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Optimal Approximation with Sparsely Connected Deep Neural Networks∗

Helmut Bölcskei† , Philipp Grohs‡ , Gitta Kutyniok§ , and Philipp Petersen¶

Abstract. We derive fundamental lower bounds on the connectivity and the memory requirements of deep neu-
ral networks guaranteeing uniform approximation rates for arbitrary function classes in L2(Rd). In
other words, we establish a connection between the complexity of a function class and the complex-
ity of deep neural networks approximating functions from this class to within a prescribed accuracy.
Additionally, we prove that our lower bounds are achievable for a broad family of function classes.
Specifically, all function classes that are optimally approximated by a general class of representa-
tion systems—so-called affine systems—can be approximated by deep neural networks with minimal
connectivity and memory requirements. Affine systems encompass a wealth of representation sys-
tems from applied harmonic analysis such as wavelets, ridgelets, curvelets, shearlets, α-shearlets,
and, more generally, α-molecules. Our central result elucidates a remarkable universality property
of neural networks and shows that they achieve the optimum approximation properties of all affine
systems combined. As a specific example, we consider the class of α−1-cartoon-like functions, which
is approximated optimally by α-shearlets. We also explain how our results can be extended to the
approximation of functions on low-dimensional immersed manifolds. Finally, we present numeri-
cal experiments demonstrating that the standard stochastic gradient descent algorithm yields deep
neural networks with close-to-optimal approximation rates. Moreover, these results indicate that
stochastic gradient descent can learn approximations that are sparse in the representation systems
optimally sparsifying the function class the network is trained on.
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lets, shearlets
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1. Introduction. Neural networks arose from the seminal work by McCulloch and Pitts
[41] in 1943 which, inspired by the functionality of the human brain, introduced an algorithmic
approach to learning with the aim of building a theory of artificial intelligence. Roughly
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 9

speaking, a neural network consists of neurons arranged in layers and connected by weighted
edges; in mathematical terms this boils down to a concatenation of affine linear functions and
relatively simple nonlinearities.

Despite significant theoretical progress in the 1990s [12, 34], the area has seen practical
progress only during the past decade, triggered by the drastic improvements in computing
power and the availability of vast amounts of training data. Deep neural networks, i.e.,
networks with large numbers of layers, are now state-of-the-art technology for a wide variety
of applications, such as image classification [36], speech recognition [33], and game intelligence
[13]. For an in-depth overview, we refer the reader to the survey paper by LeCun, Bengio,
and Hinton [39] and the recent book [24].

A neural network effectively implements a nonlinear mapping and can be used to either
perform classification directly or extract features that are then fed into a classifier, such
as a support vector machine [54]. In the former case, the primary goal is to approximate
an unknown classification function based on a given set of input-output value pairs. This is
typically accomplished by learning the network’s weights through, e.g., the stochastic gradient
descent (via back-propagation) algorithm [52]. In a classification task with, say, two classes,
the function to be learned would take only two values, whereas in the case of, e.g., the
prediction of the temperature in a certain environment, it would be real-valued. It is therefore
clear that characterizing to what extent (deep) neural networks are capable of approximating
general functions is a question of significant practical relevance.

Neural networks employed in practice often consist of hundreds of layers and may depend
on billions of parameters; see, for example, the work [32] on image classification. Training
and operation of networks of this scale entail formidable computational challenges. As a
case in point, we mention speech recognition on a smartphone such as, e.g., Apple’s SIRI
system, which operates in the cloud. Android’s speech recognition system has meanwhile
released an offline version based on a neural network with sparse connectivity. The desire
to reduce the complexity of network training and operation naturally leads to the question
of the fundamental limits on function approximation through neural networks with sparse
connectivity. In addition, the network’s memory requirements in terms of the number of bits
needed to store its topology and weights are of concern in practice.

The purpose of this paper is to understand the connectivity and memory requirements
of (deep) neural networks induced by demands on their approximation-theoretic properties.
Specifically, defining the complexity of a function class C as the rate of growth of the min-
imum number of bits needed to describe any element in C to within a maximum allowed
error approaching zero, we shall be interested in the following question: Depending on the
complexity of C, what are the connectivity and memory requirements of a deep neural net-
work approximating every element in C to within an error of ε? We address this question
by interpreting the network as an encoder in Donoho’s min-max rate distortion theory [19]
and establishing rate-distortion optimality for a broad family of function classes C, namely
those classes for which so-called affine systems—a general class of representation systems—
yield optimal approximation rates in the sense of nonlinear approximation theory [16]. Affine
systems encompass a wealth of representation systems from applied harmonic analysis such
as wavelets [14], ridgelets [4], curvelets [6], shearlets [31], α-shearlets, and, more generally,
α-molecules [27]. Our result therefore uncovers an interesting universality property of deep
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10 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

neural networks: they exhibit the optimal approximation properties of all affine systems com-
bined. The technique we develop to prove our main statements is interesting in its own right
as it constitutes a more general framework for transferring results on function approximation
through representation systems to results on approximation by deep neural networks.

1.1. Deep neural networks. While various network architectures exist in the literature,
we focus on the following setup.

Definition 1.1. Let L, d,N1, . . . , NL ∈ N with L ≥ 2. A map Φ : Rd → RNL given by

(1.1) Φ(x) = WLρ (WL−1ρ (. . . ρ (W1(x)))) for x ∈ Rd,

with affine linear maps W` : RN`−1 → RN`, 1 ≤ ` ≤ L, and the nonlinear activation function
ρ acting componentwise, is called a neural network. Here, N0 := d is the dimension of the
0th layer referred to as the input layer, L denotes the number of layers (not counting the
input layer), N1, . . . , NL−1 stands for the dimensions of the L − 1 hidden layers, and NL is
the dimension of the output layer. The affine linear map W` is defined via W`(x) = A`x+ b`
with A` ∈ RN`×N`−1 and the affine part b` ∈ RN`. (A`)i,j represents the weight associated
with the edge between the jth node in the (` − 1)th layer and the ith node in the `th layer,
while (b`)i is the weight associated with the ith node in the `th layer. These assignments
are schematized in Figure 1. The total number of nodes is given by N (Φ) := d +

∑L
`=1N`.

The real numbers (A`)i,j and (b`)i are said to be the network’s edge weights and node weights,
respectively, and the total number of nonzero edge weights, denoted by M(Φ), is the network’s
connectivity.

The term “network” stems from the interpretation of the mapping Φ as a weighted acyclic
directed graph with nodes arranged in L+1 hierarchical layers and edges only between adjacent
layers. If the network’s connectivity M(Φ) is small relative to the number of connections
possible (i.e., the number of edges in the graph that is fully connected between adjacent
layers), we say that the network is sparsely connected.

(b2)1 (b2)2

(b1)1 (b1)2 (b1)3

(A2)1,1 (A2)1,2 (A2)2,3

(A1)3,3(A1)2,3(A1)1,2(A1)1,1

A2 =

(
(A2)1,1 (A2)1,2 0

0 0 (A2)2,3

)

A1 =




(A1)1,1 (A1)1,2 0
0 0 (A1)2,3
0 0 (A1)3,3




Output layer

Hidden layer  ρ

Input layer

Figure 1. Assignment of the weights (A`)i,j and (b`)i of a two-layer network to the edges and nodes,
respectively.

Throughout the paper, we consider the case Φ : Rd → R, i.e., NL = 1, which includes
situations such as the classification and temperature prediction problem described above. We
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 11

emphasize, however, that the general results of sections 3, 4, and 5 are readily generalized to
NL > 1.

We denote the class of networks Φ : Rd → R with exactly L layers, connectivity no more
than M , and activation function ρ by NNL,M,d,ρ with the understanding that for L = 1,
the set NNL,M,d,ρ is empty. Moreover, we let NN∞,M,d,ρ :=

⋃
L∈NNNL,M,d,ρ, NNL,∞,d,ρ :=⋃

M∈NNNL,M,d,ρ, and NN∞,∞,d,ρ :=
⋃
L∈NNNL,∞,d,ρ.

Now, given a function f : Rd → R, we are interested in the theoretically best possible
approximation of f by a network Φ ∈ NN∞,M,d,ρ. Specifically, we will want to know how the
approximation quality depends on the connectivity M and what the associated number of bits
needed to store the network topology and the corresponding quantized weights is. Clearly,
smaller M entails lower computational complexity in terms of evaluating (1.1) and a smaller
number of bits translates to reduced memory requirements for storing the network. Such a
result benchmarks all conceivable algorithms for learning the network topology and weights.

1.2. Quantifying approximation quality. We proceed to formalizing our problem state-
ment and start with a brief review of a widely used framework in approximation theory
[17, 16].

Fix Ω ⊂ Rd. Let C be a compact set of functions in L2(Ω), henceforth referred to as
function class, and consider a corresponding system D := (ϕi)i∈I ⊂ L2(Ω) with I countable,
termed representation system. We study the error of best M -term approximation of f ∈ C
in D.

Definition 1.2 (see [17]). Given d ∈ N, Ω ⊂ Rd, a function class C ⊂ L2(Ω), and a
representation system D = (ϕi)i∈I ⊂ L2(Ω), we define, for f ∈ C and M ∈ N,

ΓDM (f) := inf
IM⊆I,

#IM=M,(ci)i∈IM

∥∥∥∥∥∥f −
∑
i∈IM

ciϕi

∥∥∥∥∥∥
L2(Ω)

.(1.2)

We call ΓDM (f) the best M -term approximation error of f in D. Every fM =
∑

i∈IM ciϕi
attaining the infimum in (1.2) is referred to as a best M -term approximation of f in D. The
supremal γ > 0 such that

sup
f∈C

ΓDM (f) ∈ O(M−γ), M →∞,

will be denoted by γ∗(C,D). Here, O(g(·)) denotes the class of functions bounded asymptoti-
cally by g in the sense of standard Landau notation. We say that the best M -term approxi-
mation rate of C in the representation system D is γ∗(C,D).

Function classes C widely studied in the approximation theory literature include unit balls
in Lebesgue, Sobolev, or Besov spaces [16], as well as α-cartoon-like functions [27]. A wealth
of structured representation systems D is provided by the area of applied harmonic analysis,
starting with wavelets [14], followed by ridgelets [4], curvelets [6], shearlets [31], parabolic
molecules [29], and, most generally, α-molecules [27], which include all previously named
systems as special cases. Further examples are Gabor frames [25] and wave atoms [15].

1.3. Approximation by deep neural networks. The main conceptual contribution of this
paper is the development of an approximation-theoretic framework for deep neural networks

c© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

05
/2

7/
25

 to
 1

38
.2

46
.3

.1
79

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



12 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

in the spirit of [17]. Specifically, we shall substitute the concept of best M -term approximation
with representation systems by best M -edge approximation through neural networks. In other
words, parsimony in terms of the number of participating elements of a representation system
is replaced by parsimony in terms of connectivity. More formally, we consider the following
setup.

Definition 1.3. Given d ∈ N, Ω ⊂ Rd, a function class C ⊂ L2(Ω), and an activation
function ρ : R→ R, we define, for f ∈ C and M ∈ N,

ΓNNM (f) := inf
Φ∈NN∞,M,d,ρ

‖f − Φ‖L2(Ω).(1.3)

We call ΓNNM (f) the best M -edge approximation error of f . The supremal γ > 0 such that

sup
f∈C

ΓNNM (f) ∈ O(M−γ), M →∞,

will be denoted by γ∗NN (C, ρ). We say that the best M -edge approximation rate of C by neural
networks with activation function ρ is γ∗NN (C, ρ).

We emphasize that the infimum in (1.3) is taken over all networks with fixed activation
function ρ, fixed input dimension d, no more than M edges of nonzero weight, and arbi-
trary number of layers L. In particular, this means that the infimum is taken over all possible
network topologies. The resulting best M -edge approximation rate is fundamental as it bench-
marks all learning algorithms, i.e., all algorithms that map an input function f and an ε > 0
to a neural network that approximates f with error no more than ε. Our framework hence
provides a means for assessing the performance of a given learning algorithm in the sense of
allowing us to measure how close the M -edge approximation rate induced by the algorithm is
to the best M -edge approximation rate γ∗NN (C, ρ).

1.4. Previous work. The best-known results on approximation by neural networks are
the universal approximation theorems of Hornik [34] and Cybenko [12], stating that every
measurable function f can be approximated arbitrarily well by a single-hidden-layer (L = 2
in our terminology) neural network. The literature on approximation-theoretic properties
of networks with a single hidden layer continuing this line of work is abundant. Without
any claim to completeness, we mention work on approximation error bounds in terms of
the number of neurons for functions with bounded first moments [1, 2], the nonexistence of
localized approximations [7], a fundamental lower bound on approximation rates [18, 4], and
the approximation of smooth or analytic functions [44, 42].

Approximation-theoretic results for networks with multiple hidden layers were obtained in
[35, 43] for general functions, in [23] for continuous functions, and in [47] for functions together
with their derivatives. In [7] it was shown that for certain approximation tasks deep networks
can perform fundamentally better than single-hidden-layer networks. We also highlight two
recent papers, which investigate the benefit—from an approximation-theoretic perspective—
of multiple hidden layers. Specifically, in [21] it was shown that there exists a function which,
although expressible through a small three-layer network, can only be represented through a
very large two-layer network; here size is measured in terms of the total number of neurons in
the network. In the setting of deep neural networks, first results of a nature similar to those in
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 13

[21] were reported in [46]. For the activation function ρ(x) = max{0, x}—usually referred to
as ReLU—it was demonstrated in [58, 50] that deep networks approximate sufficiently smooth
functions with rates higher than those achieved by shallow networks.

Convolutional neural networks are obtained as a special case of the general networks con-
sidered in this paper, namely by taking the affine linear transformations in Definition 1.1 to
have circulant A-matrices. Linking the expressivity properties of neural networks to tensor
decompositions, [9, 10] establish the existence of functions that can be realized by relatively
small deep convolutional networks but require exponentially larger shallow convolutional net-
works. Universal approximation theorems for convolutional neural networks are provided in
[59, 57]. The approximation-theoretic equivalence results between convolutional networks and
general networks established in [49], together with the main findings of the present paper, lead
to upper and lower bounds on approximation rates attainable with convolutional networks.

For survey articles on approximation-theoretic aspects of neural networks, we refer the
interested reader to [22, 51].

Most closely related to our work is that by Shaham, Cloninger, and Coifman [53], which
shows that for functions that are sparse in specific wavelet frames, the best M -edge approxima-
tion rate of three-layer neural networks is at least as high as the best M -term approximation
rate in piecewise linear wavelet frames.

1.5. Contributions. Our contributions can be grouped into four threads.
• Fundamental lower bound on connectivity. We quantify the minimum network con-

nectivity needed to allow approximation of all elements of a given function class C
to within a maximum allowed error. On a conceptual level, this result establishes a
universal link between the complexity of a given function class and the connectivity
required by corresponding approximating neural networks.
• Transfer from M -term to M -edge approximation. We develop a general framework

for transferring best M -term approximation results in representation systems to best
M -edge approximation results for neural networks.
• Memory requirements. We characterize the memory requirements needed to store the

topology and the quantized weights of optimally-approximating neural networks.
• Realizability of optimal approximation rates. An important practical question is how

neural networks trained by stochastic gradient descent (via back-propagation) [52]
perform relative to the fundamental bounds established in the paper. Interestingly,
our numerical experiments indicate that stochastic gradient descent can achieve M -
edge approximation rates quite close to the fundamental limit.

1.6. Outline of the paper. Section 2 introduces the novel concept of effective best M -
edge approximation. The fundamental lower bound on connectivity is developed in section
3. Section 4 describes a general framework for transferring best M -term approximation re-
sults in representation systems to best M -edge approximation results for neural networks. In
section 5, we apply this transfer framework to the broad class of affine representation sys-
tems, and section 6 shows that this leads to optimal M -edge approximation rates for cartoon
functions. In section 7, we briefly outline the extension of our main findings to the approxima-
tion of functions defined on manifolds. Finally, numerical results assessing the performance of
stochastic gradient descent (via back-propagation) relative to our lower bound on connectivity

c© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

05
/2

7/
25

 to
 1

38
.2

46
.3

.1
79

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



14 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

are reported in section 8.

2. Effective best M -term and best M -edge approximation. We proceed by introducing
M -term approximation via dictionaries andM -edge approximation via neural networks. These
concepts, however, do not allow for a meaningful notion of optimality in practice. A remedy
is provided by effective best M -term approximation according to [19, 26] and the new concept
of effective best M -edge approximation introduced below.

2.1. Effective best M -term approximation. The best M -term approximation rate
γ∗(C,D) according to Definition 1.2 measures the hardness of approximation of a given func-
tion class C by a fixed representation system D. It is sensible to ask whether, for a given
function class C, there is a fundamental limit on γ∗(C,D) when one is allowed to vary over D.
As shown in [19, 26], every dense (and countable) D ⊂ L2(Ω), Ω ⊂ Rd, results in γ∗(C,D) =∞
for all function classes C ⊂ L2(Ω). However, identifying the elements in D participating in
the best M -term approximation is infeasible as it entails searching through the infinite set D
and requires, in general, an infinite number of bits to describe the indices of the participat-
ing elements. This insight leads to the concept of “best M -term approximation subject to
polynomial-depth search” as introduced by Donoho in [19].

Definition 2.1. Given d ∈ N, Ω ⊂ Rd, a function class C ⊂ L2(Ω), and a representation
system D = (ϕi)i∈I ⊂ L2(Ω), the supremal γ > 0 so that there exist a polynomial π and a
constant D > 0 such that

sup
f∈C

inf
IM⊂{1,...,π(M)},

#IM=M, (ci)i∈IM ,maxi∈IM |ci| ≤D

∥∥∥∥∥∥f −
∑
i∈IM

ciϕi

∥∥∥∥∥∥
L2(Ω)

∈ O(M−γ), M →∞,(2.1)

will be denoted by γ∗,eff(C,D) and referred to as effective best M -term approximation rate of
C in the representation system D.

We will demonstrate in section 3.2 that supD⊂L2(Ω) γ
∗,eff(C,D) is, indeed, finite under quite

general conditions on C and, in particular, depends on the “description complexity” of C. This
will allow us to assess the approximation capacity of a given representation system D for C
by comparing γ∗,eff(C,D) to the ultimate limit supD⊂L2(Ω) γ

∗,eff(C,D).

2.2. Effective best M -edge approximation. We next aim at establishing a relationship in
the spirit of effective best M -term approximation for approximation through deep neural net-
works. To this end, we first note that Definition 1.3 encounters problems similar to those iden-
tified for approximation by representation systems; namely the quantity supρ:R→R γ

∗
NN (C, ρ)

does not reveal anything tangible about the approximation complexity of C in deep neural
networks, unless further constraints are imposed on the approximating network. To make this
point, we first review the following remarkable result.

Theorem 2.2 (see [40]). There exists a function ρ : R→ R that is C∞, strictly increasing,
and satisfies limx→∞ ρ(x) = 1 and limx→−∞ ρ(x) = 0, such that for any d ∈ N, any f ∈
C([0, 1]d), and any ε > 0, there is a neural network Φ with activation function ρ and three
layers, of dimensions N1 = 3d, N2 = 6d+ 3, and N3 = 1, satisfying

(2.2) sup
x∈[0,1]d

|f(x)− Φ(x)| ≤ ε.
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 15

We observe that the number of nodes and the number of layers of the approximating
network in Theorem 2.2 do not depend on the approximation error ε. In particular, ε can be
chosen arbitrarily small while having M(Φ) bounded. By density of C([0, 1]d) in L2([0, 1]d)
and hence in all compact subsets of L2([0, 1]d), this implies the existence of an activation
function ρ : R→ R such that γ∗NN (C, ρ) =∞ for all compact C ⊂ L2([0, 1]d), d ∈ N. However,
the networks underlying Theorem 2.2 necessarily lead to weights that are (in absolute value)
not bounded by |π(ε−1)| for a polynomial π, a requirement we will have to impose to get
rate-distortion-optimal approximation through neural networks (see section 3). To see that
the weights indeed do not obey a polynomial growth bound in ε−1, we note that, thanks to
Theorem 2.2, there exist C > 0 and γ > 0 such that

sup
f∈C

inf
ΦM∈NN3,M,d,ρ

‖f − ΦM‖L2(Ω) ≤ CM−γ for all M ∈ N.(2.3)

Now, as ε in Theorem 2.2 can be made arbitrarily small while the connectivity of the corre-
sponding networks remains upper-bounded by 21d2 + 15d + 3, (2.3) would have to hold for

arbitrarily large γ, in particular also for γ > γ∗,eff
NN (C, ρ), where γ∗,eff

NN (C, ρ) is the effective best
M -edge approximation rate according to Definition 2.3. By Theorem 3.4 below, however,
γ∗,eff
NN (C, ρ) ≤ γ∗(C), where γ∗(C) is the optimal exponent according to Definition 3.1. Owing

to Definition 2.3, we can therefore conclude that the weights of the network achieving the
infimum in (2.3) cannot be bounded by a polynomial in M ∼ ε−1 whenever γ∗(C) <∞. Here
and in what follows, we write a ∼ b if the variables a and b are proportional, i.e., there exist
uniform constants c1, c2 > 0 such that c1a ≤ b ≤ c2a.

The observation just made resembles the problem in best M -term approximation which
eventually led to the concept of effective best M -term approximation, where we restricted
the search depth in the representation system D to be polynomially bounded in M and the
coefficients ci to be bounded according to maxi∈IM |ci| ≤ D. Interpreting the weights in the
network as the counterpart of the coefficients ci in best M -term approximation, we see that the
restriction on the search depth corresponds to restricting the size of the indices enumerating
the participating weights. The need for such a restriction is obviated by the tree structure
of deep neural networks as exposed in detail in the proof of Proposition 3.6. The second
restriction will lead us to a growth condition on the weights, which is more generous than the
corresponding requirement of the ci in effective best M -term approximation being bounded.

In summary, this leads to the novel concept of “best M -edge approximation subject to
polynomial weight growth” as formalized next.

Definition 2.3. Given d ∈ N, Ω ⊂ Rd, a function class C ⊂ L2(Ω), and an activation
function ρ : R→ R, the supremal γ > 0 so that there exist an L ∈ N and a polynomial π such
that

sup
f∈C

inf
ΦM∈NNπL,M,d,ρ

‖f − ΦM‖L2(Ω) ∈ O(M−γ), M →∞,(2.4)

where NN π
L,M,d,ρ denotes the class of networks in NNL,M,d,ρ that have all their weights

bounded in absolute value by |π(M)|, will be referred to as effective best M -edge approxi-

mation rate of C by neural networks and denoted by γ∗,eff
NN (C, ρ).
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16 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

We will show in Corollary 3.4 that supρ:R→R γ
∗,eff
NN (C, ρ) is bounded and depends on the

“description complexity” of the function class C.

3. Fundamental bounds on effective M -term and M -edge approximation rate. The
purpose of this section is to establish fundamental bounds on effective best M -term and
effective best M -edge approximation rates by evaluating the corresponding approximation
strategies in the min-max rate distortion theory framework as developed in [19, 26].

3.1. Min-max rate distortion theory. Min-max rate distortion theory provides a theoret-
ical foundation for deterministic lossy data compression. We recall the following notions and
concepts from [19, 26].

Let d ∈ N, Ω ⊂ Rd, and consider the function class C ⊂ L2(Ω). Then, for each ` ∈ N, we
denote by

E` :=
{
E : C → {0, 1}`

}
the set of binary encoders of C of length `, and we let

D` :=
{
D : {0, 1}` → L2(Ω)

}
be the set of binary decoders of length `. An encoder-decoder pair (E,D) ∈ E`×D` is said to
achieve uniform error ε over the function class C if

sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε.

A quantity of central interest is the minimal length ` ∈ N for which there exists an encoder-
decoder pair (E,D) ∈ E` ×D` that achieves uniform error ε over the function class C, along
with its asymptotic behavior, as made precise in the following definition.

Definition 3.1. Let d ∈ N, Ω ⊂ Rd, and C ⊂ L2(Ω). Then, for ε > 0, the minimax code
length L(ε, C) is

L(ε, C) := min

{
` ∈ N : ∃(E,D) ∈ E` ×D` : sup

f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε

}
.

Moreover, the optimal exponent γ∗(C) is defined as

γ∗(C) := sup
{
γ ∈ R : L(ε, C) ∈ O

(
ε
− 1
γ

)
, ε→ 0

}
.

The optimal exponent γ∗(C) quantifies the minimum growth rate of L(ε, C) as the error ε
tends to zero and can hence be seen as quantifying the “description complexity” of the function
class C. Larger γ∗(C) results in smaller growth rate and hence smaller memory requirements
for storing signals f ∈ C such that reconstruction with uniformly bounded error is possible.
The quantity γ∗(C) is closely related to the concept of Kolmogorov entropy [48]. Remark 5.10
in [26] makes this connection explicit.

The optimal exponent is known for several function classes, such as subsets of Besov spaces
Bs
p,q(Rd) with 1 ≤ p, q < ∞, s > 0, and q > (s + 1/2)−1, namely all functions in Bs

p,q(Rd) of

bounded norm; see, e.g., [8]. If C is a bounded subset of Bs
p,q(Rd), then we have γ∗(C) = s/d.

In the present paper, we shall be particularly interested in so-called β-cartoon-like functions,
for which the optimal exponent is given by β/2 (see [20, 28] and Theorem 6.3).
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 17

3.2. Fundamental bound on effective best M -term approximation rate. We next recall
a result from [19, 26], which says that, for a given function class C, the optimal exponent γ∗(C)
constitutes a fundamental bound on the effective best M -term approximation rate of C in any
representation system. This gives operational meaning to γ∗(C).

Theorem 3.2 (see [19, 26]). Let d ∈ N, Ω ⊂ Rd, and C ⊂ L2(Ω), and assume that the
effective best M -term approximation rate of C in D ⊂ L2(Ω) is γ∗,eff(C,D). Then, we have

γ∗,eff(C,D) ≤ γ∗(C).

In light of this result, the following definition is natural (see also [26]).

Definition 3.3. Let d ∈ N, Ω ⊂ Rd, and assume that the effective best M -term approxima-
tion rate of C ⊂ L2(Ω) in D ⊂ L2(Ω) is γ∗,eff(C,D). If

γ∗,eff(C,D) = γ∗(C),

then the function class C is said to be optimally representable by D.

3.3. Fundamental bound on effective best M -edge approximation rate. We now state
the first main result of the paper, namely the equivalent of Theorem 3.2 for approximation
by deep neural networks. Specifically, we establish that the optimal exponent γ∗(C) also
constitutes a fundamental bound on the effective best M -edge approximation rate of C. We
say below that a function f : R → R is dominated by a function g : R → R if |f(x)| ≤ |g(x)|
for all x ∈ R.

Theorem 3.4. Let d ∈ N, Ω ⊂ Rd be bounded, and let C ⊂ L2(Ω). Then, for all ρ : R→ R
that are Lipschitz-continuous or differentiable with ρ′ dominated by a polynomial, we have

γ∗,eff
NN (C, ρ) ≤ γ∗(C).

The key ingredients of the proof of Theorem 3.4 are developed throughout this section,
and the formal proof will be stated at the end of the section. Before embarking, we note that,
in analogy to Definition 3.3, what we just found suggests the following.

Definition 3.5. For d ∈ N, Ω ⊂ Rd bounded, we say that the function class C ⊂ L2(Ω) is
optimally representable by neural networks with activation function ρ : R→ R if

γ∗,eff
NN (C, ρ) = γ∗(C).

It is remarkable that the fundamental limits of approximation through representation sys-
tems and approximation through deep neural networks are determined by the same quantity,
although the approximants in the two cases are vastly different—namely, linear combinations
of elements of a representation system with the participating functions identified subject to
a polynomial-depth search constraint in the former, and concatenations of affine functions
followed by nonlinearities under growth constraints on the weights in the network in the latter
case.

A key ingredient of the proof of Theorem 3.4 is the following result, which establishes a
fundamental lower bound on the connectivity of networks with quantized weights achieving
uniform error ε over a given function class.
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18 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

Proposition 3.6. Let d ∈ N, Ω ⊂ Rd, ρ : R→ R, c > 0, and C ⊂ L2(Ω). Further, let

Learn :

(
0,

1

2

)
× C → NN∞,∞,d,ρ

be a map such that, for each pair (ε, f) ∈ (0, 1/2) × C, every weight of the neural network
Learn(ε, f) is represented by no more than dc log2(ε−1)e bits1 while guaranteeing that

(3.1) sup
f∈C
‖f − Learn(ε, f)‖L2(Ω) ≤ ε.

Then,

(3.2) sup
f∈C
M(Learn(ε, f)) /∈ O

(
ε
− 1
γ

)
, ε→ 0, for all γ > γ∗(C).

Proof. The proof is by contradiction. To this end, let γ > γ∗(C), and assume that
supf∈CM(Learn(ε, f)) ∈ O(ε−1/γ), ε→ 0. The contradiction will be effected by constructing

encoder-decoder pairs (Eε, Dε) ∈ E`(ε) ×D`(ε) achieving uniform error ε over C with

`(ε) ≤ C0 · sup
f∈C

[M(Learn(ε, f)) log2(M(Learn(ε, f))) + 1] log2(ε−1)(3.3)

≤ C0 ·
[
ε
− 1
γ log2

(
ε
− 1
γ

)
+ 1
]

log2(ε−1)

≤ C1

(
ε
− 1
γ (log2(ε−1))2 + log2(ε−1)

)
∈ O

(
ε−

1
ν

)
for ε→ 0,

where C0, C1 > 0 are constants and γ > ν > γ∗(C). Such a construction stands in contradic-
tion to the optimality of γ∗(C) according to Definition 3.1.

We proceed to the construction of the encoder-decoder pairs (Eε, Dε) ∈ E`(ε) ×D`(ε). Fix
f ∈ C. We enumerate the nodes in Learn(ε, f) by assigning natural numbers, henceforth
called indices, increasing from left to right in every layer as schematized in Figure 2. For the
sake of notational simplicity, we also set Φ := Learn(ε, f) and M :=M(Φ). Without loss of
generality, we henceforth assume that M is a power of 2 and larger than 1. The case M = 0
will be dealt with in Step 1 below. For all M that are not powers of 2 and for M = 1, we
make use of the fact that NNL,M,d,ρ ⊂ NNL,M ′,d,ρ, where M ′ is the smallest power of 2 larger
than M , and we encode the network like an M ′-edge network. Since M < M ′ ≤ 2M , this
affects `(ε) by a multiplicative constant only.

We recall that the number of layers of Φ is denoted by L, the number of nodes in these
layers is N1, . . . , NL (see Definition 1.1), and d stands for the dimension of the input layer.

Denoting the number of nodes in layer ` = 1, . . . , L − 1 associated with edges of nonzero
weight in the following layer by Ñ` and setting ÑL = NL = 1, it follows that

d+

L∑
`=1

Ñ` ≤ 2M̃,(3.4)

1Throughout the paper, we say that a weight of Learn(ε, f) is represented by no more than K bits if it is
taken from a set that is independent of f and has cardinality at most 2K .
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 19

7

5 6

2 3 4

1

Figure 2. Enumeration of nodes as employed in the proof of the theorem.

where we let M̃ := M + d. All other nodes do not contribute to the mapping Φ(x) and can
hence be ignored. Moreover, we can assume that

L ≤ M̃,(3.5)

as otherwise there would be at least one layer ` > 1 such that

A` = 0.

As a consequence, the reduced network

x 7→WLρ(WL−1 . . .W`+1ρ(0 · x+ b`))

realizes the same function as the original network Φ but has fewer than L layers. This reduction
can be repeated inductively until the resulting reduced network satisfies (3.5).

The bitstring representing Φ is constructed according to the following steps.
Step 1. If M = 0, we encode the network by a leading 0 followed by the bitstring

representing the node weight in the last layer. Upon defining 0 log2(0) = 0, we then note that
(3.3) holds trivially, and we terminate the encoding procedure. Else, we encode the number
of nonzero edge weights, M , by starting the overall bitstring with M 1’s followed by a single
0. The length of this bitstring is therefore bounded by M̃ .

Step 2. We continue by encoding the number of layers in the network. Thanks to (3.5),

this requires no more than log2(M̃) bits. We thus reserve the next log2(M̃) bits for the binary
representation of L.

Step 3. Next, we store the dimension d of the input layer and the numbers of nodes
Ñ`, ` = 1, . . . , L, associated with edges of nonzero weight. As by (3.4) d ≤ M̃ and Ñ` ≤ 2M̃ ,

for all `, we can encode (generously) d and each Ñ` using log2(M̃) + 1 bits. For the sake of
concreteness, we first encode d followed by Ñ1, . . . , ÑL in that order. In total, Step 3 requires
a bitstring of length(

(L+ 1) ·
(

log2

(
M̃
)

+ 1
))
≤
(
M̃ + 1

)
log2

(
M̃
)

+ M̃ + 1.

In combination with Steps 1 and 2 this yields an overall bitstring of length at most

(3.6) M̃ log2

(
M̃
)

+ 2 log2

(
M̃
)

+ 2M̃ + 1.
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20 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

Step 4. We encode the topology of the graph associated with Φ and consider only nodes
that contribute to the mapping Φ(x). Recall that we assigned a unique index i, ranging from
1 to Ñ := d+

∑L
`=1 Ñ`, to each of these nodes. By (3.4) each of these indices can be encoded

by a bitstring of length log2(M̃) + 1. We denote the bitstring corresponding to index i by

b(i) ∈ {0, 1}log2(M̃)+1 and let n(i) be the number of children of the node with index i, i.e., the
number of nodes in the next layer connected to the node with index i via an edge. (Here,

n(Ñ) = 0.) For each node i = 1, . . . , Ñ , we form a bitstring of length n(i) · (log2(M̃) + 1)
by concatenating the bitstrings b(j) for all j such that there is an edge between i and j. We

follow this string with an all-zeros bitstring of length log2(M̃) + 1 to signal the transition to
the node with index i+ 1. The enumeration is concluded with an all-zeros bitstring of length
log2(M̃) + 1 signaling that the last node has been reached. Overall, this yields a bitstring of
length

(3.7)
Ñ∑
i=1

(n(i) + 1) ·
(

log2

(
M̃
)

+ 1
)
≤ 3M̃ ·

(
log2

(
M̃
)

+ 1
)
,

where we used
∑Ñ

i=1 n(i) = M < M̃ and (3.4). Combining (3.6) and (3.7) it follows that we
have encoded the overall topology of the network Φ using at most

(3.8) 5M̃ + 4M̃ log2

(
M̃
)

+ 2 log2

(
M̃
)

+ 1

bits.
Step 5. We encode the weights of Φ. By assumption, each weight can be represented by a

bitstring of length dc log2(ε−1)e. For each node i = 1, . . . , Ñ , we reserve the first dc log2(ε−1)e
bits to encode its associated node weight and, for each of its children, a bitstring of length
dc log2(ε−1)e to encode the weight corresponding to the edge between that child and its parent
node. Concatenating the results in ascending order of child node indices, we get a bitstring
of length (n(i) + 1) · (dc log2(ε−1)e) for node i and an overall bitstring of length

(3.9)
Ñ∑
i=1

(n(i) + 1) ·
(
dc log2

(
ε−1
)
e
)
≤ 3M̃ · dc log2

(
ε−1
)
e

representing the weights of the graph associated with the network Φ.
With (3.8) this shows that the overall number of bits needed to encode the network

topology and weights is no more than

5M̃ + 4M̃ log2

(
M̃
)

+ 2 log2

(
M̃
)

+ 1 + 3M̃ · dc log2

(
ε−1
)
e.(3.10)

The network can be recovered by sequentially reading out M,L, d, the Ñ`, the topology, and
the quantized weights from the overall bitstring. It is not difficult to verify that the individual
steps in the encoding procedure were crafted such that this yields unique recovery. As (3.10)
can be upper-bounded by

(3.11) C0M log2(M) log2

(
ε−1
)
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 21

for a constant C0 > 0 depending on c and d only, we have constructed an encoder-decoder
pair (E,D) ∈ E`(ε) ×D`(ε) with `(ε) satisfying (3.3). This concludes the proof.

Proposition 3.6 applies to networks that have each weight represented by a finite number
of bits scaling according to log2(ε−1) while guaranteeing that the underlying encoder-decoder
pair achieves uniform error ε over C. We next show that such a compatibility is possible for
networks with activation functions that are either Lipschitz or differentiable such that ρ′ is
dominated by a polynomial.

Lemma 3.7. Let d, L, k,M ∈ N, η ∈ (0, 1/2),Ω ⊂ Rd be bounded, and let ρ : R → R be
either Lipschitz-continuous or differentiable such that ρ′ is dominated by a polynomial. Let
Φ ∈ NNL,M,d,ρ with M ≤ η−k and all its weights be bounded (in absolute value) by η−k. Then,

there exist m ∈ N, depending on k, L, and ρ only, and Φ̃ ∈ NNL,M,d,ρ such that∥∥∥Φ̃− Φ
∥∥∥
L∞(Ω)

≤ η

and all weights of Φ̃ are elements of ηmZ ∩ [−η−k, η−k].
Proof. We prove the statement for Lipschitz-continuous ρ only. The argument for differ-

entiable activation functions with first derivative not growing faster than polynomial is along
similar lines.

Without loss of generality, we can take the number of nonzero node weights of Φ to be
upper-bounded by twice the number of nonzero edge weights. This assumption is justified
as else there would be nodes that are not connected to the next layer through an edge of
nonzero weight and we could replace the corresponding node weights by zero without altering
the mapping Φ. This reduction would then lead to the assumption being justified.

Let m ∈ N, to be specified later, and denote by Φ̃ the network that results by replacing
all weights of Φ by a closest element in ηmZ ∩ [−η−k, η−k]. Set Cmax := η−k, and denote the
maximum of 1 and the total number of nonzero edge weights plus nonzero node weights of
Φ by CW . Note that CW ≤ 3M ≤ 3η−k, where the latter inequality is by assumption. For
` = 1, . . . , L− 1, define Φ` : Ω→ RN` as

Φ`(x) := ρ (W`ρ (. . . ρ (W1(x)))) for x ∈ Ω,

and Φ̃` accordingly, and let, for ` = 1, . . . , L− 1,

e` :=
∥∥∥Φ` − Φ̃`

∥∥∥
L∞(Ω,RN` )

, eL :=
∥∥∥Φ− Φ̃

∥∥∥
L∞(Ω)

.

Denote the maximum of 1 and the Lipschitz constant of ρ by Cρ, set C0 := max{1, sup{|x| :
x ∈ Ω}}, and let

C` := max

{∥∥∥Φ`
∥∥∥
L∞(Ω,RN` )

,
∥∥∥Φ̃`

∥∥∥
L∞(Ω,RN` )

}
for ` = 1, . . . , L− 1.

Then, straightforward, albeit somewhat tedious, algebraic manipulations show that for all
` = 2, . . . , L− 1,

e1 ≤ C0CρCW ηm, and e` ≤ CρCW C`−1 η
m + CρCW Cmax e`−1.(3.12)
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22 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

Additionally, we observe that

eL ≤ CW CL−1 η
m + CW Cmax eL−1.(3.13)

We now bound the quantity C` for ` = 1, . . . , L − 1. A simple computation, exploiting the
Lipschitz-continuity of ρ, yields

C` ≤ (|ρ(0)|+ CρCW CmaxC`−1) for all ` = 1, . . . , L− 1.

Since ρ is continuous on R, we have |ρ(0)| <∞, and thus, by Cρ, CW , Cmax ≥ 1, there exists
C ′ > 0 such that

C` ≤ C ′C0 (CρCW Cmax)` for all ` = 1, . . . , L− 1.

As CW and Cmax are both bounded by η−k−2, it follows that C` is bounded by η−p for a
p ∈ N. We can therefore find n ∈ N such that for all ` = 1, . . . , L− 1,

(3.14) max{C0CρCW , CW Cmax, CW CL−1, CρCW C`−1, CρCW Cmax} ≤
η−n

2
.

Invoking (3.12), we conclude that

e` ≤
η−n

2
(ηm + e`−1) for all ` = 1, . . . , L− 1,(3.15)

where we set e0 = 0. We proceed by induction to prove that there exists r ∈ N such that for
all ` = 1, . . . , L− 1,

e` ≤ ηm−(`−1)n−r.(3.16)

Clearly there exists r ∈ N such that e1 ≤ ηm−r. Moreover, one easily verifies that the existence
of an r ∈ N such that (3.16) is satisfied for an ` ∈ {1, . . . , L− 2}, thanks to (3.15), implies the
existence of an r ∈ N such that (3.16) is satisfied for ` replaced by `+ 1. This concludes the
induction argument.

Using (3.14) and (3.16) in (3.13), we finally obtain

eL ≤
ηm−n

2
+
ηm−(L−1)n−r

2
,

which yields eL ≤ η for sufficiently large m.

Remark 3.8. Note that the weights of the network being elements of ηmZ ∩ [−η−k, η−k]
implies that each weight can be represented by no more than dc log2(η−1)e bits for some
constant c > 0.

Not only does Proposition 3.6 say that the connectivity growth rate of networks achieving
uniform approximation error ε over a function class C must exceed O

(
ε−1/γ∗(C)), ε → 0, but

its proof, by virtue of constructing an encoder-decoder pair that achieves this growth rate,
also provides an achievability result. We next establish a matching strong converse in the
sense of showing that for γ > γ∗(C), the uniform approximation error remains bounded away
from zero for infinitely many M ∈ N. To simplify terminology in what follows, we introduce
the notion of a polynomially bounded variable.
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 23

Definition 3.9. A real variable X depending on the variables zi ∈ Di ⊂ R, i = 1, . . . , N , is
said to be polynomially bounded in z1, . . . , zN if there exists an N -variate polynomial π such
that |X| ≤ |π(z1, . . . , zN )| for all zi ∈ Di, i = 1, . . . , N . A set of real variables (Xj)j∈J , each
depending on zi ∈ Di ⊂ R, i = 1, . . . , N , is uniformly polynomially bounded in z1, . . . , zN if
there exists an N -variate polynomial π such that |Xj | ≤ |π(z1, . . . , zN )| for all j ∈ J and all
zi ∈ Di, i = 1, . . . , N .

We will refrain from explicitly specifying the Di in Definition 3.9 whenever they are clear
from the context.

Remark 3.10. If Di = R \ [−Bi, Bi] for some Bi ≥ 1, i = 1, . . . , N , then a variable X
depending on zi ∈ Di, i = 1, . . . , N, is polynomially bounded in z1, . . . , zN if and only if there
exists a k ∈ N such that |X| ≤ |zk1 · zk2 · . . . · zkN | for all zi ∈ Di.

Proposition 3.11. Let d, L ∈ N, Ω ⊂ Rd be bounded, π a polynomial, C ⊂ L2(Ω), and ρ :
R→ R either Lipschitz-continuous or differentiable such that ρ′ is dominated by a polynomial.
Then, for all C > 0 and γ > γ∗(C), we have that

sup
f∈C

inf
Φ∈NNπL,M,d,ρ

‖f − Φ‖L2(Ω) ≥ CM−γ for infinitely many M ∈ N.(3.17)

Proof. Let γ > γ∗(C). Assume, towards a contradiction, that (3.17) holds only for finitely
many M ∈ N. Then, there exists a constant C > 0 such that the inequality in (3.17) holds
for no M ∈ N and hence there exists C ′ > 0 so that

sup
f∈C

inf
Φ∈NNπL,M,d,ρ

‖f − Φ‖L2(Ω) ≤ C ′M−γ for all M ∈ N.

Setting Mε := d(ε/(3C ′))−1/γe, it follows that, for every f ∈ C and every ε ∈ (0, 1/2), there
exists a neural network Φε,f ∈ NN π

L,Mε,d,ρ such that

‖f − Φε,f‖L2(Ω) ≤ 2 sup
f∈C

inf
Φ∈NNπL,Mε,d,ρ

‖f − Φ‖L2(Ω) ≤ 2C ′M−γε ≤ 2ε

3
.

As the weights of Φε,f are polynomially bounded in Mε, they are polynomially bounded in

ε−1. By Lemma 3.7 and Remark 3.10, there hence exists a network Φ̃ε,f whose weights are
represented by no more than dc log2(ε−1)e bits, for some constant c > 0, satisfying∥∥∥Φε,f − Φ̃ε,f

∥∥∥
L2(Ω)

≤ ε

3
.

Defining

Learn :

(
0,

1

2

)
× C → NN∞,∞,d,ρ, (ε, f) 7→ Φ̃ε,f ,

it follows that

sup
f∈C
‖f − Learn(ε, f)‖L2(Ω) ≤ ε with M(Learn(ε, f)) ≤Mε ∈ O(ε

− 1
γ ), ε→ 0.

The proof is concluded by noting that Learn violates Proposition 3.6.
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24 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

We can now proceed to the proof of Theorem 3.4.

Proof of Theorem 3.4. Suppose towards a contradiction that γ∗,eff
NN (C, ρ) > γ∗(C). Let

γ ∈ (γ∗(C), γ∗,eff
NN (C, ρ)). Then, Definition 2.3 implies that there exist a polynomial π, L ∈ N,

and C > 0 such that

sup
f∈C

inf
ΦM∈NNπL,M,d,ρ

‖f − ΦM‖L2(Ω) ≤ CM−γ for all M ∈ N.

This, however, constitutes a contradiction to Proposition 3.11.

We conclude this section with a discussion of the conceptual implications of the results
established above. Proposition 3.6 combined with Lemma 3.7 establishes that neural networks
with weights polynomially bounded in ε−1 and achieving uniform approximation error ε over
C cannot exhibit edge growth rate smaller than O(ε−1/γ∗(C)), ε→ 0; in other words, a decay
of the uniform approximation error, as a function of M , faster than O(M−γ

∗(C)), M →∞, is
not possible.

Note that requiring uniform approximation error ε only (without imposing the constraint
of the network’s weights being polynomially bounded in ε−1) can lead to arbitrarily large rate γ
as exemplified by Theorem 2.2, which proves the existence of networks realizing an arbitrarily
small approximation error over L2([0, 1]d) with a finite number of nodes; in particular, the
number of nodes remains constant as ε → 0. However, as argued right after Theorem 2.2,
these networks necessarily lead to weights that are not polynomially bounded in ε−1.

Finally, we remark that the proofs of Theorem 3.4 and Proposition 3.6, by virtue of
explicitly constructing encoder-decoder pairs for neural networks, provide a bound on the
minimax code length of these networks. This, in turn, implies a bound on the networks’
covering numbers (see [26]), which, based on classical results from statistical learning theory
(see, for example, [11]), leads to bounds on the generalization error; see, e.g., [3].

4. Transitioning from representation systems to neural networks. The remainder of this
paper is devoted to identifying function classes that are optimally representable—according
to Definition 3.5—by neural networks. The mathematical technique we develop in the process
is interesting in its own right as it constitutes a general framework for transferring results
on function approximation through representation systems to results on approximation by
neural networks. In particular, we prove that for a given function class C and an associated
representation system D which satisfies certain technical conditions, there exists a neural
network with O(M) nonzero edge weights that achieves (up to a multiplicative constant) the
same uniform error over C as a best M -term approximation in D. This will finally lead to a
characterization of function classes C that are optimally representable by neural networks in
the sense of Definition 3.5.

We start by stating technical conditions on representation systems for the transference
principle outlined above to apply.

Definition 4.1. Let d ∈ N, Ω ⊂ Rd, ρ : R → R, and D = (ϕi)i∈I ⊂ L2(Ω) be a representa-
tion system. Then, D is said to be representable by neural networks (with activation function
ρ) if there exist L,R ∈ N such that for all η > 0 and every i ∈ I, there is a neural network
Φi,η ∈ NNL,R,d,ρ with

‖ϕi − Φi,η‖L2(Ω) ≤ η.
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 25

If, in addition, the weights of Φi,η ∈ NNL,R,d,ρ are polynomially bounded in i, η−1, and if ρ is
either Lipschitz-continuous or differentiable such that ρ′ is dominated by a polynomial, then
we say that D is effectively representable by neural networks (with activation function ρ).

The next result formalizes our transference principle for networks with weights in R.

Theorem 4.2. Let d ∈ N, Ω ⊂ Rd, and ρ : R → R. Suppose that D = (ϕi)i∈I ⊂ L2(Ω)
is representable by neural networks. Let f ∈ L2(Ω), and, for M ∈ N, let fM =

∑
i∈IM ciϕi,

IM ⊂ I, #IM = M , satisfy
‖f − fM‖L2(Ω) ≤ ε,

where ε ∈ (0, 1/2). Then, there exist L ∈ N (depending on D only) and a neural network
Φ(f,M) ∈ NNL,M ′,d,ρ with M ′ ∈ O(M) satisfying

‖f − Φ(f,M)‖L2(Ω) ≤ 2ε.(4.1)

In particular, for all function classes C ⊂ L2(Ω), it holds that

γ∗NN (C, ρ) ≥ γ∗(C,D).(4.2)

Proof. By representability of D according to Definition 4.1, it follows that there exist
L,R ∈ N, such that for each i ∈ IM and for η := ε/max{1,

∑
i∈IM |ci|}, there exists a neural

network Φi,η ∈ NNL,R,d,ρ with

‖ϕi − Φi,η‖L2(Ω) ≤ η.(4.3)

Let then Φ(f,M) be the neural network consisting of the networks (Φi,η)i∈IM operating in
parallel, all with the same input, and summing their one-dimensional outputs (see Figure 3
in section 8 for an illustration) with weights (ci)i∈IM according to

(4.4) Φ(f,M)(x) :=
∑
i∈IM

ciΦi,η(x) for x ∈ Ω.

This construction is legitimate as all networks Φi,η have the same number of layers and
the last layer of a neural network according to Definition 1.1 implements an affine func-
tion only (without subsequent application of the activation function ρ). Then, the fact that
Φ(f,M) ∈ NNL,RM,d,ρ and application of the triangle inequality together with (4.3) yields
‖fM − Φ(f,M)‖L2(Ω) ≤ ε. Another application of the triangle inequality according to

‖f − Φ(f,M)‖L2(Ω) ≤ ‖f − fM‖L2(Ω) + ‖fM − Φ(f,M)‖L2(Ω) ≤ 2ε

finalizes the proof of (4.1), which by Definitions 1.2 and 1.3 implies (4.2).

Theorem 4.2 shows that we can restrict ourselves to the approximation of the individual
elements of a representation system by neural networks with the only constraint being that
the number of nonzero edge weights in the individual networks must admit a uniform upper
bound. Theorem 4.2, however, does not guarantee that the weights of the network Φ(f,M)
can be represented with no more than dc log2(ε−1)e bits when the overall approximation error
is ε. This will again be accomplished through a transfer argument, applied to representation
systems D satisfying slightly more stringent technical conditions.
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26 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

Theorem 4.3. Let d ∈ N, Ω ⊂ Rd be bounded, and let C ⊂ L2(Ω). Suppose that the
representation system D = (ϕi)i∈N ⊂ L2(Ω) is effectively representable by neural networks.
Then, for all γ < γ∗,eff(C,D), there exist a polynomial π, constants c > 0, L ∈ N, and a map

Learn :

(
0,

1

2

)
× L2(Ω)→ NN π

L,∞,d,ρ,

such that for every f ∈ C the weights in Learn(ε, f) can be represented by no more than
dc log2(ε−1)e bits while ‖f − Learn(ε, f)‖L2(Ω) ≤ ε and M(Learn(ε, f)) ∈ O(ε−1/γ) for
ε→ 0.

Remark 4.4. Theorem 4.3 implies that if D optimally represents the function class C in
the sense of Definition 3.3 and at the same time is effectively representable by neural networks,
then C is optimally representable by neural networks in the sense of Definition 3.5.

Proof of Theorem 4.3. Let M ∈ N and γ < γ∗,eff(C,D). According to Definition 2.1, there
exist constants C,D > 0 and a polynomial π such that for every f ∈ C, there is a subset
IM ⊂ {1, . . . , π(M)} and coefficients (ci)i∈IM with maxi∈IM |ci| ≤ D so that

(4.5)

∥∥∥∥∥∥f −
∑
i∈IM

ciϕi

∥∥∥∥∥∥
L2(Ω)

≤ CM−γ

2
=:

δM
2
.

We only need to consider the case δM ≤ 1/2 as will become clear below. By effective repre-
sentability according to Definition 4.1, there are L,R ∈ N such that for each i ∈ IM and with
η := δM/max{1, 4

∑
i∈IM |ci|}, there exists a neural network Φi,η ∈ NNL,R,d,ρ (with ρ either

Lipschitz-continuous or differentiable such that ρ′ is dominated by a polynomial) satisfying

‖ϕi − Φi,η‖L2(Ω) ≤ η.

In addition, the weights of Φi,η are polynomially bounded in i, η−1. Let then Φ(f,M) ∈
NNL,RM,d,ρ be the neural network consisting of the networks (Φi,η)i∈IM operating in parallel,
according to (4.4). We conclude that∥∥∥∥∥∥

∑
i∈IM

ciϕi − Φ(f,M)

∥∥∥∥∥∥
L2(Ω)

≤ δM
4
.

As the weights of the networks Φi,η are polynomially bounded in i, η−1 and i ≤ π(M), δM ∼
M−γ , it follows that the weights of Φ(f,M) are polynomially bounded in δ−1

M ,∥∥∥Φ(f,M)− Φ̃(f,M)
∥∥∥
L2(Ω)

≤ δM
4
,

and all weights of Φ̃(f,M) can be represented with no more than dc log2(δ−1
M )e bits for some
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 27

c > 0. Moreover, we have

∥∥∥f − Φ̃(f,M)
∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥f −
∑
i∈IM

ciϕi

∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥
∑
i∈IM

ciϕi − Φ(f,M)

∥∥∥∥∥∥
L2(Ω)

+
∥∥∥Φ(f,M)− Φ̃(f,M)

∥∥∥
L2(Ω)

≤ δM = CM−γ .(4.6)

For ε ∈ (0, 1/2), we now set

Learn(ε, f) := Φ̃(f,Mε),

where

Mε :=

⌈(
C

ε

) 1
γ

⌉
.(4.7)

With this choice of Mε, we have CM−γε ≤ ε, which, when used in (4.6), yields

‖f − Learn(ε, f)‖L2(Ω) ≤ ε.(4.8)

Since, by construction, Learn(ε, f) has RMε edges and, moreover, Mε ≤ C1/γε−1/γ + 1 ≤
2C1/γε−1/γ , it follows that Learn(ε, f) has at most 2RC1/γε−1/γ edges. Moreover, as all
weights of Learn(ε, f) can be represented by no more than dc log2(δ−1

Mε
)e bits, it follows from

δMε ∼ M−γε ∼ ε that they can be represented by no more than dc′ log2(ε−1)e bits for some
c′ > 0. This concludes the proof.

5. All affine representation systems are effectively representable by neural networks.
This section shows that a large class of representation systems, namely affine systems, de-
fined below, is effectively representable by neural networks. Affine systems include wavelets,
ridgelets, curvelets, shearlets, α-shearlets, and, more generally, α-molecules. Combined with
Theorem 4.3, the results in this section establish that any function class that is optimally
represented by an arbitrary affine system is optimally represented by neural networks in the
sense of Definition 3.5.

Clearly, such strong statements are possible only under restrictions on the choice of the
activation function for the approximating neural networks.

5.1. Choice of activation function. We consider two classes of activation functions,
namely sigmoidal functions and smooth approximations of rectified linear units. We start
with the formal definition of sigmoidal activation functions as considered in [12, 43, 45, 7].

Definition 5.1. A continuous function ρ : R → R is called a sigmoidal function of order
k ∈ N, k ≥ 2, if there exists C > 0 such that

lim
x→−∞

1

xk
ρ(x) = 0, lim

x→∞

1

xk
ρ(x) = 1, and |ρ(x)| ≤ C(1 + |x|)k for x ∈ R.
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28 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

A differentiable function ρ is called strongly sigmoidal of order k if there exist constants
a, b, C > 0 such that∣∣∣∣ 1

xk
ρ(x)

∣∣∣∣ ≤ C|x|−a for x < 0,

∣∣∣∣ 1

xk
ρ(x)− 1

∣∣∣∣ ≤ Cx−a for x ≥ 0, and

|ρ(x)| ≤ C(1 + |x|)k,
∣∣∣∣ ddxρ(x)

∣∣∣∣ ≤ C|x|b for x ∈ R.

One of the most widely used activation functions is the so-called rectified linear unit
(ReLU) given by x 7→ max{0, x}. The second class of activation functions we consider here
are smooth versions of the ReLU.

Definition 5.2. Let ρ : R→ R+, ρ ∈ C∞(R), satisfy

ρ(x) =

{
0 for x ≤ 0,
x for x ≥ K,

for some constant K > 0. Then, we call ρ an admissible smooth activation function.

The reason for considering these two specific classes of activation functions resides in
the fact that neural networks based thereon allow economical representations of multivariate
bump functions, which, in turn, leads to effective representation of all affine systems (built
from bump functions) by neural networks. Approximation of multivariate bump functions
using sparsely connected neural networks is a classical topic in neural network theory [38].
What is new here is the aspect of quantized weights and rate-distortion optimality.

Note that the smooth variants of the ReLU we consider here allow us to build on existing
approximation results for bump functions. We emphasize, however, that smooth functions
can be approximated—in a rate-distortion optimal fashion—by networks based on the regular
ReLU activation function provided that their depth is allowed to scale polylogarithmically
in the inverse of the approximation error ε [30]. However, in sections 5.1 and 6, we require
smooth generators of affine systems to be approximated by neural networks with the number
of weights remaining constant as ε→ 0. This is not possible with the regular ReLU activation
function. We emphasize, though, that all results in this paper apart from those in sections
5.1 and 6 are also valid for the regular ReLU activation function.

A class of bump functions of particular importance in wavelet theory are B-splines. In
[7] it was shown that B-splines can be parsimoniously approximated by neural networks with
sigmoidal activation functions. It is instructive to recall this result. To this end, for m ∈ N,
we denote the univariate cardinal B-spline of order m ∈ N by Nm, i.e., N1 = χ[0,1], where
χ[0,1] denotes the characteristic function of the interval [0, 1], and Nm+1 = Nm ∗ χ[0,1] for all
m ≥ 1. Multivariate B-splines are simply tensor products of univariate B-splines. Specifically,
we denote, for d ∈ N, the d-dimensional cardinal B-spline of order m by Nd

m.

Theorem 5.3 ([7], Thm. 4.2). Let d,m, k ∈ N, and take ρ to be a sigmoidal function of
order k ≥ 2. Further, let L := dlog2(md − d)/ log2(k)e + 1. Then, there is M ∈ N, possibly
dependent on d,m, k, such that for all D, ε > 0, there exists a neural network ΦD,ε ∈ NNL,M,d,ρ

with

‖Nd
m − ΦD,ε‖L2([−D,D]d) ≤ ε.
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 29

Additionally, we will need to control the weights in the approximating networks ΦD,ε. We
next show that this is, indeed, possible for strongly sigmoidal activation functions.

Theorem 5.4. Let d,m, k ∈ N, and let ρ be strongly sigmoidal of order k ≥ 2. Further,
let L := dlog2(md − d)/ log2(k)e + 1. Then, there is M ∈ N, and a bivariate polynomial
π possibly dependent on d,m, k, such that for all D, ε > 0, there exists a neural network
ΦD,ε ∈ NNL,M,d,ρ with

‖Nd
m − ΦD,ε‖L2([−D,D]d) ≤ ε.

Moreover, the weights of ΦD,ε are polynomially bounded in D, ε−1.

Proof. The neural network ΦD,ε in Theorem 5.3 is explicitly constructed in [7]. Carefully
following the steps in that construction and making explicit use of the strong sigmoidality of
ρ, as opposed to plain sigmoidality as in [7], yields the desired result.

Remark 5.5. We observe that the number of edges of the approximating network in The-
orem 5.4 does not depend on the approximation error ε.

While Theorem 5.3 demonstrates that a B-spline of order m can be approximated to
arbitrary accuracy by a neural network based on a sigmoidal activation function and of depth
depending on m, d, and the order of sigmoidality of the activation function, we next establish
that for admissible smooth activation functions, exact representation of a general class of
bump functions is possible with a network of three layers only. Before proceeding, we define
for f ∈ L1(Rd), d ∈ N, the Fourier transform of f by

f̂(ξ) :=

∫
Rd
f(x)e−2πi〈x,ξ〉dx for ξ ∈ Rd.

Theorem 5.6. Let ρ be an admissible smooth activation function. Then, for all d ∈ N,
there exist M ∈ N and a neural network Φρ ∈ NN3,M,d,ρ such that

(i) Φρ is compactly supported,
(ii) Φρ ∈ C∞(R), and

(iii) Φ̂ρ(ξ) 6= 0 for all ξ ∈ [−3, 3]d.

Proof. We start by constructing an auxiliary function as follows. For 0 < p1 ≤ p2 ≤ p3

such that p1 + p2 = p3, define t : R→ R as

t(x) := ρ(x)− ρ(x− p1)− ρ(x− p2) + ρ(x− p3), x ∈ R.(5.1)

Then, t ∈ C∞ is compactly supported. Letting q = ‖t‖L∞(R), we define g : Rd → R according
to

g(x) := ρ

(
d∑
i=1

t(xi)− (d− 1) · q

)
, x ∈ Rd.(5.2)

By construction, g ∈ C∞ is compactly supported. Moreover, g can be realized through a
three-layer neural network thanks to its two-step design per (5.1) and (5.2). Since g ≥ 0 and
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30 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

g 6= 0, it follows that |ĝ(0)| > 0. By continuity of ĝ there exists a δ > 0 such that |ĝ(ξ)| > 0
for all ξ ∈ [−δ, δ]d. We now set

ϕ := g
(

3
( ·
δ

))
and note that ϕ can be realized through a three-layer neural network Φρ ∈ NN3,M,d,ρ for some
M ∈ N. As |ϕ̂(ξ)| > 0, for all ξ ∈ [−3, 3]d, Φρ satisfies the desired assumptions.

5.2. Invariance to affine transformations. We next leverage Theorems 5.4 and 5.6 to
demonstrate that a wide class of representation systems built through affine transformations
of B-splines and bump functions as constructed in Theorem 5.6 is effectively representable by
neural networks. As a first step towards this general result, we show that representability—
in the sense of Definition 4.1—of a single function f by neural networks is invariant to the
operation of taking finite linear combinations of affine transformations of f .

Proposition 5.7. Let d ∈ N, ρ : R→ R, and f ∈ L2(Rd). Assume that there exist M,L ∈ N
such that for all D, ε > 0, there is ΦD,ε ∈ NNL,M,d,ρ with

(5.3) ‖f − ΦD,ε‖L2([−D,D]d) ≤ ε.

Let A ∈ Rd×d be full-rank and b ∈ Rd. Then, there exists M ′ ∈ N, depending on M and d
only, such that for all E, η > 0, there is ΨE,η ∈ NNL,M ′,d,ρ with∥∥∥|det(A)|

1
2 f(A · − b)−ΨE,η

∥∥∥
L2([−E,E]d)

≤ η.

Moreover, if the weights of ΦD,ε are polynomially bounded in D, ε−1, then the weights of ΨE,η

are polynomially bounded in ‖A‖∞, E, ‖b‖∞, η−1, where ‖A‖∞ and ‖b‖∞ denote the max-norm
of A and b, respectively.

Proof. By a change of variables, we have for every Φ ∈ NNL,M,d,ρ that∥∥∥|det(A)|
1
2 (f(A · − b)− Φ(A · − b))

∥∥∥
L2([−E,E]d)

= ‖f − Φ‖L2(A·[−E,E]d− b),(5.4)

and there exists a constant M ′ depending on M and d only such that |det(A)|1/2Φ(A · − b) ∈
NNL,M ′,d,ρ. We furthermore have that

A · [−E,E]d − b ⊂ [−(dE‖A‖∞ + ‖b‖∞), (dE‖A‖∞ + ‖b‖∞)]d .(5.5)

We now set F = dE‖A‖∞ + ‖b‖∞ and ΨE,η := |det(A)|1/2ΦF,η(A · − b) and observe that∥∥∥|det(A)|
1
2 f(A · − b)−ΨE,η

∥∥∥
L2([−E,E]d)

= ‖f − ΦF,η‖L2(A·[−E,E]d− b)

≤ ‖f − ΦF,η‖L2([−F,F )]d) ≤ η,

where we applied the same reasoning as in (5.4) in the first equality and used (5.5) in the
first inequality and (5.3) in the second. Moreover, we see that if the weights of ΦD,ε are
polynomially bounded in D, ε−1, then the weights of ΨE,η are polynomially bounded in
‖A‖∞, |det(A)|, E, ‖b‖∞, η−1. Since |det(A)| is polynomially bounded in ‖A‖∞, it follows
that the weights of ΨE,η are polynomially bounded in ‖A‖∞, E, ‖b‖∞, η−1. This yields the
claim.
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 31

Next, we show that representability by neural networks is preserved under finite linear
combinations of translates.

Proposition 5.8. Let d ∈ N, ρ : R→ R, and f ∈ L2(Rd). Assume that there exist M,L ∈ N
such that for all D, ε > 0, there is ΦD,ε ∈ NNL,M,d,ρ with

(5.6) ‖f − ΦD,ε‖L2([−D,D]d) ≤ ε.

Let r ∈ N, (ci)
r
i=1 ⊂ R, and (di)

r
i=1 ⊂ Rd. Then, there exists M ′ ∈ N, depending on M,d,

and r only, such that for all E, η > 0, there is ΨE,η ∈ NNL,M ′,d,ρ with

(5.7)

∥∥∥∥∥
r∑
i=1

cif(· − di)−ΨE,η

∥∥∥∥∥
L2([−E,E]d)

≤ η.

Moreover, if the weights of ΦD,ε are polynomially bounded in D, ε−1, then the weights of ΨE,η

are polynomially bounded in

r∑
i=1

|ci|, E, max
i=1,...,r

‖di‖∞, η−1.

Proof. Let E, η > 0. We start by noting that, for all D, ε > 0,∥∥∥∥∥
r∑
i=1

cif(· − di)−
r∑
i=1

ciΦD,ε(· − di)

∥∥∥∥∥
L2([−E,E]d)

≤

(
r∑
i=1

|ci|

)
· ‖f − ΦD,ε‖L2([−(E+d∗),(E+d∗)]d),

where d∗ = maxi=1,...,r ‖di‖∞. Setting D = E + d∗ and ε = η/max{1,
∑r

i=1 |ci|}, and noting
that for every Φ ∈ NNL,M,d,ρ, the function

Ψ :=

r∑
i=1

ciΦ(· − di)

is in NNL,M ′,d,ρ with M ′ ∈ N depending on d, r, and M only, it follows that the network

ΨE,η :=
r∑
i=1

ciΦD,ε(· − di)

satisfies (5.7). Finally, if the weights of ΦD,ε are polynomially bounded in D, ε−1, then the
weights of ΨE,η are polynomially bounded in

∑r
i=1 |ci|, E, d∗, η−1.

Based on the invariance results in Propositions 5.7 and 5.8, we now construct neural net-
works which approximate functions with a given number of vanishing moments with arbitrary
accuracy. The resulting construction will be crucial in establishing representability of affine
representation systems (see Definition 5.11) by neural networks.

c© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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32 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

Definition 5.9. Let R, d ∈ N, and k ∈ {1, . . . , d}. A function g ∈ C(Rd) is said to possess
R directional vanishing moments in the xk-direction if, for all ` ∈ {0, . . . , R − 1} and all
x1, . . . , xk−1, xk+1, . . . , xd ∈ R,∫

R
x`kg(x1, . . . , xk, . . . , xd)dxk = 0.

The next result establishes that functions with an arbitrary number of vanishing moments
in a given coordinate direction can be built from suitable linear combinations of translates of
a given continuous function with compact support.

Lemma 5.10. Let R, d ∈ N, B > 0, k ∈ {1, . . . , d}, and f ∈ C(Rd) with compact support.
Then, the function

(5.8) g(x1, . . . , xd) :=
R−1∑
`=0

(
R− 1

`

)
(−1)`f

(
x1, . . . , xk −

`

B
, . . . , xd

)
has R directional vanishing moments in the xk-direction. Moreover, if f̂(ξ) 6= 0 for all ξ ∈
[−B,B]d \ {0}, then

(5.9) ĝ(ξ) 6= 0 for all ξ ∈ [−B,B]d with ξk 6= 0.

Proof. For simplicity of exposition, we consider the case B = 1 only. Taking the Fourier
transform of (5.8) yields

ĝ(ξ) =
R−1∑
`=0

(
R− 1

`

)
(−1)`e−2πi`ξk f̂(ξ) =

(
1− e−2πiξk

)R−1
· f̂(ξ),(5.10)

which implies (
∂ `

∂ξ`k
ĝ

)
ξk=0

= 0 for all ` ∈ {0, . . . , R− 1}.

But, by Definition 5.9, this says precisely that g possesses the desired vanishing moments.
Statement (5.9) follows by inspection of (5.10).

5.3. Affine representation systems. We are now ready to introduce the general family of
representation systems announced earlier in the paper as affine systems. This class includes all
representation systems based on affine transformations of a given “mother function.” Special
cases of affine systems are wavelets, ridgelets, curvelets, shearlets, α-shearlets, and, more
generally, α-molecules, as well as tensor products thereof. The formal definition of affine
systems is as follows.

Definition 5.11. Let d, r, S ∈ N, Ω ⊂ Rd be bounded, and let f ∈ L2(Rd) be compactly
supported. Let δ > 0, (csi )

r
i=1 ⊂ R for s = 1, . . . , S, and let (di)

r
i=1 ⊂ Rd. Further, let

Aj ∈ Rd×d, j ∈ N, be full-rank, with the absolute values of the eigenvalues of Aj bounded below
by 1. Consider the compactly supported functions

gs :=
r∑
i=1

csif(· − di), s = 1, . . . , S.
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 33

We define the affine system D ⊂ L2(Ω) corresponding to (gs)
S
s=1 according to

D :=

{
gj,bs :=

(
|det(Aj)|

1
2 gs(Aj · − δb)

)
|Ω

: s = 1, . . . , S, b ∈ Zd, j ∈ N, and gj,bs 6= 0

}
,

and we refer to f as the generator function of D.

We define the subsystems Ds,j := {gj,bs ∈ D : b ∈ Zd}. Since every gs, s = 1, . . . , S, has
compact support, |Ds,j | is finite for all s = 1, . . . , S and j ∈ N. Indeed, we observe that there
exists cb := cb((gs)

S
s=1, δ, d) > 0 such that for all s ∈ {1, . . . , S}, j ∈ Z, and b ∈ Zd,

gj,bs ∈ D =⇒ ‖b‖∞ ≤ cb‖Aj‖∞.(5.11)

As the Ds,j are finite, we can organize the representation system D according to

(5.12) D = (ϕi)i∈N = (D1,1, . . . ,DS,1,D1,2, . . . ,DS,2, . . . ) ,

where the elements within each subsystem Ds,j may be ordered arbitrarily. This ordering of
D is assumed in the remainder of the paper and will be referred to as canonical ordering.

Moreover, we note that if there exists so ∈ {1, . . . , S} such that gso is nonzero, then there
is a constant co := co((gs)

S
s=1, δ, d) > 0 such that

S∑
s=1

|Ds,j | ≥ co|det(Aj)| for all j ∈ N.(5.13)

The next result establishes that all affine systems whose generator functions can be approxi-
mated to within arbitrary accuracy by neural networks are (effectively) representable by neural
networks.

Theorem 5.12. Let d ∈ N, ρ : R→ R, Ω ⊂ Rd be bounded, and let D = (ϕi)i∈N ⊂ L2(Ω) be
an affine system with generator function f . Suppose that there exist constants L,R ∈ N such
that for all D, ε > 0, there is ΦD,ε ∈ NNL,R,d,ρ with

(5.14) ‖f − ΦD,ε‖L2([−D,D]d) ≤ ε.

Then, D is representable by neural networks with activation function ρ. If, in addition, the
weights of ΦD,ε are polynomially bounded in D, ε−1, and if there exist a > 0 and c > 0 such
that

(5.15) 1 ≥ c‖A1‖∞,
j−1∑
k=1

|det(Ak)| ≥ c‖Aj‖a∞ for all j ∈ N, j ≥ 2,

then D is effectively representable by neural networks with activation function ρ.

Proof. Let (gs)
S
s=1 be as in Definition 5.11. If gs = 0 for all s ∈ {1, . . . , S}, then D = ∅

and the result is trivial. Hence, we can assume that there exists at least one s ∈ {1, . . . , S}
such that gs 6= 0, implying that (5.13) holds.
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34 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

Pick D such that Ω ⊂ [−D,D]d. We first show that (5.14) implies representability of D
by neural networks with activation function ρ. To this end, we need to establish the existence
of constants L,R ∈ N such that for all i ∈ N and all η > 0, there exist Φi,η ∈ NNL,R,d,ρ with

‖ϕi − Φi,η‖L2(Ω) ≤ η.(5.16)

The elements of D consist of dilations and translations of f according to

(5.17) ϕi = |det(Aji)|
1
2

(
r∑

k=1

csik f(Aji · − δbi − dk)

)
|Ω

for some r ∈ N independent of i, and si ∈ {1, . . . , S}, ji ∈ N, and bi ∈ Zd. Thus (5.16) follows
directly by Propositions 5.7 and 5.8.

It remains to show that the weights of ΦD,ε in (5.14) being polynomially bounded in
D, ε−1 implies that D is effectively representable by neural networks with activation function
ρ, which, by Definition 4.1, means that the weights of Φi,η are polynomially bounded in i, η−1.
Propositions 5.7 and 5.8 state that the weights of Φi,η are polynomially bounded in

‖Aji‖∞, D, ‖bi‖∞,
r∑

k=1

|ck|, max
k=1,...,r

‖dk‖∞, η−1.

Thanks to (5.11), we have ‖bi‖∞ ∈ O(‖Aji‖∞). Moreover, the quantities D,
∑r

k=1 |ck|, and
maxk=1,...,r ‖dk‖∞ do not depend on i. We can thus conclude that the weights of Φi,η are
polynomially bounded in

(5.18) ‖Aji‖∞, η−1.

To complete the proof, we need to show that the quantities ‖Aji‖∞ are polynomially bounded
in i. To this end, we first observe that ϕi according to (5.17) satisfies ϕi ∈ Dsi,ji for some
si ∈ {1, . . . , S}. Thanks to (5.13) and the canonical ordering (5.12), there exists a constant
c > 0 such that

i ≥ c
ji−1∑
k=1

|det(Ak)|, ji ≥ 2.

We finally appeal to (5.15) to conclude that ‖Aji‖∞ is polynomially bounded in i for all ji ∈ N,
which, together with (5.18), establishes the desired result.

We remark that condition (5.15) is very weak; in fact, we are not aware of an affine system
in the literature that would violate it.

We now proceed to what is probably the central result of this paper, namely that neural
networks provide optimal approximations for all function classes that are optimally approx-
imated by any affine system with generator function that can be approximated to within
arbitrary accuracy by neural networks.

Theorem 5.13. Let d ∈ N, Ω ⊂ Rd be bounded, ρ : R → R, and D = (ϕi)i∈N ⊂ L2(Ω) be
an affine system with generator function f . Assume that there exist L,R ∈ N such that for
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 35

all D, ε > 0, there is ΦD,ε ∈ NNL,R,d,ρ satisfying ‖f − ΦD,ε‖L2([−D,D]d) ≤ ε. Then, for all

function classes C ⊂ L2(Ω), we have

γ∗NN (C, ρ) ≥ γ∗(C,D).

If, in addition, there is a bivariate polynomial π̃ such that the weights of ΦD,ε are bounded by
|π̃(D, ε−1)|, there exist a > 0 and c > 0 such that (5.15) holds, and C is optimally represented
by D (according to Definition 3.3), then for all γ < γ∗(C), there exist a constant c > 0, a
polynomial π, and a map

Learn :

(
0,

1

2

)
× L2(Ω)→ NN π

L,∞,d,ρ,

such that for every f ∈ C the weights in Learn(ε, f) can be represented by no more than
dc log2(ε−1)e bits while ‖f − Learn(ε, f)‖L2(Ω) ≤ ε and M(Learn(ε, f)) ∈ O(ε−1/γ), ε→ 0.

Proof. The proof follows directly by combining Theorem 5.12 with Theorems 4.2 and 4.3.

Theorem 5.13 reveals a remarkable universality and optimality property of neural net-
works: All function classes that can be optimally represented by an affine system with gener-
ator f satisfying (5.14) are also optimally representable by neural networks.

6. α-shearlets and cartoon-like functions. We next present an explicit pair (C,D) of
function class and representation system satisfying γ∗NN (C, ρ) = γ∗(C,D). Specifically, we take
α-shearlets as representation system D ⊂ L2(R2) and α−1-cartoon-like functions as function
class C. Cartoon-like functions are piecewise smooth functions with only two pieces. These
pieces are separated by a smooth interface. In a sense, they can be understood as a prototype
of a two-dimensional classification function with two homogeneous areas corresponding to two
classes. Understanding neural network approximation of this function class is hence relevant
to classification tasks in machine learning. We point out that the definition of α-shearlets in
this paper differs slightly from that in [27]. Concretely, relative to [27] our definition replaces
α−1 by α so that α-shearlets are a special case of α-molecules, whereas in [27] α-shearlets are
a special case of α−1-molecules. We will need dilation and shearing matrices defined as

Dα,a :=

(
a 0
0 aα

)
, J :=

(
0 1
1 0

)
, and Sk :=

(
1 k
0 1

)
.

This leads us to the following definition which is a slightly modified version of the correspond-
ing definition in [56].

Definition 6.1 (see [56]). For δ ∈ R+, α ∈ [0, 1], and f, g ∈ L2(R2), the cone-adapted
α-shearlet system SHα(f, g, δ) generated by f, g ∈ L2(R2) is defined as

SHα(f, g, δ) := SH0
α(f, g, δ) ∪ SH1

α(f, g, δ),

where

SH0
α(f, g, δ) : =

{
f(· − δt) : t ∈ Z2

}
,

SH1
α(f, g, δ) : =

{
2`

1+α
2 g(SkDα,2`J

τ · − δt) :

` ∈ N0, |k| ≤ d2`(1−α)e, t ∈ Z2, k ∈ Z, τ ∈ {0, 1}
}
.
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36 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

Our interest in α-shearlets stems from the fact that they optimally represent α−1-cartoon-
like functions in the sense of Definition 3.3.

Definition 6.2. Let β ∈ [1, 2) and ν > 0. Define

Eβ(R2; ν) = {f ∈ L2(R2) : f = f0 + χBf1},

where f0, f1 ∈ Cβ(R2), supp f0, supp f1 ⊂ (0, 1)2, B ⊂ [0, 1]2, χB denotes the characteristic
function of B, ∂B ∈ Cβ, and ‖f1‖Cβ ,‖f2‖Cβ , ‖∂B‖Cβ < ν. The elements of Eβ(R2; ν) are
called β-cartoon-like functions.

This function class was originally introduced in [20] as a model class for functions governed
by curvilinear discontinuities of prescribed regularity. In this sense, β-cartoon-like functions
provide a convenient model for images governed by edges or for the solutions of transport
equations which often exhibit curvilinear singularities.

The optimal exponent γ∗(Eβ(R2; ν)) was found in [20, 28].

Theorem 6.3. For β ∈ [1, 2] and ν > 0, we have

γ∗(Eβ(R2; ν)) =
β

2
.

Proof. The proof of [20, Theorem 2] demonstrates that a general function class C has
optimal exponent γ∗(C) = (2− p)/2p if C contains a copy of `p0. The result now follows, since
by [28], the function class Eβ(R2; ν) does indeed contain a copy of `p0 for p = 2/(β + 1).

Using Proposition 3.6, this result allows us to conclude that neural networks achieving
uniform approximation error ε over the class C of cartoon-like functions, with weights rep-
resented by no more than dc log2(ε−1)e bits, for some constant c > 0, yield an effective best
M -edge approximation rate of at most β/2. Theorem 6.8 below demonstrates achievability
for β = 1/α, with α ∈ [1/2, 1].

The following theorem states that α-shearlets yield optimal best M -term approximation
rates for α−1-cartoon-like functions.

Theorem 6.4 ([56], Theorem 6.3 and Remark 6.4). Let α ∈ [1/2, 1], ν > 0, f ∈ C12(R2),
g ∈ C32(R2), both compactly supported and such that

(i) f̂(ξ) 6= 0 for all |ξ| ≤ 1,

(ii) ĝ(ξ) 6= 0 for all ξ = (ξ1, ξ2)T ∈ R2 such that 1/3 ≤ |ξ1| ≤ 3 and |ξ2| ≤ |ξ1|,
(iii) g has at least seven vanishing moments in the x1-direction, i.e.,∫

R
x`1g(x1, x2)dx1 = 0 for all x2 ∈ R, ` ∈ {0, . . . , 6}.

Then, there exists δ∗ > 0 such that for all δ < δ∗, the function class E1/α(R2; ν) is optimally
represented by SHα(f, g, δ).

Remark 6.5. The assumptions on the smoothness and the number of vanishing moments
of f and g in Theorem 6.4 follow from [56, eq. 4.9] with s1 = 3/2, s0 = 0, p0 = q0 = 2/3, and
|β| ≤ 4. While these particular choices allow the statement of the theorem to be independent
of α, it is possible to weaken the assumptions if a fixed α is considered. For example, for
α = 1/2 the smoothness assumptions on f and g reduce to f ∈ C11, g ∈ C28.
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 37

As our approximation results for neural networks pertain to bounded domains, we require
a definition of cartoon-like functions on bounded domains.

Definition 6.6. Let (0, 1)2 ⊂ Ω ⊂ R2, α ∈ [1/2, 1], and ν > 0. We define the set of
α−1-cartoon-like functions on Ω by

E
1
α (Ω; ν) :=

{
f|Ω : f ∈ E

1
α (R2; ν)

}
.

Additionally, for δ > 0, f, g ∈ L2(R2), we define an α-shearlet system on Ω according to

SHα(f, g, δ; Ω) :=
{
φ|Ω : φ ∈ SHα(f, g, δ)

}
.

Remark 6.7. It is straightforward to check that if E1/α(R2; ν) is optimally represented by
SHα(f, g, δ), then E1/α(Ω; ν) is optimally represented by SHα(f, g, δ; Ω).

We proceed to the main statement of this section.

Theorem 6.8. Suppose that (0, 1)2 ⊂ Ω ⊂ R2 is bounded and ρ : R → R is either strongly
sigmoidal of order k ≥ 2 (see Definition 5.1) or an admissible smooth activation function
(see Definition 5.2). Then, for every α ∈ [1/2, 1], the function class E1/α(Ω; ν) is optimally
representable by a neural network with activation function ρ.

Proof. Let α ∈ [1/2, 1] and ν > 0. We first consider the case of ρ strongly sigmoidal of
order k ≥ 2. Since the two-dimensional cardinal B-spline of order 34, denoted by N2

34, is

32 times continuously differentiable and N̂2
34(0) 6= 0 by construction, we conclude that there

exists c > 0 such that f := N2
34(c·) satisfies f ∈ C32(R2) and f̂ 6= 0 for all ξ ∈ [−3, 3]2.

Application of Lemma 5.10 then yields the existence of (ci)
7
i=1 ⊂ R, (di)

7
i=1 ⊂ R2 such that

g :=
∑7

i=1 cif(· − di) is compactly supported and has seven vanishing moments in the x1-
direction, and ĝ(ξ) 6= 0 for all ξ ∈ [−3, 3]2 such that ξ1 6= 0. Then, by Theorem 6.4 and
Remark 6.7, there exists δ > 0 such that SHα(f, g, δ; Ω) is optimal for E1/α(Ω; ν). We define

{Aj : j ∈ N} :=
{
SkDα,2`J

τ : ` ∈ N0, |k| ≤ d2`(1−α)e, τ ∈ {0, 1}
}
,

where we order (Aj)j∈N such that |det(Aj)| ≤ |det(Aj+1)| for all j ∈ N. This construction
implies that the α-shearlet system SHα(f, g, δ; Ω) is an affine system with generator function
f . Thanks to Theorem 5.4, there exist L,R ∈ N such that for all D, ε > 0, there is a network
ΦD,ε ∈ NNL,R,d,ρ with

‖f − ΦD,ε‖L2([−D,D]d) ≤ ε.

Moreover, the weights of ΦD,ε are polynomially bounded in D, ε−1. It is not difficult to verify
that (5.15) holds, and hence Theorem 5.12 yields that SHα(f, g, δ; Ω) is effectively repre-
sentable by neural networks with activation function ρ. Finally, since E1/α(Ω; ν) is optimally
representable by SHα(f, g, δ; Ω), we conclude with Theorem 4.3 that E1/α(Ω; ν) is optimally
representable by neural networks with activation function ρ.

It remains to establish the statement for admissible smooth ρ. In this case, by Theorem 5.6
there exist M ∈ N and a neural network in NN3,M,d,ρ which realizes a compactly supported
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38 H. BÖLCSKEI, P. GROHS, G. KUTYNIOK, AND P. PETERSEN

f ∈ C∞(R) satisfying f̂(ξ) 6= 0 for all ξ ∈ [−3, 3]2. Lemma 5.10 applied to this f then yields a
function g that can be realized by a neural network in NN3,M ′,d,ρ for some M ′ ∈ N, has seven
vanishing moments in the x1-direction, is compactly supported, and satisfies g ∈ C∞(R), and
ĝ(ξ) 6= 0 for all ξ ∈ [−3, 3]2 such that ξ1 6= 0. By Theorem 6.4 and Remark 6.7, there exists δ >
0 such that E1/α(Ω; ν) is optimally representable by SHα(f, g, δ; Ω). Note that SHα(f, g, δ; Ω)
is an affine system with generator function f . Since f can be realized with zero error by a
neural network, Theorem 5.12 yields that SHα(f, g, δ; Ω) is effectively representable by neural
networks with admissible smooth activation function ρ. Optimality of SHα(f, g, δ; Ω) for
E1/α(Ω; ν) implies, with Theorem 4.3, that E1/α(Ω; ν) is optimally representable by neural
networks with admissible smooth activation function ρ.

Remark 6.9. Theorem 6.4 requires the generators of the shearlet system guaranteeing op-
timal representability of E1/α(Ω; ν) for 1/2 ≤ α ≤ 1, ν > 0, Ω ⊂ R2 to be very smooth. On
the other hand, Theorem 6.8 demonstrates that optimally-approximating neural networks are
not required to be particularly smooth. Indeed, Theorem 6.8 holds for networks with differen-
tiable but not necessarily twice differentiable activation function. As the proof of Theorem 6.8
reveals, such weak assumptions suffice thanks to Theorem 5.4, which demonstrates that it is
possible to approximate arbitrarily smooth B-splines (in the L2-norm) to within error ε by
neural networks with a number of weights that does not depend on ε as long as the activation
function is strongly sigmoidal.

Remark 6.10. We observe from the proof of Theorem 6.8 that the depth of the networks
required to achieve optimal approximation depends on the activation function only. Indeed,
for an admissible smooth activation function, inspection of Theorem 5.6 reveals that networks
with three layers can produce optimal approximations in Theorem 6.8. On the other hand,
if a sigmoidal activation function is employed, Theorem 5.4 shows that the construction in
Theorem 6.8 requires a certain minimum depth depending on the order of sigmoidality.

7. Generalization to manifolds. Frequently, a function f to be approximated by a neural
network models phenomena on (possibly low-dimensional) immersed submanifolds Γ ⊂ Rd
of dimension m < d. We next briefly outline how our main results can be extended to this
situation. Since analogous results, for the case of wavelets as representation systems, appear
already in [53], we will allow ourselves to be somewhat informal.

Suppose that f : Γ → R is compactly supported. Let (Ui)i∈N ⊂ Γ be an open cover of Γ
such that for each i ∈ N the manifold patch Ui can be parametrized as the graph of a function
over a subset of the Euclidean coordinates; i.e., there exist coordinates xd1 , . . . , xdm , open sets
Vi ⊂ Rm, and smooth mappings

γ` : Rm → R, ` ∈ {1, . . . , d} \ {d1, . . . , dm},

such that

Ui = {Ξi(xd1 , . . . , xdm) := (γ1(xd1 , . . . , xdm), . . . , xd1 , . . . , γd(xd1 , . . . , xdm)) :

(xd1 , . . . , xdm) ∈ Vi} .

Take a smooth partition of unity (hi)i∈N, where hi : Γ→ R is smooth with supp(hi) ⊂ Ui and
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SPARSELY CONNECTED DEEP NEURAL NETWORKS 39∑
i∈N hi = 1. Define the localization of f to Ui by fi := fhi such that

(7.1) f =
∑
i∈N

fi.

Every fi : Ui → R can be reparametrized to

f̃i :

{
Rm → R,

(xd1 , . . . , xdm) 7→ fi ◦ Ξi(xd1 , . . . , xdm).

Suppose that there exist L,M ∈ N and neural networks Φ̃i ∈ NNL,M,m,ρ such that

(7.2) ‖f̃i − Φ̃i‖L2(Vi) ≤ ε.

Then, we can construct a neural network Φi ∈ NNL,M+md,d,ρ according to

Φi(x) := Φ̃i(Pix),

where Pi denotes the orthogonal projection of x onto the coordinates (xd1 , . . . , xdm). Since Pi
is linear, Φi is a neural network. Moreover, since Pi is the inverse of the diffeomorphism Ξi,
we get

‖Φi − fi‖L2(Ui) ≤ Cε,

with C > 0 depending on the curvature of Γ|Ui only. Now we may build a neural network Φ
by setting Φ :=

∑
i∈N Φi. Combining (7.2) with the observation that, owing to the compact

support of f , only a finite number of summands appears in the definition of f , we have
constructed a neural network Φ which approximates f on Γ. In summary, we observe the
following.

Whenever a function class C is invariant with respect to diffeomorphisms (in our con-
struction the functions Ξi) and multiplication by smooth functions (in our construction the
functions hi), then approximation results on Rm can be lifted to approximation results on
m-dimensional submanifolds Γ ⊂ Rd.

Such invariances are, in particular, satisfied for all function classes characterized by a cer-
tain smoothness behavior—for example, the class of cartoon-like functions studied in section
6.

8. Numerical results. Our theoretical results show that neural networks realizing uniform
approximation error ε over a function class C ⊂ L2(Rd), d ∈ N, must obey a fundamental lower
bound on the growth rate (as ε→ 0) of the number of edges of nonzero weight. One of the most
widely used learning algorithms is stochastic gradient descent with the gradient computed via
back-propagation [52]. The purpose of this section is to investigate how this algorithm fares
relative to our lower bound.

Interestingly, our numerical experiments below indicate that for a fixed, sparsely con-
nected, network topology inspired by the construction of bump functions according to (5.1)
and (5.2), and with the ReLU as activation function, the stochastic gradient descent algo-
rithm generates neural networks that achieve M -edge approximation rates quite close to the
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fundamental limit. The network topology we prescribe is depicted in Figure 3. The rationale
for choosing this topology is as follows. As mentioned before, admissible smooth activation
functions consist of smooth functions which equal a ReLU outside a compact interval. For
this class of activation functions, the associated α-shearlet generators were constructed from a
function g as specified in (5.2). Choosing p1 = p2 = 1 and p3 = 2 in (5.1) yields hat functions
t. This construction implies that six nodes are required in the first layer in each subnetwork.
In Figure 3, we see four network realizations of g in parallel. The output layer realizes a linear
combination of the subnetworks. We now train the network using the stochastic gradient de-
scent algorithm. Following (5.2) the weights of the second layer remain fixed, and the weights
in the first and third layers only are trained. Training is performed for two different functions,
where one is a function with a line singularity (Figure 4(a)), and the other one is a cartoon-like
function (Figure 5(a)). Specifically, we train the network by drawing samples (x1, x2) from an
equispaced grid in [−1, 1]2. The resulting error is then back-propagated through the network.
We repeat this procedure for different network sizes, i.e., for different numbers of subnetworks.
We start by discussing the results for the function with a line singularity depicted in Figure
4(a). The approximation error corresponding to the trained neural network is shown in Figure
4(b). The faster than linear decay of the approximation error in the semilogarithmic scale
indicates faster than exponential decay with respect to the number of edges. This is consistent
with the best M -term approximation rate that ridgelets yield for piecewise constant functions
with line singularities; see [5].

Figure 3. Left: Topology of the neural network trained using stochastic gradient descent. The network
consists of a weighted sum of four subnetworks. Right: A single subnetwork.

It is interesting to observe that the trained subnetworks yield α-molecules for α = 0 (see
Figures 4(c)–(e)). These functions are constant along one direction and vary along another,
and hence can be considered part of a ridgelet system, which is, in fact, an optimally sparsifying
representation system for line singularities. Moreover, the orientation of the three learned ridge
functions matches that of the original function.

In the second experiment, we draw samples from the function depicted in Figure 5(a)
below, which exhibits a curvilinear singularity. Figures 5(c)–(e) show that the corresponding
trained subnetworks resemble anisotropic molecules with different scales and of different ori-
entations. We report, without showing the results, that the decay rate of the corresponding
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Figure 4. (a) Function with a line singularity. (b) Approximation error (vertical axis) as a function of
the number of edges (horizontal axis). (c)–(e) The functions obtained by restricting to the subnetworks with the
largest weights in modulus in the final layer.

approximation error obtained when simply training with different network sizes did not come
close to the rate of M−1 predicted by our theory. However, with a slight adaptation one
obtains the result of Figure 5(b), which demonstrates a decay of roughly M−1. The specifics
of this adaptation are as follows: We first train a large network with ∼ 10000 edges, again
by stochastic gradient descent. Then, the weights in the last layer are optimized using the
Lasso [55] to obtain a sparse weight vector c∗. We then pick the M largest coefficients of c∗

and compute the corresponding weighted sum of the associated subnetworks. The resulting
approximation error is shown in Figure 5(b). Finally, we investigate whether the approxima-
tion characteristics delivered by this procedure are similar to what would be obtained by best
M -term approximation with standard shearlet systems. Recall that shearlet elements at high
scales tend to cluster around singularities [31, 37]. Figures 5(g)–(i) depict the corresponding
results. Specifically, Figure 5(g) shows the weighted sum of those subnetworks that have the
largest support. In Figure 5(h), we show weighted sums of subnetworks with medium-sized
support, and in Figure 5(i) we sum up only the subnetworks with the smallest supports. We
observe that, indeed, subnetworks of large support approximate the smooth part of the un-
derlying function, whereas the subnetworks associated with small supports resolve the jump
singularity.
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Figure 5. (a) Function with curvilinear singularity to be approximated by the neural network. (b) Ap-
proximation error (vertical axis) as a function of the number of edges (horizontal axis). (c)–(f) Shearlet-like
subnetworks. (g) Reconstruction using only the 10 subnetworks whose associated functions have the largest
supports. (h) Reconstruction using only subnetworks whose associated functions have medium-sized support. (i)
Reconstruction using only subnetworks with associated functions of very small support.
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thank J. Bruna, E. Candès, M. Genzel, S. Güntürk, Y. LeCun, K.-R. Müller, H. Rauhut, and
F. Voigtländer for interesting discussions, and D. Perekrestenko and R. Gül for very detailed
and insightful comments on the manuscript. G. K. and P. P. are grateful to the Faculty of
Mathematics at the University of Vienna for the hospitality and support during their visits.

c© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

05
/2

7/
25

 to
 1

38
.2

46
.3

.1
79

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



SPARSELY CONNECTED DEEP NEURAL NETWORKS 43

REFERENCES

[1] A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans.
Inform. Theory, 39 (1993), pp. 930–945.

[2] A. R. Barron, Approximation and estimation bounds for artificial neural networks, Mach. Learn., 14
(1994), pp. 115–133.

[3] J. Berner, P. Grohs, and A. Jentzen, Analysis of the Generalization Error: Empirical Risk Minimiza-
tion over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical
Approximation of Black-Scholes Partial Differential Equations, preprint, https://arxiv.org/abs/1809.
03062, 2018.

[4] E. J. Candès, Ridgelets: Theory and Applications, Ph.D. thesis, Stanford University, Stanford, CA,
1998.

[5] E. J. Candès, Ridgelets and the representation of mutilated Sobolev functions, SIAM J. Math. Anal., 33
(2001), pp. 347–368, https://doi.org/10.1137/S003614109936364X.

[6] E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects
with piecewise C 2 singularities, Comm. Pure Appl. Math., 57 (2002), pp. 219–266.

[7] C. K. Chui, X. Li, and H. N. Mhaskar, Neural networks for localized approximation, Math. Comp.,
63 (1994), pp. 607–623.

[8] A. Cohen, W. Dahmen, I. Daubechies, and R. A. DeVore, Tree approximation and optimal encoding,
Appl. Comput. Harmon. Anal., 11 (2001), pp. 192–226.

[9] N. Cohen, O. Sharir, and A. Shashua, On the expressive power of deep learning: A tensor analysis, in
Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York, NY, 2016, pp. 698–
728.

[10] N. Cohen and A. Shashua, Convolutional rectifier networks as generalized tensor decompositions, in
International Conference on Machine Learning, New York, NY, 2016, pp. 955–963.

[11] F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc., 39
(2002), pp. 1–49.

[12] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems,
2 (1989), pp. 303–314.

[13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, Mastering the game of Go with deep neural networks and tree
search, Nature, 529 (2016), pp. 484–489.

[14] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992, https://doi.org/10.1137/1.
9781611970104.

[15] L. Demanet and L. Ying, Wave atoms and sparsity of oscillatory patterns, Appl. Comput. Harmon.
Anal., 23 (2007), pp. 368–387.

[16] R. A. DeVore, Nonlinear approximation, Acta Numer., 7 (1998), pp. 51–150.
[17] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, New York, 1993.
[18] R. A. DeVore, K. Oskolkov, and P. Petrushev, Approximation by feed-forward neural networks,

Ann. Numer. Math., 4 (1996), pp. 261–287.
[19] D. L. Donoho, Unconditional bases are optimal bases for data compression and for statistical estimation,

Appl. Comput. Harmon. Anal., 1 (1993), pp. 100–115.
[20] D. L. Donoho, Sparse components of images and optimal atomic decompositions, Constr. Approx., 17

(2001), pp. 353–382.
[21] R. Eldan and O. Shamir, The power of depth for feedforward neural networks, in Proceedings of the

29th Conference on Learning Theory, COLT 2016, New York, NY, 2016, pp. 907–940.
[22] S. Ellacott, Aspects of the numerical analysis of neural networks, Acta Numer., 3 (1994), pp. 145–202.
[23] K.-I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural

Networks, 2 (1989), pp. 183–192.
[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, MA, 2016,

http://www.deeplearningbook.org.
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