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ABSTRACT

Many representation systems on the sphere have been proposed in the past, such as spherical harmonics, wavelets, or curvelets. Each
of these data representations is designed to extract a specific set of features, and choosing the best fixed representation system for
a given scientific application is challenging. In this paper, we show that one can directly learn a representation system from given
data on the sphere. We propose two new adaptive approaches: the first is a (potentially multiscale) patch-based dictionary learning
approach, and the second consists in selecting a representation from among a parametrized family of representations, the α-shearlets.
We investigate their relative performance to represent and denoise complex structures on different astrophysical data sets on the sphere.

Key words. methods: data analysis – methods: statistical – methods: numerical

1. Introduction

Wavelets on the sphere (Starck et al. 2015) are now stan-
dard tools in astronomy and have been widely used for pur-
poses such as Fermi Large Area Telescope data analysis
(Schmitt et al. 2010; McDermott et al. 2016), the recovery of
the cosmic microwave background (CMB) intensity and polar-
ized CMB maps (Bobin et al. 2015, 2016), string detection
(McEwen et al. 2017), point source removal in CMB data
(Sureau et al. 2014), the detection of CMB anomalies (Naidoo
et al. 2017; Rassat et al. 2014), or stellar turbulent convection
studies (Bessolaz & Brun 2011). While wavelets are well suited
for representing isotropic components in an image, they are far
from optimal for analyzing anisotropic features such as filamen-
tary structures. This has motivated in the past the construction of
so-called multiscale geometric decompositions such as ridgelets,
curvelets (Candès & Donoho 2004; Starck et al. 2003), bandelets
(Le Pennec & Mallat 2005), or shearlets (Labate et al. 2005b).
Extensions to the sphere of ridgelets and curvelets were already
presented in Starck et al. (2006), Chan et al. (2017) and McEwen
(2015), and also for spherical vector field data sets in Starck et al.
(2009) and Leistedt et al. (2017).

For a given data set, we therefore have the choice between
many fixed representation spaces (such as pixel domain, har-
monics, wavelets, ridgelets, curvelets), which are also called dic-
tionaries. A dictionary is a set of functions, named atoms, and
the data can be represented as a linear combination of these
atoms. The dictionary can be seen as a kind of prior (Beckouche
et al. 2013), and the best representation is the one leading to
the most compact representation, one in which the maximum
of information is contained in few coefficients. For the previ-
ously mentioned fixed dictionaries, there exist fast operators for
decomposing the data into the dictionary, and fast operators for
reconstructing the image from its coefficients in the dictionary
(Starck et al. 2015).

In some cases, it is not clear which dictionary is the best,
or even if the existing dictionaries are good enough for a given

scientific application. Therefore, new strategies were devised
in the Euclidean setting to construct adaptive representations.
Among them, sparse dictionary learning (DL) techniques (Engan
et al. 1999; Aharon et al. 2006) have been proposed to design a
dictionary directly from the data, in such a way that the data can
be sparsely represented in that dictionary. DL has been used in
astronomy for image denoising (Beckouche et al. 2013), stellar
spectral classification (Díaz-Hernández et al. 2014), and mor-
phological galaxy classification (Díaz-Hernández et al. 2016).

An alternative approach for adaptively choosing a dictionary
is to start with a large parametrized family of dictionaries, and
then to choose the parameter(s), either based on simulations or
directly from the data. An example of such a parametrized family
of dictionaries is the family of α-shearlets (Labate et al. 2005;
Grohs et al. 2016; Voigtlaender & Pein 2017).

In this paper, we propose to extend to the sphere both adap-
tive representation methods, DL and α-shearlets, and we com-
pare the performance of the two approaches. More precisely,
we are concerned with adaptive sparsifying representation sys-
tems for data defined on the sphere. In Sect. 2, we present
our approach for performing DL on the sphere, while Sect. 3
is devoted to our extension of the α-shearlet transform to data
defined on the sphere. We present the scenarios for our compar-
ison of the two approaches in Sect. 4; the results of this compar-
ison are presented in Sect. 5. Finally, we conclude the paper in
Sect. 6. The necessary background related to α-shearlets in the
Euclidean setting is covered in Appendix A.

2. Dictionary learning on the sphere

Dictionary learning techniques were proposed in the early 2000s
(Olshausen & Field 1996; Engan et al. 1999; Aharon et al. 2006)
to build adapted linear representations that yield sparse decom-
positions of the signals of interest. Contrary to fixed dictio-
naries, in dictionary learning the atoms are estimated from the
data (or a proxy, such as simulations or exemplars of the data),
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and can therefore model more complex geometrical content,
which could ultimately result in sparser (and typically redun-
dant) representations. DL techniques have proved their efficiency
in many inverse problems in restoration, classification, and tex-
ture modeling (see, e.g., Elad & Aharon 2006; Mairal et al.
2008a, 2009; Peyré 2009; Zhang & Li 2010) with improved
performance compared to fixed representations (see Beckouche
et al. 2013 for denoising astrophysical data). A wide variety
of dictionary learning techniques have been proposed to pro-
cess multivariate data (Mairal et al. 2008a,b); to construct multi-
scale (Mairal et al. 2008b), translation-invariant (Jost et al. 2006;
Aharon & Elad 2008), or hierarchical representations (Jenatton
et al. 2011); to estimate coupled dictionaries (Rubinstein & Elad
2014); or to build analysis priors (Rubinstein et al. 2013). Also,
online algorithms for dictionary learning have been considered
(Mairal et al. 2010).

While fixed structured representations typically have fast
direct and inverse transforms, dictionary learning techniques
become computationally intractable even for signals of mod-
erate size. Based on the observation that natural images
exhibit nonlocal self-similarities, this computational problem
is typically overcome by performing dictionary learning on
patches extracted from the images that one wants to model. In
this section we focus on this patch-based dictionary learning
approach, and extend it for signals living on the sphere.

2.1. Sparse representation with patch-based dictionary
learning

Given an n × n = N image represented as a vector X ∈ RN , we
consider square overlapping patches xi j in RQ, with Q = q × q,
where q is typically small; in fact, in the present work we will
always have q ≤ 12. Formally,

xi j = Ri jX, (1)

where the matrix Ri j ∈ R
Q×N extracts a patch with its upper left

corner at position (i, j).
From a training set T of such patches

{
xi j

}
(i, j)∈T

, a dictionary

with M atoms D ∈ RQ×M is then learned such that the codes
Λ =

{
λi j

}
(i, j)∈T

satisfying xi j = Dλi j are sparse. To perform the
training, one typically considers the following inverse problem,
or one of its variants:

arg min
D∈D,Λ∈C

∑
(i, j)∈T

‖xi j − Dλi j‖
2
2 + µ · ‖λi j‖0, (2)

where D (respectively C) is a non-empty convex set enforcing
some constraints on the dictionary D (respectively the codes Λ),
and µ · ‖λi j‖0 is the weighted `0 pseudo-norm, which enforces
sparsity of the codes. To remove the scale indeterminacy in such
a minimization problem – that is, if (D,Λ) is a solution, then
so is (αD, α−1Λ), at least if αD ∈ D and α−1Λ ∈ C – the set
D typically enforces each atom (column) of the dictionary to
belong to a unit `2 ball, while C can enforce constraints in the
code (e.g., non-negativity in non-negative matrix factorization).
More details can be found in Starck et al. (2015).

2.2. Extension of patch-based dictionary learning to the
sphere

To extend patch-based dictionary learning to data defined on
the sphere, we first need to specify how to construct patches on
the sphere. We do so by introducing local charts on the sphere.

Specifically, in this work we propose to consider the HEALPix
framework (Górski et al. 1999, 2005), widely used in astronomy,
to construct these charts.

2.2.1. Defining patches on the sphere

HEALPix partitions the sphere into equal area pixels with curvi-
linear boundaries, defined hierarchically from a set of twelve
base quadrilaterals (see Fig. 1). These twelve base elements
(or faces) form an atlas of the sphere, and are further parti-
tioned dyadically to obtain finer discretization levels. Conse-
quently, each of the twelve faces is typically considered as a
chart with HEALPix pixel positions mapped onto a square grid
in [0, 1] × [0, 1].

Using these charts to perform usual Euclidean patch-based
dictionary learning is straightforward, and would have the main
advantage of applying dictionary learning directly onto the pixel
values, without requiring any interpolation. This comes, how-
ever, with two drawbacks: first, this approach introduces bound-
ary issues even when using overlapping patches on each face;
second, sampling on the sphere leads to patches with local char-
acteristics (e.g., the pixel shape varies along the latitude in
HEALPix). The first of these two problems can be overcome
by creating the patches based on local neighbors, as defined by
HEALPix. Because of the regularity of the HEALPix sampling
scheme, all pixels have eight neighbors, except for eight pixels
on the sphere that are located at the vertices in between equa-
torial and polar faces, which only have seven neighbors. The
second problem, however, implies that the same signal defined
continuously on the sphere, but centered at different patch cen-
ters, will likely lead to different patches being extracted (e.g.,
for a patch in the equatorial region or in the polar caps). We do
not take this effect into account, so that these patches may have a
different sparse decomposition or different approximation errors.
HEALPix is also not suited to efficiently represent band limited
signals, since only approximated quadrature rules are then avail-
able to compute spherical harmonic coefficients (Doroshkevich
et al. 2005).

Provided some care is taken on defining the respective posi-
tion of each neighbor to a central pixel across the sphere,
overlapping patches can be created – even in between the
twelve HEALPix faces – without any interpolation, except at
the patches crossing the specific points on the HEALPix grid,
which only have seven neighbors. Interpolation strategies to
compensate for these “missing” neighbors can be envisioned;
but in this work we choose not to interpolate, which implies
that for a few pixels around these points, we do not construct
all overlapping patches. The final covering of the map is illus-
trated in Fig. 2, also including patches randomly selected on
the sphere. Once these patches are extracted, classical dictio-
nary learning techniques can be used to learn a sparse adapted
representation.

2.2.2. Learning a multiscale representation on the sphere

Our proposed approach for dictionary learning on the sphere
can be extended to capture multiscale information as proposed
in Ophir et al. (2011), namely, by learning a dictionary from
patches extracted from a multiscale decomposition of the data.
At lower scales, capturing meaningful information would require
an increase in the patch size, and would ultimately lead to a com-
putational burden impossible to handle. To capture this infor-
mation without increasing the patch size, the decomposition is
subsampled.
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Fig. 1. HEALPix grid (visualizing Nside = 16) in orthographic projection
on the left and Mollweide projection on the right. Faint lines indicate the
circles of latitude θ = cos−1(± 2

3 ). The right image also introduces the
numbering of the faces, used in the following illustrations.

Fig. 2. Example of our covering of the sphere with overlapping patches
based on HEALPix neighborhoods for Nside = 128 and patch width
q = 8 (note that in our numerical experiments, Nside = 2048 and the
patch width is either q = 8 or q = 12). Several randomly selected
patches on the sphere are also represented in color. The plotted value in
gray indicates the number of overlapping patches including each pixel.
Because the patch width is usually small with respect to the number
of pixels per face, the number of overlapping patches varies in small
regions around the pixels that only have seven neighbors.

Table 1. Parameters used for learning the multiscale dictionary for ther-
mal dust data.

Scale `max Nside NPatch q M(s) K(s) Nit

3 n.a. 2048 200k 12 256 10 100
2 1024 512 50k 12 256 20 100
1 512 256 25k 12 256 30 100

Notes. For each Starlet scale, the maximal multipole `max, the Nside

parameter, the number of patches, their width q, the number of atoms
M(s), the maximal sparsity K(s), and the number of iterations Nit are
displayed.

In this work, we use the Starlet decomposition for data on
the sphere (Starck et al. 2006), with one dictionary learned per
wavelet scale. Since all scales except the last one are band-
limited, subsampling can be performed without loosing infor-
mation by adapting the Nside parameter to the maximal multipole
at the level considered (typically dyadically decreasing, as illus-
trated in Table 1).

The resulting minimization problem for the multiscale dic-
tionary learning problem reads

arg min
{D(s) }s=1..S ∈D,

{Λ(s) }s=1..S ∈C

S∑
s=1

∑
(i, j)∈T (s)

‖Ri jW
(s)X−D(s)λ(s)

i j ‖
2
2 +µ(s) · ‖λ(s)

i j ‖0, (3)

where X is the signal on the sphere,W(s) extracts the scale s of
the wavelet transform on the sphere according to the Nside chosen
for that scale, Ri j is now extracting patches according to neigh-
bors on the sphere for the patch indexed by (i, j) at scale s in
training set T (s), and S is the total number of wavelet scales. For
each scale s = 1, . . . , S , a dictionary D(s) is therefore learned,

giving coefficients λ(s)
i j collected in Λ(s); the hyperparameter µ(s)

is also allowed to change with the scale. Because the cost func-
tion is separable per scale, the minimization problem Eq. (3) is
equivalent to solving S dictionary learning sub-problems associ-
ated to each wavelet scale.

2.3. Our algorithm for patch-based dictionary learning on the
sphere

In the training phase, the joint nonconvex problems described
in Eqs. (2)–(3) are typically handled by alternating sparse cod-
ing steps and dictionary update steps. Here, a sparse coding step
means that one minimizes Eq. (2) (resp. Eq. (3)) with respect to
Λ (resp. Λ(s)), with a fixed previously estimated dictionary. Sim-
ilarly, a dictionary update step means that one minimizes Eq. (2)
(resp. Eq. (3)) with respect to D (resp. D(s)), with the fixed, pre-
viously estimated codes. Standard algorithms were proposed for
both sub-problems. In this work, we will use the classical dic-
tionary learning technique K-SVD (Aharon et al. 2006) with
Orthogonal Matching Pursuit (OMP; Mallat & Zhang 1993; Pati
& Krishnaprasad 1993) as a sparse coder. For denoising appli-
cations, the sparse coding step will encompass both a maximal
sparsity level, and an approximation threshold based on the `2
norm of the residual, similar to the approach in Elad & Aharon
(2006). This approach resulted in adapted sparse representations,
while not being sensitive to small fluctuations below the tar-
geted level of approximation, and in practice led to faster algo-
rithms. The resulting multiscale dictionary learning algorithm
is described in Algorithm 1, from which its variant without the
multiscale transform can be obtained for S = 1 andW(1) = Id.

Algorithm 1 Multiscale Dictionary Learning on the Sphere
1: Initialization: For each scale s = 1, . . . , S , choose the num-

ber of atoms M(s), a maximal sparsity degree K(s), a maximal
approximation error ε(s). Initialize the dictionary. Choose the
number of iterations Nit.

2: Patch Extraction: For each scale s, extract randomly
patches

{
Ri jW

(s)X
}
(i, j)∈T (s)

on the sphere. Subtract from
each patch its mean value.

3: for s = 1 to S do {Subproblem for scale s}
4: for n = 0 to Nit do {Main Learning Loop}
5: for (i, j) ∈ T (s) do {Sparse Coding}
6: Compute the sparse code λ(s)

i j using OMP with stop-

ping criterion ‖Ri jW
(s)X − D(s)λ(s)

i j ‖2 < ε(s) or

‖λ(s)
i j ‖0 > K(s)

7: end for
8: Update D(s) using K-SVD (Aharon et al. 2006)

{Dictionary Update}
9: end for

10: end for
11: return

{
D(s)

}
s=1..S

The first critical choice for this dictionary learning technique
is to adapt the patch size q to capture information at the scale of
the patch without impacting too much the computational burden
of the algorithm (q is at most 12 in this work). The maximal spar-
sity degree K(s) and the number of atoms M(s) should be selected
so that the dictionary leads to small approximation errors, while
being able to capture the important features with only a few
atoms, in particular for denoising applications. The parameter
ε(s) is the noise level expected in the denoising application at the
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considered wavelet scale, and the number of iterations is in prac-
tice chosen to be sufficiently large so that the average approx-
imation error does not change with iterations. Because this
problem is non-convex, it is crucial to initialize the algorithm
with a meaningful dictionary; in our case, the initial dictionary
is chosen to be an overcomplete discrete cosine transform (DCT)
dictionary as in Elad & Aharon (2006).

3. Extension of α-shearlets to the sphere

3.1. Euclidean α-shearlets

Adaptive dictionaries can also be derived from a parametrized
family of representations such as the α-shearlets that generalizes
wavelets and shearlets and are indexed by the anisotropy param-
eter α ∈ [0, 1]. To each parameter α corresponds a dictionary
characterized by:

– atoms with a “shape” governed by height ≈ widthα (see
Fig. A.2);

– a directional selectivity: on scale j, an α-shearlet system can
distinguish about 2(1−α) j different directions (see Fig. A.3);

– a specific frequency support for the atoms (see Fig. A.3).
A key result (Voigtlaender & Pein 2017) is that α-shearlets are
almost optimal for the approximation of so-called Cβ-cartoon-
like functions, a model class for natural images. More precisely,
the N-term α-shearlet approximation error (that is, the smallest
approximation error that can be obtained using a linear combina-
tion of N α-shearlets) for a Cβ-cartoon-like function is decreas-
ing at (almost) the best rate that any dictionary can reach for
the class of such functions. For this to hold, the anisotropy
parameter α needs to be adapted to the regularity β, that is, one
needs to choose α = 1/β. For more details on this, we refer to
Appendix A.

In general, given a certain data set, or a certain data model,
different types of α-shearlet systems will be better adapted to the
given data than other α′-shearlet systems. Thus, having such a
versatile, parametrized family of representation systems is valu-
able to adapt to a variety of signals to recover.

3.2. Defining α-shearlet transforms on the sphere

In order to define the α-shearlet transform on the sphere, simi-
larly to what was discussed for the dictionary learning approach,
we need to define the charts on which the Euclidean α-shearlet
transform will be applied. HEALPix faces are again an obvious
candidate since these base resolution pixels can be interpreted
as squares composed of Nside by Nside equally spaced pixels,
although their shape is contorted in different ways on the sphere
(see Fig. 1).

We could map the sphere to these twelve square faces and
then take the α-shearlet transform on every one of them indi-
vidually. However, as for dictionary learning, this approach to
the processing of HEALPix data (e.g., for the task of denois-
ing) is deemed to introduce boundary artifacts for this partition
of the sphere. An example of such artifacts can be seen in the
upper-left part of Fig. 18 shown in Sect. 5. Besides, contrary
to patch-based dictionary learning where the patch size remains
typically small compared to a face size, the increasing size of the
α-shearlet atoms when going to lower scales can introduce large
border effects.

In the following two subsections, we discuss two approaches
for handling this problem. Similarly to dictionary learning in
Sect. 2.2.1, we do not take into account the variation of the

pixel shapes along the sphere when extending α-shearlets to the
sphere.

3.2.1. The rotation-based approach

The first strategy to alleviate the block artifacts was proposed
for curvelets in Starck et al. (2006). This approach relies on
considering overlapping charts that are obtained by consider-
ing HEALPix faces after resampling the sphere through a small
number of rotations. More precisely, for a given Euclidean α-
shearlet system, a HEALPix face f , and a rotation r, the redun-
dant coefficients are obtained by

λα,r, f = Sα
(
H fRr (X)

)
, (4)

where Rr computes the resampled map by a rotation r of the
sphere, H f is a matrix extracting the pixels that belong to the
HEALPix face f , and Sα computes the Euclidean α-shearlet
transform on this face. In practice, a bilinear interpolation is per-
formed by the HEALPix rotation routines that are used for the
resampling.

The reconstruction is performed using a partition of unity on
the sphere (see Fig. 3), which is obtained from weights that are
smoothly decaying from 1 in a central region of the faces to 0 at
their borders and therefore mitigating border effects. Formally,
the reconstruction reads

X̃ = N
∑

r

12∑
f =1

R−r(HT
f MTα(λα,r, f )), (5)

where R−r resamples the sphere with the inverse rotation
matrix, Tα computes the inverse α-shearlet transform, M
applies weights, and the normalization matrix N is sim-
ply a pointwise multiplication with weights chosen such that
N

∑
r, f R−r

(
HT

f M1
)

= 1 where 1 is a vector with all entries equal
to 1. An example of the weights and normalization maps used to
construct this partition of unity is illustrated in Fig. 3.

Since the rotations Rr and R−r are implemented using inter-
polation, it is not true exactly that R−rRrX = X. Therefore, even
if the coefficients λα,r, f are obtained through Eq. (4), the recon-
struction in Eq. (5) will only satisfy X̃ ≈ X, not X̃ = X. However,
the error introduced by the inexact inverse rotation is often neg-
ligible, at least for sufficiently smooth signals; Sect. 5.2.4 offers
further comment on this.

3.2.2. The “patchwork” approach

The “patchwork” approach is another strategy to eliminate arti-
facts that would arise if one naively used the disjoint HEALPix
faces. Contrary to the rotation-based technique, where an inter-
polation is performed during the resampling, the patchwork
approach is based on extending the HEALPix faces using parts
of the surrounding faces so as to avoid interpolation. Similar to
the rotation-based approach, the six resulting extended faces (see
Fig. 4) form a redundant covering of the sphere, which is ben-
eficial for avoiding boundary artifacts. Once these six extended
faces are computed, the α-shearlet transform and all further pro-
cessing are performed on these faces. Of course, for the recon-
struction, the last step consists in combining the redundant faces
to get back a proper HEALPix map.

Formally, the decomposition can be described as

λα, f = Sα
(
P f (X)

)
, (6)
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Fig. 3. Partition of unity for the rotation-based reconstruction. The
weights smoothly decaying toward the border are presented in the top
left panel and are copied to each HEALPix face in the top right panel.
In the bottom left panel, resampling was first performed using a rota-
tion and bilinear interpolation, and the image shows the weights that
would be applied in the original reference coordinates. The result-
ing covering of the sphere using five rotations is illustrated in the
bottom right panel.

where P f is now the operator that extracts the extended face
f from the HEALPix map X. Similarly, the reconstruction
reads

X̃ =M

[(
Tα

(
λα, f

))
f =1,...,6

]
, (7)

whereM is the operator that reconstructs a HEALPix map from
data on the six extended faces.

The rest of this section explains how precisely the extended
faces are obtained from the original HEALPix faces, and con-
versely how a HEALPix map can be obtained from data on these
six extended faces. For an accompanying visual explanation of
the procedure, the reader should consult Figs. 1, 4, and 5.

Each of the six extended faces consists of an inner square
with HEALPix pixels that are unique to this extended face, and
a border zone with HEALPix pixels that appear in several of
the extended faces. The border itself is again subdivided into an
outer margin that is disregarded after the reconstruction step so
that the artifacts at the boundary are cut off (not mapped to the
sphere), and an inner part that forms a transition zone, where
the values of neighboring faces are blended together to prevent
visible discontinuities between them.

Instead of extending all twelve original faces, we com-
bine them to six bigger composite faces and extend those. This
reduces the number of additional pixels that have to be processed
(when using a border of the same size), at the cost of increased
memory requirements. The first two composite faces cover the
bulk of the north and south polar regions, and particularly the
poles itself. Since the four faces of each polar region meet at the
poles, we can arrange those four faces to form a square around
the pole. It only remains to clip this area to the requested size.
Although there is much freedom to set the extent of the individ-
ual composite faces, we prefer all squares to be of equal size,
so that they can be processed without distinction. The remain-
ing four composite faces are obtained by expanding the equato-
rial faces. An expansion of the equatorial faces by Nside

4 in each
direction results in areas of width 3Nside

2 , which each contain a
fourth of every surrounding polar face. By removing those parts
from the polar areas, constructed earlier, those are truncated to
the same width (see Fig. 5). Thus, we get six areas of equal size
that cover the sphere. Chosen this way, there is still no over-
lap between the polar and equatorial composite faces; therefore

Fig. 4. Left panel: twelve squares corresponding to the faces of the
HEALPix framework (see Fig. 1) arranged as a net in the plane. The
areas that are covered by multiple of the extended faces – the transi-
tion zones – are displayed in gray. The areas where pixels are “missing”
are displayed in red. Right panel: six extended faces produced by the
patchwork procedure. The two polar faces form the top row, followed
by the four equatorial faces below. The shaded area around the transi-
tion zone of each composite face indicates the margin, which is later
discarded.

Fig. 5. Detailed view of two of the six extended faces. The dark outer
boundary with width cm is the margin that is discarded after the recon-
struction step, and the two dark squares in the corners of the equatorial
face on the right are treated likewise. The remaining part of the extended
faces has a gray outer boundary of width 2ct. In conjunction with the
gray squares in the corners of the equatorial face, this boundary forms
the transition zone that contains the values shared with the neighboring
extended faces.

we extend each face further by half the requested width of the
transition zone. We chose an extension of width Nside

16 (that is ct
in Fig. 5). Since each face enters its neighbors territory by that
amount, this results in a transition zone of width Nside

8 between
each face. Additionally each face is extended by a margin (that
is cm in Fig. 5) to avoid border artifacts. Here, a margin of width
Nside
16 was chosen.

However, to extend the equatorial faces, we have to address
the problem that there are eight vertexes where two faces of a
polar region meet a face of the equatorial region (located on
the circles of latitude θ = cos−1(±2/3), depicted in Fig. 1). By
arranging the twelve faces as a net in the plane – as illustrated in
Fig. 4 – it becomes clear that there are gaps between the polar
faces, where no values exist; these areas are marked in red in
Fig. 4. We need to fill those gaps in order to obtain rectangular
extended faces, to which we can apply the α-shearlet transform.
In the end, these parts will be cut away and disregarded like the
outer margin of the extension, so the filled-in values will not
actually be used for the reconstruction. Nevertheless, we need to
be careful, since otherwise we might introduce additional arti-
facts like the ones at the boundary.

For the sake of simplicity, we will describe the situation at
the edge between faces 1 and 2 (see Figs. 1, 4, and 6), which
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is exemplary for all gaps. From the perspective of face 2, the
missing square is expected to feature a rotated copy of face 1,
while conversely face 1 expects a rotated copy of face 2. To fab-
ricate a weighted blending of those anticipated values, we divide
the empty square, interpreted as [0, 1]2, along the lines 2x = y,
x = y, and x = 2y, into quarters, as demonstrated in Fig. 6. On
both outer quarters the full weight is assigned to the face which
the adjoining face expects, while the two middle quarters serve
to produce a smooth transition. All weights are normalized in
such a way that every pixel is a convex combination of the pixels
of the two faces; that is, the weights are non-negative and their
sum is one at each pixel.

With this process, we fill the vertex regions with values. We
do not actually need to fill the whole square, but only the corner
needed for the expansion (the red part in Fig. 4). Having done
this, we can piece the equatorial faces together from the various
parts of the six surrounding faces and two filler squares. Figure 4
shows the resulting extended faces on the right.

We have now described the operators P f appearing in
Eq. (6), which assign to a given HEALPix map X the six
extended facesP1(X), . . . ,P6(X). On these rectangular faces, we
can then apply the usual α-shearlet transform, and do any further
processing that is desired (for instance, we can denoise the six
extended faces by thresholding the α-shearlet coefficients).

After the processing is done on the six extended faces, the
outer margin and filler values are disregarded and the remnant is
separated along the boundaries of the original faces. From these
pieces, the original faces are put back together. While doing so,
all pixels that were part of a transition zone are weighted, simi-
larly to above, as a convex combination of the pixels of the (up
to four) involved extended faces.

Since we use only the values provided by the HEALPix grid,
and instead of interpolating between pixels use convex combi-
nations of pixel values in the transition zones, the patchwork
procedure is invertible, with Eq. (7) describing a left inverse
to the “patchwork α-shearlet coefficient operator” described in
Eq. (6). Thus, the patchwork-based α-shearlets form a frame. We
emphasize, however, that the reconstruction procedure described
in Eq. (7) is not necessarily identical to the one induced by
the canonical dual frame of the patchwork-based α-shearlet
frame.

4. Experiments

To evaluate α-shearlets and dictionary learning, we have selected
two different simulated data sets on the sphere:

– Thermal dust map: a full sky thermal dust map from the
Planck Sky Model (100 GHz map) (Planck Collaboration
XII 2016), obtained through the Planck Legacy Archive1.

– Horizon full sky maps: a series of full sky maps from the
Horizon N-body simulations describing the dark matter halo
distribution between redshift 0 and 1 (Teyssier et al. 2009)2.

While in the former scenario, the signal is smooth and expected
to be best represented by multiscale transforms, in the latter
the signal is more discontinuous and geometrically composed
of filamentary structures joining clusters, with density chang-
ing with redshift. These two simulations are therefore illustrative
of different scenarios where such adaptive transforms would be
useful.

1 http://pla.esac.esa.int/pla/#maps
2 See http://www.projet-horizon.fr

Fig. 6. “Missing” square between faces 1 and 2 is divided into four
triangles of equal size, separated by the lines 2x = y, x = y, and x = 2y,
as seen on the left. The two images in the middle reveal how the rotated
faces 1 and 2 are separately weighted along those segments. The data of
face 1 have full weight (black) on the outer triangle adjacent to face 2,
and no weight (white) on the other outer triangle, while the data of face 2
are treated conversely. A smooth transition is provided by the weights
on the triangles in between. The sum of the weighted faces is used to
fill the gap, as demonstrated in the right-most illustration.

Fig. 7. Thermal dust simulation map (at 100 GHZ) without (top panel)
and with the additive white Gaussian noise added (bottom panel), for
evaluation of the methods. The colorscale has been stretched to illustrate
the challenge of recovering structures at intermediate latitude. Units are
in µK.

Fig. 8. Left panel: galactic mask used for thermal dust quantitative eval-
uation, covering 70% of the sky. Right panel: region close to galactic
plane where methods are inspected.

To evaluate the respective performance of DL and α-
shearlets for denoising, we have added to the thermal dust map
an additive white Gaussian noise with standard deviation 45 µK,
which corresponds to the expected level of CMB at such fre-
quency. The resulting map can be seen in Fig. 7.

The galactic mask used for quantitative comparisons to
separate regions of high dust amplitude from regions with
lower values at higher galactic latitude is displayed in Fig. 8,
along with the location of a region close to the galactic plane
where the differences between the methods could be better
visualized.

For the dark matter halo distribution, we select the first
slice of the data cube, and adjust the white noise level to 5,
so that filamentary structures are of a similar amplitude to the
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Fig. 9. Dark matter halo distribution for the first slice, without (top
panel) and with the additive white Gaussian noise added (bottom panel),
for evaluation of the methods. The colorscale has been stretched to visu-
alize filamentary structures.

noise, as can be observed in Fig. 9. This noise does not corre-
spond to something realistic in our actual experiments, but our
goal here is only to evaluate how different adaptive represen-
tations behave when extracting features embedded in Gaussian
noise.

In the following two subsections, we outline the precise
choice of the hyperparameters that we used for the α-shearlets
and for the dictionary learning based denoising, respectively.

4.1. Parameters for α-shearlets

For the two α-shearlet approaches, we used 11 values of α,
sampled uniformly with a density of 0.1 ranging from 0 to 1.
We used four scales of decomposition, using either the rotation-
based approach (Eq. (4)), or the patchwork approach (Eq. (6)).
For the actual denoising, we performed a hard thresholding of
the α-shearlet coefficients. For this, we used different detec-
tion thresholds on different scales. To be precise, we used a
4σ detection threshold for the last scale with a lower signal to
noise ratio, and a detection threshold of 3σ for the other scales;
for the coarse scale, however, we did not do any threshold-
ing. The reconstruction was then performed using either Eq. (5)
or (7).

For the rotation-based approach, five rotations were selected
as a balance between having “more uniform” weights and the
computational burden of this approach. The weight maps were
built using a margin and transition (smooth trigonometric varia-
tion in between 0 and 1) of size Nside

16 .
For the patchwork approach, we set the size of both the

utilized extension and the margin to Nside
16 , which results in

increasing the number of pixels that have to be processed
by about half (53.1%). A little less than half of the added
pixels are used for the sake of redundancy, and the rest is
disregarded.

4.2. Dictionary learning parameters

For the thermal dust data where the information is present at
several scales, we chose the multiscale dictionary learning tech-
nique. Three wavelet scales of the Starlet transform on the

Fig. 10. Atoms learned in the multiscale dictionary learning approach:
on the left, scale 3, on the right, scale 2. The dictionaries have departed
from the original redundant DCT dictionary and have learned specific
features related to the scale. Due to the change of the Nside parame-
ter with the scale, the actual distance between two adjacent pixels has
increased, and the atoms for scale 2 are indeed smoother than those for
scale 3.

Fig. 11. Atoms learned in the dictionary learning approach, applied to
the dark matter halo distribution data. The dictionary elements are com-
posed of point-like structures and edges.

sphere (Starck et al. 2006) were first computed from the input
simulated dust map without noise. To avoid artifacts for a
non band-limited signal, the finest wavelet scale has not been
directly computed through its spherical harmonic decomposi-
tion. We followed Algorithm 1 for the learning procedure, with
the parameters listed in Table 1. The patch size, the number of
atoms, and the maximal sparsity were selected experimentally
by choosing values that lead to the lowest average approxima-
tion error during the training phase.

An example of a dictionary learned for this adaptive mul-
tiscale representation of thermal dust is shown in Fig. 10. The
dictionaries have captured at various scales both directional and
more isotropic structures.

In the second scenario, because information is localized in
space, the dictionary was learned directly on patches extracted
from the first slice describing the dark matter halo distribution,
from a training set of 200 000 patches of size 8 × 8. As in the
previous experiment, a stopping criterion was set for the approx-
imation error (which should be less than the targeted level of
noise), and a maximal sparsity of 7 was set for OMP. K-SVD
was then run for 100 iterations. The learned dictionary is pre-
sented in Fig. 11. The atoms essentially contain high frequency
information in this case, in contrast to the previously learned dis-
tribution on thermal dust.

Once these dictionary are learned, the sparse decomposition
step with this representation is used for denoising. The same
parameters as above were used for the sparse coding, except for
the targeted approximation error, which was set to a value that
would not be exceeded by a patch of pure noise with a probabil-
ity of 0.9545.
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Fig. 12. Denoised thermal dust maps for all three approaches. Top and
middle panels: α-shearlet denoising with rotation-based (top) or patch-
work (middle) approach, both for α = 0.6. Bottom panel: representation
learned with dictionary learning. Units are in µK.

5. Results

5.1. Denoising experiments

We tested our adaptive approaches to denoise the data in the
two denoising scenarios presented in the previous section, using
the parameters described in Sects. 4.1 and 4.2. For the ther-
mal dust simulation, the full sky denoised maps using the three
approaches are displayed in Fig. 12, with a zoom to a region
close to the galactic plane in Fig. 13, to visually inspect the
differences between methods. Residuals on the full sphere are
also shown in Fig. 14, and the performance of the different
approaches is quantitatively evaluated in Table 2 in the full sky
as well as in regions defined by the galactic mask.

Similarly, for the dark matter halo distribution, the full sky
denoised maps are displayed in Fig. 15 and the residuals are pre-
sented in Fig. 16. To better inspect the recovery of the filamen-
tary structures as well as the core regions, a zoom-in was also
performed for this dataset; this is shown in Fig. 17. Finally, the
results are quantitatively evaluated in Table 3.

To inspect the impact of the anisotropy parameter on the
recovery of geometrical structures in the different redshift slices,
we also computed for the patchwork approach the non-linear
approximation curves that display the evolution of the RMSE
as a function of given thresholds. This allows for a more

Fig. 13. Zoom on a region close to the galactic plane to visualize the
respective denoising performance of the methods. From top to bottom
panels: input map, noisy map (with own colorscale), rotation-based
approach with α = 0.6, patchwork approach with α = 0.6, sparse repre-
sentation learned from data. All units are in µK.

comprehensive view of the best α for different density level
thresholds. These non-linear approximation curves are illus-
trated in linear and log scale in Figs. 19 and 20, respectively.

5.2. Discussion

In the following, we discuss several questions concerning the
results; in particular, we analyze the relative performance of our
different approaches to sparsifying representations on the sphere.

A73, page 8 of 17

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834041&pdf_id=12
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834041&pdf_id=13


F. Sureau et al.: Learning on the sphere

Table 2. Statistics on the recovery of spherical thermal dust maps with the proposed approaches.

Method Bias RMSE MAD

All Out Gal. All Out Gal. All Out Gal.

Rotation α = 0 0.008 0.005 0.016 4.266 3.028 6.270 3.020 2.392 4.490
α = 0.1 0.008 0.005 0.016 4.264 3.025 6.268 3.018 2.389 4.488
α = 0.2 0.008 0.005 0.016 4.261 3.022 6.264 3.016 2.387 4.485
α = 0.3 0.008 0.005 0.016 4.256 3.019 6.257 3.012 2.384 4.480
α = 0.4 0.008 0.005 0.016 4.256 3.021 6.255 3.012 2.384 4.480
α = 0.5 0.008 0.005 0.016 4.258 3.024 6.257 3.012 2.384 4.481
α = 0.6 0.008 0.005 0.016 4.252 3.017 6.252 3.008 2.380 4.477
α = 0.7 0.008 0.005 0.016 4.256 3.020 6.256 3.010 2.381 4.480
α = 0.8 0.008 0.005 0.016 4.257 3.019 6.261 3.010 2.380 4.483
α = 0.9 0.008 0.005 0.016 4.260 3.019 6.266 3.011 2.380 4.486
α = 1 0.008 0.005 0.016 4.267 3.027 6.273 3.012 2.380 4.489

Patchwork α = 0 0.008 0.006 0.014 4.507 3.383 6.409 3.252 2.657 4.643
α = 0.1 0.008 0.006 0.014 4.502 3.376 6.404 3.246 2.650 4.638
α = 0.2 0.008 0.006 0.014 4.499 3.375 6.398 3.243 2.648 4.634
α = 0.3 0.008 0.006 0.014 4.488 3.364 6.386 3.231 2.636 4.642
α = 0.4 0.008 0.006 0.014 4.492 3.373 6.385 3.235 2.641 4.624
α = 0.5 0.008 0.006 0.014 4.497 3.379 6.388 3.232 2.637 4.623
α = 0.6 0.008 0.006 0.014 4.485 3.366 6.377 3.223 2.628 4.615
α = 0.7 0.008 0.006 0.014 4.497 3.382 6.385 3.230 2.635 4.621
α = 0.8 0.008 0.006 0.014 4.502 3.388 6.390 3.234 2.639 4.626
α = 0.9 0.008 0.006 0.014 4.509 3.395 6.398 3.239 2.644 4.632
α = 1 0.008 0.006 0.014 4.527 3.416 6.413 3.233 2.634 4.633

Dict. Learn. 0.008 0.006 0.014 4.034 2.343 6.440 2.570 1.750 4.487

Notes. Bias, root mean square error (RMSE), and mean absolute deviation (MAD) are presented, for the overall map (All), the region not in
the mask (Out), and the galactic region (Gal.) defined by the mask of Fig. 8. The best results are in bold, the best results among α-shearlets are
underlined. Units are in µK.

Table 3. Statistics on the recovery of dark matter halo distribution with
the proposed approaches.

Method Bias RMSE MAD
α = 0 0.0002 3.09 0.83
α = 0.1 0.0002 3.05 0.81
α = 0.2 0.0002 3.02 0.80
α = 0.3 0.0002 3.00 0.80

Rotation α = 0.4 0.0002 2.97 0.79
α = 0.5 0.0002 2.95 0.78
α = 0.6 0.0002 2.94 0.78
α = 0.7 0.0002 2.92 0.77
α = 0.8 0.0002 2.92 0.77
α = 0.9 0.0002 2.91 0.77
α = 1 0.0002 2.90 0.77
α = 0 0.0002 1.64 0.86
α = 0.1 0.0002 1.58 0.84
α = 0.2 0.0002 1.53 0.82
α = 0.3 0.0002 1.49 0.81

Patchwork α = 0.4 0.0002 1.45 0.80
α = 0.5 0.0002 1.43 0.79
α = 0.6 0.0002 1.39 0.78
α = 0.7 0.0002 1.37 0.78
α = 0.8 0.0002 1.35 0.77
α = 0.9 0.0002 1.34 0.77
α = 1 0.0002 1.35 0.77

Dict. Learn. 0.0002 1.32 0.72

Notes. Bias, root mean square error (RMSE), and mean absolute devia-
tion (MAD) are presented. The best results for RMSE and MAD are in
bold, the best results among α-shearlets are underlined.

5.2.1. Block artifacts

The first challenge in extending the representation from the
Euclidean framework to data defined on the sphere was to avoid
the border effects due to considering disjoint charts processed
independently. Figure 18 illustrates that all our proposed redun-
dant representations, based on different overlapping charts, are
free of these block artifacts when denoising the thermal dust
map. A similar result is obtained for denoising the dark matter
maps.

5.2.2. Visual inspection

Qualitatively, Figs. 13 and 17 illustrate the different shapes cap-
tured by α-shearlets and dictionary learning atoms. In particu-
lar, for the thermal dust maps, the noise appears as curvelet-like
structures for the α-shearlet approaches, while for the dictionary
learning approach, the noise appears both as isotropic and as
directional structures.

For the first slice of the dark matter halo distribution simu-
lations, the dictionary learning approach visually seems to best
recover the structures in the data, in particular the filamentary
structures and the compact cores.

5.2.3. Which approach is best?

This is confirmed quantitatively in Tables 2 and 3 where the dictio-
nary learning approach outperforms bothα-shearlet techniques in
thedenoisingof thermaldust (withamultiscaleapproach)anddark
matter halo distribution. For thermal dust, when looking at specific
regions (region inside or outside the galactic mask), the rotation-
based approach gives, however, the lowest residuals in the galactic
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Fig. 14. Residuals for the maps displayed in Fig. 12. Units are in µK.

region, while using the learned representation gave the best results
outside this region. This can be explained by the wide diversity of
amplitudes in the galactic plane, not captured in our training set of
200 000patches for the firstwavelet scale,which corresponds only
to 0.4% of the total number of patches over the full sky. Improving
performance for dictionary learning in the galactic region would
require us either to train the dictionary with a larger training set
so that it encompasses more patches from the galactic center, or to
sample more densely the galactic region than higher galactic lati-
tudes in this training set.

5.2.4. Is the rotation-based or the patchwork approach
preferable?

The rotation-based approach outperforms the patchwork
approach in the thermal dust denoising scenario, but conversely
the patchwork approach outperforms the rotation-based tech-
nique in the dark matter halo distribution scenario. The last
result is due to the bilinear interpolation performed when resam-
pling the sphere with rotations, which leads to severe approxi-
mation errors when the signal varies greatly at the scale of a few
pixels.

5.2.5. What is the best α-value?

Tables 2 and 3 show that for α-shearlets in the denoising of
thermal dust, α = 0.6 (system close to the curvelets) gives the

Fig. 15. Denoised dark matter maps for all three approaches. Top and
middle panels: α-shearlet denoising with rotation-based (top) or patch-
work (middle) approach, both with α = 1. Bottom panel: representation
learned with dictionary learning.

best performance, while for the dark matter halo distribution
scenario, α = 1.0 (system close to the wavelets) gave the best
performance.

However, the second scenario displays a diversity of
structures with both high density cores and numerous less dense
filaments, with distribution changing in different slices of data
corresponding to different redshifts. It would therefore be reduc-
tive to investigate a single noise level scenario to set a best α for
one of these slices of the data.

We therefore computed for the patchwork approach the non-
linear approximation curves for the different slices in redshift.
These non-linear approximation curves are illustrated in linear
and log scale in Figs. 19 and 20, respectively. These curves illus-
trate that for large threshold values, corresponding to selected
dense core regions, the α = 0.9-shearlet system is most suit-
able. For slice 600 and 605 (higher redshift), when decreasing
the threshold, there is a transition from α = 0.9 to α = 0 (very
elongated shearlets) for the best α value. This can be under-
stood as including more and more filamentary structures when
the threshold decreases.

For lower redshift slices on the other hand, the best values
are obtained more consistently across thresholds for α = 0.9 or
α = 1 because more core structures and less filaments are vis-
ible in the data. Overall, this illustrates how adaptive to diverse
structures in the data the α-shearlets can be. Furthermore, it
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Fig. 16. Amplitude of the residuals for all three approaches, for the dark
matter map scenario. Top and middle panels: α-shearlet denoising with
rotation-based (top) or patchwork (middle) approach, both with α = 1.
Bottom panel: representation learned with dictionary learning.

shows that the anisotropy parameter α can be used to charac-
terize different types of structure present in the data.

5.3. Computing requirements

All codes were run on the same cluster so that we can assess the
relative computing time requirements for the three approaches.
For the rotation-based approach, on the current python imple-
mentation using pyFFTW3 and also based on a parallelized
transform using six cores, denoising a Nside = 2048 map using
five rotations and four scales of decomposition takes about
35 min for α = 1 and 1 h for α = 0 (the most redundant trans-
form). The time needed to perform the rotation-based approach
scales linearly with the number of rotations. In comparison,
denoising with the patchwork approach a Nside = 2048 map
using four scales of decomposition (with the same paralleliza-
tion of the transform as for the rotation-based approach) takes
about 9 min for α = 1 and 20 min for α = 0.

For the multiscale dictionary learning algorithm, computing
time for the learning phase ranged from about 2.5 h for scale 3 to
about 3.5 h for scale 1, when using our C++ code with four cores
for the sparse coding. This increase is due to the low value for

3 https://pypi.org/project/pyFFTW/

Fig. 17. Dark matter map amplitudes for all three approaches in a
zoomed region. From top to bottom and left to right panels: origi-
nal map, noisy map, rotation-based approach with α = 1, patchwork
approach with α = 0, patchwork approach with α = 1, representation
learned from data.

Fig. 18. Cartesian projection of the denoised thermal dust maps cen-
tered at the intersection of four faces. From left to right and top to bot-
tom panels: denoising each face independently using α-shearlets with
α = 1, restoration via the rotation-based approach, patchwork approach
with α = 1, dictionary learning with patch width of 12. The colorscale
has been stretched to visualize the artifacts seen as a cross-shape dis-
continuity at the boundaries of the four HEALPix faces in the upper
left panel. All of our proposed approaches are free from these artifacts.
Units are in µK.

ε(1) and large value for the maximal sparsity K(1), even though
the training set is smaller than for scale 3. Learning these dictio-
naries can be performed in parallel, which was done in practice.
For the dark matter scenario, the learning took about 65 min.
Once the dictionary was learned, sparse coding of all patches
took typically from 15 min (scale 1) to about 22 min (scale 3) for
the thermal dust map, and 9 min for the dark matter halo distri-
bution, using 24 cores. Overall, the two α-shearlet approaches
are therefore easier to set up, with less parameters to optimize
that depend directly on the data, and result in faster denoising
than the dictionary learning based approach.

6. Conclusions

We have proposed two new types of adaptive representations
on the sphere: a patch-based dictionary learning approach and
choosing among a parametrized family of representations, the
α-shearlets. To extend these constructs from the Euclidean
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Fig. 19. Normalized non-linear approximation curves for four different
slices of the dark matter distribution. For each threshold, the α value
corresponding to the lowest approximation error is displayed on the top.

Fig. 20. Normalized non-linear log-approximation curves for four dif-
ferent slices of the dark matter distribution. For each threshold, the α
value corresponding to the lowest approximation error is displayed on
the bottom.

setting to data defined on the sphere, we proposed to use over-
lapping charts based on the HEALPix framework. For the dic-
tionary learning technique, a possible multiscale extension was
presented by learning dictionaries on each scale after performing
a subsampled wavelet decomposition on the sphere. For the α-
shearlets, we proposed two approaches to construct the charts:
resampling the sphere according to various rotations associ-
ated with a partition of unity not sensitive to border effects, or
constructing six overlapping charts based on composite extended
HEALPix faces.

We evaluated all three approaches by conducting denoising
experiments on thermal dust maps, and dark matter maps. Our
main findings are as follows:

– thanks to the use of overlapping charts, all of our pro-
posed approaches are free of the block artifacts that typically
appear if one naively uses the disjoint HEALPix faces for
doing denoising;

– in both scenarios investigated, the dictionary learning
approach gave the best performance by providing atoms
adapted to the structure present in the images, for a given
noise level;

– the performance of the dictionary learning approach depends
on setting several hyper-parameters that depend on the signal
observed (multiscale or not), and on the training set. This
approach therefore requires more computing and tuning time
than the other approaches;

– which of the two α-shearlet approaches performed bet-
ter depended on the chosen scenario; the rotation-based
approach involves interpolation, which is detrimental to cap-
turing signals that vary significantly on the scale of just a
few pixels, but it achieved better results for the thermal dust
simulations;

– for different values of the anisotropy parameter α,
the α-shearlet system is adapted to different structures (fil-
aments, dense cores) present in the dark matter halo distribu-
tion simulation.

The respective performance of these approaches depends on the
criteria used: the dictionary learning approach provided the best
denoising results in both scenarios, but has a higher number of
parameters to set and requires more computing time; among the
α-shearlets, the rotation-based approach is best for smooth sig-
nals, but the converse is true for signals with significant variation
on the scale of a few pixels. The three proposed approaches can
therefore be used to process data living on the sphere, and choos-
ing the “best” approach will depend on the scenario considered
as well as the computing resources available.

Reproducible research. In the spirit of reproducible
research, we make public our codes for sparse representation
systems on the sphere on the common repository4. The dictio-
nary learning and alpha-shearlet codes on the sphere are associ-
ated with tutorial jupyter notebooks illustrating how to use them
for denoising.
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Appendix A: Review of Euclidean α-shearlets

Fig. A.1. Example of a cartoon-like function. Such a function f is
smooth, apart from a jump discontinuity along a curve γ. Even though f
might be discontinuous along γ, the boundary curve γ itself is required
to be smooth.

The α-shearlet family of representations generalizes
wavelets and shearlets. Like shearlets – originally introduced
in Labate et al. (2005) and Guo et al. (2006) – they are a
directionally sensitive multiscale system in R2 improving upon
wavelets when it comes to handling data that is governed by
directional features like edges. They are characterized by an
anisotropy parameter α ∈ [0, 1], and were designed to yield
optimally sparse representations for the class of Cβ-cartoon-like
functions (Kutyniok & Labate 2012; Kutyniok & Lim 2011;
Guo & Labate 2007; Voigtlaender & Pein 2017), a model class
for natural images (Candès & Donoho 2004) as illustrated in
Fig. A.1.

In the remainder of this section, we briefly explain our moti-
vation for choosing α-shearlet systems, discuss the most impor-
tant mathematical properties of α-shearlet systems, and then
comment on the implementation that we used.

A.1. Motivation

Before giving a formal definition of (α)-shearlet systems, it is
instructive to roughly compare the operations used for their
construction to the ones used for defining wavelet systems
(Daubechies 1992). We recall (see, e.g., Daubechies 1992) that
for a scaling function φ ∈ L2(Rd) and a mother wavelet ψ ∈
L2(Rd), the associated (discrete) wavelet system with sampling
density δ > 0 is given by

W(φ, ψ; δ) := (φ(• − δk))k∈Zd ∪
(
2d j/2 · ψ(2 j • −δk)

)
j∈N0,k∈Zd

.

In other words, the wavelet system consists of all translates
of the scaling function φ along the lattice δZd, together with
certain translates of the isotropically dilated scaling functions
ψ j := 2d j/2 ψ(2 j•). Here, the wavelet ψ j on the jth scale is trans-
lated along the lattice δ · 2− jZd, which is adapted to the “size” of
ψ j.

It is crucial to note that even in dimension d > 1, wavelets
use the isotropic dilations x 7→ 2 jx, which treat all directions
in the same way. Therefore, wavelet systems are not optimally
suited for representing functions governed by features with dif-
ferent directions. Admittedly, instead of using a single mother
wavelet ψ, it is common to employ wavelet systems that use
finitely many mother wavelets ψ(1), . . . , ψ(N); usually these are
obtained by choosing each ψ( j) as a certain tensor product of
one-dimensional scaling functions and mother wavelets. How-
ever, such a modified wavelet system is again only able to
distinguish a fixed number of directions, independent of the
scale j, and therefore does not allow a satisfactory directional
sensitivity.

To overcome this problem, shearlets (like curvelets) use

the parabolic dilation matrices D(1/2)
j :=

(
2 j 0

0 2 j/2

)
. More

Fig. A.2. Effect of dilating a “prototype function” ψ (shown at the top
of each column) with the matrices D(α)

j to obtain ψ(D(α)
j •), for different

values of the scale j (going from j = 0 (top panels) to j = 2 (bottom
panels)) and of the “anisotropy parameter” α ∈ [0, 1].

generally, α-shearlets employ the α-parabolic dilation matrices

D(α)
j :=

(
2 j 0
0 2α j

)
for j ∈ N0 .

As shown in Fig. A.2, dilating a function ψ with these matrices
D(α)

j produces functions ψ(α)
j = ψ(D(α)

j •) that are more elongated
along the x2-axis than along the x1-axis, where the anisotropy is
more pronounced for larger values of α or j. The support of the
dilated function satisfies 2− jα ≈ height ≈ widthα.

It is apparent from Fig. A.2 that for α < 1 and large j ∈ N0,
the functions ψ(α)

j have a distinguished direction. More precisely,

if (as in the figure) ψ oscillates along the x1-axis, then ψ(α)
j is

similar to a sharp jump along the x2-axis. Since we want our dic-
tionary to be able to represent jumps along arbitrary directions,
we have to allow for some way of changing the direction of the
elements ψ(α)

j . The most intuitive way for achieving this is to use
rotations, as was done in the construction of (second generation)
curvelets (Candès & Donoho 2004). However, later on it was
noted in Labate et al. (2005) and Guo et al. (2006) that from an
implementation point of view, rotations have the disadvantage
that they do not leave the digital grid Z2 invariant. Therefore,
instead of rotations, (α)-shearlets use the shearing matrices

S x :=
(
1 0
x 1

)
to adjust the direction of the functions ψ(α)

j . However the shear-
ing matrices S x, x ∈ (−∞,∞) can never cause an effect similar to
a rotation with angle θ for |θ| > 90◦. Therefore, for the definition
of a cone-adapted shearlet system, one only uses shearings cor-
responding to rotations with angle |θ| ≤ 45◦, and one then uses a
modified mother shearlet ψ\ to cover the remaining directions.

Collecting all previously described constructs, the cone-
adapted α-shearlet system with sampling density δ > 0, asso-
ciated to a low-pass filter ϕ ∈ L2(R2) and mother shearlet
ψ ∈ L2(R2), is defined as

SHα(ϕ, ψ; δ) := (ϕ(• − δk))k∈Z2

∪
(
2(1+α) j/2 ψ(RιD(α)

j S ` • −δk)
)

( j,`,ι)∈I,k∈Z2
, (A.1)

with R :=
(
0 1
1 0

)
, and

I := I(α) :=
{
( j, `, ι) ∈ N0 × Z × {0, 1} : |`| ≤ d2 j(1−α)e

}
.
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For brevity, let us set ψ(α)
j,`,ι := 2(1+α) j/2 ψ

(
Rι D(α)

j S ` •
)
, and

observe with this notation that

2(1+α) j/2 ψ
(
Rι D(α)

j S ` • −δk
)

= ψ(α)
j,`,ι

(
• − δA−1

j,`,ιk
)
, (A.2)

with A j,`,ι := Rι D(α)
j S `.

A.2. Mathematical properties

The most basic property of α-shearlets that we are interested in
is that they indeed form a (redundant) representation system for
L2(R2). In mathematical terms, this means that the α-shearlet
system forms a frame (Christensen 2016), for a suitable choice of
the generators ϕ, ψ. In particular, if ϕ, ψ ∈ L2(R2) have compact
support and satisfy certain decay and smoothness conditions (see
Voigtlaender & Pein 2017, Theorem 5.10 for details), then there
is a “minimal sampling density” δ0 > 0, such that the α-shearlet
system is indeed a frame for L2(R2), for all 0 < δ ≤ δ0.

The main motivation for introducing (α)-shearlets was
the need for a representation system better adapted to data
governed by directional features, which are often present in nat-
ural and in astronomical images. One key result relates (α)-
shearlets to C1/α-cartoon-like functions. Roughly speaking, a
function f ∈ L2(R2) is called a Cβ-cartoon-like function, writ-
ten f ∈ Eβ(R2) (with β ∈ (1, 2]), if f = f1 + f2 · 1B for certain
f1, f2 ∈ Cβ

c ([0, 1]2) and such that the set B ⊂ [0, 1]2 has a bound-
ary curve of regularity Cβ. For a more formal definition, we refer
to Voigtlaender & Pein (2017, Definition 6.1).

Using this notion, we have the result that the best N-term
approximation error with such a frame of α-shearlets (that is,
the smallest approximation error obtained by a linear combina-
tion of N α-shearlets) is decaying at (almost) the best rate that
any dictionary Ψ can reach for Cβ-cartoon-like functions (see
Voigtlaender & Pein (2017, Theorem 6.3) for a more precise for-
mulation of this result). To obtain this optimal approximation
rate, the anisotropy parameter α needs to be adapted to the reg-
ularity β of the Cβ-cartoon-like functions, that is, α = 1/β. In
general, given a certain data set, or a certain data model, dif-
ferent types of α-shearlet systems will be better adapted to the
given data than other α′-shearlet systems.

We close our discussion of the mathematical properties of
α-shearlet systems with a brief discussion of the frequency con-
centration of such systems. To this end, assume for the moment
that the “mother shearlet” ψ is concentrated in frequency to the
set

Q := {ξ ∈ R2 : 3−1 ≤ |ξ1| ≤ 3 and |ξ2| ≤ |ξ1|} ,

which is a union of two opposing “wedges” (highlighted in green
in Fig. A.3). From elementary properties of the Fourier trans-
form, one then sees that each α-shearlet ψ(α)

j,`,ι has frequency

support in S T
` D(α)

j RιQ, where we denote by AT the transpose
of a matrix A. The resulting coverings of the frequency plane
for different values of the anisotropy parameter α are shown in
Fig. A.3.

Together, Figs. A.2 and A.3 show that the parameter α has
three different, but related effects:

– It affects the “shape” of the elements of the α-shearlet sys-
tem. Indeed, Fig. A.2 shows that height ≈ widthα.

– It affects the directional selectivity: as seen in Fig. A.3, on
scale j, an α-shearlet system can distinguish about 2(1−α) j

different directions.
– It affects the frequency support of the elements of the
α-shearlet system (see Fig. A.3).

α = 1

22 23

21

22

α = 0.5

22 23

21

22

α = 0

22 23

21

22

Fig. A.3. Frequency concentration of α-shearlets for different values of
α. One sees that each “dyadic annulus” {ξ : |ξ| � 2 j} is split into a
number N(α)

j of “wedges” representing the different directions. In fact,
N(α)

j � 2(1−α) j.

A.3. Implementation

The git repository of our implementation of the Euclidean α-
shearlet transform can be found online5, with extensive docu-
mentation6. Our software package is implemented in Python3
(Van Rossum & Drake 1995), using NumPy (van der Walt et al.
2011).

In this section, we give a rough overview over what the trans-
form computes, and how it can be used. Our software package
implements two different versions of the α-shearlet transform: a
fully-sampled (non-decimated) version, and a subsampled (dec-
imated) version. For the fully-sampled version, the computed
coefficients are the (discrete) convolutions ϕ ∗ f and ψ(α)

j,`,ι ∗ f
(for a certain range of scales j = 0, . . . , jmax), where the filters
ϕ and ψ(α)

j,`,ι are chosen as in Eqs. (A.1) and (A.2). Thus, for a
given input image f ∈ CN×N , the resulting coefficients form a
three-dimensional tensor of dimension Nα, jmax × N × N, where
the integer Nα, jmax is the total number of α-shearlet filters that is
used, and where each N × N component of the tensor is the dis-
crete convolution of f with one of the α-shearlet filters. When
considering jmax many scales (i.e., j = 0, . . . , jmax − 1) and if
α < 1, then

Nα, jmax = 1+2·
jmax−1∑

j=0

#{−d2(1−α) je, . . . , d2(1−α) je} � 2(1−α) jmax . (A.3)

In particular, for α = 0, N0, jmax � 2 jmax , so that the redundancy
of the fully sampled α-shearlet frame grows very quickly when
increasing the number of scales.

To motivate the subsampled transform, we note that accord-
ing to Eq. (A.1), the α-shearlet system does not contain all trans-
lations of the functions ϕ and ψ(α)

j,`,ι. Rather, ϕ is shifted along

5 github.com/dedale-fet/alpha-transform
6 Available at rawgit.com/dedale-fet/alpha-transform/
master/build/html/AlphaTransform.html
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the lattice δZ2, and – as seen in Eq. (A.2) –ψ(α)
j,`,ι is shifted

along the lattice δA−1
j,`,ιZ

2, with A j,`,ι = Rι D(α)
j S `. Effectively,

this means that the full convolution f ∗ ψ(α)
j,`,ι is only sampled

at certain points, where the sampling density gets more dense
as the scale j increases. The subsampled version of the α-
shearlet transform computes these coefficients. Internally, this is
achieved by using the “frequency wrapping” approach outlined in
Candès et al. (2006, Sects. 3.3 and 6), Woiselle (2010, Chapter 4),
and Woiselle et al. (2011) for the case of the curvelet transform.
Since each convolution is sampled along a different lattice, the
subsampled transform of a given image f is a list of rectangular
matrices of varying dimension. This will become clearer in the
example below. One can show for the subsampled transform that
the total number M = M(α, jmax,N) of α-shearlet coefficients for
an N×N image is bounded, that is, M(α, jmax,N) ≤ M0 ·N2, with
M0 independent of α, jmax,N. This is in stark contrast to the fully
sampled transform (at least for α < 1), where the total number of
coefficients is ≈ 2(1−α) jmax · N2 (see Eq. (A.3)).

The main effect of choosing the fully sampled transform is
that one gets a translation-invariant transform (i.e., taking the
transform of a shifted image is the same as shifting each com-
ponent of the coefficient tensor), and the increased redundancy.
This increased redundancy can actually be beneficial for certain
tasks like denoising, but it can greatly impact the memory foot-
print and the runtime: computations using the subsampled trans-
form are usually much faster and require much less memory, but
yield slightly worse results.

We close this section with a short IPython session show-
ing how our implementation of the α-shearlet transform can be
used.

>>> # Importing necessary packages
>>> from AlphaTransform import AlphaShearletTransform

as AST
>>> import numpy as np; from scipy import misc

>>> im = misc.face(gray=True); im.shape
(768, 1024)

>>> # Setting up the transform.
>>> trafo = AST(im.shape[1], im.shape[0], [0.5]*3,

subsampled=False, verbose=False, real=True) # 1

>>> # Computing the alpha-shearlet coefficients
>>> coeff = trafo.transform(im); print(type(coeff));

print(coeff.shape) # 2
<class ’numpy.ndarray’>
(27, 768, 1024)
>>> trafo.indices # 3
[-1,
(0, -1, ’h’), (0, 0, ’h’), (0, 1, ’h’),
(0, 1, ’v’), (0, 0, ’v’), (0, -1, ’v’),
(1, -2, ’h’), (1, -1, ’h’), (1, 0, ’h’), ... ]

>>> recon = trafo.inverse_transform(coeff) # 4
>>> np.allclose(recon, im)
True

>>> # Setting up the subsampled transform.
>>> trafo2 = AST(im.shape[1], im.shape[0], [0.5]*3,

subsampled=True, verbose=False, real=False) # 5

>>> # Computing the subsampled alpha-shearlet
coefficients

>>> coeff2 = trafo2.transform(im);
print(type(coeff2)); print(type(coeff2[0]));

print(coeff2[0].shape); print(coeff2[1].shape) #
6

<class ’list’>
<class ’numpy.ndarray’>
(129, 129)
(364, 161)
>>> trafo2.indices # 7
[-1,
(0, -1, ’r’), (0, 0, ’r’), (0, 1, ’r’),
(0, 1, ’t’), (0, 0, ’t’), (0, -1, ’t’),
(0, -1, ’l’), (0, 0, ’l’), (0, 1, ’l’),
(0, 1, ’b’), (0, 0, ’b’), (0, -1, ’b’),
(1, -2, ’r’), (1, -1, ’r’), (1, 0, ’r’), ... ]
>>> recon2 = trafo2.inverse_transform(coeff2);

np.allclose(recon2, im)
True
>>> print(trafo.redundancy); print(trafo2.redundancy)

# 8
27
12.08676528930664

In the line marked with #1, we set up the α-shearlet transform
object trafo. Roughly speaking, this precomputes all necessary
α-shearlet filters, which are stored in the trafo object. The first
two parameters of the constructor simply determine the shape
of the images for which the trafo object can be used, while
the third parameter determines the number of scales jmax to be
used, as well as the value of the anisotropy parameter α. Pass-
ing [alpha_0] * N will construct an α-shearlet transform with
N scales (plus the low-pass) and with α given by alpha_0. The
verbose parameter simply determines how much additional out-
put (like a progress bar) is displayed. The subsampled parameter
determines whether the non-decimated, or the decimated trans-
form is used. Finally, the real parameter determines whether
real-valued or complex-valued α-shearlet filters are used. Essen-
tially, real-valued filters have frequency support in the union
of two opposing wedges (as shown in Fig. A.3), while for
complex-valued filters, one gets two filters for each real-valued
one: one complex-valued filter has frequency support in the
“left” wedge, while the other one is supported in the “right”
wedge.

In line #2, we use the transform() method of the con-
structed trafo object to compute the α-shearlet transform of im.
As seen, the result is an ordinary NumPy array of dimension
Nα, jmax × N1 × N2, where the input image has dimension N1×N2,
and where Nα, jmax is the total number of α-shearlet filters used by
the transform.

The indices property of the trafo object (see line #3) can be
used to determine to which α-shearlet filter the individual com-
ponents of the coeff array are associated. The value -1 repre-
sents the low-pass filter, while a tuple of the form (j, l, c)
represents the shearlet filter ψ(α)

j,l,ι as in Eq. (A.1), where ι = 0 if
c is ’h’ (which stands for the horizontal frequency cone), and
where ι = 1 if c is ’v’ (vertical frequency cone).

To explain the differences between the fully sampled and
the subsampled transform, in line #5, we set up a subsampled
transform object trafo2. The only difference to the construc-
tion of the trafo object is that we pass subsampled=True, and
real=False. The reason for this second change is that – at least
with the current implementation – the subsampled transform
can only be used with complex-valued shearlet filters. We then
compute the coefficients (see line #6) just as for the fully sam-
pled transform. We note, however, that the coefficients for the
fully sampled transform were a single three-dimensional NumPy
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array. For the subsampled transform, however, the coefficients
are a list of two-dimensional NumPy arrays. The reason for this
is that the number of coefficients varies from scale to scale for
the subsampled transform.

The indices property (see line #7) for the subsampled trans-
form also differs from that of the fully sampled transform. The
reason for this is that we use complex shearlets; therefore, the
frequency plane is divided into four cones (top, or ’t’; right, or
’r’; bottom, or ’b’; and left, or ’l’), instead of the two cones
that are used for real-valued shearlet filters.

The main advantage of the subsampled transform is revealed
in line #8: the redundancy (that is, the number of α-shearlet coef-
ficients divided by the number of pixels of the input image) for
the subsampled transform is much lower, which leads to a lower
memory consumption and faster computation times. While the
advantage of the subsampled transform might not be overwhelm-
ing in the given example, it becomes more pronounced if one
uses a larger number of scales. For instance, if we use four scales
instead of three, then the redundancy of the fully sampled trans-
form is 41, while that of the subsampled transform is only ≈11.4.
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