was studied explicitly in Theorem 4.5, the algorithmic non-solvability in the Turing 
model remains valid for basis pursuit (BP) described by the mapping Ξℝ

BP,𝑚,𝑁
(⋅,⋅,𝜀) since the proof idea translates to the strictly real 

case. In contrast, the same problem is algorithmically solvable in the BSS model.

Theorem 4.8 ([53]). Consider the optimization problem (BP) restricted to the real domain and the associated mapping Ξℝ
BP,𝑚,𝑁

. The problem 
described by Ξℝ

BP,𝑚,𝑁
is algorithmically solvable on BSS machines.

Proof Sketch. The approach is to rewrite the problem such that an established algorithm for finding a minimizer of a polynomial 
on a semialgebraic set can be applied. Due to the restriction to the real domain, the involved terms can indeed be transferred to the 
required setting. □

Remark 4.9. Note that the optimization parameter acts as an additional input to the mapping Ξℝ
BP,𝑚,𝑁 (whereas in the Turing setting 

in Theorem 4.5 the optimization parameter was fixed beforehand). Therefore, in the BSS setting, we proved the existence of an even 
stronger algorithm (with an additional input parameter) than the one assessed in Theorem 4.5. We refer to [53] for more details and 
the proof.

Remark 4.10. Although an algorithm solving the problem Ξℝ
BP,𝑚,𝑁 exists, its computational complexity may remain inappropriately 

high. Hence, the theorem only provides a theoretical existence result neglecting the question of practical implementation.

In the case of (square root) lasso optimization (Lasso), algorithmic solvability can not be established on BSS machines, not even on 
the restricted real domain. The underlying issue is the BSS non-computability of the square root function on the real numbers, which 
arises due to the algebraic structure of the BSS model [88]. Hence, the 𝓁2 norm is not BSS computable, which renders (square root) 
lasso optimization infeasible on BSS machines. Note that the explicit computation of the 𝓁2 norm can be avoided for basis pursuit, 
because it arises only in the description of the constraint, whereas for (square root) lasso it is directly incorporated in the objective. 
One can circumvent this problem by assuming that BSS machines possess an additional module that can be called to compute the 
square root. This is motivated by the fact that the square root is an elementary function that should be computable in a practical 
model as is the case for Turing machines [93]. Without this additional assumption, we either need to modify or approximate the 
objective of the corresponding optimization problem to obtain algorithmic solvability on BSS machines. We will consider the former 
approach and return to the latter approach in the complex setting. Instead of square root lasso, we can consider lasso optimization 
[142,141,161] given by

arg min
𝑥∈ℂ𝑁

𝜆‖𝑥‖𝓁1 + ‖𝐴𝑥− 𝑦‖2𝓁2 . (Lasso2)

Here, the objective does not require the computation of the square root function (due to the squaring of the 𝓁2 norm) and, indeed, 
this change is sufficient to establish algorithmic solvability via the same approach as in Theorem 4.8.
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Theorem 4.11 ([53]). Consider the optimization problem (Lasso2) restricted to the real domain and the associated mapping Ξℝ
Lasso2 ,𝑚,𝑁

. The 
problem described by Ξℝ

Lasso2 ,𝑚,𝑁
is algorithmically solvable on BSS machines.

Remark 4.12. The analogous proof technique as for the square root lasso minimization problem in Theorem 4.5 can be applied to 
derive algorithmic non-solvability of lasso minimization (Lasso2) on Turing machines [53].

Applying Theorem 2.21, we conclude that a transparent algorithm for solving real inverse problems exists on BSS machines.

Corollary 4.13. In the setting of Theorem 4.8 and Theorem 4.11, there does exist a transparent algorithm solving inverse problems described 
by Ξℝ

BP,𝑚,𝑁
and Ξℝ

Lasso2 ,𝑚,𝑁
, respectively.

4.2.2. Complex case

We have to choose a suitable representation for BSS machines operating on complex numbers. As described in Remark 2.17, 
considering complex numbers as entities results in the non-computability of elementary complex functions. In contrast, identifying ℂ
with ℝ2 and representing complex inputs 𝑧 in the form of (ℜ(𝑧),ℑ(𝑧)) circumvents this problem to a certain degree. However, even in 
the ℝ2-representation 𝓁𝑝 norms are generally not computable functions, since they require the computation of a square root (which 
is not a real BSS computable function). Similarly to the real case, we can introduce adjusted optimization problems that promote 
solutions with properties similar to the original solutions but allow for algorithmic solvability in the BSS model. For details, we refer to 
[53] and wish to mention that algorithmic solvability in the Turing model is still not achievable for the adjusted problems. Although 
the adaptation of the objectives tries to maintain the original structural properties, they are not derived by rigorous reasoning.

Instead of replacing the optimization problem, we can also approximate its objective. This approach is demonstrated for basis 
pursuit by establishing an adequate (BSS computable) approximation of the 𝓁1 norm.

Theorem 4.14 ([53]). Let 𝛽, 𝛾 > 0. For 𝐴∈ℂ𝑚×𝑁 , 𝑦∈ℂ𝑚 and 𝜀 > 0 consider the optimization problem

arg min
𝑥∈𝐼𝛽

𝑝𝛽,𝛾 (𝑥) such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀, (BP-A)

where 𝑝𝛽,𝛾 is a polynomial satisfying

sup 
𝑥∈𝐼𝛽

|||‖𝑥‖𝓁1 − 𝑝𝛽,𝛾 (𝑥)
||| ≤ 𝛾

and

𝐼𝛽 ∶= {𝑥 ∈ℂ𝑁 ∶ ‖𝑥‖𝓁2 <
√
𝑁𝛽}

Then, the problem described by ΞBP-A,𝑚,𝑁 is algorithmically solvable in the BSS model.

Proof Sketch. Applying the Weierstrass approximation theorem, in particular, its constructive proof via Bernstein polynomials, we 
can derive a (BSS computable) polynomial 𝑝𝛽,𝛾 approximating the 𝓁1 norm up to an error of 𝛾 on 𝐼𝛽 . Finally, the algorithmic solvability 
of ΞBP-A,𝑚,𝑁 follows along the same lines as in the proof of Theorem 4.8. □

Remark 4.15. The objective 𝑝𝛽,𝛾 in (BP-A) approximates up to an error of 𝛾 the 𝓁1 norm, i.e., the objective of basis pursuit optimiza
tion, on the set 𝐼𝛽 . In this sense, (BP-A) represents an approximation of basis pursuit if its minimizers are contained in 𝐼𝛽 . Additionally, 
one can construct a BSS computable function that decides for input (𝐴,𝑦, 𝜀) if basis pursuit (BP) has at least one solution and if the 
solution(s) are contained in 𝐼𝛽 . Therefore, there does exist a BSS machine 𝛽,𝛾 that checks if the solutions of basis pursuit for (𝐴,𝑦, 𝜀)
are contained in 𝐼𝛽 . If the answer is positive, a solution of (BP-A) is computed consecutively. Otherwise, the computation is aborted 
since the approximation accuracy 𝛾 and acceptance domain depending on 𝛽 can not be adjusted autonomously. In other words, for 
each pair of parameters (𝛽, 𝛾) a distinct BSS machine 𝛽,𝛾 needs to be constructed. Moreover, note that the obtained minimizers of 
(BP-A) and basis pursuit need not agree and we do not obtain worst-case bounds on their distance, for details we refer to [53].

Remark 4.16. In the Turing model, the outlined approach to approximate basis pursuit is not feasible [53]. Even more, due to lower 
bounds on the algorithmic approximability in the Turing model (see Remark 4.6), different approximation schemes necessarily have 
certain limits in this setting.

Finally, via Theorem 2.21 we can state a similar result for trustworthiness as in the real case.

Corollary 4.17. In the setting of Theorem 4.14, there does exist a transparent algorithm approximating inverse problems described by 
ΞBP-A,𝑚,𝑁 .
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4.3. Comparison of results in Turing and BSS model

The presented findings indicate that the degree of algorithmic solvability of inverse problems depends on both the considered 
problem description and the computing model. In the Turing model, a rather general algorithmic non-solvability statement holds, 
also supported by the results in [95], whereas the landscape is more diverse in the BSS setting. Here, the potential of algorithmic 
solvability is connected to the specific properties of the underlying optimization problem, which can to a certain extent be positively 
influenced by modifying or approximating the objective. Although the adjustments may typically not be applied in practice, they 
maintain the properties of the original formulation to some degree and show that a wide range of inverse problem descriptions is in 
principle algorithmically solvable in the BSS model.

In contrast, related approaches appear to be infeasible in the Turing model. On the one hand, (reasonable) modifications of 
the objectives of the optimization problems do not influence algorithmic solvability, since algorithmic non-solvability is related to 
properties of the underlying solution set of the given task, which pertain to a broad class of inverse problem descriptions. On the other 
hand, algorithmic non-approximability in the Turing model also renders approximate approaches impractical. Characterizing classes 
of inputs that allow for algorithmic solvability and thereby identifying problematic inputs, that violate performance guarantees, could 
potentially alleviate the non-computability issue. However, it was found that implementing an exitflag functionality, i.e., aborting 
the computation and notifying the user once a ‘problematic’ input is recognized, on Turing machines is in general not feasible for 
inverse problems [162].

Consequently, we can observe a gap in algorithmic solvability between the Turing and the BSS model. In particular, BSS machines 
provide a greater capacity to solve inverse problems algorithmically. However, the power of the BSS model is heavily dependent on 
the (exact) representation and processing of real numbers as entities: Essentially the same limitations as in the Turing model arise if 
approximating sequences are employed to represent real numbers [95]. It should also be noted that algorithmic solvability of inverse 
problems was assessed in a very general framework, i.e., we did not consider a specific but broad class of inverse problems. Hence, 
restricting to a more narrow framework consisting of a limited number of classes may change the degree of algorithmic solvability. 
Thereby, specific properties of the considered problems could be exploited, which at the same time can not be incorporated into a 
more universal approach. Thus, a trade-off between generality and trustworthiness expressed through AgT may not be avoidable in 
our framework, but the degree may vary with the underlying computing paradigm.

Acknowledgments

This work of H. Boche was supported in part by the German Federal Ministry of Education and Research (BMBF) in the programme 
of Souverän. Digital. Vernetzt, research HUB 6G-life, project identification number: 16KISK002, and by the BMBF Quantum Projects 
QUIET, Grant 16KISQ093, QD-CamNetz, Grant 16KISQ077, and QuaPhySI, Grant 16KIS1598K. H. Boche was also partially supported 
by the project ``Next Generation AI Computing (gAIn)'', funded by the Bavarian Ministry of Science and the Arts and the Saxon 
Ministry for Science, Culture, and Tourism.

This work of Gitta Kutyniok was supported in part by the Konrad Zuse School of Excellence in Reliable AI (DAAD), the Munich 
Center for Machine Learning (BMBF) as well as the German Research Foundation under Grants DFG-SPP-2298, KU 1446/31-1 and 
KU 1446/32-1. G. Kutyniok acknowledges support from LMUexcellent, funded by the Federal Ministry of Education and Research 
(BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Länder as well as by the 
Hightech Agenda Bavaria. Furthermore, G. Kutyniok was also partially supported by the project ``Next Generation AI Computing 
(gAIn)'', funded by the Bavarian Ministry of Science and the Arts and the Saxon Ministry for Science, Culture, and Tourism.

Data availability

No data was used for the research described in the article.

References

[1] A.W. Senior, et al., Improved protein structure prediction using potentials from deep learning, Nature 577 (2020) 706--710.
[2] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, in: ICCV 2015, IEEE, 2015, 

pp. 1026--1034.
[3] D. Silver, et al., Mastering the game of Go with deep neural networks and tree search, Nature 529 (2016) 484--503.
[4] T. Brown, et al., Language models are few-shot learners, in: H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin (Eds.), NeurIPS 2020, in: Curran Associates, 

vol. 33, Inc., 2020, pp. 1877--1901.
[5] R. Lam, et al., Learning skillful medium-range global weather forecasting, Science 382 (6677) (2023) 1416--1421.
[6] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436--444.
[7] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http://www.deeplearningbook.org.
[8] J. Berner, P. Grohs, G. Kutyniok, P. Petersen, The modern mathematics of deep learning, in: Mathematical Aspects of Deep Learning, Cambridge University 

Press, 2022.
[9] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5 (4) (1943) 115--133.

[10] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature 323 (1986) 533--536.
[11] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM 60 (6) (2017) 84--90.
[12] M. Pandey, et al., The transformational role of GPU computing and deep learning in drug discovery, Nat. Mach. Intell. 4 (3) (2022) 211--221.
[13] C. Silvano, et al., A survey on deep learning hardware accelerators for heterogeneous HPC platforms, arXiv:2306.15552, 2023.

http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF144C1A5BBBB1FF228FC2DC29E427DF2s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibD5F0FE5E2456CE3B2D800B0179D068EAs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibD5F0FE5E2456CE3B2D800B0179D068EAs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibEE34693EDB6DB54311C85CB3D3A85178s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibCE4AF2C6236D6A58FEC9884C5C547AA9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibCE4AF2C6236D6A58FEC9884C5C547AA9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib82E193DCF91D5AD03F5C18810FB043F7s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF9E8B88FA42CF5F285853A716073551Cs1
http://www.deeplearningbook.org
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibB51EEB1D8BF1A93710007B0F46E63CBEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibB51EEB1D8BF1A93710007B0F46E63CBEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF956ADC6C1656814D5BEA32FA3674E61s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2AC2AB1E48E330CE8717D2E0F8CE8CD2s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibBD2B6C29ABA9E0A2599857261EDFE2EEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib92B25075974457D29CBB8266178DB04Bs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibBC35E21B3A624FC21AE996B9EBD11A9Fs1


Applied and Computational Harmonic Analysis 77 (2025) 101763

16

H. Boche, A. Fono and G. Kutyniok 

[14] N. Jouppi, et al., TPU v4: an optically reconfigurable supercomputer for machine learning with hardware support for embeddings, in: ISCA 2023, Association 
for Computing Machinery, New York, NY, USA, 2023.

[15] A.C. Elster, T.A. Haugdahl, Nvidia Hopper GPU and grace CPU highlights, Comput. Sci. Eng. 24 (2) (2022) 95--100.
[16] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: CVPR 2016, IEEE, 2016, pp. 770--778.
[17] A. Vaswani, et al., Attention is all you need, in: NIPS 2017, vol. 30, Curran Associates, Inc., 2017.
[18] R. Balestriero, et al., A cookbook of self-supervised learning, arXiv:2304.12210, 2023.
[19] P.F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, D. Amodei, Deep reinforcement learning from human preferences, in: NIPS 2017, vol. 30, Curran 

Associates, Inc., 2017.
[20] N.C. Thompson, K. Greenewald, K. Lee, G.F. Manso, Deep learning’s diminishing returns: the cost of improvement is becoming unsustainable, IEEE Spectr. 

58 (10) (2021) 50--55.
[21] N.C. Thompson, K. Greenewald, K. Lee, G.F. Manso, The computational limits of deep learning, arXiv:2007.05558, 2020.
[22] Semiconductor Research Corporation, The decadal plan for semiconductors, https://www.src.org/about/decadal-plan/, 2021. (Accessed 19 March 2025).
[23] R. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5 (3) (1961) 183--191.
[24] A. Bérut, A. Arakelyan Artak Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and 

thermodynamics, Nature 483 (2012) 187--189.
[25] National Science & Technology Council, Pioneering the future advanced computing ecosystem: a strategic plan, https://www.nitrd.gov/pubs/Future-Advanced-

Computing-Ecosystem-Strategic-Plan-Nov-2020.pdf, 2020.
[26] R. Bommasani, et al., On the opportunities and risks of foundation models, arXiv:2108.07258, 2022.
[27] Y. Chang, et al., A survey on evaluation of large language models, ACM Trans. Intell. Syst. Technol. 15 (3) (2024).
[28] B. Goertzel, Artificial general intelligence: concept, state of the art, and future prospects, J. Artif. Gen. Intell. 5 (1) (2014) 1--48.
[29] M. Roser, AI timelines: what do experts in artificial intelligence expect for the future?, in: Our World in Data, 2023, https://ourworldindata.org/ai-timelines.
[30] S.M. Thornton, S. Pan, S.M. Erlien, J.C. Gerdes, Incorporating ethical considerations into automated vehicle control, IEEE Trans. Intell. Transp. Syst. 18 (6) 

(2017) 1429--1439.
[31] S. Karnouskos, Self-driving car acceptance and the role of ethics, IEEE Trans. Eng. Manag. 67 (2) (2020) 252--265.
[32] M. Geisslinger, F. Poszler, J. Betz, C. Lütge, M. Lienkamp, Autonomous driving ethics: from trolley problem to ethics of risk, Philos. Technol. 34 (4) (2021) 

1033--1055.
[33] G. Ras, N. Xie, M. van Gerven, D. Doran, Explainable deep learning: a field guide for the uninitiated, J. Artif. Intell. Res. 73 (2022).
[34] C. Szegedy, et al., Intriguing properties of neural networks, in: Y. Bengio, Y. LeCun (Eds.), ICLR 2014, 2014.
[35] Y. Zhang, et al., Siren’s song in the AI ocean: a survey on hallucination in large language models, arXiv:2309.01219, 2023.
[36] A. Bastounis, A.C. Hansen, V. Vlačić, The mathematics of adversarial attacks in AI -- why deep learning is unstable despite the existence of stable neural networks, 

arXiv:2109.06098, 2021.
[37] B. Adcock, N. Dexter, The gap between theory and practice in function approximation with deep neural networks, SIAM J. Math. Data Sci. 3 (2) (2021) 624--655.
[38] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, A. Madry, Adversarial examples are not bugs, they are features, in: NeurIPS 2019, Curran Associates 

Inc., Red Hook, NY, USA, 2019.
[39] N. Carlini, D. Wagner, Audio adversarial examples: targeted attacks on speech-to-text, in: SPW 2018, IEEE, 2018, pp. 1--7.
[40] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, A. Madry, Robustness may be at odds with accuracy, in: ICLR 2019, 2019.
[41] V. Antun, F. Renna, C. Poon, B. Adcock, A.C. Hansen, On instabilities of deep learning in image reconstruction and the potential costs of AI, Proc. Natl. Acad. 

Sci. 117 (2020) 088.
[42] S.-M. Moosavi-Dezfooli, A. Fawzi, P. Frossard, Deepfool: a simple and accurate method to fool deep neural networks, in: CVPR 2016, IEEE, 2016, pp. 2574--2582.
[43] A. Boulemtafes, A. Derhab, Y. Challal, A review of privacy-preserving techniques for deep learning, Neurocomputing 384 (2020) 21--45.
[44] Y. He, G. Meng, K. Chen, X. Hu, J. He, Towards security threats of deep learning systems: a survey, IEEE Trans. Softw. Eng. 48 (5) (2022) 1743--1770.
[45] X. Liu, et al., Privacy and security issues in deep learning: a survey, IEEE Access 9 (2021) 4566--4593.
[46] F. Mireshghallah, M. Taram, P. Vepakomma, A. Singh, R. Raskar, H. Esmaeilzadeh, Privacy in deep learning: a survey, arXiv:2004.12254, 2020.
[47] O. Willers, S. Sudholt, S. Raafatnia, S. Abrecht, Safety concerns and mitigation approaches regarding the use of deep learning in safety-critical perception 

tasks, in: A. Casimiro, F. Ortmeier, E. Schoitsch, F. Bitsch, P. Ferreira (Eds.), SAFECOMP 2020 Workshops, Springer International Publishing, Cham, 2020, 
pp. 336--350.

[48] G. Fettweis, H. Boche, On 6G and trustworthiness, Commun. ACM 65 (4) (2022) 48--49.
[49] EU Artificial Intelligence Act, High-level summary of the AI Act, https://artificialintelligenceact.eu/high-level-summary/. (Accessed 19 March 2025).
[50] G7 Hiroshima Summit 2023, G7 hiroshima leaders’ communiqué, https://www.mofa.go.jp/files/100506878.pdf, 2023.
[51] H. Tan, A brief history and technical review of the expert system research, IOP Conf. Ser., Mater. Sci. Eng. 242 (1) (2017).
[52] H. Boche, A. Fono, G. Kutyniok, Limitations of deep learning for inverse problems on digital hardware, IEEE Trans. Inf. Theory 69 (12) (2023) 7887--7908.
[53] H. Boche, A. Fono, G. Kutyniok, Inverse problems are solvable on real number signal processing hardware, Appl. Comput. Harmon. Anal. 74 (2025).
[54] A.M. Turing, On computable numbers, with an application to the Entscheidungs-problem, Proc. Lond. Math. Soc. s2--42 (1) (1936) 230--265.
[55] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, 

Bull., New Ser., Am. Math. Soc. 21 (1) (1989) 1--46.
[56] B. Ulmann, Analog Computing, De Gruyter Oldenbourg, Berlin, Boston, 2022.
[57] W. Haensch, T. Gokmen, R. Puri, The next generation of deep learning hardware: analog computing, Proc. IEEE 107 (1) (2019) 108--122.
[58] R. Hamerly, S. Bandyopadhyay, D. Englund, Asymptotically fault-tolerant programmable photonics, Nat. Commun. 13 (1) (2022).
[59] M. Miscuglio, et al., Approximate analog computing with metatronic circuits, Commun. Phys. 4 (1) (2021) 196.
[60] H.G. Rice, Classes of recursively enumerable sets and their decision problems, Trans. Am. Math. Soc. 74 (2) (1953) 358--366.
[61] E. Clarke, O. Grumberg, D. Peled, D. Peled, Model Checking (the Cyber-Physical Systems Series), MIT Press, 1999.
[62] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning models resistant to adversarial attacks, in: ICLR, 2018.
[63] N. Carlini, D. Wagner, Towards evaluating the robustness of neural networks, in: IEEE Symposium on Security and Privacy, IEEE, 2017, pp. 39--57.
[64] Z.C. Lipton, The mythos of model interpretability, Commun. ACM 61 (10) (2018) 36--43.
[65] L.H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining explanations: an overview of interpretability of machine learning, in: 2018 IEEE 5th 

International Conference on Data Science and Advanced Analytics, 2018, pp. 80--89.
[66] W. Samek, T. Wiegand, K.-R. Müller, Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models, arXiv:1708.08296, 

2017.
[67] M.T. Ribeiro, S. Singh, C. Guestrin, ``Why should I trust you?'': explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, USA, 2016, pp. 1135--1144.
[68] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning, arXiv:1702.08608, 2017.
[69] J.A. Kroll, et al., Accountable algorithms, Univ. Pa. Law Rev. 165 (2017) 633--706.
[70] C. Olah, Mechanistic interpretability, variables, and the importance of interpretable bases, https://www.transformer-circuits.pub/2022/mech-interp-essay, 

2022. (Accessed 19 March 2025).

http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8CD2E0662B04EC3E78614A7F0B6CEBC9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8CD2E0662B04EC3E78614A7F0B6CEBC9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibB2ECA6ACD75853767FFF64A34A8CBDC4s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibBB7CAE310F59749D3FE8793391ACC01Bs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib91EF773569DFC0227E41728FD09D5DC1s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib6BFCC7BD3DD16AE7758F88B2720669F0s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib21C489A089A1D859C1FDDA7E1742C8EFs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib21C489A089A1D859C1FDDA7E1742C8EFs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2CDAF00A44FBFE367D7B0785042306F0s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2CDAF00A44FBFE367D7B0785042306F0s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib936B3A01B3F6572E87EC91AC92C01C46s1
https://www.src.org/about/decadal-plan/
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibCB090FA55E159B9A919D28A364327364s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibAC432D65C845FA73BD80EC470C7AF5C8s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibAC432D65C845FA73BD80EC470C7AF5C8s1
https://www.nitrd.gov/pubs/Future-Advanced-Computing-Ecosystem-Strategic-Plan-Nov-2020.pdf
https://www.nitrd.gov/pubs/Future-Advanced-Computing-Ecosystem-Strategic-Plan-Nov-2020.pdf
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib5DF4FA8FCD48E8A090AE65B6314EB2C6s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib0AE52B9E7B0107C1A2AEA890D5C0B055s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE1829729E34B880352F5A0013B92C389s1
https://ourworldindata.org/ai-timelines
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib34F81E30CE1191DDEA4AC34B78C139B9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib34F81E30CE1191DDEA4AC34B78C139B9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibD91D4D80EABC76B29E5BDE91843566B5s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibCD3CD110DA91B5A56E302C4602B50A19s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibCD3CD110DA91B5A56E302C4602B50A19s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8695CB5EEDFB1659E63042DD731C51CCs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib077C688776526FC869CAF64DF5B24E7Cs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib59C6C3449B7DD5FFEC70A89860696CF7s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib32439DCA9EC5B72466AAE87F6E30EB98s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib32439DCA9EC5B72466AAE87F6E30EB98s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib70AD0254362C773C84AB457A498CC439s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib0616F0494287A00E0416553585C9F136s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib0616F0494287A00E0416553585C9F136s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibCC1AF0E1265AABC60D7FC29E715681FEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8F33B10A28CC0E5BCBF6E406A90BF8D4s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib71689EF944297B350A15BEA1F0C1E778s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib71689EF944297B350A15BEA1F0C1E778s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib1B59C86607429B50C81582702A5F674As1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC2D863B3E6590710301F741A18AC0470s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC2AC47DFA050D41EDB4196890B025F43s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibA4FC3316333307FC9BB6A6471F44D19Cs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib875A344928004FCB3FB196E32E146A44s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibA3877F34A047E767C37F1E75D0ADECC1s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibA3877F34A047E767C37F1E75D0ADECC1s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibA3877F34A047E767C37F1E75D0ADECC1s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib60092A143F89FD3F0816C1AC4674AC6Fs1
https://artificialintelligenceact.eu/high-level-summary/
https://www.mofa.go.jp/files/100506878.pdf
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8CA6E74727CD190352E999228045E564s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibFA3B48AE0EBC94FCC1C1B7158522EFA4s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib54C516D449C81825CFF63D51896E04BEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC89E7E74CFFFD1E96E2B20E778B00500s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE23B877CA552C467481850C335307F3Fs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE23B877CA552C467481850C335307F3Fs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib1BECC075D3C3AC88BCAFD16D81BE5574s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibEC0716C1F63D22DC68E488C3A6B591F9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF55848283AF1CB51C057BCE4EB4DEEF0s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib6FFAA76678CBFC246156E7CAFC81AAF4s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibEDEDBB6C79F30C877EC4D5598BD5795Ds1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibB06C7BD28AD436B8F81486C28F193716s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib5E7EDF62ADB2E76CEA762726E3289610s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib7136F2A6D1E8ED522DADCEBA323C9545s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibBE9D4705476CFF4B5D8D94B10AEF0762s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2B81EA08BCCF5995686320C0D14DE8E8s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2B81EA08BCCF5995686320C0D14DE8E8s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib69BDED1C734DE4B524E48D1B56AC03B3s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib69BDED1C734DE4B524E48D1B56AC03B3s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC43EF17DB649E84ABC11131116357C0Cs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC43EF17DB649E84ABC11131116357C0Cs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib97DBF4600A66B23C6E8A4C6A30B489AEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib57AE3F6A962A7F40D53BFB6EEBE78F42s1
https://www.transformer-circuits.pub/2022/mech-interp-essay


Applied and Computational Harmonic Analysis 77 (2025) 101763

17

H. Boche, A. Fono and G. Kutyniok 

[71] L. Kästner, B. Crook, Explaining AI through mechanistic interpretability, [Online]. Available: http://philsci-archive.pitt.edu/22747/, 2023.
[72] J. Angwin, J. Larson, S. Mattu, L. Kirchner, Machine bias, https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing, 2016. 

(Accessed 19 March 2025).
[73] M. Veale, R. Binns, Fairer machine learning in the real world: mitigating discrimination without collecting sensitive data, Big Data Soc. 4 (2) (2017).
[74] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias and fairness in machine learning, ACM Comput. Surv. 54 (6) (2021).
[75] S. Vadhan, The complexity of differential privacy, in: Y. Lindell (Ed.), Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich, Springer 

International Publishing, Cham, 2017, pp. 347--450.
[76] S. Barocas, M. Hardt, A. Narayanan, Fairness in Machine Learning: Limitations and Opportunities, MIT Press, 2023, [Online]. Available: https://fairmlbook.org/.
[77] N. Diakopoulos, Accountability in algorithmic decision making, Commun. ACM 59 (2) (2016) 56--62.
[78] S. Wachter, B. Mittelstadt, L. Floridi, Why a right to explanation of automated decision-making does not exist in the general data protection regulation, Int. 

Data Priv. Law 7 (2) (2017) 76--99.
[79] D.K. Citron, F. Pasquale, The scored society: due process for automated predictions, Wash. Law Rev. 89 (2014) 1.
[80] S. Fazelpour, Z.C. Lipton, Algorithmic fairness from a non-ideal perspective, in: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2020, 

pp. 57--63.
[81] L. Floridi, et al., AI4People - an ethical framework for a good AI society: opportunities, risks, principles, and recommendations, Minds Mach. 28 (4) (2018) 

689--707.
[82] A. Biondi, F. Nesti, G. Cicero, D. Casini, G. Buttazzo, A safe, secure, and predictable software architecture for deep learning in safety-critical systems, IEEE 

Embed. Syst. Lett. 12 (3) (2020) 78--82.
[83] H. Zhang, et al., Towards stable and efficient training of verifiably robust neural networks, in: ICLR 2020, 2020.
[84] M. Mirman, A. Hägele, P. Bielik, T. Gehr, M. Vechev, Robustness certification with generative models, in: SIGPLAN PLDI 2021, Association for Computing 

Machinery, New York, NY, USA, 2021, pp. 1141--1154.
[85] D.V. Christensen, et al., 2022 roadmap on neuromorphic computing and engineering, Neuromorph. Comput. Eng. 2 (2) (2022) 022501.
[86] European Commission, AI Act -- shaping Europe’s digital future, https://digital-strategy.ec.europa.eu/policies/regulatory-framework-ai. (Accessed 19 March 

2025).
[87] European Commission, European centre for algorithmic transparency, https://algorithmic-transparency.ec.europa.eu/about_en. (Accessed 19 March 2025).
[88] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation, Springer Verlag, New York, 1998.
[89] B.J. Copeland, The church-Turing thesis, in: E.N. Zalta (Ed.), Summer 2020, the Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford 

University, 2020.
[90] S. Kleene, General recursive functions of natural numbers, Math. Ann. 112 (1936) 727--742.
[91] A.M. Turing, Computability and lambda-definability, J. Symb. Log. 2 (4) (1937) 153--163.
[92] J. Avigad, V. Brattka, Computability and analysis: the legacy of Alan Turing, in: R. Downey (Ed.), Turing’s Legacy: Developments from Turing’s Ideas in Logic, 

in: Lecture Notes in Logic, Cambridge University Press, 2014, pp. 1--47.
[93] M.B. Pour-El, J.I. Richards, Computability in Analysis and Physics (Perspectives in Logic), Cambridge University Press, 2017.
[94] K. Weihrauch, Computable Analysis: An Introduction, Springer-Verlag, Berlin, Heidelberg, 2000.
[95] M.J. Colbrook, V. Antun, A.C. Hansen, The difficulty of computing stable and accurate neural networks: on the barriers of deep learning and Smale’s 18th 

problem, Proc. Natl. Acad. Sci. 119 (12) (2022).
[96] L. Grozinger, et al., Pathways to cellular supremacy in biocomputing, Nat. Commun. 10 (2019).
[97] S.K. Esser, R. Appuswamy, P. Merolla, J.V. Arthur, D.S. Modha, Backpropagation for energy-e˙icient neuromorphic computing, in: C. Cortes, N. Lawrence, D. 

Lee, M. Sugiyama, R. Garnett (Eds.), NIPS 2015, vol. 28, Curran Associates, Inc., 2015.
[98] J.D. Smith, et al., Neuromorphic scaling advantages for energy-e˙icient random walk computations, Nat. Electron. 5 (2) (2022) 102--112.
[99] A. Rao, P. Plank, A. Wild, W. Maass, A long short-term memory for AI applications in spike-based neuromorphic hardware, Nat. Mach. Intell. 4 (5) (2022) 

467--479.
[100] D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Physics for neuromorphic computing, Nat. Rev. Phys. 2 (9) (2020) 499--510.
[101] P. Blouw, C. Eliasmith, Event-driven signal processing with neuromorphic computing systems, in: ICASSP 2020, IEEE, 2020, pp. 8534--8538.
[102] C. Schuman, S. Kulkarni, M. Parsa, J. Mitchell, P. Date, B. Kay, Opportunities for neuromorphic computing algorithms and applications, Nat. Comput. Sci. 2 

(2022) 10--19.
[103] W. Aspray, John Von Neumann and the Origins of Modern Computing, MIT Press, Cambridge, MA, USA, 1990.
[104] J. Backus, Can programming be liberated from the von Neumann style? A functional style and its algebra of programs, Commun. ACM 21 (8) (1978) 613--641.
[105] D. Efnusheva, A. Cholakoska, A. Tentov, A survey of different approaches for overcoming the processor-memory bottleneck, Int. J. Comput. Sci. Inf. Technol. 

9 (2) (2017) 151--163.
[106] I. Boybat, et al., Temperature sensitivity of analog in-memory computing using phase-change memory, in: IEDM 2021, IEEE, 2021.
[107] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, A. Sebastian, In-memory hyperdimensional computing, Nat. Electron. 3 (6) (2020) 327--337.
[108] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing, Nat. Nanotechnol. 15 (7) (2020) 

529--544.
[109] M. Payvand, M.V. Nair, L.K. Müller, G. Indiveri, A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation 

to exploitation, Faraday Discuss. 213 (2019) 487--510.
[110] Á. Papp, W. Porod, G. Csaba, Nanoscale neural network using non-linear spin-wave interference, Nat. Commun. 12 (2021).
[111] K.F. Wagenbauer, C. Sigl, H. Dietz, Gigadalton-scale shape-programmable DNA assemblies, Nature 552 (2017) 78--83.
[112] P. Poirazi, A. Papoutsi, Illuminating dendritic function with computational models, Nat. Rev. Neurosci. 21 (2020) 303--321.
[113] L.G. Wright, et al., Deep physical neural networks trained with backpropagation, Nature 601 (2022) 549--555.
[114] A.J. Daley, et al., Practical quantum advantage in quantum simulation, Nature 607 (2022) 667--676.
[115] S. Flannigan, et al., Propagation of errors and quantitative quantum simulation with quantum advantage, Quantum Sci. Technol. 7 (4) (2022).
[116] D. Elkouss, D. Pérez-García, Memory effects can make the transmission capability of a communication channel uncomputable, Nat. Commun. 9 (1) (2018).
[117] R.F. Schaefer, H. Boche, H.V. Poor, Turing meets Shannon: on the algorithmic computability of the capacities of secure communication systems (invited paper), 

in: SPAWC 2019, IEEE, 2019, pp. 1--5.
[118] H. Boche, V. Pohl, On the algorithmic solvability of spectral factorization and applications, IEEE Trans. Inf. Theory 66 (7) (2020) 4574--4592.
[119] H. Boche, U.J. Mönich, Turing computability of Fourier transforms of bandlimited and discrete signals, IEEE Trans. Signal Process. 68 (2020) 532--547.
[120] H. Boche, U.J. Mönich, On the solvability of the peak value problem for bandlimited signals with applications, IEEE Trans. Signal Process. 69 (2021) 103--118.
[121] M.B. Pour-El, N. Zhong, The wave equation with computable initial data whose unique solution is nowhere computable, Math. Log. Q. 43 (4) (1997) 499--509.
[122] H. Boche, V. Pohl, Turing meets circuit theory: not every continuous-time LTI system can be simulated on a digital computer, IEEE Trans. Circuits Syst. I, Regul. 

Pap. 67 (12) (2020) 5051--5064.
[123] H. Boche, R.F. Schaefer, H. Vincent Poor, Real number signal processing can detect denial-of-service attacks, in: ICASSP 2021, IEEE, 2021, pp. 4765--4769.
[124] H. Boche, M. Cai, H.V. Poor, R.F. Schaefer, Detectability of denial-of-service attacks on arbitrarily varying classical-quantum channels, in: ISIT 2021, IEEE, 

2021, pp. 912--917.

http://philsci-archive.pitt.edu/22747/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF765760A56B9E89B3FF8D9369A312FB0s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF7FE7DDC85EEB58584FE7C489B616717s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib0F909B258A33B7CB1205B75962A0E879s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib0F909B258A33B7CB1205B75962A0E879s1
https://fairmlbook.org/
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib987A573C3F21422707E00D9F81F1F5CAs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib4F6D7A1CB2A2BD9A0EFC251C595B2CB2s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib4F6D7A1CB2A2BD9A0EFC251C595B2CB2s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib51FC2D0F4A246ACB81BFEE0B0A6676F6s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibD89DB97E1573B21E5D920D0AF173CE19s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibD89DB97E1573B21E5D920D0AF173CE19s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib4D09661E13391CD511C7C203521B4CE5s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib4D09661E13391CD511C7C203521B4CE5s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib7770124F23AB11250DC3AB18C73D493Ds1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib7770124F23AB11250DC3AB18C73D493Ds1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib7DA93BDCDF745E0A757A6DFFBF91BCA4s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibEDC086EB40EAE8546BC764792BD7FE42s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibEDC086EB40EAE8546BC764792BD7FE42s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib3BC206C8914D3EFCD8C2A68FABF478DAs1
https://digital-strategy.ec.europa.eu/policies/regulatory-framework-ai
https://algorithmic-transparency.ec.europa.eu/about_en
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibDE72A4C796AF0FF327836F36D4E53604s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib30AE6439F5D80C27FF9A07BA3A2120A0s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib30AE6439F5D80C27FF9A07BA3A2120A0s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibAED6505223B426D29FA58FCC749294DFs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib7353543BDF539DF0C40AFCC681056561s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib6E7FB2FB06A9312623AF14AF2448C3BFs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib6E7FB2FB06A9312623AF14AF2448C3BFs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib4F6F691B1F9BCA2DC2B399C4FA3B361Bs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2BA6C5BC8FAA11AA91A689AF4363E1E3s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibCA6568C761377DF4D712CC67A3EB0E71s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibCA6568C761377DF4D712CC67A3EB0E71s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib296ED899B9612897D48804EB3408CD1Es1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib0DB2A0395033DC9D99B938D82A4D888Cs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib0DB2A0395033DC9D99B938D82A4D888Cs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib18DCC7A0F7EFD67C3624227DACE5EFABs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8292C373A2C0B2CB2A086FF0C3D8F535s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8292C373A2C0B2CB2A086FF0C3D8F535s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib1E4FEA739E5DDEFBE174F9182DE78A3Es1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibB7FFC168117D255F63A79EE6895D86EBs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib52800EFFBC5BC5524A064B62C99CF82As1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib52800EFFBC5BC5524A064B62C99CF82As1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib64D78798359614276CF1E2AFD3988579s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib6C3D79953C8764C4D1ECF909DA7261F4s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8C7884A37A1EE731955448BD41F946A2s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8C7884A37A1EE731955448BD41F946A2s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib5BB700DD7C654A43E51583B998CAAAC9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib37E99E416203B8EAE6739635561EC3DAs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibD1D6DD682B2719F0D79BDED758C40AE8s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibD1D6DD682B2719F0D79BDED758C40AE8s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibA282FE89C08A80247A1858B877A92208s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibA282FE89C08A80247A1858B877A92208s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8860958669307C291F48BC5964833721s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib4966877E0E5383238D6E3647CD2A73E8s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib448B51AF93584FEF136A09BF81487617s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib3CF739301F00D0FE2E11929F23481EAEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib5C76EEAC7040E3187BFE3D1211AE2B13s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib23185A39F4D915D569D29B5CC3733C15s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib7663712B508B7B84B5CD2D4DD7711AB3s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE596829817042155F923CC3284DB5C5Bs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE596829817042155F923CC3284DB5C5Bs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib78E459CFCBD3F019D061591ECCA57CC3s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibDCEA28C2248D8D47386441D46018CF6Es1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE4A6B227A86D8C389912E416D1C67EC8s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibB274CF47BF3B4100EF6C05885A3A6EBFs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibEF268445573C87A00A7E2003AA58E85Fs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibEF268445573C87A00A7E2003AA58E85Fs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib30D10152F22F59F01143F4412A3CC75Fs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF78D5BE9DB1412400F9AE94DBA5E3A79s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF78D5BE9DB1412400F9AE94DBA5E3A79s1


Applied and Computational Harmonic Analysis 77 (2025) 101763

18

H. Boche, A. Fono and G. Kutyniok 

[125] H. Boche, Y. Böck, C. Deppe, Deciding the problem of remote state estimation via noisy communication channels on real number signal processing hardware, 
in: ICC 2022, IEEE, 2022, pp. 4510--4515.

[126] L. Blum, Computing over the reals: where Turing meets Newton, Not. Am. Math. Soc. 51 (9) (2004) 1024--1034.
[127] J.D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems, Phys. Rev. D 23 (1981) 287--298.
[128] I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math. 

57 (11) (2004) 1413--1457.
[129] S.J. Wright, R.D. Nowak, M.A.T. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process. 57 (7) (2009) 2479--2493.
[130] S. Cotter, B. Rao, K. Engan, K. Kreutz-Delgado, Sparse solutions to linear inverse problems with multiple measurement vectors, IEEE Trans. Signal Process. 

53 (7) (2005) 2477--2488.
[131] I. Selesnick, Sparse regularization via convex analysis, IEEE Trans. Signal Process. 65 (17) (2017) 4481--4494.
[132] E. Candes, T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory 51 (12) (2005) 4203--4215.
[133] E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 

52 (2) (2006) 489--509.
[134] E.J. Candes, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies?, IEEE Trans. Inf. Theory 52 (12) (2006) 5406--5425.
[135] D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52 (4) (2006) 1289--1306.
[136] S. Ji, Y. Xue, L. Carin, Bayesian compressive sensing, IEEE Trans. Signal Process. 56 (6) (2008) 2346--2356.
[137] M.F. Duarte, Y.C. Eldar, Structured compressed sensing: from theory to applications, IEEE Trans. Signal Process. 59 (9) (2011) 4053--4085.
[138] M. Elad, Optimized projections for compressed sensing, IEEE Trans. Signal Process. 55 (12) (2007) 5695--5702.
[139] E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math. 59 (8) (2006) 1207--1223.
[140] S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput. 20 (1) (1998) 33--61.
[141] J. Tropp, Just relax: convex programming methods for identifying sparse signals in noise, IEEE Trans. Inf. Theory 52 (3) (2006) 1030--1051.
[142] A. Belloni, V. Chernozhukov, L. Wang, Square-root lasso: pivotal recovery of sparse signals via conic programming, Biometrika 98 (4) (2011) 791--806.
[143] B. Zhu, J.Z. Liu, S.F. Cauley, B.R. Rosen, M.S. Rosen, Image reconstruction by domain-transform manifold learning, Nature 555 (2018) 487--492.
[144] S.R. Arridge, P. Maass, O. Öktem, C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numer. 28 (2019) 1--174.
[145] T.A. Bubba, et al., Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography, Inverse Probl. 35 (6) (2019).
[146] Y. Yang, J. Sun, H. Li, Z. Xu, Deep ADMM-net for compressive sensing MRI, in: D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, R. Garnett (Eds.), NIPS 2016, vol. 

29, Curran Associates, Inc., 2016.
[147] K. Hammernik, et al., Learning a variational network for reconstruction of accelerated MRI data, Magn. Reson. Med. 79 (6) (2018) 3055--3071.
[148] C. Chen, Q. Chen, J. Xu, V. Koltun, Learning to see in the dark, in: CVPR 2018, IEEE, 2018.
[149] Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, A. Ozcan, Deep learning microscopy, Optica 4 (11) (2017) 1437--1443.
[150] M. Araya-Polo, J. Jennings, A. Adler, T. Dahlke, Deep-learning tomography, Lead. Edge 37 (1) (2018) 58--66.
[151] G. Ongie, A. Jalal, C.A. Metzler, R.G. Baraniuk, A.G. Dimakis, R. Willett, Deep learning techniques for inverse problems in imaging, IEEE J. Sel. Areas Inf. 

Theory 1 (1) (2020) 39--56.
[152] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (1989) 03.
[153] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4 (1991) 251--257.
[154] H. Bölcskei, P. Grohs, G. Kutyniok, P. Petersen, Optimal approximation with sparsely connected deep neural networks, SIAM J. Math. Data Sci. 1 (2019) 8--45.
[155] R. Eldan, O. Shamir, The power of depth for feedforward neural networks, in: COLT 2016 Proceedings, in: Proceedings of Machine Learning Research, vol. 49, 

PMLR, 2016, pp. 907--940.
[156] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and when can deep - but not shallow - networks avoid the curse of dimensionality: a review, Int. 

J. Autom. Comput. 14 (2017) 503--519.
[157] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, G. Petrova, Nonlinear approximation and (deep) ReLU networks, Constr. Approx. 55 (2022) 127--172.
[158] R. Gribonval, G. Kutyniok, M. Nielsen, F. Voigtlaender, Approximation spaces of deep neural networks, Constr. Approx. 55 (2022) 259--367.
[159] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Netw. 94 (2017) 103--114.
[160] Y. LeCun, Y. Bengio, Convolutional networks for images, speech, and time series, in: The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, 

MA, USA, 1998, pp. 255--258.
[161] X. Lv, G. Bi, C. Wan, The group lasso for stable recovery of block-sparse signal representations, IEEE Trans. Signal Process. 59 (4) (2011) 1371--1382.
[162] A. Bastounis, A.C. Hansen, V. Vlačić, The extended Smale’s 9th problem -- on computational barriers and paradoxes in estimation, regularisation, computer

assisted proofs and learning, arXiv:2110.15734, 2021.

http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC06CC1AAC9667DF03E9278544FB8B3AAs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC06CC1AAC9667DF03E9278544FB8B3AAs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib5D1F683906A2289E920582E31F35AA9Cs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibEA5B2DA88154EF7AEDE63C37683AA3E9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE9356109B0DFF1B2D97C7E636591B32Es1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE9356109B0DFF1B2D97C7E636591B32Es1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib38CD5A0A33CE30B046EC94488834E181s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib0E46364626AB53BA8333147AD82D605As1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib0E46364626AB53BA8333147AD82D605As1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib5789AAEC88CCB4E57DEB967F4E92CB26s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2485740AD9E1ED756F0819F282531056s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibA41C820F6E9E0942F40D56A2F87B6674s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibA41C820F6E9E0942F40D56A2F87B6674s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE2F35405199C0D3328F08070B994BDCFs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibFACEF550689162AF17973076E0FFE5ACs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib14E5DFFD9EA4BC5A1EB3B7402309971Ds1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib853ACFDCE71C4D43DF546E8BD9EC9847s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8B85D8A700556138D323589F06298F57s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibA931F27739704DD9574AB35803E2ECF5s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2889512013887C48FD10083E1EF24F05s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF699A1D6A0854B7D3D3608B6C5E34BCFs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibE8B43D8232082453A3052F6340B99074s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC956BF3CC91A12178CED6D314AC6B6AEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC892FA020FC4622A826B4C4C36292F60s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF1874E3C834BE6F7599E534C1DD9B580s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib311674777C871D989BD5F6DE3FCE64FEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib311674777C871D989BD5F6DE3FCE64FEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib6C84E6B3FDCF5FE37B28F1FDFFA3C650s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2FDCFB6E7D89EED4419BD478B679F992s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibC1D782CB7FF39FB80326F781B68F4D75s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib82FBF005C642B13C4CF9FD5AA07172FCs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibFB175BEDE43BDF61E4B5A304D9CEFCF4s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibFB175BEDE43BDF61E4B5A304D9CEFCF4s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib9340A2338A7AF965C67073418E50732Bs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib3759650E328AC1211D8361699C11C3A2s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib94CB533E7819229D0A8DC1F5749427ADs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF93CD753EEDF10B3222A566D5B3D8FFBs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibF93CD753EEDF10B3222A566D5B3D8FFBs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2A17BFAB49B5A645F2EE219859979909s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib2A17BFAB49B5A645F2EE219859979909s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib1B27409800FF2E2C430DFA9C2C870322s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibBC34146C77F702F58C6720B6A8E26EC9s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibD4D8D4D5DD6D038DD8B9BE8023447EBEs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib1AE5916A7A5E80D46DA6548F51BF7205s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib1AE5916A7A5E80D46DA6548F51BF7205s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bibD34FC81CC3D174E2A58F797B8DF63E5Fs1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8336859375BEF6C06ADE0C805BFC7D50s1
http://refhub.elsevier.com/S1063-5203(25)00017-X/bib8336859375BEF6C06ADE0C805BFC7D50s1

	Mathematical algorithm design for deep learning under societal and judicial constraints: The algorithmic transparency requi...
	1 Introduction
	1.1 Energy and scaling limitations of deep learning
	1.2 The need for trustworthy deep learning
	1.3 Our contributions
	1.4 Limitations
	1.5 Related work
	1.6 Potential impact and extensions

	2 Trustworthiness framework
	2.1 Societal and judicial requirements
	2.2 Transparency condition
	2.2.1 Digital computations
	2.2.2 Analog computations
	2.2.3 Computability and trustworthiness


	3 Use case for trustworthiness analysis
	3.1 Inverse problems
	3.2 Deep learning
	3.3 Deep learning for inverse problems

	4 Algorithmic solvability of inverse problems
	4.1 Algorithmic non-solvability of inverse problems in Turing model
	4.2 Algorithmic solvability of inverse problems in BSS model
	4.2.1 Real case
	4.2.2 Complex case

	4.3 Comparison of results in Turing and BSS model

	Acknowledgments
	Data availability
	References


