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Despite the success of Deep Learning (DL) serious reliability issues such as non-robustness persist. 
An interesting aspect is, whether these problems arise due to insufficient tools or fundamental 
limitations of DL. We study this question from the computability perspective by characterizing the 
limits the applied hardware imposes. For this, we focus on the class of inverse problems, which, 
in particular, encompasses any task to reconstruct data from measurements. On digital hardware, 
a conceptual barrier on the capabilities of DL for solving finite-dimensional inverse problems 
has in fact already been derived. This paper investigates the general computation framework of 
Blum-Shub-Smale (BSS) machines, describing the processing and storage of arbitrary real values. 
Although a corresponding real-world computing device does not exist, research and development 
towards real number computing hardware, usually referred to by “neuromorphic computing”, 
has increased in recent years. In this work, we show that the framework of BSS machines does 
enable the algorithmic solvability of finite dimensional inverse problems. Our results emphasize 
the influence of the considered computing model in questions of accuracy and reliability.

1. Introduction

We study inverse problems in imaging sciences from the perspective of algorithmic constructability of solutions. Image reconstruc-
tion from measurements is crucial in scientific, industrial, and medical applications such as electron microscopy, seismic imaging, 
magnetic resonance imaging (MRI), and X-ray computed tomography (CT). Various methods to solve inverse problems have been 
introduced, ranging from sparse regularization techniques [42,45,94,110] including compressed sensing [33,34,36,46–48,65] to deep 
learning (DL) techniques [4,27,31,58,91,114].

DL systems learn how to perform reconstruction best by optimizing reconstruction quality based on previous data. They are the 
predominant approach to tackling inverse problems nowadays. Although DL has been applied with great success in various fields such 
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as image classification [59], playing board games [97], natural language processing [30], and protein folding prediction [95], there 
do exist certain drawbacks of this approach, most prominently, its lack of reliability [2]. In a larger context, lack of reliability refers 
to problems regarding safety, security, privacy, and responsibility of DL methods [28,60,71,77,108]. Instabilities towards adversarial 
examples, i.e., the fact that DL methods can be easily misled through minor input perturbations constructed by an adversary, are a 
typical example [37,101,104]. Despite methods to alleviate this instability phenomenon [74,82], a full understanding is still missing 
[63].

The disadvantages may be tolerable in static circumstances but in highly dynamic, safety-critical, and autonomous applications 
they pose a serious risk [70,80]. Integrating a human observer into the DL pipeline [111] severely limits the autonomy of DL methods 
and may not be feasible in certain applications such as autonomous driving. Therefore, incorporating certificates for a desired ap-
plication is a step toward reliable DL, however, DL systems typically operate without ‘hard’ guarantees concerning the accuracy and 
correctness of their output [11,68,78,90,113]. Unfortunately, it is a priori not clear if implementing this process in a DL pipeline is 
possible. Thus it is critical to understand in which circumstances we can solve a given problem by a reliable algorithmic computation. 
Subsequently, the possibility of implementing certificates can be evaluated or the certificate-based approach to achieve reliable DL in 
this strict sense cannot be expected. In this way, we can distinguish between the inherent limitations of DL itself and the fundamental 
limitations of any algorithm tackling a given problem.

Specifically, we study whether the solution of inverse problems – a task often tackled by DL – can in principle be computed. For 
this purpose, we apply the notion of algorithmic solvability, which describes an abstract framework for accurate computations on a 
given computing device. We find that the algorithmic solvability of inverse problems depends on the utilized computing device; on 
digital hardware, algorithmic solvability cannot be achieved, whereas on analog hardware it is potentially feasible. Thus, obtaining 
reliable DL tackling inverse problems may eventually depend on the computing platform.

1.1. Analog and digital computing platforms

The most prominent and universally applied computing platform is digital hardware. Turing machines represent an abstract 
concept of digital machines [105], i.e., they provide a means to study whether it is in principle possible to compute the solution of 
a task algorithmically on a digital computer. Borel first introduced the concept of computability in 1912 [26]. On this basis, Turing 
refined the idea by linking it to an abstract computing device – the Turing machine – and established notions like computable numbers 
and computable functions [105]. Computable numbers constitute a countable, proper subset of the real numbers that can be effectively 
approximated by computable sequences of rational numbers – the natural domain of Turing machines. Many real-world problems 
are of a continuum nature, i.e., their input and output quantities are described by real-valued variables. Hence, these quantities can 
only be approximated but not represented exactly on Turing machines. This dichotomy lies at the core of the non-computability of 
many tasks. Problems, that are not computable by a Turing machine, cannot be solved or even algorithmically approximated in a 
controlled way by any current or future digital computer architecture.

In the framework of Turing machines the algorithmic solvability of finite-dimensional inverse problems was studied in [7,19,41]. 
It was found that any method that runs on digital hardware is subject to certain boundaries when approximating the solution maps of 
inverse problems. Hence, these results establish a fundamental barrier on digital computing devices that also affects DL implemented 
on digital hardware. An interesting question is whether this limitation is connected to the properties of Turing machines or inverse 
problems. In other words, is the result problem-specific or linked to digital hardware? Therefore, we study how powerful the signal 
processing unit must be to enable the algorithmic solution of inverse problems. In the following, we consider and analyze inverse 
problems under a more general (analog) computation model based on exact real number calculations, i.e., arbitrary real numbers 
can be processed and stored. Thus, such a model is not suitable for implementation on digital hardware. One might argue that 
treating computing models beyond standard digital hardware is purely of theoretical interest since such hardware platforms cannot 
be obtained with current (or possibly future) manufacturing capabilities. However, in recent years novel approaches inspired by 
biological neural networks such as neuromorphic computing and signal processing systems have been proposed [40].

Instead of solely relying on binary numbers, electronic neuromorphic systems combine digital and analog computations by incor-
porating real values through electrical values, like current and voltages. Regarding the practical development and implementation of 
neuromorphic hardware platforms, there has been made intriguing progress in industrial research, among others by IBM [62], Intel 
[64] and Samsung [57]. Furthermore, the expected energy savings from deploying artificial intelligence (AI) applications on neuro-
morphic hardware are promising [12,49,75,87,98]. Consequently, neuromorphic computing platforms are a forthcoming premium 
solution for implementing AI applications [83]. Lastly, neuromorphic computing offers advantages compared to digital platforms for 
emerging concepts like “in-memory computing” by design [29,67,84,92]. Another line of research focuses on biocomputing where liv-
ing cells act as computing and signal processing platforms that allow analog computations of human-defined operations [56]. In recent 
years, progress has been made in understanding and implementing analog computing features in biological systems [85,106,109], 
however, still many challenges lie ahead. Finally, we also want to mention the progress in quantum simulations which provide yet 
another approach to analog computations; see [44,53] and the references therein.

In contrast to digital computers and Turing machines, no general mathematical concept to describe universal analog computations 
exists. The Blum-Shub-Smale (BSS) machine [15] is a suitable model to analyze the limits of analog computations; potentially, BSS 
machines yield a mathematical description of a universal analog computer based on exact real number computation. It was conjectured 
in [56] that the mathematical model of BSS machines provides an (abstract) description of biocomputing and neuromorphic systems. 
However, it is not clear whether and to what degree a realization is feasible in practice. Thus, the BSS model is not appropriate to 
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exact real number processing, hardware allows for the algorithmic solution of a given problem. A problem is deemed inherently hard 
and unlikely to be solved on any (future) analog hardware device if it is not algorithmically solvable on BSS machines. Therefore, 
an interesting question is whether the same limitations concerning inverse problems as in the Turing model also arise in the BSS 
model. Intriguingly, we show that the situation is different under the BSS model, namely, the solution maps of inverse problems can 
under certain conditions be computed without restrictions. Therefore, the algorithmic solvability of inverse problems is inherently 
connected to the computing platform.

1.2. Related work

We want to point out that the capabilities of BSS machines compared to Turing machines have already been studied for practically 
relevant tasks such as denial-of-service attacks [17,21,23] and remote state estimation [16]. To translate the theoretical advantages 
of BSS machines in detecting denial-of-service attacks to practice, the concept of a neuromorphic twin of the communication system 
was introduced in [22]. This concept extends the (previously digital) virtual twinning technology, i.e., a method for mapping complex 
communication systems onto suitable hardware platforms, to the neuromorphic domain based on BSS machines [25].

For inverse problems, [7,41] first showed non-computability in the Turing model, followed by [19] in a slightly different setup; we 
refer to [19] for a detailed discussion about the differences. One distinction between the findings in [19] and [7,41] is the employed 
Turing machine in the analysis. In [7,41], Oracle Turing machines were applied, where Turing machines gain access to arbitrary real 
numbers via rational Cauchy sequences provided by an oracle [69]. This is a clear distinction to Turing machines which operate on 
a proper subset of the real numbers – on the computable numbers. However, the results in [7,41] also transfer to the Turing model 
(without oracles).

Nevertheless, the assumption that the input representation is detached from the actual computing device via an oracle is significant. 
The idea of the oracle approach is that the input representation in a computing device will be necessarily inexact. Either the inputs 
are corrupted by noise, measurement error, rounding, etc. or the hardware inherently cannot represent the input exactly. Moreover, 
floating-point arithmetic, a common approach to represent numbers on today’s digital hardware, stores even rational numbers such 
as 1∕3 only approximately. In this sense, the inexact input model aims for a general description of a given task, independent (to 
a certain degree) from the utilized computing device, and any notion of computability on specific hardware assumes the described 
input representation. Therefore, the capabilities of BSS machines for solving inverse problems were studied under inexact input 
representations via an oracle in [7,41] as well and it was found that the same non-computability results arise for BSS machines as for 
Turing machines.

1.3. Results and impact

Our goal is to assess the capabilities and limitations of BSS machines to solve finite-dimensional inverse problems. From our 
perspective, the core strength of BSS machines – to store and process real numbers precisely without error – is neglected when using 
the inexact input model. Indeed, the differences between Turing and BSS machines mainly affect irrational numbers excluded by 
the approximative input representations based on rational numbers. Thus, it is convincing that the same restrictions towards the 
computability of inverse problems hold for BSS machines as for Turing machines in the inexact input model, where only a partial 
power of BSS machines is considered. Our findings show that if BSS machines process real numbers exactly they have strictly greater 
capabilities than Turing machines for solving inverse problems.

For real-valued inverse problems, we establish a clear disparity between the capabilities of BSS and Turing machines. BSS machines 
allow for a solver that can be applied to any inverse problem of a given dimension. Thus, the solver is not connected to a specific 
inverse problem but can handle arbitrary inverse problems of a fixed dimension. In contrast, on Turing machines, the algorithmic 
solvability is limited such that the described solver cannot exist. Nevertheless, less powerful solvers adapted to a specific inverse 
problem may still be realizable on Turing machines. However, they lack the universality of the general solver on BSS machines since 
they apply only to a fixed, pre-defined task. The situation is more intricate in the broader case of complex-valued inverse problems. 
Here, the Turing and BSS models share limitations concerning the algorithmic solvability of finite-dimensional inverse problems. 
However, the limitations in the BSS model can be overcome to a certain degree. Modifications in the problem formulation suffice 
to guarantee BSS solvability while similar modifications do not rectify the negative result in the Turing model. Additionally, the 
algorithmic solvability of an approximate problem is shown in the BSS model. Thus, the Turing and BSS model behave differently 
and exhibit distinct computational barriers for complex-valued inverse problems.

Hence, approaches to solving inverse problems on upcoming analog hardware in the form of neuromorphic devices may poten-
tially have strictly greater capacity than current digital solutions. The implications of our findings concerning DL are two-fold. DL 
implemented on digital hardware is bounded by the limitations of the hardware itself for solving inverse problems. Therefore, reli-
able DL may only be realized in restricted settings, where only a limited set of inverse problems is admissible. In contrast, idealized 
analog hardware in principle allows for reliable DL systems tackling any inverse problem of fixed dimension simultaneously. Thus, DL 
systems implemented on neuromorphic hardware theoretically enable optimal and trustworthy reconstructions in inverse problems 
in general circumstances. Albeit a real-world realization remains an open problem, developing neuromorphic twinning approaches 
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1.4. Outline

A concise overview of real number computing theory is presented in Section 2, followed by an introduction to DL with a focus on 
inverse problems and the capabilities of DL on real number processing hardware in Section 3. Section 4 covers the formal statement 
of our main result about the algorithmic solvability of inverse problems in the real number computing model. Finally, the proofs of 
our findings and a discussion about the implications on today’s solvers conclude the paper in Section 5 and Section 6, respectively.

2. Real number computing

In this section, we motivate the notion of algorithmic solvability and formally introduce a computing model on real numbers.

2.1. Algorithmic solvability

Given a mathematical formulation of a specific problem, a key question is whether a solution exists and, upon existence, how to 
obtain it. It is important to realize that the existence and construction of solutions are separate questions. Although the existence of a 
solution can be proved by explicitly constructing it, equally valid is an approach that deduces the existence logically without specifying 
the solution. In practice, typically a constructive solution is required. One aims to implement the solution strategy on a computer to 
perform the calculations autonomously. This task depends on the feasible algorithmic operations prescribed by the properties of the 
utilized computing device. For instance, we cannot expect exact solutions to real-valued problems on digital hardware, however, an 
approximate solution can be accepted if guarantees regarding accuracy, convergence, and worst-case error are satisfied.

More formally, we have the following dependencies: Given a task or problem expressed in some formal language defining the 
premises of the underlying system, an algorithm is a set of instructions that solves the posed problem under these premises. If an 
algorithm is intended to run on a hardware platform that can only perform specific operations, then the instructions of the algorithm 
and the feasible operations of the hardware need to coincide. In other words, the capabilities of the utilized computing device prescribe 
the admissible operations of the (sought) algorithm. Therefore, the intended hardware clearly defines the capabilities and limitations 
of any suitable algorithm for practical applications. Hence, it is crucial to be aware of the limitations of a given hardware platform 
concerning computing capabilities. In this manner, we can evaluate whether reliable DL is in principle attainable: Reliable DL is 
potentially achievable if the tackled problem is algorithmically solvable on a given hardware platform.

Another related topic is the complexity of an algorithm. Here, the efficiency of algorithms measured in the number of computation 
steps is studied, not only their mere existence. Then, one can classify algorithms according to their complexity and decide which 
suffices practical demands concerning computation time, memory requirements, etc. However, questions of complexity and practical 
applicability are posed only after the algorithmic solvability is established.

2.2. Blum-Shub-Smale machines

In 1989, Blum, Shub, and Smale proposed in [15] a general computing model over an arbitrary ring or field 𝑅: the Blum-Shub-
Smale (BSS) machine, which is the basis of algebraic complexity theory. The BSS model allows us to carry over important concepts 
from classical complexity theory in the Turing machine model to a larger variety of structures, e.g., infinite fields such as ℝ. Here, 
a BSS machine can store arbitrary real numbers, can compute all field operations on “ℝ”, i.e., “+” and “⋅”, and can compare real 
numbers according to the relations “<”, “>”, and “=”. BSS machines therefore provide the mathematical basis for exact real number 
signal processing. Thus, in principle, the BSS model is suitable to investigate the power of analog information processing hardware 
like neuromorphic computing processors.

In essence, BSS machines can be considered a generalization of Turing machines. If 𝑅 is chosen to be ℤ2 = {{0, 1}, +, ⋅}, then 
BSS machines recover the theory of Turing machines. Similar to Turing machines, BSS machines operate on infinite strips of tape 
according to a so-called program. The program is a finite, directed graph with five types of nodes – input, computation, branch, shift, 
and output – associated with different operations. For every admissible input, the output of a BSS machine is calculated according to 
the program in a finite number of steps, i.e., the BSS machine executes its program in finite time and stops. This immediately gives 
rise to the following two definitions.

Definition 2.1. BSS-computable functions are input-output maps Φ of the BSS machine . The output Φ(𝑥) is defined if the BSS 
machine  terminates on input 𝑥 and the output is generated by the program of the BSS machine .

Definition 2.2. A set 𝐴 ⊂ ℝ𝑁 is BSS-decidable if there exists a BSS machine 𝐴 such that, for all 𝑥 ∈ ℝ𝑁 , we have 𝐴(𝑥) = 𝜒𝐴(𝑥), 
i.e., the characteristic function 𝜒𝐴 of the set 𝐴 is BSS-computable.
A set 𝐴 ⊂ℝ𝑛 is BSS-semidecidable if there exists a BSS machine 𝐴 such that 𝐴(𝑥) = 1 for all 𝑥 ∈𝐴 and does not halt otherwise.

For a detailed description of BSS machines and programs running on BSS machines, we refer the reader to [13,14] and references 
therein. In this paper, we study whether BSS machines can compute the reconstruction maps of inverse problems. We prove that 
these reconstruction maps are indeed computable by BSS machines showing that real number signal processing enables algorithmic 
4
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3. Deep learning for inverse problems

Next, we give a short introduction to DL with a particular focus on solving inverse problems [1,66,79,81,91]. For a comprehensive 
depiction of DL theory, we refer to [55] and [10].

3.1. Inverse problems

We consider the following finite-dimensional, underdetermined linear inverse problem:

Given noisy measurements 𝑦 =𝐴𝑥+ 𝑒 ∈ℂ𝑚 of 𝑥 ∈ℂ𝑁, recover 𝑥, (3.1)

where 𝐴 ∈ ℂ𝑚×𝑁, 𝑚 < 𝑁 , is the sampling operator (or measurement matrix), 𝑒 ∈ ℂ𝑚 is a noise vector, 𝑦 ∈ ℂ𝑚 is the vector of mea-

surements, and 𝑥 ∈ ℂ𝑁 is the object to recover (typically a vectorized discrete image). Classical examples from medical imaging are 
magnetic resonance imaging (MRI), where 𝐴 encodes the Fourier transform, and computed tomography (CT), where 𝐴 encodes the 
Radon transform. In addition, the underdetermined setting 𝑚 < 𝑁 is common in many practical applications since the number of 
measurements is severely limited due to time, cost, power, or other constraints.

Different approaches for solving inverse problems exist, a particularly successful is given by deep learning (DL). DL methods to a 
certain extent swept the area of inverse problems in imaging sciences in recent years. A unified framework for image reconstruction 
by manifold approximation as a data-driven supervised learning task is proposed in [114]. In [4], the authors survey methods to 
solve ill-posed inverse problems by combining data-driven models, particularly those based on DL, with domain-specific knowledge 
exploited in physical–analytical models. Approaches to tackle specific inverse problems have been presented for instance in [31]
for limited angle CT, in [58,112] for MRI, in [38] for low-light photography, in [88] for computational microscopy, and in [3] for 
geophysical imaging. In the remainder, we focus on an end-to-end approach, where the goal is to directly learn a mapping from 
measurements 𝑦 to reconstructed data 𝑥; see [81] for further approaches that employ DL at different steps in the processing pipeline, 
e.g., to learn a regularizer. The end-to-end approach represents the most fundamental method since it requires no further problem-
specific knowledge or assumptions.

3.2. Basics of deep learning

The inspiration for DL originates from biology, as it utilizes an architecture called (artificial) neural network mimicking the human 
brain. A neural network consists of a collection of connected units or nodes subdivided into several layers allowing an artificial neural 
network to learn several abstraction levels of the input signal. In its simplest form an L-layer feedforward neural network is a mapping 
Φ ∶ℝ𝑑 →ℝ𝑚 of the form

Φ(𝑥) = 𝑇𝐿𝜌(𝑇𝐿−1𝜌(…𝜌(𝑇1𝑥))), 𝑥 ∈ℝ𝑑 , (3.2)

where 𝑇𝓁 ∶ℝ𝑛𝓁−1 →ℝ𝑛𝓁 , 𝓁 = 1, … , 𝐿, are affine-linear maps

𝑇𝓁𝑥 =𝑊𝓁𝑥+ 𝑏𝓁 , 𝑊𝓁 ∈ℝ𝑛𝓁×𝑛𝓁−1 , 𝑏𝓁 ∈ℝ𝑛𝓁 ,

𝜌 ∶ℝ → ℝ is a non-linear function acting component-wise on a vector, and 𝑛0 = 𝑑, 𝑛𝐿 = 𝑚. The matrices 𝑊𝓁 are called weights, the 
vectors 𝑏𝓁 biases, and the function 𝜌 activation function. A neural network can easily be adapted to work with complex inputs by 
representing the inputs as real vectors consisting of the real and imaginary parts.

Thus, a neural network implements a non-linear mapping parameterized by its weights and biases. The primary goal is to approx-
imate an unknown function based on a given set (of samples) of input-output value pairs. This is typically accomplished by adjusting 
the network’s parameters, i.e., its weights and biases, according to an optimization process; the standard approach so far is stochastic 
gradient descent (via backpropagation [89]). This process is usually referred to as the training of a neural network.

Triggered by the drastic improvements in the computing power of digital computers and the availability of vast amounts of 
training data, the area of DL has seen overwhelming practical progress in the last fifteen years. Deep neural networks (which in fact 
inspired the name “deep learning”), i.e., networks with large numbers of layers, lead to several breakthroughs in many applications 
[30,59,95,97]. Moreover, the current trend toward neuromorphic hardware promises further fundamental developments in this area. 
Therefore, the necessity for a thorough analysis of the mathematical foundations of DL is immanent.

3.3. Deep learning on BSS machines

An obvious question is whether a neural network can be implemented on a BSS machine, in particular, can the network be 
evaluated on a given input? If this is not the case, then BSS machines certainly do not provide the necessary tools to improve DL 
compared to implementations on Turing machines. Therefore, the input-output relation of the network has to be computable, i.e., 
the network has to be a BSS-computable function. Next, we show this is indeed the case under some mild assumptions.

Theorem 3.1. A neural network Φ as defined in (3.2) is a BSS-computable function given that the activation function 𝜌 ∶ℝ → ℝ is BSS-
5
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Proof. The network Φ composes affine linear maps represented by matrix operations (matrix multiplications and vector additions) 
and non-linearities represented by the activation function. Affine linear maps are BSS-computable functions since they are formed 
exclusively through basic field operations (addition and multiplication) that can be executed on the computation nodes of a BSS 
machine. Since the activation function 𝜌 is assumed to be BSS-computable, there does exist a program of a BSS machine that generates 
the input-output relation of Φ which is equivalent to saying that Φ is BSS-computable. □

Remark 3.2. The most common and universally applied activation function is the ReLU activation ReLU(𝑥) = max{𝑥, 0}, which is 
merely a branch condition depending on a comparison, i.e., it can be performed on the branching nodes of a BSS machine. Hence, 
the ReLU activation is a BSS-computable function.

Having established that evaluating a given neural network is feasible on a BSS machine, the next question is whether a specific 
neural network can be trained on a BSS machine to solve inverse problems. Subsequently, we will formalize this problem precisely.

4. Computability of the reconstruction map

The goal of the training process in DL is to obtain a neural network Φ, which approximates the mapping from measurements to the 
original data. An important question is whether Φ exists, and upon existence, can the network be constructed by an algorithm? In other 
words, does a training algorithm exist that computes suitable weights and biases such that Φ performs the intended reconstruction 
reliably? Such a training algorithm can only exist if the underlying inverse problem is algorithmically solvable on the applied hardware 
platform. Note that mere algorithmic solvability does not imply the existence of a practically applicable and efficient algorithm to 
solve inverse problems. Therefore, applying DL to algorithmically solvable problems is still beneficial since it ideally provides a 
generic and straightforward practical approach. On the other hand, algorithmic non-solvability indicates limitations that even DL 
cannot circumvent, e.g., a trade-off between generality and reliability cannot be avoided. Note that algorithms might exist that can 
solve a problem to a certain degree in practice although the problem is not computable. Depending on the hardware platform, the 
algorithm might only work properly for a restricted class of inputs, for a certain accuracy, or without correctness guarantees. Hence, 
understanding the limitations of a given computing device is a necessity if one aims to evaluate the solvability of a certain problem.

4.1. Problem setting

A general solution strategy for inverse problems is to rewrite the model (3.1) in a mathematically more tractable form since (3.1)
is in general ill-posed. Aiming to account for uncertainties of the measurements, a relaxed formulation is considered, which has a 
considerably simpler solution map than the original description (3.1). Typically, the goal is to express (3.1) as an optimization problem 
given a sampling operator 𝐴 ∈ ℂ𝑚×𝑁 and a vector of measurements 𝑦 ∈ ℂ𝑚. There exist various formulations of this optimization 
problem, a straightforward one is given by the least-squares problem

argmin
𝑥∈𝐶𝑁

‖𝐴𝑥− 𝑦‖𝓁2 . (ls)

A minimizer of the least-squares problem can be straightforwardly obtained via the pseudoinverse of 𝐴. Since there exists an algorithm 
in the BSS model that computes the pseudoinverse of an arbitrary matrix (see Appendix B, in particular proof of Theorem 4.11), we 
can conclude that a minimizer of (ls) can be algorithmically computed on BSS machines. Conversely, such an algorithm cannot exist 
on Turing machines [18]. However, the solution of (ls) is generally not unique and the individual solutions tend to display different 
qualitative properties, i.e., not all minimizers of (ls) are of the same value when reconsidering the original problem (3.1). Therefore, 
additional regularization terms, which impose desired characteristics on the solution set, are added to the optimization problem. This 
results in minimization problems such as (quadratically constrained) basis pursuit [35,39]

argmin
𝑥∈ℂ𝑁

‖𝑥‖𝓁1 such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀 (bp)

and unconstrained lasso [9,73,103]

argmin
𝑥∈ℂ𝑁

𝜆‖𝑥‖𝓁1 + ‖𝐴𝑥− 𝑦‖2𝓁2 , (la)

where the magnitude of 𝜀 > 0 and 𝜆 > 0 control the relaxation. The underlying idea is to exploit sparsity in the recovery without 
explicitly forcing sparse solutions via the 𝓁0 norm, which is typically intractable in many applications.

To reconstruct data from any given measurement we need to solve the optimization task described in (bp) or (la). The existence of 
an algorithmic solution presupposes the computability of the reconstruction map. We introduce the following multi-valued functions 
to study the computability of inverse problems: For fixed sampling operator 𝐴 ∈ ℂ𝑚×𝑁 and some fixed optimization parameter 𝜇 > 0
denote by

Ξ𝑃 ,𝐴,𝜇 ∶ℂ𝑚 ⇉ℂ𝑁 (4.1)
6

𝑦↦ 𝑃 (𝐴,𝑦,𝜇)
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the (multi-valued) reconstruction map so that Ξ𝑃 ,𝐴,𝜇(𝑦) represents the set of minimizers for the optimization problem 𝑃 (𝐴, 𝑦, 𝜇) given 
a measurement 𝑦 ∈ ℂ𝑚. For instance, for basis pursuit 𝑃 (𝐴, 𝑦, 𝜇) is described in (bp) with 𝜇 = 𝜀.

Typically, we are not only interested in approximating the reconstruction map of a specific inverse problem associated with fixed 
sampling operator 𝐴 and optimization parameter 𝜇. Instead, we want to approximate the reconstruction map of any inverse problem 
of fixed dimension, i.e., we aim for an algorithm that may be applied to an arbitrary inverse problem described by the optimization 
𝑃 , without adjusting it to specific properties of an individual case. The reconstruction map of these general problems with fixed 
dimension 𝑚 ×𝑁 is given by

Ξ𝑃 ,𝑚,𝑁 ∶ℂ𝑚×𝑁 ×ℂ𝑚 ×ℝ>0 ⇉ℂ𝑁 (4.2)

(𝐴,𝑦,𝜇)↦ 𝑃 (𝐴,𝑦,𝜇)

with Ξ𝑃 ,𝑚,𝑁 (𝐴, 𝑦, 𝜇) representing the set of minimizers of the optimization problem 𝑃 (𝐴, 𝑦, 𝜇) given an optimization parameter 𝜇 > 0, 
a sampling operator 𝐴 ∈ ℂ𝑚×𝑁 , and an associated measurement 𝑦 ∈ ℂ𝑚. Observe that the mappings (4.1) and (4.2) are in general 
set-valued, since the solution of the considered optimization problems, e.g., (bp) and (la), does not need to be unique. However, the 
computability of multi-valued maps is a stronger result than required for algorithmic solvability in practical applications. Indeed, 
computing all feasible solutions is much harder than computing a single one. In most practical circumstances, the user is not interested 
in the whole solution set, but it suffices to obtain exactly one feasible solution. Thus, a hypothetical algorithm should take a sampling 
operator 𝐴 ∈ ℂ𝑚×𝑁 , a measurement 𝑦 ∈ ℂ𝑚, and an optimization parameter 𝜇 > 0 as input and yield exactly one corresponding 
reconstruction 𝑥 ∈ Ξ𝑃 ,𝑚,𝑁 (𝐴, 𝑦, 𝜇).

To formalize this concept, note that for a multi-valued function 𝑓 ∶  ⇉  there exists for each input 𝑥 ∈ dom(𝑓 ) at least one 
output 𝑦∗

𝑥
∈ 𝑓 (𝑥) ⊂ (). A single-valued restriction of 𝑓 can then be defined as the function

𝑓𝑠 ∶ →

𝑥↦ 𝑦∗
𝑥
.

We denote by 𝑓 the set of all the single-valued functions associated with the multi-valued function 𝑓 . Hence, the set 𝑓 encom-
passes all single-valued functions 𝑓𝑠 formed by restricting the output of a multi-valued map 𝑓 to a single value for each input. If at 
least one function in 𝑓 is computable, then we can algorithmically solve the problem proposed by 𝑓 .

Definition 4.1. A problem with an input-output relation described by a multi-valued function 𝑓 ∶  ⇉  is algorithmically solvable 
on a BSS machine or Turing machine if there exists a function 𝑓𝑠 ∈𝑓 that is computable on a BSS or Turing machine, respectively.

Remark 4.2. Different notions for evaluating successful algorithmic computations exist, e.g., the computability of multi-valued map-
pings can also be assessed via the distance to the solution set [7,41]. In the remainder, we base our analysis on Definition 4.1
and compare our findings in the BSS model to the results in the Turing model in [19], where the same computability notion for 
multi-valued mappings is applied.

It is irrelevant which among the possibly infinitely many functions in 𝑓 is computable since any of those is an appropriate 
solution. Even more, it may be the case that most functions in 𝑓 are non-computable; but as long as we succeed in showing 
computability for just one of them, we consider the task algorithmically solvable. For our needs, the relevant set of functions is 
Ξ𝑃 ,𝑚,𝑁

corresponding to the multi-valued function Ξ𝑃 ,𝑚,𝑁 introduced in (4.2). Fig. 1 now illustrates a comparison and summary of 
the described settings.

Our goal is to study the BSS-computability of the reconstruction map Ξ𝑃 ,𝑚,𝑁 for basis pursuit (bp) and lasso optimization (la). 
We show that in contrast to the Turing model a general non-computability result is no longer valid. Under certain circumstances, 
we can even guarantee the computability of at least a function in Ξbp,𝑚,𝑁

and Ξla,𝑚,𝑁
. To that end, we consider real and complex 

domains separately, since the BSS model exhibits different behavior depending on the underlying structure. If not stated otherwise, 
the proofs of the subsequent theorems are presented in Section 5.

4.2. Real inverse problems

First, we consider basis pursuit optimization (bp). In the Turing model, for fixed dimension 𝑚, 𝑁 ∈ℕ, 𝑚 <𝑁 , and any relaxation 
parameter 𝜀 ∈ (0, 1∕4) algorithmic non-solvability of Ξbp,𝑚,𝑁 (⋅, ⋅, 𝜀) has already been established [19]. Moreover, the proof of the 
statement implies that non-computability remains valid in the strictly real case, i.e., the problem posed by Ξℝ

bp,𝑚,𝑁
(⋅, ⋅, 𝜀) is not 

algorithmically solvable, whereby for a multi-valued mapping 𝑓 ∶ ⇉ , 𝑓ℝ denotes its restriction to real inputs and outputs. Unlike 
the Turing model, we can derive BSS-computability in the more general setting of Ξℝ

bp,𝑚,𝑁
with arbitrary regularization parameter.
7

Theorem 4.3. There exists a BSS-computable function Ξ𝑠 ∈Ξℝ
bp,𝑚,𝑁

.
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Fig. 1. Our goal is to study the existence of an algorithm  on an analog computing device which tackles inverse problem described by an optimization process 
𝑃 . In particular,  takes the sampling operator 𝐴 ∈ ℂ𝑚×𝑁 , measurement 𝑦 ∈ ℂ𝑚 , and optimization parameter 𝜇 > 0 and generates a solver which reconstructs data 
𝑥 ∈ Ξ𝑃 ,𝑚,𝑁 (𝐴, 𝑦, 𝜇) given measurement 𝑦. In an abstract mathematical description, the setting boils down to the existence of a BSS machine  taking inputs (𝐴, 𝑦, 𝜇)
and outputting 𝑥. The existence of this BSS machine requires that there exists at least one BSS-computable function Ξ𝑠 ∈Ξ𝑃 ,𝑚,𝑁

.

Remark 4.4. We can conclude that inverse problems described by Ξℝ
bp,𝑚,𝑁

are algorithmically solvable in the BSS model. The special 
case for fixed 𝜀 > 0 is included in Theorem 4.3. Hence, inverse problems via basis pursuit minimization (bp) are algorithmically 
solvable on BSS machines but not on Turing machines.

Theorem 4.3 implies the existence of an algorithm (in the BSS sense), which for every sampling operator 𝐴 and measurement 𝑦
yields a feasible reconstruction 𝑥. Is this algorithm connected to specific properties of basis pursuit minimization or can it be adapted 
to inverse problems with different regularization schemes as well? It turns out that algorithmic solvability is also achievable in the 
lasso formulation (la).

Theorem 4.5. There exists a BSS-computable function Ξ𝑠 ∈Ξℝ
la,𝑚,𝑁

.

Remark 4.6. We can infer that inverse problems described by Ξℝ
la,𝑚,𝑁

are algorithmically solvable in the BSS model, whereas it was 
shown in [19] that inverse problems via square root lasso optimization are not algorithmically solvable on Turing machines for a 
certain range of fixed optimization parameter 𝜆. Square root lasso optimization is defined as

argmin
𝑥∈ℂ𝑁

𝜆‖𝑥‖𝓁1 + ‖𝐴𝑥− 𝑦‖𝓁2 , (sla)

i.e., the only difference to lasso (la) is the power of the 𝓁2 norm. In particular, the analogous proof technique can be applied to derive 
algorithmic non-solvability of lasso minimization. Thus, we also obtain different capabilities of Turing and BSS machines for solving 
inverse problems via lasso minimization. However, square root lasso optimization cannot be directly tackled on BSS machines due to 
the non-computability of the square root function connected to the 𝓁2 norm. Hence, similar modifications as described in Section 4.3
for complex inverse problems must be applied to circumvent this problem.

To summarize, a clear distinction exists between the algorithmic solvability of inverse problems on Turing and BSS machines 
restricted to the real domain. In the BSS model, we can prove algorithmic solvability for various underlying optimization formulations 
such as basis pursuit and lasso, whereas Turing machines do not allow for algorithmic solvability of inverse problems via the same 
optimization problems [19]. Hence, the limitations arising in the Turing model, do not generally occur in the BSS model for solving 
inverse problems algorithmically.

4.3. Complex inverse problems

The study of computability is more evolved in the complex domain. The reason is that BSS machines over complex fields have 
different properties than BSS machines over real numbers. Complex BSS machines treat complex numbers as entities whereas real 
BSS machines rely on real numbers as basic entities. One intrinsic difference is that complex numbers do not form an ordered field. 
Thus, complex BSS machines cannot compare arbitrary complex numbers but only check the equality to zero at their branch nodes. 
Moreover, even basic functions connected to complex numbers such as 𝑧 ↦ℜ(𝑧), 𝑧 ↦ℑ(𝑧), 𝑧 ↦ 𝑧̄, and 𝑧 ↦ |𝑧| are not BSS-computable 
which follows from the fact that ℝ is not a BSS-decidable set in ℂ [14]. Therefore, 𝓁𝑝 norms are not BSS-computable on complex 
inputs as they require to compute the absolute value of the inputs. A possible workaround is representing ℂ by ℝ2 and applying 
operations on real numbers. That is, we consider the real model and employ real BSS machines that take complex inputs 𝑥 in the form 
8

of (ℜ(𝑥), ℑ(𝑥)). Then, the functions 𝑧 ↦ℜ(𝑧) and 𝑧 ↦ℑ(𝑧) are computable on a real BSS machine since it only requires the machine 
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to process the respective part of the representation of 𝑧. Hence, the representation of the complex field influences the capabilities of 
the corresponding BSS machine. Unfortunately, this is still not sufficient to ensure the computability of the 𝓁1 norm

‖𝑥‖𝓁1 =∑
𝑖

||𝑥𝑖|| =∑
𝑖

√
ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2

on real BSS machines, since the square root function 
√
⋅ is not BSS-computable on ℝ. We wish to remark that the non-computability 

of the square root function on BSS machines assumes exact computations, which we consider throughout this work. By relaxing to 
approximate computations the non-computability on BSS machines may be avoided. Similarly, on Turing machines the square root 
function can also not be computed exactly, even on a discrete set such as ℕ since the irrational number 

√
2 cannot be represented 

exactly on a Turing machine. However, the square root function can be approximated to an arbitrary degree on Turing machines, 
i.e., it is a Turing-computable function on ℝ.

Nevertheless, we can observe that slight modifications suffice to obtain a real BSS-computable function. Replacing the 𝓁1 by the 
squared 𝓁2 norm yields a BSS-computable function, since

‖𝑥‖2𝓁2 =∑
𝑖

||𝑥𝑖||2 =∑
𝑖

ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2

can be expressed by elementary field operations and the real BSS-computable functions ℜ and ℑ. This is no exception, similar 
arguments can be made for any 𝓁𝑝 norm when 𝑝 is even. The basis pursuit formulation in (bp) typically promotes sparse solutions 
due to the 𝓁1 norm in the objective function. This property is neglected when replacing the 𝓁1 with the squared 𝓁2 norm in the 
objective. Hence, a potentially BSS-computable substitute in the objective ideally remains close to the original objective function so 
desired properties are maintained. Therefore, we introduce a norm ‖⋅‖∗ which satisfies these requirements and also emphasizes the 
difference between the capabilities of BSS and Turing machines. We define ‖⋅‖∗ on ℂ𝑁 by

‖𝑥‖∗ ∶= 𝑁∑
𝑖=1

||ℜ(𝑥𝑖)||+ ||ℑ(𝑥𝑖)||
Next, we show that by changing the objective in basis pursuit (bp) from 𝓁1 norm to ‖⋅‖∗ we obtain an algorithmically solvable 
optimization problem.

Theorem 4.7. For 𝐴 ∈ℂ𝑚×𝑛, 𝑦 ∈ℂ𝑚 and 𝜀 > 0 consider the optimization problem

argmin
𝑥∈ℂ𝑁

‖𝑥‖∗ such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀. (bp∗)

Then, there exists a BSS-computable function Ξ𝑠 ∈Ξbp∗ ,𝑚,𝑁
.

Remark 4.8. For representations of complex numbers not based on real and imaginary parts, the result of the theorem does not 
necessarily translate to the corresponding BSS machines.

With the same adjustment, i.e., replacing the ‖⋅‖𝓁1 by ‖⋅‖∗, and the analogous proof technique we obtain a similar result for lasso 
optimization (la).

Theorem 4.9. For 𝐴 ∈ℂ𝑚×𝑛, 𝑦 ∈ℂ𝑚 and 𝜆 > 0 consider the optimization problem

argmin
𝑥∈ℂ𝑁

𝜆‖𝑥‖∗ + ‖𝐴𝑥− 𝑦‖2𝓁2 . (la∗)

Then, there exists a BSS-computable function Ξ𝑠 ∈Ξla∗ ,𝑚,𝑁
.

Remark 4.10. We can conclude that inverse problems expressed through the optimization problems (bp∗) and (la∗) with the modified 
objective ‖⋅‖∗ are algorithmically solvable in the BSS model. Hence, there exist algorithms in the BSS sense that for every sampling 
operator 𝐴 and measurement 𝑦 yield a feasible reconstruction 𝑥 ∈ Ξbp∗ ,𝑚,𝑁 and 𝑥 ∈ Ξla∗ ,𝑚,𝑁 , respectively.

Several questions concerning our results arise. In particular, we aim to relate our findings to the algorithmic solvability of inverse 
problems on Turing machines.

• First, how do the modifications of the optimization problems influence the outcomes in the Turing model? Applying the same 
proof technique as in [19] also yields algorithmic non-solvability in the Turing model for the adjusted description in (bp∗) and 
(la∗). We demonstrate the proof technique in Appendix A for (bp∗).

• Second, can we find similar modifications of the optimization problems that allow us to solve inverse problems successfully on a 
Turing machine? Here, the answer appears to be negative. The reasoning for algorithmic non-solvability of basis pursuit and lasso 
9

in the Turing model was not connected to the utilized objective function. Rather, non-computability conditions were established 
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that are fairly independent of the objective or, more specifically, can be easily adapted to certain changes in the objective 
function. The requirements to apply the non-computability conditions are mainly connected to the properties of the solution set 
of a given problem. If the solution set satisfies certain properties, the non-computability statement can also be extended to the 
corresponding problem formulation. Hence, as long as the modified objective function does not promote substantial changes in 
the solution set the non-computability statement remains valid. Moreover, changing the objective entirely may result in a quality 
loss in the computed solutions since the desired properties such as sparsity may be no longer encouraged by the new objective.

• Our final question directly relates to the previous discussion: Can we justify the changes in the objective function resulting in 
the optimization problems (bp∗) and (la∗)? In particular, how do (bp∗) and (la∗) relate to the original problems in (bp) and (la), 
respectively? Although these adjustments would typically not be applied to solve inverse problems in practice, the approach 
tries to maintain the underlying properties of the original formulations. Hence, it is striking that fairly similar inverse problem 
descriptions exist, which can be successfully solved in the BSS model.

Nevertheless, rigorously establishing modifications of the optimization problems is desirable. Therefore, we aim to approximate 
instead of replacing the 𝓁1 norm. Next, this strategy is exemplarily demonstrated for the basis pursuit problem. The proof is provided 
in Appendix B.

Theorem 4.11. Let 𝛽, 𝛾 > 0. For 𝐴 ∈ℂ𝑚×𝑁 , 𝑦 ∈ℂ𝑚 and 𝜀 > 0 consider the optimization problem

argmin
𝑥∈ℂ𝑁

𝑝𝛽,𝛾 (𝑥) such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀 ∧ ‖𝑥‖𝓁2 <√
𝑁𝛽, (p(𝛽, 𝛾))

where 𝑝𝛽,𝛾 is a polynomial satisfying

sup
𝑥∈ℂ𝑁 ∶‖𝑥‖𝓁2<√𝑁𝛽

|||‖𝑥‖𝓁1 − 𝑝𝛽,𝛾 (𝑥)
||| ≤ 𝛾. (4.3)

Then, there exists a BSS-computable function Ξ𝑠 ∈Ξp(𝛽,𝛾),𝑚,𝑁
. Moreover, there also exists a BSS-computable function 𝑔 ∶ ℂ𝑚×𝑁 × ℂ𝑚 ×

ℝ>0 ×ℝ>0 → {0, 1} so that 𝑔(𝐴, 𝑦, 𝜀, 𝛽) = 1 is equivalent to the following statement: For (𝐴, 𝑦, 𝜀) there exists at least one solution of basis 
pursuit (bp) and the solution(s) are contained in 𝐼𝛽 ∶= {𝑥 ∈ℂ𝑁 ∶ ‖𝑥‖𝓁2 <√

𝑁𝛽}.

Remark 4.12. We can conclude that inverse problems described by Ξp(𝛽,𝛾),𝑚,𝑁 are algorithmically solvable in the BSS model. Note 
that the objective 𝑝𝛽,𝛾 in (p(𝛽, 𝛾)) approximates up to an error of 𝛾 the 𝓁1 norm, i.e., the objective of the original basis pursuit 
optimization, on the set 𝐼𝛽 . Therefore, (p(𝛽, 𝛾)) represents an approximation of basis pursuit if its minimizers are contained in 𝐼𝛽 . 
This property can be checked via the function 𝑔 in Theorem 4.11, i.e., before evaluating Ξ𝑠 ∈Ξp(𝛽,𝛾),𝑚,𝑁

for given (𝐴, 𝑦, 𝜀) we can 
algorithmically verify if Ξbp,𝑚,𝑁 (𝐴, 𝑦, 𝜀) ⊂ 𝐼𝛽 . However, the minimizers of (p(𝛽, 𝛾)) and basis pursuit must not agree and we do not 
obtain worst-case bounds on their distance.

Remark 4.13. The algorithmic solvability of Ξp(𝛽,𝛾),𝑚,𝑁 and the existence of 𝑔 imply that there exists a BSS machine 𝛽,𝛾 that computes 
a solution of (p(𝛽, 𝛾)) given 𝐴 ∈ℂ𝑚×𝑛, 𝑦 ∈ℂ𝑚 and 𝜀 > 0 as input, provided that (𝐴, 𝑦, 𝜀) satisfy certain properties. In particular, 𝛽,𝛾

first checks if the solutions of basis pursuit for (𝐴, 𝑦, 𝜀) are contained in 𝐼𝛽 . In this way, we can ensure that the approximation of the 
𝓁1 norm by 𝑝𝛽,𝛾 is valid on the relevant domain. Otherwise, the computation is aborted. If not, a solution of (p(𝛽, 𝛾)) for (𝐴, 𝑦, 𝜀) is 
computed. Note that 𝛽,𝛾 needs to be constructed for fixed approximation accuracy 𝛾 and fixed acceptance domain depending on 
𝐼𝛽 , i.e., 𝛽 and 𝛾 are not part of the input to the machine. In particular, we need to encode a finite set of constants, which depend on 
𝛽 and 𝛾 but cannot be computed by a BSS machine, that enable 𝛽,𝛾 to compute an appropriate polynomial 𝑝𝛽,𝛾 and subsequently 
a minimizer of (p(𝛽, 𝛾)). Therefore, changes in the acceptance domain and approximation accuracy entail a new construction of the 
associated BSS machines 𝛽,𝛾 .

Remark 4.14. In the Turing model, the outlined approach to approximate basis pursuit is not feasible; we refer to Appendix B
for details. Nevertheless, different approximation schemes may exist for Turing machines. However, we have lower bounds on the 
accuracy an algorithm executed on a Turing machine can approximate the minimizers of basis pursuit [19].

5. Proof section

We base our proofs on a connection between BSS machines and semialgebraic sets. After exploring the link between the two 
concepts in more detail, we use it to show the statements in the previous section.

5.1. Semialgebraic sets

The concept of semialgebraic sets, i.e., sets defined by polynomial equations and inequalities, is key for BSS-decidability. Every 
BSS-semidecidable set in ℝ𝑛 can be expressed as a countable union of semialgebraic sets [14]. This follows from the algebraic structure 
of the available basic operations in BSS-algorithms. For an introduction and discussion of semialgebraic sets, we refer to [24]. We 
10

follow mainly [8] when introducing this topic.
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Definition 5.1. The class of semialgebraic sets in ℝ𝑛 is the smallest class of subsets of ℝ𝑛 that contains all sets {𝑥 ∈ℝ𝑛 ∶ 𝑝(𝑥) > 0} with 
real polynomials 𝑝 ∶ℝ𝑛 →ℝ and is in addition closed under finite intersections and unions as well as complements.

Remark 5.2. Any semialgebraic set in ℝ𝑛 can be expressed as the finite union of sets of the form {𝑥 ∈ℝ𝑛 ∣ 𝑝(𝑥) = 0 ∧
⋀

𝑞∈ 𝑞(𝑥) > 0}
with a finite set 𝑝 ∪ of real polynomials 𝑝, 𝑞 ∶ℝ𝑛 →ℝ.

The Tarski-Seidenberg theorem [93,102] states that any projection map on ℝ𝑛 → ℝ𝑚, where 𝑛 ≥ 𝑚, projects semialgebraic sets 
in ℝ𝑛 onto semialgebraic sets in ℝ𝑚. Consequently, quantifier elimination is possible over {ℝ, +, ⋅, 0, 1, >}. This means that every 
first-order formula built over {ℝ, +, ⋅, 0, 1, >}, i.e., a formula involving polynomials with logical operations “∧”, “∨”, and “¬” and 
quantifiers “∀”, “∃”, can be algorithmically transformed into an equivalent quantifier-free formula. Thus, an algorithm exists that, 
given an arbitrary formula (with quantifiers) as input, computes an equivalent formula without quantifiers. This allows us to eliminate 
all quantifiers in semialgebraic sets algorithmically.

For instance, the projection theorem implies that a semialgebraic set defined by formulas of the form

{(𝑥1,… , 𝑥𝑛) ∈ℝ𝑛 ∶ ∃𝑥𝑛+1 such that 𝑝(𝑥1,… , 𝑥𝑛, 𝑥𝑛+1)Δ0}

can be rewritten as a semialgebraic set defined by formulas of the form

{(𝑥1,… , 𝑥𝑛) ∈ℝ𝑛 ∶ 𝑞(𝑥1,… , 𝑥𝑛)Δ0},

where Δ ∈ {<, >, ≤, ≥, =} and 𝑝, 𝑞 are real polynomials.
Furthermore, Tarski found an algorithm to decide the truth of sentences, i.e., formulas that have no free variables, in the first-order 

language built from {ℝ, +, ⋅, 0, 1, >} (cf. [43]). This algorithm directly results from the described transformation of semialgebraic sets 
with quantifiers into semialgebraic sets without quantifiers.

The complexity of the elimination process has been reduced significantly since the original algorithm proposed by Tarski, see 
[43] and references therein. However, for many applications in information theory, the computational complexity of quantifier 
elimination remains too high. In the case of computability results the complexity of the algorithm is not relevant (just its existence), 
hence quantifier elimination provides a useful theoretical tool. Tarski’s algorithm can be computed on a BSS machine, whereas, the 
elimination of quantifiers is generally impossible on Turing machines.

Many problems in real geometry can be formulated as first-order formulas. Tarski-Seidenberg Elimination Theory can then be 
used to solve these problems. For our needs, the crucial observation is that, based on quantifier-elimination, it is possible to develop 
an algorithm for finding a minimizer of a polynomial on a semialgebraic set if there exists one. In this setting, an algorithm is a 
computational procedure that takes an input and produces an output after performing a finite number of admissible operations. 
The feasible operations are the ring or field operations of the considered structure and comparisons between elements provided the 
structure is ordered. By construction, such an algorithm can be executed on a BSS machine.

For further details such as the procedure of the algorithm, we refer to [8]. We only state the input and output relation of the 
algorithm for real polynomials for the convenience of the reader:

Algorithm 1 Global optimization.
Input: a finite set  of real polynomials 𝑝 ∶ℝ𝑛 →ℝ describing a (non-empty) semialgebraic set 𝑆 by a quantifier-free formula Φ and a polynomial 𝑓 ∶ℝ𝑛 →ℝ.
Output: the infimum 𝑤 of 𝑓 on 𝑆 , and a minimizer, i.e. a point 𝑥∗ ∈ 𝑆 such that 𝑓 (𝑥∗) =𝑤 if such a point exists.

A special case of quantifier elimination implies that the non-emptiness of a semialgebraic set can be algorithmically decided in 
the BSS model. Hence, we can check whether the optimization domain is empty before calling the global optimization algorithm. In 
terms of complexity, the algorithm requires ||2𝑛+1𝑑(𝑛) operations to compute the minimizer, where 𝑑 is a bound on the degree 
of the involved polynomials. Thus, informally speaking it does not qualify as a polynomial time algorithm in the input dimension 
𝑛. For a more formal treatment of complexity on BSS machines, including the meaning of polynomial time in this context, we refer 
to [14], albeit we note that structural properties of the associated complexity class FP of functional problems solved in polynomial 
time on BSS machines were hardly studied and remain an open problem [6,14,32]. Finally, let us mention that these capabilities of 
BSS machines also highlight the differences from Turing machines. The analogous discrete problem, commonly known as Hilbert’s 
tenth problem [61], of deciding whether a polynomial equation with integer coefficients and a finite number of unknowns possesses 
integer-valued roots is not solvable on Turing machines [76].

5.2. Proofs

The common proof technique for showing Theorem 4.3, Theorem 4.5, and Theorem 4.7 relies on rewriting the considered problems 
to apply Algorithm 1. This constructive solution strategy implies that a single-valued restriction of the multi-valued problem is BSS-
11

computable. Hence, algorithmic solvability as claimed in the theorems is immediate once this constructive approach is verified.
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5.2.1. Proof of Theorem 4.3

Lemma 5.3. For 𝐴 ∈ℝ𝑚×𝑁 , 𝑦 ∈ℝ𝑚, and 𝜀 > 0 set 𝑆(𝐴,𝑦,𝜀) ∶= {𝑥 ∈ℝ𝑁 ∣ ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀} and consider the multi-valued map

Ψ ∶ℝ𝑚×𝑁 ×ℝ𝑚 ×ℝ≥0 ⇉ℝ𝑁

(𝐴,𝑦, 𝜀)↦ {𝑥∗ ∈ℝ𝑁 ∣ ‖‖𝑥∗‖‖𝓁1 = min
𝑥∈𝑆(𝐴,𝑦,𝜀)

‖𝑥‖𝓁1 and ‖‖𝐴𝑥∗ − 𝑦‖‖𝓁2 ≤ 𝜀}.

Then, there exists a (single-valued) function Ψ𝑠 ∈Ψ that is BSS-computable.

Proof. We need to show that there exists a program for a BSS machine  so that its input-output map Φ is equivalent to a function 
Ψ𝑠 ∈Ψ. Given 𝐴 ∈ℝ𝑚×𝑁 , 𝑦 ∈ℝ𝑚, and 𝜀 > 0 we therefore have to compute 𝑥∗ with

𝑥∗ ∈ argmin
𝑥∈ℝ𝑁

‖𝑥‖𝓁1 such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀. (5.1)

For this, let 𝐴 = (𝑎𝑖,𝑗 ) and note that

‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀 ⇔ ‖𝐴𝑥− 𝑦‖2𝓁2 ≤ 𝜀2 ⇔
𝑚∑
𝑖=1

( 𝑁∑
𝑗=1

𝑎𝑖,𝑗𝑥𝑗 − 𝑦𝑖
)2 − 𝜀2 ≤ 0.

This implies

𝑆(𝐴,𝑦,𝜀) = {𝑥 ∈ℝ𝑁 ∣ ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀} = {𝑥 ∈ℝ𝑁 ∣ 𝑞(𝑥) ≤ 0}

where 𝑞 ∶ℝ𝑁 →ℝ is a polynomial, i.e., 𝑆(𝐴,𝑦,𝜀) is a semialgebraic set with a quantifier-free description.
Now, our goal is to apply the optimization algorithm, Algorithm 1, to find a minimizer of a polynomial on 𝑆(𝐴,𝑦,𝜀). In its current 

form, ‖𝑥‖𝓁1 =∑
𝑖
||𝑥𝑖|| is not a polynomial, however, we can rewrite it as

‖𝑥‖𝓁1 =∑
𝑖

||𝑥𝑖|| =∑
𝑖

𝑥+
𝑖
+ 𝑥−

𝑖

where 𝑥+
𝑖
=max{0, 𝑥𝑖} and 𝑥−

𝑖
= − min{0, 𝑥𝑖}. Observe that 𝑝 ∶ℝ2𝑁 →ℝ, (𝑥+, 𝑥−) ↦

∑
𝑖 𝑥

+
𝑖
+ 𝑥−

𝑖
is indeed a polynomial.

Hence, we can conclude that (5.1) is equivalent to the problem

(𝑤∗, 𝑧∗) ∈ argmin
𝑤,𝑧∈ℝ𝑁 ,
𝑤,𝑧≥0

𝑁∑
𝑖=1

𝑤𝑖 + 𝑧𝑖 such that ‖𝐴(𝑤− 𝑧) − 𝑦‖𝓁2 ≤ 𝜀.

Now it is easy to deduce that the task is to minimize the polynomial 𝑓 ∶ℝ2𝑁 →ℝ, 𝑓 (𝑤, 𝑧) =
∑𝑁

𝑖=1𝑤𝑖 + 𝑧𝑖 on

{(𝑤,𝑧) ∈ℝ2𝑁 ∣ ‖𝐴(𝑤− 𝑧) − 𝑦‖𝓁2 ≤ 𝜀,𝑤 ≥ 0, 𝑧 ≥ 0}

= {(𝑤,𝑧) ∈ℝ2𝑁 ∣ 𝑞(𝑤,𝑧) ≤ 0 ∧
𝑁⋀
𝑖=1

𝑟𝑖(𝑤,𝑧) ≥ 0 ∧
𝑁⋀
𝑖=1

𝑠𝑖(𝑤,𝑧) ≥ 0,} (5.2)

where 𝑞, 𝑟𝑖, 𝑠𝑖 ∶ ℝ2𝑁 → ℝ are polynomials – 𝑞 describes the 𝓁2 norm term whereas 𝑟𝑖(𝑤, 𝑧) = 𝑤𝑖, 𝑠𝑖(𝑤, 𝑧) = 𝑧𝑖 describe the non-
negativity conditions. Consequently,

{(𝑤,𝑧) ∈ℝ2𝑁 ∣ ‖𝐴(𝑤− 𝑧) − 𝑦‖𝓁2 ≤ 𝜀,𝑤 ≥ 0, 𝑧 ≥ 0}

is a semialgebraic set with a quantifier-free description. Thus, we can apply the optimization algorithm, Algorithm 1, to minimize 
the polynomial 𝑓 on a semialgebraic set and obtain a corresponding minimizer (𝑤∗ , 𝑧∗) ∈ ℝ2𝑁 . By construction, the difference 
𝑥∗ = 𝑤∗ − 𝑧∗ minimizes the original problem (5.1). Thus, we can define a program for  which, on input 𝐴 ∈ ℝ𝑚×𝑁 , 𝑦 ∈ ℝ𝑚, and 
𝜀 > 0, yields the polynomials 𝑞, 𝑟𝑖, 𝑠𝑖 specified in (5.2), uses Algorithm 1 to obtain a minimizer (𝑤∗, 𝑧∗) of 𝑓 , and finally outputs the 
solution 𝑥∗ =𝑤∗ − 𝑧∗. This completes the proof. □

5.2.2. Proof of Theorem 4.5

Lemma 5.4. For 𝐴 ∈ℝ𝑚×𝑁 , 𝑦 ∈ℝ𝑚, and 𝜆 > 0 consider the multi-valued map

Ψ ∶ℝ𝑚×𝑁 ×ℝ𝑚 ×ℝ≥0 ⇉ℝ𝑁

(𝐴,𝑦, 𝜀)↦ {𝑥∗ ∈ℝ𝑁 ∣ ‖‖𝑥∗‖‖𝓁1 = min
𝑥∈ℝ𝑁

𝜆‖𝑥‖𝓁1 + ‖𝐴𝑥− 𝑦‖2𝓁2}.
12

Then, there exists a (single-valued) function Ψ𝑠 ∈Ψ that is BSS-computable.
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Proof. We need to show that there exists a program for a BSS machine  so that its input-output map Φ is equivalent to a function 
Ψ𝑠 ∈Ψ. Given 𝐴 ∈ℝ𝑚×𝑁 , 𝑦 ∈ℝ𝑚, and 𝜀 > 0 we therefore have to compute 𝑥∗ with

𝑥∗ ∈ argmin
𝑥∈ℝ𝑁

𝜆‖𝑥‖𝓁1 + ‖𝐴𝑥− 𝑦‖2𝓁2 . (5.3)

For this, let 𝐴 = (𝑎𝑖,𝑗 ) and note that

𝜆‖𝑥‖𝓁1 + ‖𝐴𝑥− 𝑦‖2𝓁2 = 𝜆
∑
𝑖

||𝑥𝑖||+ 𝑚∑
𝑖=1

( 𝑁∑
𝑗=1

𝑎𝑖,𝑗𝑥𝑗 − 𝑦𝑖
)2

= 𝜆
∑
𝑖

𝑥+
𝑖
+ 𝑥−

𝑖
+

𝑚∑
𝑖=1

( 𝑁∑
𝑗=1

𝑎𝑖,𝑗 (
∑
𝑖

𝑥+
𝑖
− 𝑥−

𝑖
) − 𝑦𝑖

)2
where 𝑥+

𝑖
=max{0, 𝑥𝑖} and 𝑥−

𝑖
= − min{0, 𝑥𝑖}. This implies that a solution of (5.3) can be obtained via

(𝑤∗, 𝑧∗) ∈ argmin
𝑤,𝑧∈ℝ𝑁 ,
𝑤,𝑧≥0

𝜆
∑
𝑖

𝑤∗
𝑖
+ 𝑧∗

𝑖
+

𝑚∑
𝑖=1

( 𝑁∑
𝑗=1

𝑎𝑖,𝑗 (
∑
𝑖

𝑤∗
𝑖
− 𝑧∗

𝑖
) − 𝑦𝑖

)2
. (5.4)

as 𝑥∗ =𝑤∗ − 𝑧∗. Now, consider the polynomial 𝑓 ∶ℝ2𝑁 →ℝ given by

𝑓 (𝑤,𝑧) = 𝜆
∑
𝑖

𝑤𝑖 + 𝑧𝑖 +
𝑚∑
𝑖=1

( 𝑁∑
𝑗=1

𝑎𝑖,𝑗 (
∑
𝑖

𝑤𝑖 − 𝑧𝑖) − 𝑦𝑖
)2

and the semialgebraic set with a quantifier-free description

{(𝑤,𝑧) ∈ℝ2𝑁 ∣ 𝑤 ≥ 0, 𝑧 ≥ 0}

= {(𝑤,𝑧) ∈ℝ2𝑁
𝑁⋀
𝑖=1

𝑟𝑖(𝑤,𝑧) ≥ 0 ∧
𝑁⋀
𝑖=1

𝑠𝑖(𝑤,𝑧) ≥ 0},

where 𝑟𝑖, 𝑠𝑖 ∶ ℝ2𝑁 → ℝ, 𝑟𝑖(𝑤, 𝑧) = 𝑤𝑖, 𝑠𝑖(𝑤, 𝑧) = 𝑧𝑖 are polynomials describing the non-negativity conditions. We can apply the op-
timization algorithm, Algorithm 1, to find a minimizer (𝑤∗, 𝑧∗) ∈ ℝ2𝑁 of 𝑓 on the semialgebraic set specified by the polynomials 
𝑟𝑖, 𝑠𝑖. By construction (𝑤∗, 𝑧∗) is a solution of (5.4) and the difference 𝑥∗ =𝑤∗ − 𝑧∗ is a sought solution of (5.3). Consequently, there 
exists a program for  which, on input 𝐴 ∈ℝ𝑚×𝑁 , 𝑦 ∈ℝ𝑚, and 𝜆 > 0, yields the polynomials 𝑟𝑖, 𝑠𝑖 and uses Algorithm 1 to obtain a 
minimizer (𝑤∗, 𝑧∗) of 𝑓 , and finally outputs the solution 𝑥∗. This completes the proof. □

5.2.3. Proof of Theorem 4.7

Lemma 5.5. For 𝐴 ∈ℂ𝑚×𝑁 , 𝑦 ∈ℂ𝑚, and 𝜀 > 0 set 𝑆(𝐴,𝑦,𝜀) ∶= {𝑥 ∈ℂ𝑁 ∣ ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀} and consider the multi-valued map

Ψ ∶ℂ𝑚×𝑁 ×ℂ𝑚 ×ℝ≥0 ⇉ℂ𝑁

(𝐴,𝑦, 𝜀)↦ {𝑥∗ ∈ℂ𝑁 ∣ ‖‖𝑥∗‖‖∗ = min
𝑥∈𝑆(𝐴,𝑦,𝜀)

‖𝑥‖∗ and ‖‖𝐴𝑥∗ − 𝑦‖‖𝓁2 ≤ 𝜀}.

Then, there exists a (single-valued) function Ψ𝑠 ∈Ψ that is BSS-computable.

Proof. We need to show that there exists a program for a real BSS machine  so that its input-output map Φ is equivalent to a 
function Ψ𝑠 ∈Ψ. Given 𝐴 ∈ ℂ𝑚×𝑁 , 𝑦 ∈ ℂ𝑚, and 𝜀 > 0, whereby each complex element is represented by its real and imaginary 
part, we have to compute 𝑥∗ with

𝑥∗ ∈ argmin
𝑥∈ℂ𝑁

‖𝑥‖∗ such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀. (5.5)

Let 𝐴 = (𝑎𝑖,𝑗 ) and note that

‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀 ⇔ ‖𝐴𝑥− 𝑦‖2𝓁2 ≤ 𝜀2 ⇔
𝑚∑
𝑖=1

(||||||
𝑁∑
𝑗=1

𝑎𝑖,𝑗𝑥𝑗 − 𝑦𝑖

||||||
)2

− 𝜀2 ≤ 0 (5.6)

and for fixed 𝑖 ∈ {1, … , 𝑚}(||| 𝑁∑
𝑎 𝑥 − 𝑦

|||)2

=

(
ℜ

(
𝑁∑

𝑎 𝑥 − 𝑦

))2

+

(
ℑ

(
𝑁∑

𝑎 𝑥 − 𝑦

))2
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𝑗=1
𝑖,𝑗 𝑗 𝑖
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=

(
𝑁∑
𝑗=1

ℜ(𝑎𝑖,𝑗 )ℜ(𝑥𝑗 ) −ℑ(𝑎𝑖,𝑗 )ℑ(𝑥𝑗 ) −ℜ(𝑦𝑖)

)2

+

(
𝑁∑
𝑗=1

ℜ(𝑎𝑖,𝑗 )ℑ(𝑥𝑗 ) +ℑ(𝑎𝑖,𝑗 )ℜ(𝑥𝑗 ) −ℑ(𝑦𝑖)

)2

. (5.7)

Combining (5.6) and (5.7) yields

‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀 ⇔
𝑚∑
𝑖=1

(
𝑁∑
𝑗=1

ℜ(𝑎𝑖,𝑗 )ℜ(𝑥𝑗 ) −ℑ(𝑎𝑖,𝑗 )ℑ(𝑥𝑗 ) −ℜ(𝑦𝑖)

)2

+

(
𝑁∑
𝑗=1

ℜ(𝑎𝑖,𝑗 )ℑ(𝑥𝑗 ) +ℑ(𝑎𝑖,𝑗 )ℜ(𝑥𝑗 ) −ℑ(𝑦𝑖)

)2

− 𝜀2 ≤ 0,

i.e., we can identify the set {𝑥 ∈ ℂ𝑁 | ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀} with {𝑥 ∈ ℝ2𝑁 |𝑞(𝑥) ≤ 0} where 𝑞 ∶ ℝ2𝑁 → ℝ is a polynomial. Hence, {𝑥 ∈
ℂ𝑁 | ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀} can be represented by a (real) semialgebraic set with a quantifier-free description. To use the optimization 
algorithm, Algorithm 1, it remains to show that the objective function in (5.5) is a real polynomial 𝑓 ∶ℝ2𝑁 →ℝ.

However, the objective function ‖⋅‖∗ is not a polynomial (due to the absolute values in its definition). By applying the same 
workaround as in the proof of Lemma 5.3 – rewriting the absolute value as the sum of two variables – we obtain that

‖𝑥‖∗ =∑
𝑖

||ℜ(𝑥𝑖)||+ ||ℑ(𝑥𝑖)|| =∑
𝑖

ℜ(𝑥𝑖)+ +ℜ(𝑥𝑖)− +ℑ(𝑥𝑖)+ +ℑ(𝑥𝑖)−,

where 𝑥+
𝑖
=max{0, 𝑥𝑖} and 𝑥−

𝑖
= − min{0, 𝑥𝑖}. Thus, ‖⋅‖∗ can be represented by a polynomial 𝑝 ∶ℝ4𝑁 →ℝ,

𝑝(ℜ(𝑥𝑖)+,ℜ(𝑥𝑖)−,ℑ(𝑥𝑖)+,ℑ(𝑥𝑖)−) =
∑
𝑖

ℜ(𝑥𝑖)+ +ℜ(𝑥𝑖)− +ℑ(𝑥𝑖)+ +ℑ(𝑥𝑖)−.

Therefore, the same reasoning as in the real case shows that a minimizer 𝑥̂ ∈ℝ2𝑁 of ‖⋅‖∗ on {𝑥 ∈ℝ2𝑁 |𝑞(𝑥) ≤ 0} can be algorithmically 
computed. The sought minimizer 𝑥∗ ∈ℂ𝑁 of (5.5) is then simply 𝑥̂, whereby the elements in 𝑥̂ are considered as the real and imaginary 
parts of 𝑥∗. □

6. Discussion

Our findings have noteworthy implications concerning the solvers of finite-dimensional inverse problems. In particular, they allow 
us to characterize the boundaries of any general algorithm applied to solve this class of inverse problems. More precisely, we examined 
the limits of any algorithmic computation implemented on a specific computing device imposed by the hardware. Thus, any solver 
implemented on the given computing device is subject to these restrictions. On digital hardware, which is the currently predominant 
hardware platform, the algorithmic solvability via basis pursuit (bp) and lasso (la) is limited [7,19,41]. Our findings indicate less 
restrictive characteristics on analog hardware described by the mathematical model of BSS machines. First, algorithmic solvability 
on BSS machines of inverse problems can be established when restricting to the real domain. Furthermore, we can find modifications 
(bp∗), (la∗), and (p(𝛽, 𝛾)) that allow for algorithmic solvability of complex inverse problems on BSS machines while staying ‘close’ 
to the original basis pursuit and lasso problems. At the same time, the algorithmic non-solvability on Turing machines, i.e., digital 
computers, persists. Hence, the utilized computing device strongly impacts the existence and capabilities of solvers applied to inverse 
problems. What are the effects of these results on current solution techniques?

Today’s solvers are in general implemented on digital hardware. Thus, they are subject to the limitations of digital hardware and 
even improving the solvers will not suffice to circumvent the imposed boundaries. Therefore, DL on digital hardware as the premium 
approach to solving inverse problems is subject to these limitations. This imposes restrictions on the reliability and trustworthiness of 
DL on digital hardware for solving inverse problems. In particular, a general and reliable DL solver for inverse problems cannot exist 
if formal proof of correctness or a certificate for the output is expected. Future developments in hardware technology (as described 
in Section 1.1) to analog hardware may enable more powerful solvers. Here, the question is whether the BSS model is an appropriate 
model to describe the capabilities of the upcoming analog hardware solution. Although a BSS machine is certainly an idealized 
model, due to exact real number processing, an important point is whether and to what degree these models can be implemented and 
approximated. In particular, the effects of noisy computations and the realization of approximative computing must be evaluated. 
For now, in an idealized theoretical setting modeled by BSS machines, analog hardware offers a platform for potentially reliable DL.

This is even more relevant since recently policymakers proposed guidelines and regulations for AI models including DL to counter 
their lack of trustworthiness and the resulting potential for harmful outcomes. Among the most influential ones are the European 
AI Act and the G7 Hiroshima Leaders Communiqué with demands such as algorithmic transparency, i.e., comprehensible and trans-
parent algorithmic computations in AI [50,54]. For inverse problems, we can conclude that strict conformance with algorithmic 
transparency may ultimately hinge on the hardware platform [20]. In the bigger picture, the need for trustworthiness and reliability 
goes beyond AI applications – any technology interfering with the critical infrastructure of our modern society is affected [51,52]. 
14

Hence, understanding the capabilities and limits of computing platforms is crucially importance.
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Appendix A. Algorithmic non-solvability in the Turing model

In this section, we show that inverse problems expressed through the optimization problem

argmin
𝑥∈ℂ𝑁

‖𝑥‖∗ such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀, (bp∗)

are not algorithmically solvable in the Turing model, where the norm ‖⋅‖∗ is given by

‖𝑥‖∗ ∶= 𝑁∑
𝑖

||ℜ(𝑥𝑖)||+ ||ℑ(𝑥𝑖)|| .
Theorem A.1. For 𝜀 ∈ (0, 1), the problem described by Ξbp∗ ,𝑚,𝑁,𝜀 is not algorithmically solvable on a Turing machine.

First, we introduce the necessary notions describing Turing-computable functions.

A.1. Preliminaries from computation theory

We refer to [5,86,99,107] for a detailed introduction to the topic. Here, we only provide a concise overview, starting with the 
computability of (real) numbers on Turing machines.

Definition A.2. A sequence (𝑟𝑘)𝑘∈ℕ of rational numbers is computable, if there exist three recursive functions 𝑎, 𝑏, 𝑠 ∶ ℕ →ℕ such that 
𝑏(𝑘) ≠ 0 for all 𝑘 ∈ ℕ and

𝑟𝑘 = (−1)𝑠(𝑘) 𝑎(𝑘)
𝑏(𝑘)

for all 𝑘 ∈ℕ.

Definition A.3.

(1) A number 𝑥 ∈ℝ is computable if there exists a computable sequence of rational numbers (𝑟𝑘)𝑘∈ℕ such that

||𝑟𝑘 − 𝑥|| ≤ 2−𝑘 for all 𝑘 ∈ℕ.

(2) A vector 𝑣 ∈ℝ𝑛 is computable if each of its components is computable.
(3) A sequence (𝑥𝑛)𝑛∈ℕ ⊂ℝ is computable if there exists a computable double-indexed sequence {𝑟𝑛,𝑘}𝑛,𝑘∈ℕ ⊂ℚ such that

||𝑟𝑛,𝑘 − 𝑥𝑛
|| ≤ 2−𝑘 for all 𝑘, 𝑛 ∈ ℕ.

Next, we will define the computability of a function via Banach-Mazur computability. This is in fact the weakest form of com-
putability on a Turing machine in our setting, i.e., if a function is not Banach–Mazur computable, it is not computable with respect 
to any other reasonable notion of computability on a Turing machine.

Definition A.4 (Banach-Mazur computability). A function 𝑓 ∶ 𝐼 → ℝ𝑛
𝑐
, 𝐼 ⊂ ℝ𝑚

𝑐
, is said to be Banach-Mazur computable, if 𝑓 maps 
15

computable sequences (𝑡𝑛)𝑛∈ℕ ⊂ 𝐼 onto computable sequences (𝑓 (𝑡𝑛))𝑛∈ℕ ⊂ℝ𝑛
𝑐
.
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A.1.1. Proof sketch

To prove algorithmic non-solvability in Theorem A.1, we will apply non-approximability conditions for optimization problems 
that were introduced in [19] following a proof technique established in [41].

Lemma A.5. Consider for the optimization problem 𝑃 with optimization parameter 𝜇 > 0 the multi-valued mapping Ξ𝑃 ,𝑚,𝑁,𝜇 defined by

Ξ𝑃 ,𝑚,𝑁,𝜇 ∶ℂ𝑚×𝑁 ×ℂ𝑚 ⇉ℂ𝑁

(𝐴,𝑦)↦ 𝑃 (𝐴,𝑦,𝜇).

Choose an arbitrary single-valued restriction Ψ𝑠 ∈ Ξ𝑃 ,𝑚,𝑁,𝜇
and Ω ⊆ dom(Ψ𝑠) = {𝜔 = (𝐴, 𝑦) ∈ ℂ𝑚×𝑁 × ℂ𝑚} | 𝑃 (𝜔, 𝜇) ≠ ∅}. Further, 

suppose that there are two computable sequences (𝜔1
𝑛
)𝑛∈ℕ, (𝜔2

𝑛
)𝑛∈ℕ ⊂Ω satisfying the following conditions:

(a) There are sets 𝑆1, 𝑆2 ⊂ℂ𝑁 and 𝜅 > 0, 𝜅 ∈ℚ such that inf𝑥1∈𝑆1 ,𝑥2∈𝑆2 ‖‖𝑥1 − 𝑥2‖‖𝓁2 > 𝜅 and Ψ𝑠(𝜔𝑗
𝑛) ∈ 𝑆𝑗 for 𝑗 = 1, 2.

(b) There exists 𝜔∗ ∈ Ω such that ‖‖‖𝜔𝑗
𝑛 −𝜔∗‖‖‖𝓁2 ≤ 2−𝑛 for all 𝑛 ∈ ℕ, 𝑗 = 1, 2.

In addition, let Ψ ∶ ΩΨ →ℂ𝑁 , Ω ⊂ΩΨ ⊂ℂ𝑚×𝑁 ×ℂ𝑚, be an arbitrary function with

sup
𝜔∈Ω

‖Ψ𝑠(𝜔) − Ψ(𝜔)‖𝓁2 < 𝜅

8
.

Then Ψ is not Banach-Mazur computable.

Verifying the assumptions of Lemma A.5 for 𝜀 ∈ (0, 1) is sufficient to obtain Theorem A.1. We will only sketch the approach 
to demonstrate algorithmic non-solvability in the Turing model, however, a more thorough analysis also yields algorithmic non-
approximability for a certain range of optimization parameters. The construction of the sequences satisfying conditions (𝑎) and (𝑏)
in Lemma A.5 relies on a characterization of the solution set. The same properties of the solution set as in the original basis pursuit 
problem can be derived by adapting the proof technique in [41, Appendix]) to the (bp∗) formulation.

Lemma A.6. Let 𝑁 ≥ 2 and consider (bp∗) for

𝐴 =
(
𝑎1 𝑎2 … 𝑎𝑁

)
∈ℂ1×𝑁, 𝑦 = 1, 𝜀 ∈ [0,1),

where 𝑎𝑗 > 0 for 𝑗 = 1, … , 𝑁 . Then the set of solutions of bp∗ is given by

𝑁∑
𝑗=1

(
𝑡𝑗 (1 − 𝜀)𝑎−1

𝑗

)
𝑒𝑗 , 𝑠.𝑡. 𝑡𝑗 ∈ [0,1],

𝑁∑
𝑗=1

𝑡𝑗 = 1,

and 𝑡𝑗 = 0 if 𝑎𝑗 <max
𝑘

𝑎𝑘,

where {𝑒𝑗}𝑁𝑗=1 is the canonical basis of ℂ𝑁 .

Finally, using Lemma A.6 the sequences establishing Banach-Mazur non-computability of any map Ψ𝑠 ∈ Ξbp∗ ,𝑚,𝑁,𝜀 for 𝜀 ∈ (0, 1)
can be constructed exactly as for (bp) in [19, Proof of main result] so that Theorem A.1 follows.

Appendix B. Proof of Theorem 4.11

In this section, we prove Theorem 4.11. First, we introduce some preliminary results starting with the Weierstrass approximation 
theorem.

Theorem B.1. Let 𝑓 ∶ [𝑎, 𝑏] →ℝ be a continuous function and [𝑎, 𝑏] ⊂ℝ an interval. For every 𝛾 > 0, there exists a polynomial 𝑝𝛾 such that

sup
𝑥∈[𝑎,𝑏]

|||𝑓 (𝑥) − 𝑝𝛾 (𝑥)
||| < 𝛾.

Remark B.2. A constructive proof, see e.g. [72], of the Weierstrass approximation theorem can be established via Bernstein polyno-
mials

𝐵𝑛(𝑥,𝑓 ) ∶=
𝑛∑

𝑘=0
𝑓

(
𝑘

𝑛

)(
𝑛

𝑘

)
𝑥𝑘(1 − 𝑥)𝑛−𝑘 of degree 𝑛 ∈ ℕ
16

associated to a real-valued function 𝑓 ∈ 𝐶([0, 1]). In particular, for 𝛾 > 0 we have for any 𝑥 ∈ [0, 1] that
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||𝐵𝑛(𝑥,𝑓 ) − 𝑓 (𝑥)|| ≤ 𝛾 if 𝑛 ≥
‖𝑓‖∞
𝛿2𝛾

, (B.1)

where 𝛿 > 0 satisfies for all 𝑥, 𝑦 ∈ [0, 1]:

|𝑥− 𝑦| ≤ 𝛿 ⟹ |𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝛾

2
.

Note that for any 𝛾 > 0, a corresponding 𝛿 > 0 exists due to the uniform continuity of 𝑓 on [0, 1]. By considering the function 
Φ ∶ [0, 1] → [𝑎, 𝑏] given by

𝜙(𝑥) = (𝑏− 𝑎)𝑥+ 𝑎,

we can extend (B.1) to real-valued functions 𝑔 ∈ 𝐶([𝑎, 𝑏]) on arbitrary intervals [𝑎, 𝑏], i.e., for 𝛾 > 0 we have for any 𝑥 ∈ [𝑎, 𝑏] that|||𝐵𝑛(𝜙−1(𝑥), 𝑔◦𝜙) − 𝑔(𝑥)||| ≤ 𝛾 if 𝑛 ≥
‖𝑔◦𝜙‖∞

𝛿2𝛾
,

where 𝛿 > 0 satisfies for all 𝑥, 𝑦 ∈ [𝑎, 𝑏]:

|𝑥− 𝑦| ≤ 𝛿 ⟹ |(𝑔◦𝜙)(𝑥) − (𝑔◦𝜙)(𝑦)| ≤ 𝛾

2
.

Our goal is to approximate the objective of basis pursuit optimization (bp), i.e., the 𝓁1 norm, by a polynomial on a suitable domain 
𝐼 ⊂ℂ𝑁 . In particular, we want 𝐼 to contain the solutions of (bp) so that the optimization on the approximate objective ideally leads to 
a solution of the original problem, albeit this cannot be guaranteed. After identifying 𝐼 , we can invoke Theorem B.1 and Remark B.2
to construct the sought polynomial. Hence, the first step is to find a domain satisfying our conditions. Via the pseudoinverse, we can 
construct 𝐼 explicitly. In particular, we will use the following fact [100]: For 𝐴 ∈ℂ𝑚×𝑁 and 𝑦 ∈ℂ𝑚 the minimal 𝓁2 norm solution of

argmin
𝑥∈ℂ𝑁

‖𝐴𝑥− 𝑦‖𝓁2 (B.2)

is given by 𝐴†𝑦, where 𝐴† ∈ℂ𝑁×𝑚 denotes the pseudoinverse of 𝐴.

Lemma B.3. Let 𝐴 ∈ℂ𝑚×𝑁 , 𝑦 ∈ℂ𝑚 and 𝜀 > 0 and consider

argmin
𝑥∈ℂ𝑁

‖𝑥‖𝓁1 such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀. (B.3)

If the solution set is not empty, then the solution set is contained in 𝐼 = {𝑥 ∈ℂ𝑁 ∶ ‖𝑥‖𝓁2 <√
𝑁

‖‖‖𝐴†𝑦
‖‖‖𝓁2}.

Proof. Set 𝑥̂ =𝐴†𝑦. If ‖𝐴𝑥̂− 𝑦‖𝓁2 > 𝜀, then (B.2) implies that there does not exist a minimizer of (B.3) for the given set of parameters. 
Hence, we assume ‖𝐴𝑥̂− 𝑦‖𝓁2 ≤ 𝜀 so that 𝑥̂ satisfies the constraint of (B.3). Note that ‖𝑥‖𝓁1 ≥ ‖𝑥‖𝓁2 and ‖𝑥‖𝓁1 ≤√

𝑛‖𝑥‖𝓁2 for all 
𝑥 ∈ℂ𝑛. Thus, ‖𝑧‖𝓁2 >√

𝑁 ‖𝑥̂‖𝓁2 entails that

‖𝑧‖𝓁1 ≥ ‖𝑧‖𝓁2 >√
𝑁 ‖𝑥̂‖𝓁2 ≥ ‖𝑥̂‖𝓁1

for 𝑧 ∈ℂ𝑁 , i.e., 𝑧 is not a minimizer of (B.3). Therefore, the optimization problem

argmin
𝑥∈ℂ𝑁

‖𝑥‖𝓁1 such that ‖𝐴𝑥− 𝑦‖𝓁2 ≤ 𝜀 ∧ ‖𝑥‖𝓁2 <√
𝑁 ‖𝑥̂‖𝓁2

is equivalent to (B.3) and its minimizers are contained in 𝐼 . □

Now, we turn to the approximation of the 𝓁1 norm via polynomials.

Lemma B.4. Let 𝛽 > 0. For every 𝛾 > 0, there exists a polynomial 𝑝𝛽,𝛾 such that

sup
𝑥∈ℂ𝑛∶‖𝑥‖𝓁2<√𝑛𝛽

|||‖𝑥‖𝓁1 − 𝑝𝛽,𝛾 (ℜ(𝑥),ℑ(𝑥))||| < 𝛾.

The polynomial 𝑝𝛽,𝛾 can be explicitly expressed as

𝑝𝛽,𝛾 (ℜ(𝑥),ℑ(𝑥)) = 1
(𝑛𝛽)2𝑘−1

𝑘∑
𝑗=0

√
𝑗

𝑘

(
𝑘

𝑗

) 𝑛∑
𝑖=1

(
ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2

)𝑗(
𝑛2𝛽2 −ℜ(𝑥𝑖)2 −ℑ(𝑥𝑖)2

)𝑘−𝑗
, (B.4)

8 5
17

where 𝑘 ≥ 4𝑛 𝛽

𝛾5
is required.



Applied and Computational Harmonic Analysis 74 (2025) 101719H. Boche, A. Fono and G. Kutyniok

Proof. Let 𝑥 ∈ℂ𝑛 such that ‖𝑥‖𝓁2 <√
𝑛𝛽 holds. Then,

‖𝑥‖𝓁1 ≤√
𝑛‖𝑥‖𝓁2 < 𝑛𝛽

so that

𝑛𝛽 > ‖𝑥‖𝓁1 = 𝑛∑
𝑖=1

||𝑥𝑖|| = 𝑛∑
𝑖=1

√
ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2

and in particular

𝑛𝛽 >

√
ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2 for all 𝑖 = 1,… , 𝑛. (B.5)

Next, we want to invoke Theorem B.1 and Remark B.2 to approximate 
√
⋅ on the interval [0, 𝑛2𝛽2]. To that end, let 𝑔(𝑥) =

√
𝑥 on 

[0, 𝑛2𝛽2] and 𝜙(𝑥) = 𝑛2𝛽2𝑥 on [0, 1]. Observe that (𝑔◦𝜙)(𝑥) = 𝑛𝛽
√
𝑥 so that ‖𝑔◦𝜙‖∞ = 𝑛𝛽 and

|||𝑛𝛽√𝑥− 𝑛𝛽
√
𝑦
|||2 ≤ 𝑛2𝛽2

|||√𝑥−
√
𝑦
||| |||√𝑥+

√
𝑦
||| = 𝑛2𝛽2 |𝑥− 𝑦| for all 𝑥, 𝑦 ∈ [0,1],

i.e., we obtain

|𝑥− 𝑦| ≤ 1
𝑛2𝛽2

(
𝛾

2𝑛

)2
=∶ 𝛿 ⟹ |(𝑔◦𝜙)(𝑥) − (𝑔◦𝜙)(𝑦)| ≤ 𝛾

2𝑛
.

Hence, applying Remark B.2 yields that for all 𝑥, 𝑦 ∈ [0, 𝑛2𝛽2]

|||𝐵𝑘(𝜙−1(𝑥), 𝑔◦𝜙) − 𝑔(𝑥)||| ≤ 𝛾

𝑛
if 𝑘 ≥

𝑛𝛽

𝛿2 𝛾

𝑛

= 4𝑛8𝛽5

𝛾5
.

Thus, due to (B.5)

sup
𝑥∈ℂ𝑛∶‖𝑥‖𝓁2<√𝑛𝛽

|||||‖𝑥‖𝓁1 −
𝑛∑

𝑖=1
𝐵𝑘(𝜙−1(ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2), 𝑔◦𝜙)

|||||
=
|||||

𝑛∑
𝑖=1

√
ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2 −𝐵𝑘(𝜙−1(ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2), 𝑔◦𝜙)

|||||
≤

𝑛∑
𝑖=1

|||𝑔(ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2) −𝐵𝑘(𝜙−1(ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2), 𝑔◦𝜙)
|||

≤ 𝑛 ⋅
𝛾

𝑛
= 𝛾 if 𝑘 ≥

4𝑛8𝛽5

𝛾5

and the sought polynomial 𝑝𝛽,𝛾 indeed exists via

𝑝𝛽,𝛾 (ℜ(𝑥),ℑ(𝑥)) =
𝑛∑

𝑖=1
𝐵𝑘(𝜙−1(ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2), 𝑔◦𝜙)

=
𝑛∑

𝑖=1

𝑘∑
𝑗=0

(𝑔◦𝜙)
(
𝑗

𝑘

)(
𝑘

𝑗

)(
𝜙−1(ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2

))𝑗(
1 − 𝜙−1(ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2

))𝑘−𝑗

=
𝑛∑

𝑖=1

𝑘∑
𝑗=0

𝑛𝛽

√
𝑗

𝑘

(
𝑘

𝑗

)( 1
𝑛2𝛽2

(ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2)
)𝑗(

1 − 1
𝑛2𝛽2

(ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2)
)𝑘−𝑗

= 1
(𝑛𝛽)2𝑘−1

𝑘∑
𝑗=0

√
𝑗

𝑘

(
𝑘

𝑗

) 𝑛∑
𝑖=1

(
ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2

)𝑗(
𝑛2𝛽2 −ℜ(𝑥𝑖)2 −ℑ(𝑥𝑖)2

)𝑘−𝑗
. □

So far, we have established the existence of an optimization problem approximating basis pursuit in the following sense: For given 
𝐴 ∈ℂ𝑁 , 𝑦 ∈ℂ𝑚 and 𝜀 > 0

• Lemma B.3 describes a domain

𝐼𝐴,𝑦 ∶= {𝑥 ∈ℂ𝑁 ∶ ‖𝑥‖𝓁2 <√
𝑁

‖‖‖𝐴†𝑦
‖‖‖𝓁2} (B.6)
18

that contains the solutions of basis pursuit for (𝐴, 𝑦, 𝜀),



Applied and Computational Harmonic Analysis 74 (2025) 101719H. Boche, A. Fono and G. Kutyniok

• and Lemma B.4 describes a polynomial 𝑝𝛽,𝛾 depending on parameters 𝛽, 𝛾 > 0 that approximates the 𝓁1 norm on a set

𝐼𝛽 ∶= {𝑥 ∈ℂ𝑁 ∶ ‖𝑥‖𝓁2 <√
𝑁𝛽} (B.7)

up to an error of 𝛾 .

Hence, an appropriate choice of 𝛽 = ‖‖‖𝐴†𝑦
‖‖‖𝓁2 enables to approximate the objective of basis pursuit up to an error of 𝛾 on 𝐼𝐴,𝑦. Note 

that the convergence of 𝑝𝛽,𝛾 to the 𝓁1 norm for 𝛾 → 0 does not imply that the minimizer(s) of the respective optimization problems 
also converge towards the original minimizer(s) of basis pursuit. Unfortunately, obtaining a guarantee of this form does not appear 
feasible in the general case. Thus, we have to be content with the convergence of the objectives.

It remains to analyze whether the adjusted optimization problem with additional parameters 𝛽 and 𝛾 can be tackled via BSS 
machines. We immediately observe that the function 𝑝𝛽,𝛾 given in (B.4) cannot be computed on a BSS machine. Indeed, 𝑝𝛽,𝛾 depends 
on coefficients encompassing values (𝑗∕𝑘)1∕2, where 𝑗 = 0, … , 𝑘 and 𝑘 ∈ ℕ needs to be chosen based on 𝛽 and 𝛾 . Thus, the non-
computability of the square-root function prohibits the computation of the coefficients on a BSS machine. Therefore, the corresponding 
optimization problem cannot be implemented on a BSS machine for adjustable parameters 𝛽 and 𝛾 . On the other hand, we will show 
next that in the restricted case with fixed 𝛽 and 𝛾 the polynomial 𝑝𝛽,𝛾 can be implemented on a BSS machine.

Lemma B.5. Fix 𝛽, 𝛾 > 0 and 𝑘 ≥ 4𝑛8𝛽5
𝛾5

. Then 𝑝𝛽,𝛾 as defined in (B.4) is BSS-computable.

Proof. Based on 𝑘 the finite set {
√
1, … , 

√
𝑘} ∪ {𝛽, 𝛾} can be encoded as constants in the memory of a BSS machine. Therefore, the 

coefficients of the polynomial 𝑝𝛽,𝛾 can be computed on a BSS machine so that 𝑝𝛽,𝛾 is a BSS-computable function as polynomials can 
be expressed through the concatenation of arithmetic operations. □

Finally, we prove that the optimization problem with objective 𝑝𝛽,𝛾 on 𝐼𝛽 is solvable on a BSS machine. This concludes the proof 
of Theorem 4.11.

Proof of Theorem 4.11. We first show that there exists a BSS-computable function Ξ𝑠 ∈ Ξp(𝛽,𝛾),𝑚,𝑁
for fixed 𝛽, 𝛾 > 0. We can 

manually compute 𝑘 ∈ ℕ such that 𝑘 ≥ 4𝑁8𝛽5

𝛾5
. Then, Lemma B.5 implies that the polynomial 𝑝𝛽,𝛾 given in (B.4) can be implemented 

on a BSS machine and Lemma B.4 entails that (4.3) is satisfied. Additionally, observe that

‖𝑥‖𝓁2 <√
𝑁𝛽 ⇔ ‖𝑥‖2𝓁2 <𝑁𝛽2 ⇔

𝑛∑
𝑖=1

||𝑥𝑖||2 −𝑁𝛽2 < 0 ⇔
𝑛∑

𝑖=1
ℜ(𝑥𝑖)2 +ℑ(𝑥𝑖)2 −𝑁𝛽2 < 0

is a semialgebraic set defined by a polynomial in (ℜ(𝑥), ℑ(𝑥)). Therefore (p(𝛽, 𝛾)) describes the optimization of the polynomial 𝑝𝛽,𝛾 on 
a semialgebraic set. Thus, the existence of Ξ𝑠 follows analogously to the proofs of Theorem 4.3 and Theorem 4.7 via the optimization 
Algorithm 1.

It is left to show that there exists a BSS-computable function 𝑔 ∶ℂ𝑚×𝑁 ×ℂ𝑚 ×ℝ>0 ×ℝ>0 → {0, 1} so that 𝑔(𝐴, 𝑦, 𝜀, 𝛽) = 1 implies 
that the solutions of basis pursuit (bp) are contained in 𝐼𝛽 = {𝑥 ∈ℂ𝑁 ∶ ‖𝑥‖𝓁2 <√

𝑁𝛽}. We will explicitly construct 𝑔. First, note that 
the function 𝑔pi ∶ℂ𝑚×𝑁 →ℂ𝑁×𝑚 mapping 𝐴 on its pseudoinverse 𝑔pi(𝐴) =𝐴† is a BSS-computable function. This follows immediately 
from the fact that the pseudoinverse can be computed via multiple applications of the Gaussian elimination algorithm and exchange 
of rows of matrices based on identifying zero-rows [96]. These operations can all be implemented on BSS machines since they depend 
only on basic arithmetic operations and comparisons to zero. Hence, the computability of 𝑔pi follows.

Next, define the set 𝑆 ∶= {(𝐴, 𝑦, 𝜀) ∈ℂ𝑚×𝑁 ×ℂ𝑚 ×ℝ>0 ∶ 𝑔sol(𝐴, 𝑦, 𝜀) < 0}, where 𝑔sol ∶ℂ𝑚×𝑁 ×ℂ𝑚 ×ℝ>0 is given by

𝑔sol(𝐴,𝑦, 𝜀) =
‖‖‖𝐴𝑔pi(𝐴)𝑦− 𝑦

‖‖‖2𝓁2 − 𝜀2.

We can immediately conclude that 𝑔sol is BSS-computable since 𝑔pi is BSS-computable and 𝑔sol is a polynomial in (𝐴, 𝑦, 𝜀). Hence, 𝑆

is decidable on a BSS machine. Recall that ‖‖‖𝐴𝑔pi(𝐴)𝑦− 𝑦
‖‖‖2𝓁2 − 𝜀2 > 0 implies that the associated basis pursuit optimization does not 

have any solution; compare proof of Lemma B.3. Consequently, the existence of minimizers of basis pursuit can be decided on BSS 
machines.

Finally, given that minimizer(s) for basis pursuit exist, we need to check whether they are contained in 𝐼𝛽 . Due to (B.6) and (B.7)
it suffices to decide the set 𝑉 ∶= {(𝐴, 𝑦, 𝛽) ∈ℂ𝑚×𝑁 ×ℂ𝑚 ×ℝ>0 ∶ 𝑔dec(𝐴, 𝑦, 𝛽) ≤ 0}, where 𝑔dec ∶ℂ𝑚×𝑁 ×ℂ𝑚 ×ℝ>0 is given by

𝑔dec(𝐴,𝑦, 𝛽) =
‖‖‖𝑔pi(𝐴)𝑦

‖‖‖2𝓁2 − 𝛽2.

Again the BSS-computability of 𝑔dec follows directly from the BSS-computability of 𝑔pi so that 𝑉 is decidable on a BSS machine. 
Therefore, setting
19

𝑔(𝐴,𝑦, 𝜀, 𝛽) = 𝜒𝑆 (𝐴,𝑦, 𝜀)𝜒𝑉 (𝐴,𝑦, 𝛽)
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gives that 𝑔 is BSS-computable as the product of two BSS-computable functions. Moreover, (B.6) shows that 𝑔(𝐴, 𝑦, 𝜀, 𝛽) = 1 if and only 
if the solutions of basis pursuit for (𝐴, 𝑦, 𝜀) are contained in 𝐼𝛽 . Finally, the BSS-computability of 𝑔 remains valid when considering 
real BSS machines representing ℂ via the real and imaginary parts. □

Remark B.6. In the Turing model, the outlined approach to approximate basis pursuit is not feasible. In particular, the step involving 
the pseudoinverse of the input matrix is not transferable since the mapping of matrices on their pseudoinverses is not computable on 
a Turing machine [18].

Data availability

No data was used for the research described in the article.
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