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Abstract

Background: High-throughput proteomics techniques, such as mass spectrometry (MS)-based approaches,
produce very high-dimensional data-sets. In a clinical setting one is often interested in how mass spectra differ
between patients of different classes, for example spectra from healthy patients vs. spectra from patients having a
particular disease. Machine learning algorithms are needed to (a) identify these discriminating features and (b) classify
unknown spectra based on this feature set. Since the acquired data is usually noisy, the algorithms should be robust
against noise and outliers, while the identified feature set should be as small as possible.

Results: We present a new algorithm, Sparse Proteomics Analysis (SPA), based on the theory of compressed sensing
that allows us to identify a minimal discriminating set of features from mass spectrometry data-sets. We show (1) how
our method performs on artificial and real-world data-sets, (2) that its performance is competitive with standard (and
widely used) algorithms for analyzing proteomics data, and (3) that it is robust against random and systematic noise.
We further demonstrate the applicability of our algorithm to two previously published clinical data-sets.

Keywords: Machine learning, Feature selection, Classification, Compressed sensing, Sparsity, Proteomics,
Mass spectrometry, Clinical data, Biomarker

Background
During the last decade, high-throughput assays systems1
for measuring a variety of different biological sources have
become standard in modern laboratories. This allows for
the quick and cheap creation of very large data-sets which
characterize for example the status of a cell by its bil-
lions of constituents, e.g. nucleotides, RNAs, contained
proteins, or metabolites. Ideally, analyzing these massive
data-sets leads to a better understanding of the under-
lying biological processes. Especially in the context of
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characterizing—and ultimately understanding—diseases,
a first step is often to find significant differences in the
data between samples from healthy and diseased indi-
viduals. There are many successful examples where this
approach based on -omics data (e.g., genomics, pro-
teomics, or metabolomics) led to the identification of
biological markers, enabling a new type of molecular diag-
nostics. We call a collection of biological markers that
represents the differences on the data level a disease
fingerprint.
Many disease-relevant mechanisms are controlled by

proteins (e.g. hormones), which can be detected in biolog-
ical samples (blood, urine, etc.) using mass spectrometry
(MS). This technique allows (potentially) for monitoring
the entire set of proteins—the so-called proteome—in
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a given sample. Due to its wide availability in hospi-
tals, MS-based proteomics can bring the next wave of
progress in diagnostics, since even subtle changes in the
proteome can be detected and linked to disease onset and
progression [1–4].
Disease fingerprints: The main idea of the identifica-

tion of disease fingerprints using MS-based proteomics is
sketched in Fig. 1:
(a) A mass spectrum is generated reflecting the consti-

tution of a given (blood-)sample with respect to contained
molecules. (b) Based on mass spectra from two sample
groups (representing a healthy control group and a group
having a particular disease) differences are detected. This
set of differences precisely corresponds to a disease fin-
gerprint, since it represents a trace caused by a particular
disease in the proteome. Several studies have shown that
this approach works well in practice and found differences
do indeed reflect correlations between changes in the
mass spectrum, the proteome, and phenotypic changes
([5–9]). Panels of proteomic markers (fingerprints) have
been shown to be more sensitive and specific than con-
ventionally biomarker approaches [2], for example when
diagnosing cancer [10–12]. However, a single proteomics
data-set can contain tens of millions of signals which is
many orders of magnitudes larger than the number of
available observations in a typical study.
Our ultimate goal is therefore to build a library of pro-

teomics disease fingerprints which are extracted from
high-throughput MS experiments. These would enable to
diagnose diseases based on their proteomic fingerprints—
just by analyzing an individual’s proteome. Ideally, these
fingerprints are of low-complexity allowing easy interpre-
tation by experts, e.g. medical doctors, and the imple-
mentation of medical assays for routine diagnostics, e.g.
in an hospital environment. Clearly, the less components

an assay is composed of, the easier it is to implement and
interpret.
Thus, a fingerprint should only consist of a minimal col-

lection of proteins specific for a particular disease and
should be robust against noisy measurements. On the
other hand, the acquired data from the high-throughput
experiments is very high-dimensional and contains large
amounts of random and systematic noise which makes an
automatic analysis of mass spectra a very challenging task.
Hence, the discovery of biomarkers is still a widely open
research topic and there are several analytic problems that
hinder reproduction of results (see [13] for example).
Despite these challenges there is indeed hope that these

disease specific, low-complexity fingerprints exist: It has
been shown for several cancer types that a small num-
bers of genes and proteins can be identified that serve as
biomarkers (e.g. for lung cancer [14], breast cancer [15]
or pancreas cancer [16]). This means that only a few sig-
nals in a mass spectrum can be used to derive a sparse
classifier.
MS1 data: In this work we consider mass spectrometry

(MS) data acquired from a standard MALDI-TOF instru-
ment because it is easy to obtain using comparatively
cheap MS-instruments which are widely available, e.g. in
hospitals. Opposed to other approaches such as tandem
mass spectrometry (MS/MS), we directly work on the raw
data acquired in profile mode and do not aim for identi-
fication. Thus, each mass spectrum (sample) always has
the same number of d dimensions (number of entries).2
Recall, that the entries in a mass spectrum are a weight-
ordered list of ion-counts of the respective ion-masses.
(See also Fig. 1.)
One of the reasons for this is that standard approaches

for MS data analysis usually convert the MS data to
peak lists as a first step and work on the converted data.

Fig. 1 a Schematic outline of a linear matrix-assisted laser desorption ionization (MALDI)–time-of-flight (TOF) mass spectrometer (MS). During the
measurement process, the molecules of the examined sample are ionized, vaporized and finally analyzed by their respective time-of-flight through
an electric field. This process generates a plot (mass spectrum) having mass-to-charge ratio (m/z) on the x-axis and intensity (ion count) on the
y-axis. b Typical mass spectrum for a mass range of 1500–10.000 Dalton. c Example of a disease fingerprint, created by comparing mass spectra from
a healthy and a diseased individual
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However, signals can be missed by this conversion step
due to noise or missing values in the raw data which hin-
ders peak detection. Opposed to this, our approach does
not rely on any peak identification but works on the raw
data. This allows for a more robust analysis in presence of
noise which is a typical challenge in MS data analysis.

Problem definition
In this article, we will focus on the following problem
setting:
We assume that we are given data of n mass spectra

derived from n biological samples (e.g. from blood of n
individual patients) in form of n pairs {(xi, yi)}i=1...n. Here,
xi ∈ R

d represents the mass spectrum of the i-th sam-
ple (e.g. the i-th patient) and yi ∈ {−1,+1} its respective
class, e.g., healthy or diseased. Thus, each xi (representing
an individual mass spectrum) contains d entries.
The goal is to identify a (small) set of features, i.e. indices

in the mass spectrum, separating these two classes. Thus,
a feature represents a specific position (or mass) in a
mass spectrum in which the two groups (e.g. healthy vs.
diseased) differ. This corresponds to the well known prob-
lem of feature selection3 and leads to a potential disease
fingerprint for the given data.
Mathematically, this can be formulated as the identifi-

cation of a feature vector ω0 = (ω0,1, . . . ,ω0,d) ∈ R
d such

that4

yi = sign
(
fω0(xi)

)
for “many” samples i = 1, . . . , n,

(1)

with a linear decision function fω0(xi) :=〈ω0,xi〉=∑d
j=1ω0,jxi,j.

From a geometric perspective, this means that the
hyperplane with normal vector ω0 appropriately separates
the data-points of the respective classes.
This means that ω0 can be used as a linear classifier

where each entry of ω0 corresponds to a specific position
in a spectrum and the non-zero entries (which we call fea-
tures) indicate their significance. Our goal is therefore to
learn a sparse ω0 for which Eqn. 1 holds. As a particular
consequence, a classifier based on such ω0 will yield good
prediction accuracy.
In most realistic scenarios for feature selection, unfor-

tunately, the number of features is much larger than avail-
able samples (d � n) and the data suffers from noisy
measurements. For these reasons, the number of feasi-
ble classifiers ω0 can become extremely large, so that the
problem of overfitting can occur. In order to allow inter-
pretability and generalization of the classifier, it is in fact
inevitable to restrict the solution space for ω0. In this
paper, we focus on very sparse5 vectors ω0 satisfying (1),
which precisely reflects our wish for a minimal disease
fingerprint.

At this point, it should be emphasized that (1) does not
need to hold for all samples but rather for most of them.
Allowing for such a small “mismatch” in the model, we
incorporate the crucial fact that a simple binary output
model, such as (1), might describe the disease label only
with high accuracy but not necessarily exactly. In turn, this
asks for a certain robustness of the used method against
wrong predictions with regard to (1).
We will approach this challenge by formulating the fea-

ture selection problem as a constrained (or regularized)
optimization problem:

min
ω∈Rd

n∑

i=1
L

(
yi, fω(xi)

)
subject to R(ω) ≤ λ, (2)

where L : R × R → R is a loss (error) function, R : R → R

is a regularization (cost) function that encourages a par-
ticular structure of ω (e.g., sparsity), and the parameter
λ ≥ 0 controls the degree of model complexity. Given
any potential feature vector ω and the (true) output label
y, the loss function L(y, fω(x)) measures the discrepancy
between the actual and the desired prediction.
As already pointed out, we are particularly interested in

a method that produces optimal and robust solutions in
the following situation:

• The input data (x, y) are noisy,
• the number of data dimensions d is large (typically:

d = 105 . . . 108),
• the number of samples n is relatively small (typically:

n = 102 . . . 104), and
• the set of highly-relevant features is small (i.e., a

minimal disease fingerprint indeed exists), which
corresponds to a small number of non-zero elements
in ω0 (typically: #{i | ω0,i 	= 0} 
 100).

On the contrary, we are not mainly interested in the
methods’ overall classification performance. Measures of
classification performance such as accuracy are indicators
whether a learned classifier accurately separates the data
into classes. In our case, we assume that the data can be
characterized well by a sparse classifierω0 whose non-zero
entries are those used for classification and are therefore
of medical relevance. That means, if ω0 is sparse and leads
to good classification accuracy then only a few entries
contribute and medical interpretation becomes feasible.
However, if there does not exists a sparse ω0 such that
Eq. 1 holds, there is strong evidence that no sparse (sim-
ple) characterization is possible. This indicates that the
underlying biological mechanisms are too complex to be
captured by a sparse (simple) model. If this is the case,
every sparsity-encouraging method will fail, meaning that
a sparse classifier will always give poor classification. As
a consequence, an important assumption of this work is
that a sparse ω0 (ground-truth) exists.
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As we will see later it is often possible to find non-
sparse classifiers which achieve better classification accu-
racy. This might be favorable in some situations in which
the main focus is indeed on overall classification accu-
racy. However, in these situations overfitting becomes
an issue and the identification of interpretable, highly-
discriminative features might be extremely difficult. In
the context of MS-data analysis such a classifier would
be especially hard to interpret because of the very high
dimensionality of the data.

State of the art in sparse feature selection
There are numerous approaches for feature selection
which mainly fall into three categories:

• Filters: Using some score or correlation function
(e.g., based on Fisher’s, t-test, information theoretic
criteria) evaluating the importance of each feature in
a univariate way and taking the top-rated features.

• Wrappers: Using machine-learning algorithms to
evaluate and choose features using some search
strategy (e.g. simulated annealing or genetic
algorithms).

• Embedded methods: Selecting variables by directly
optimizing an objective function (usually in a
multivariate way) with respect to: goodness-of-fit and
(optionally) number of features. This could be
achieved with algorithms like least-square regression,
support vector machines (SVM), or decision trees.

In this paper, we will mainly focus on embedded methods.
Regarding this category, the literature contains several
well-known options for choosing combinations of loss
and regularization functions (cf. (2)), some of which are
exemplarily listed in Table 1.

Table 1 Prominent options for choosing loss function and
regularizer in feature extraction algorithms

Name Loss function (L) Regularizer (R)

AIC/BIC ‖y − 〈ω, x〉‖2 ‖ω‖0
Lasso ‖y − 〈ω, x〉‖2 ‖ω‖1
Elastic Net ‖y − 〈ω, x〉‖2 ‖ω‖22 + ‖ω‖1
Regularized Least Absolute

Deviations Regression ‖y − 〈ω, x〉‖1 ‖ω‖1
Classic SVM max(0, 1 − y〈ω, x〉)a 1

2 ‖ω‖22
�1-SVM max(0, 1 − y〈ω, x〉)a 1

2 ‖ω‖1
Logistic Regression log(1 + exp(−y〈ω, x〉)) 1

2 ‖ω‖1
*This is the so called Hinge loss
The �1- and �2-norm of a vector z = (z1, . . . , zd) ∈ R

d are defined by
‖z‖1 = ∑d

j=1 |zi| and ‖z‖2 = (
∑d

j=1 |zi|2)1/2, respectively. The “�0-norm” ‖z‖0,
simply counts the number of non-zero entries of z

Different combinations can influence the results dra-
matically: Fig. 2 demonstrates the effect of sparsity by
comparing a �2- and �1-regularized version.
In this example, a proteomics data-set was created that

contains three discriminant features between the two sub-
groups. It can be easily seen how the results differ: While
the �1-based result is optimized for selecting only a few
features, the �2-variant selects much more features which
in turn results in a better fit of the observation model. In
this paper, we are interested in developing a method that
selects as few features as possible while achieving the best
possible fit under this constraint. This is in contrast to
methods that aim at only achieving the best possible fit. A
low-complexity model is of particular interest in biolog-
ical applications because each selected feature is usually
analyzed in subsequent experiments, which creates addi-
tional costs.
Various approaches can be used to assess the outcome ω

of a feature selection method, when appropriate training
and test data are available. We will use the following three
measures of quality: (i) correctness of the selected fea-
tures, (ii) size of the selected feature set, (iii) performance
of classifying an unknown test set (specificity, sensitivity,
accuracy). Obviously, (i) can only be used if the correct
features are known, which is the case in our benchmark
data-sets (for more details see “Feature selection from
simulated data-sets” section).

Contribution
As alreadymentioned above, themajor challenge of sparse
feature extraction is to robustly identify a small set of vari-
ables (non-zero components of ω) that can be used to
accurately classify unknown proteomics data (e.g. healthy
or diseased) according to (1). This paper introduces Sparse
Proteomics Analysis (SPA), a novel framework for feature
selection and classification. The key step of our method is
based on 1-bit compressed sensing (cf. “Compressed sens-
ing-based data analysis” section) and solves the following
optimization problem:6

max
ω∈Rd

n∑

i=1
yi〈xi,ω〉 subject to ‖ω‖1 ≤ √

λ and ‖ω‖2 ≤ 1,

(3)

where the regularization is now defined by two inequality
constraints on the feature vector ω.7 The above approach
is motivated by the general theory of compressed sens-
ing, which was originally introduced by Donoho as well
as by Candès, Romberg, and Tao (cf. [17–19]) and pro-
vides a modern framework for efficiently acquiring and
processing high-dimensional (nearly) sparse signals (for
more details see “Compressed sensing-based data analy-
sis” section).
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Fig. 2 a Overlaid spectra from two different groups. The three peaks marked by the arrows (magnified in the inlays) represent the underlying
differences between the two groups. b Sparse ω found by a �1-regularized method (�1-SVM). c ω found by �2-regularized method (classical SVM)

We shall verify the competitiveness of our method by
applying it to several synthetic and real-world data-sets
and comparing the results to those of other widely-used
algorithms in this field. Although the core of the algorithm
(3) is surprisingly simple, we will observe that SPA (includ-
ing pre- and postprocessing steps) finds optimal feature
vectors which are extremely sparse, allow for highly accu-
rate classification, and are robust against noise. In particu-
lar, for “very-sparse” situations, it even turns out that SPA
outperforms the standard methods listed in Table 1.
Note that computational solutions to (2) or (3) are

usually based on solving a convex program by standard
optimization techniques, such as interior point meth-
ods. However, these methods sometimes scale poorly with
increasing number of samples n and data dimension d,
as it is typically the case for -omics data analysis. Several
strategies have been proposed in the literature to speed
up the calculations, e.g., using stochastic decent ([20–24]).
In this article, we shall not focus on such computational
issues but rather on providing a novel way of formalizing
and solving the feature selection problem, namely in the
context of compressed sensing.
Apart from the specific approach of (3), it is a general

concern of this work to promote the benefit of sparse
embedded methods. In contrast to classical (univariate)
approaches, such as statistical tests, the process of vari-
able selection takes place in an automatic fashion here.
In this way, a costly preprocessing (e.g., peak detection)
as well as subsequent feature assessments can be avoided
as much as possible. Especially in a situation where only
a very few samples are available, those additional steps
may cause further instability and their success strongly
relies on the specific data structure. In fact, it was already
succinctly emphasized by Vapnik in ([25], p. 12) that “If
you possess a restricted amount of information for solving

some problem, try to solve the problem directly and never
solve the more general problem as an intermediate step.
It is possible that the available information is sufficient
for a direct solution but is insufficient for solving a more
general intermediate problem.” This fundamental princi-
ple is precisely reflected by our viewpoint, which only
makes a few (generic) assumptions on the underlying data
model. Finally, we would like to mention that recently,
rigorous theoretical guarantees for sparse feature selec-
tion from MS data were shown in [26]. Using the novel
idea of optimal problem representations, the mathemati-
cal framework of [26] even goes beyond the binary output
scheme of (1) and allows for a unified treatment of general
observation and data models.
The next sections shortly review the background of

compressed sensing and then describe our novel feature
selection approach SPA in detail (“Methods” section).
Finally, we present several benchmark results in “Feature
selection from simulated data-sets” sections and “Results
for real-world MALDI-TOF MS data” for simulated and
real data-sets and compare them to current state-of-the-
art algorithms.

Compressed sensing-based data analysis
In its most simple form, compressed sensing (CS) stud-
ies the recovery of an unknown vector x ∈ R

d from
linear measurements y = Ax. Here, A ∈ R

n×d is an
(n × d)-matrix and the entries of y ∈ R

n contain the
measurements. The major challenge is now to design the
measurement process A in such a way that the number of
measurements n is as small as possible and, at the same
time, x is still (uniquely) recoverable from y. Thus, we
are asking for the maximal compressibility of x by linear
measurements.
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Obviously, when n 
 d, we require some additional
information to obtain a unique solution of y = Ax. The
prior information on x which is studied in compressed
sensing is the assumption of sparsity, i.e., most coefficients
of x are assumed to be zero, or at least very small. One
naive approach to incorporate this additional property is
to search for the sparsest solution of Az = y:8

arg min
z∈Rd

‖z‖0 subject to Az = y. (4)

Unfortunately, this problem is non-convex and cannot
be efficiently solved in general. Therefore, one usually
replaces (4) by its convex relaxation, which is also known
as the basis pursuit ([27]):

arg min
z∈Rd

‖z‖1 subject to Az = y. (5)

One of the first key results in compressed sensing states
that, if A ∈ R

n×d is chosen randomly, e.g., with inde-
pendent and identically distributed Gaussian entries, and
n = O(s · log(d/s)), then (with “high probability”) every
s-sparse vector x (i.e., ‖x‖0 ≤ s) can be uniquely recov-
ered from (5). The most surprising fact is that the number
of required measurements n = O(s · log(d/s)) only log-
arithmically depends on the (possibly large) dimension
d of the ambient space. Hence, random measurement
processes indeed allow for a very strong compression of
sparse vectors (see also [17–19] for more details).
In order to consider more complicated situations,

the stability and robustness of the basis pursuit algo-
rithm was extensively studied. Various theoretical results
and numerical experiments show that this algorithmic
approach can also be applied for the stable recovery
of vectors which are only nearly sparse, as well as to
noisy measurements of the form y = Ax + η. To
obtain a robust version of (5), one may replace its equal-
ity constraint by ‖Az − y‖2 ≤ ε for some appro-
priate noise level ε > 0. Not very surprisingly, this
approach is also closely related to the Lasso introduced by
Tibshirani in [28] (see also (2) and Table 1).

1-bit compressed sensing
In many practical scenarios, especially when working with
computers, there is no way to represent real numbers
exactly. Thus, it is reasonable to assume that the measure-
ment vector Ax is acquired in a quantized (and therefore
non-linear) fashion. The most extreme form directly leads
to 1-bit measurements, i.e., only the signs ofAx are known:

yi = sign(〈ai, x〉), i = 1, . . . , n, (6)

where a1, . . . , an ∈ R
d are the rows of the measurement

matrix A ∈ R
n×d . As in classical compressed sensing, we

are asking for an appropriate recovery of x from (6) using

as fewmeasurements as possible. This challenge was orig-
inally considered in [29] as 1-bit compressed sensing, and
has been extensively studied in [30, 31].
A surprisingly simple convex recovery approach was

proposed by Plan and Vershynin in [31]:

max
z∈Rd

n∑

i=1
yi〈ai, z〉 subject to ‖z‖1 ≤ √

λ and ‖z‖2 ≤ 1,

(7)

where λ > 0 denotes the sparsity-controlling param-
eter. To get some intuition, we first note that we have
yi = sign(〈ai, x〉) if and only if yi〈ai, x〉 > 0 holds. Hence,
maximizing the sum in (7) will ensure the consistency
of many measurements i ∈ {1, . . . , n}, according to (6).
However, the total consistency is not enforced so that (7)
indeed allows for noisy inputs y that do not satisfy (6). On
the other hand, the constraint of (7) promotes sparsity of
the final outcome. To see this, we may consider the set
Sd,λ := {z ∈ R

d : ‖z‖0 ≤ λ, ‖z‖2 ≤ 1} and observe that (cf.
[31] Sec. III)9

conv(Sd,λ)⊂{z ∈ R
d :‖z‖1≤ √

λ, ‖z‖2≤1} ⊂ 2conv(Sd,λ).

This means that (7) optimizes over a convex relaxation
of the set Sd,λ which contains all λ-sparse vectors in the
unit ball. For more details, see also [31]. The main state-
ment of [31] proves that the robust 1-bit compressed
sensing algorithm (7) indeed allows for an appropriate
recovery of sparse vectors, using only n = O(λ · log(d/λ))

measurements. Moreover, it is surprisingly robust against
several types of noise, including (random) bit-flips of the
labels.

Remark The minimized functional of (7) is closely
related to the hinge loss which is used for SVMs (cf. Table 1).
Indeed, without rejecting the negative part of the hinge loss,
we would precisely end up with the objective functional
in (7).
The constraint of (7), on the other hand, can be regarded

as a combined �1-�2-condition, where the tuning parame-
ter λ controls the desired level of sparsity of the minimizer.
This type of regularization strongly resembles the idea of
elastic nets, originally proposed by Zou and Hastie in [32].

Why compressed sensing?
At a first sight, the main challenges of compressed sens-
ing and machine learning (ML) seem to be very different.
In compressed sensing, we intend to design a measure-
ment process A in order to compress a vector x, whereas
in machine learning, the training data is already contained
in the rows of A and we are rather willing to explain the
observations y by some appropriate vector x. However, in
both areas we are asking for a (sparse) recovery from a cer-
tain type of measurement. Indeed, a linear regression in
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ML exactly corresponds to classical CS model (see “Com-
pressed sensing-based data analysis” subsection), and a
classification problem is actually equivalent to 1-bit CS
(see “1-bit compressed sensing” subsection).
Therefore, it is not very surprising that the applied

algorithms for compressed sensing and machine learn-
ing resemble each other, and that theoretical results in
both fields rely on the same mathematical foundations
(concentration of measure, convex geometry, etc.). Unfor-
tunately, both communities only rarely interacted with
each other. In this paper, we would like to emphasize the
viewpoint of compressed sensing, in particular, because it
is still not very common for the classification tasks that we
deal with.
With the recent progress in compressed sensing and

related areas as low-rank matrix recovery or quantized
CS, also new algorithms like nuclear norm minimization
or 1-bit CS have been proposed. Although these meth-
ods are typically motivated by theoretical studies, they
perform also very well for real-world data. In general, we
believe that these alternative perspectives allow for deeper
theoretical insights, finally leading to the improvement of
the classical (�1-based) tools from machine learning.
For an extensive introduction to compressed sensing, we

refer to [33, 34]. As we already mentioned above, compar-
ing this text to literature from statistical learning theory
(see [35] for example), the reader will quickly notice many
interesting connections between both fields.

Methods
In this section, we present the details of our novel frame-
work which we call Sparse Proteomics Analysis (SPA). It is
based on the ideas of 1-bit compressed sensing presented
in the previous section. The first part provides a math-
ematical formulation of the feature selection problem as
well as a brief overview of the steps that are performed in
SPA. The rest of this section is then devoted to a detailed
description and discussion of the single steps.

Setting and overview
As already mentioned in the introduction, we assume that
our learning process is supervised, i.e., we know which
spectrum belongs to the class of healthy (yi = +1) and
diseased (yi = −1) samples in advance. If the data vec-
tors xi ∈ R

d , i = 1, . . . , n are mass spectra, the indices
j = 1, . . . , d of xi = (xi,1, . . . , xi,d) correspond to the m/z-
values10 and its entries represent the intensities. The non-
zero entries of the feature vector ω0 = (ω0,1, . . . ,ω0,d) ∈
R
d describe the location of the disease fingerprints and its

respective values the significance of these features.
In the setting of classical learning theory, we are ask-

ing for a hyperplane {ω0}⊥ which correctly separates most
of the data points xi labeled by yi. More precisely, this
means11

yi = sign (〈xi,ω0〉) for “many” samples i = 1, . . . , n.
(8)

Equivalently, we can view (8) as a problem from 1-bit com-
pressed sensing (cf. “Why compressed sensing?” section),
i.e., we have acquired noisy 1-bit measurements and are
now looking for a sparse recovery.
In the development of SPA, we have primarily focused

on the latter perspective, and therefore, the 1-bit recovery
program (7) forms the key step of our algorithm:

Algorithm 1 (SPA at a glance).
Input: Raw data samples {(xi, yi)}i=1,...,n
Output: Sparse feature vector ω̃ ∈ R

d

Preprocessing:

1: Normalize data to make the spectra comparable.
2: Perform smoothing by a convolution with Gaussian

density.
3: Standardize data.

Sparse Feature Selection:

4: Perform 1-bit CS optimization (7) to find feature
vector ω̂.

Postprocessing:

5: Detect the connected components of ω̂ to obtain a
sparsified version ω̃.

6: (Optional) Reduce dimension by projecting data onto
the feature space.

Algorithmic details
In the following, we are going to specify and discuss the
single steps of Algorithm 1.

Step 1: normalization of the data
This step heavily depends on the underlying acquisition
method of the data. Every spectrum xi ∈ R

d is normalized
by a certain scaling factor μi > 0, i.e., xi �→ μixi for i =
1, . . . , n. The individual scalars μi should be chosen such
that the resulting data vectors are “comparable.”
For example, when we assume that the data are acquired

by MALDI-TOF-MS as described in Fig. 1, it seems to be
quite natural to normalize them by the total ion count.
Mathematically, this means that we would divide every
spectrum by its �1-norm, i.e., we choose μi = 1/‖xi‖1.

Step 2: smoothing by gaussian density
We already pointed out that one major challenge is the
strong noise within the raw data. Therefore, it is crucial
to perform some noise reduction before trying to extract
features. For this purpose, we suggest a simple smoothing
strategy by a Gaussian density:
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Let Gσ denote the (centered) Gaussian density function
with fixed standard deviation σ > 0, that is,

Gσ (t) = 1√
2πσ 2

exp
(

− t2

2σ 2

)
, t ∈ R.

The smoothed spectra x̃i = (x̃i,1, . . . , x̃i,d) ∈ R
d are then

obtained by a discrete convolution

x̃i,k := (xi ∗ Gσ )k =
d∑

l=1
xi,l · Gσ (k − l),

k = 1, . . . , d, i = 1, . . . , n.

(9)

Using the fast Fourier transform (FFT), this computa-
tion can be performed quickly with O(nd log(d)) opera-
tions. In a very simplified scenario, a spectrum can be
written as the sum of Gaussian-shaped peaks plus some
baseline noise in eachmass channel. Since the convolution
of two Gaussian densities is again Gaussian, the original
(local) structure of the spectra is essentially preserved in
x̃i, whereas the noise of xi is significantly reduced. Note
that the deviation σ > 0 serves as a tuning parameter of
the algorithm. A good choice of σ clearly depends on the
nature of the data; usually it depends on the noise level as
well as on the (average) width of the peaks.
Finally, we would like to emphasize another interest-

ing interpretation of the above smoothing approach: The
convolution in (9) can be written as a scalar product of
xi with the shifted Gaussian density Gσ (· − k) (note that
Gσ is symmetric), that is, x̃i,k = 〈xi,Gσ (· − k)〉. Thus,
the entries of x̃i are actually the analysis coefficients of
the Gaussian dictionary {Gσ (· − k) | k = 1, . . . , d}.
The perspective of analyzing data by a dictionary offers
several opportunities for generalization. For instance,
one could also consider (redundant) dictionaries with
more than one standard deviation or more sophisticated
functions than Gσ .

Step 3: standardizing the data
The 1-bit optimization of (7) does not incorporate a bias
term. Hence, it is necessary to center the data first. For
this, we compute themean spectrum12

x̄ := 1
n

n∑

i=1
xi ∈ R

d,

i.e., x̄k contains the average of the k-th entry of all spectra.
The spectra are further scaled by dividing the non-

constant features by their standard deviation

σj :=
√√
√
√ 1

n

n∑

i=1

(
xi,j − x̄j

)2, j = 1, . . . , d.

The standardized spectra x̌i = (x̌i,1, . . . , x̌i,d) ∈ R
d are

then obtained by

x̌i,j := xi,j − x̄j
σj

, i = 1, . . . , n, j = 1, . . . , d.

In this way, all feature variables are centered and have an
empirical standard deviation equal to 1, so that they get
equally weighted in the selection process.

Step 4: sparse feature selection
We are now ready to perform the actual feature extraction
step, using the 1-bit recovery method presented in “1-bit
compressed sensing” subsection:

Algorithm 2 (1-Bit Compressed Sensing).
Input: Samples {(xi, yi)}i=1,...,n, sparsity parameter λ > 0,
threshold ε > 0
Output: Estimated feature vector ω̂ = (ω̂1, . . . , ω̂d) ∈ R

d

Compute:

1 : ω̂′ =arg maxω∈Rd

n∑

i=1
yi〈xi,ω〉

subject to ‖ω‖1≤√
λ and ‖ω‖2≤1.

(10)

2 : ω̂k =
{

ω̂′
k , if

∣∣ω̂′
k
∣∣ > ε,

0, otherwise, k = 1, . . . , d. (11)

The second part (in (11)) is a simple hard thresholding
that tries to eliminate computational inaccuracies by set-
ting almost zero entries of ω̂′ to 0 (ε is usually very small,
e.g., ∼ 10−3).
The actual feature selection takes place in (10). Recall-

ing the observation model from (8), we conclude that the
i-th sample is correctly classified by a vector ω if and only
if yi〈xi,ω〉 > 0. Hence, the objective functional of (10)
will be particularly large if sufficiently many samples are
correctly classified by ω. However, a consistent predic-
tion of all measurements (i.e., yi = sign(〈xi,ω〉) for all
i = 1, . . . , n) is not strictly enforced, and therefore, our
strategy enjoys a certain robustness against (random) per-
turbation of the model (8). This could occur in practice,
for example, when a training sample was wrongly clas-
sified from the very beginning. On the other hand, the
constraint of (10) guarantees that the maximizer will be
“effectively” sparse (depending on the choice of the spar-
sity parameter λ > 0). This intuition indicates that the
estimator ω̂ will be indeed a sparse vector allowing for an
appropriate separation of the two classes.

Step 5: detecting the connected components
One advantage of Algorithm 2 is that it does not make
any assumptions on the structure of the data vectors xi.
Hence, it might be even suited for much more general
types of data. However, its “universality” comes with the
drawback that the characteristic peak structure of MS
data is not captured at all. In fact, a spectrum does not
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consist of sharp spikes but rather wide-spread Gaussian
shaped peaks. Hence, if the algorithm finds a significant
feature position, say at the maximum of some peak, it
usually tends to select also those features which are close
to this position. Such a behavior is not very surprising,
because nearby features are highly correlated to the maxi-
mum of the peak, and therefore, they may allow for a good
separation as well.
Empirical results have shown that this process of selec-

tion “evolves” in a continuous fashion when changing the
sparsity level λ. As a consequence, the support of a fea-
ture vector ω̂ from Algorithm 2 typically consists of a few
connected “intervals” (consecutive sequences of indices)
which are centered around the selected peaks (see also
Fig. 3). The actual sparsity of ω̂ should be therefore mea-
sured by means of its connected intervals and not by
simply counting its non-zero entries.
For this reason, we may easily improve the sparsity of ω̂

by reducing every interval to its most significant entry:13

Algorithm 3 (Sparsification of ω̂).
Input: (Sparse) feature vector ω̂ = (ω̂1, . . . , ω̂d) ∈ R

d

Output: Sparsified version ω̃ = (ω̃1, . . . , ω̃d) ∈ R
d

Compute:

1: Find the connected components
A1, . . . ,AN ⊂ supp(ω̂) of ω̂.

2: For every l = 1, . . . ,N do the following:
Set all entries of ω̂ in Al to 0, except from
arg maxk∈Al

|ω̂k|.

Fig. 3 The red stripe indicates the support of ω̂. Relevant features
usually occur as intervals and not as isolated points

3: The resulting vector is ω̃.

Step 6: dimension reduction
This final (optional) step does not involve any further
computations but shows how to proceed with our result ω̃.
As mentioned before, the main purpose of SPA is not just
to classify (unknown) samples, but rather to reduce the
data to its significant entries (dimensions). Indeed, wemay
use ω̃ for a dimension reduction: Let x = (x1, . . . , xd) ∈ R

d

be some (possibly unknown) data vector. Then, we can
project x onto the selected feature positions of supp(ω̃).
More precisely, all entries that do not belong to supp(ω̃)

are set to 0:

x̂k :=
{
xk , k ∈ supp(ω̃),
0, otherwise, k = 1, . . . , d. (12)

The resulting data vector x̂ = (x̂1, . . . , x̂d) ∈ R
d

is now trivially embedded into a low-dimensional space
of dimension #supp(ω̃).14 But it still contains the most
important information which has been found by the above
algorithm. Note that we have not made any use of the
actual values of ω̃ but merely of its support.
By this projection, we may reduce the danger of overfit-

ting. In particular, by working in a low-dimensional space,
a large tool set frommachine learning is now available for
classification and clustering. But how to explicitly proceed
with the data heavily depends on the specific application
and is therefore not part of SPA.

Results and discussion
Feature selection from simulated data-sets
In this section, we assess our framework of SPA with
regard to a typical situation in mass-spectrometry analy-
sis: We would like to extract discriminating features from
MS data with respect to two groups (e.g., healthy and
diseased patients). A major difficulty is usually that only
a small number of measurements (observations) is avail-
able. Building on this, we ask for the following: Given a
simulated data-set for which the position and number of
discriminating peaks are known (this will be called ω0
below), how many samples are needed to identify these
features with high accuracy?
We shall compare our results to the widely used state-of-

the-art algorithms LIBLINEAR (�1-regularized SVM) and
the standard MATLAB implementation of Lasso.

Creating a simulated data-set
We assume that our sample set {(xi, yi)}i=1,...,n ⊂ R

d ×
{−1,+1} follows a certain joint random distribution
(X,Y ), where each sample is independently drawn. In
order to make the problem tractable, let us make two
model assumptions on X and Y. First, the mass spectra X
are generated as follows:
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xi =
M∑

m=1
smi a

m + ni, i = 1, . . . , n,

where smi ∈ R
d determines the (random) amplitude of

the m-th peak, am ∈ R
d specifies its position and shape,

and ni ∈ R represents the low-amplitude baseline noise.
We shall assume that the amplitudes and the noise are
Gaussian, that is, si := (s1i , ..., sMi ) ∼ N (0,	) with
	 ∈ R

M×M positive definite and ni ∼ N (0, σ 2I) with
σ > 0. Note that the generated data might have nega-
tive components. This does not mimic the structure of
real-world mass spectra which is always non-negative.
However, since centering is part of our preprocessing
anyway (cf. Step 3 in “Algorithmic details” subsection),
the assumption of mean-zero amplitudes is quite natural.
The (disease) labels Y are then simply modeled as 1-bit
observations (see also (8))

yi = sign(〈xi,ω0〉), i = 1, . . . , n, (13)

where ω0 ∈ R
d is the sparse ground-truth feature vector,

which we intend to estimate. In the following, each non-
zero entry of ω0 is located at the center of a specific peak
(see Fig. 4(d)–(f )), so that supp(ω0) actually determines all
biologically relevant peaks (molecular structures). Since
	 is invertible (i.e., the features are linearly indepen-
dent), this collection of peaks is an optimal fingerprint
in the sense that removing or adding any feature variable
would decrease the prediction accuracy (with respect to
the “perfect” model of (13)).

In our experiments, we create data-sets x1, . . . , xn ∈
R
8192, each one consisting of 200 equidistant peaks (atoms

am) shaped like Gaussian density function of width 10.
The vector ω0 ∈ R

8192 is chosen to have five non-zero
components, which means that only five prechosen peaks
were used to generate the labels y1, . . . , yn. Hereafter, we
will refer to these as condition positive peaks. Figure 4
shows three different data instances magnifying only the
first seven peaks, generated in the described way. In order
to verify our method, we will use two types of data-sets
DS1 and DS2 which only differ in their correlation matrix
	. For DS1, 	 is chosen to be the identity matrix. This
implies that the heights of all of the 200 peaks are stan-
dard Gaussian random variables. For DS2, we have chosen
three pairs of negative peaks to be positively correlated
and in addition, one condition positive peak was chosen
to be positively correlated with one of the negative peaks.
Thus, there are a few entries of value 0.8 off the main diag-
onal in 	. To test the algorithm’s performance increasing
amount of Gaussian noise ni ∼ N (0, σ 2) with σ =
{0.1, 0.3} was added to DS1 and DS2. These corresponds
to signal-to-noise (SNR) ratio of 10, 3.33 repectively 15.
The values of SNR are chosen to represent the behaviour
of the algorithm up to the levels of noise that are normally
found in MS data.

Setup and evaluation criteria
Let us recall the essential question of our experiments:
Can we recover the support of ω0, and if so, how many
samples do we need for that? For this purpose, we shall
successively increase the number of available samples
in the (training) data-set and examine whether SPA (or

Fig. 4 Illustration of the generated data instances. a–c: First seven equidistant Gaussian peaks that are located in fixed positions in each of the three
data instances; d–f: Visualization of the data instances from (a)–(c) with additive noise with standard deviation σ = 0.1, where the positions of the
five condition positive peaks are highlighted by black dots. The blue and red colors indicate the different classes which are determined by the
observation process of (13)
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Lasso, or �1-SVM) succeeds in recovering supp(ω0). Since
each of the considered algorithms involves a variable
parameter, we have decided to perform an adaptive tuning
for each problem instance. In fact, the sparsity parame-
ter was chosen such that the resulting classifier ω̃ matches
the sparsity level of ω0. But of course, this does not auto-
matically imply that the supports of ω̃ and ω0 completely
coincide.16 For each problem instance, the smallest spar-
sity parameter which resulted in a classifier with five
non-zero entries was chosen in the following way: The ini-
tial value of the sparsity parameter for SPA and �1-SVM
(Lasso) was set to the value which corresponds to the clas-
sifier with less than (more than) five non-zero values17.
For SPA and �1-SVM (Lasso), the sparsity parameter was
increased for a preset step size until the outcome had
five or more (five or fewer) non-zero entries. If the pre-
vious step provided a sparse classifier with strictly more
than (strictly less than) five non-zero entries, the bisec-
tion method was used on the interval between the two last
sparsity parameter values. The bisectionmethod was used
until the optimal sparsity parameter was found or the dif-
ference between the two consecutive parameters became
smaller than a preset tolerance.
We will use a measure based on sensitivity. Sensitivity,

defined as18

sens := TP
TP+FN

is an appropriate measure for our objectives because it
represents an algorithm’s ability to detect the relevant
features. Note that ideally, the number of condition posi-
tives (TP + FN) is equal to predicted condition positives
(TP + FP). In such a situation, the precision, given by
p := TP/(TP + FP) is equal to the sensitivity. However, in
the presence of noise it is possible that the final selection
encompasses several features which are associated with a
single peak. This could lead to a precision value equal to
1 if all of the selected values are declared as true positives,
though some other true features remain undetected. Since
for us, it is equally important to penalize both false pos-
itives and false negatives, we have chosen the sensitivity
to be the main point of reference. A measure of similar
importance is the specificity, which is defined by

spec := TN
FP + TN

.

Finally, due to the possibly imbalanced number of rele-
vant features, we shall also take into account the so-called
balanced accuracy

bacc := sens + spec
2

.

Results for the simulated data-sets
Data-sets of sample sizes between 50 and 350 were gen-
erated as described above and each of the methods was

performed for standardized input data. Note that the hard
thresholding step described in (11) was also applied to the
classifiers obtained fromLasso or �1-SVM.Otherwise, any
computational inaccuracy would completely destroy the
sparsity structure of the results.
For the sake of statistical stability, each experiment was

repeated 10-times. The averaged results are presented in
the Fig. 5. We can see that SPA (= 1-bit CS) performs
better than the �1-SVM or Lasso with regard to the capa-
bility of recognizing the true positive features (sensitivity
in Fig. 5). In our setting, if one method fails to select 5
condition positive peaks because one of themwas selected
twice, and the other method selects exactly the same 4
peaks and one false positive in addition, the specificity
penalizes only the latter one. But effectively, both cases
are suboptimal, since only the 5 positive peaks together
can predict the class correctly. This effect is reflected by a
smaller value of specificity of the 1-bit approach compar-
ing to the specificity of other two methods for data-sets
with less than 300 spectra (column 2 in Fig. 5). How-
ever, this also implies that SPA performs sligtly worse in
rejecting true negatives than the other two approaches.
The average results for balanced accuracy are visualized
in the third column of Fig. 5. We observe that SPA out-
performs the other two methods and even achieves 100%
accuracy with relatively few observations. With further
decreasing SNR the performance of the three algorithms
becomes more similar. Figure 6 shows the numerical out-
comes for the data-set DS2. The non-trivial correlation
structure of DS2 eventually leads to a slight drop of sen-
sitivity and accuracy for SPA (compared to DS1), whereas
the performance of the other two methods essentially
remains unaffected. As before with further decreasing
SNR the performance of the three algorithms becomes
more similar in terms of sensitivity and balanced accuracy.

Results for real-world MALDI-TOF MS data
In this section, we present results of SPA, Lasso, and
�1-SVM for analyzing real-world mass-spectrometry data
and compare them to the MALDIquant proteomics anal-
ysis workflow [36]. All data was acquired in our earlier
studies [10, 37]. It was approved by the local ethics com-
mittees and fulfils the requirements of the Helsinki decla-
ration. All subjects gave informed consent to participate
in the study. We will demonstrate the performance of our
method on two data-sets:

• Spiked data: The spiked data-set is a labelled ground-
truth data-set containing control (e.g. healthy) and
case (e.g. diseased) mass spectra where the true labels
are known. It is created from human blood samples19
which were either unchanged (control group) or in
which a protein-mix has been mixed (spiked) into
(case group). In order to simulate different strength
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Fig. 5 Comparison of numerical results for SPA (= 1-bit CS), Lasso, and �1-SVM on the data-set DS1 with SNR = 10, and 3.33, showed in the
respective row. Note that the data consist of 5 condition positive and 195 condition negative peaks which are equidistantly located in the spectra

Fig. 6 Comparison of numerical results for SPA (= 1-bit CS), Lasso, and �1-SVM on the data-set DS2 with SNR = 10 and 3.33 showed in the respective row
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of an effect caused e.g. by a disease, we further
sub-divided the case group into five sub-groups
where the amount of spiked-in proteins is increasing.
The five volumes in the case sub-groups were spiked
with the following concentrations of the protein
mix20: 0.075pMol/L, 3.03pMol/L, 0.30nMol/L,
0.76nMol/L and 121.21nMol/L. This mix contains
the hormones Angiotensin, ACTH, clip 18-39,
Substance P and the cell protein Ubiquitin. The
peptide mix was added before sample pre-treatment
and 64 spectra were measured due to 4-fold spotting
(technical replicates). Mass spectra were acquired
using the protocol described in the Additional file 1.
Each volume corresponds to a data-set. What
differentiates the data-sets are the amplitudes of the 6
spikes resulting from the added substances. The
signal-to-noise ratio of the spiked-in peaks is shown
in the Fig. 721.

• Pancreas Cancer Data (P. CA) : A total of 120 patients
with pancreatic cancer and controls were recruited
for this study [10]. For the discovery study sera were
obtained from two different clinical centres
(University Hospital Leipzig (UHL, set L) and
Heidelberg (UHH, set H)) as described in the

supplementary material (S1). Note that each acquired
spectrum has been assigned a class-label, i.e., healthy
or diseased. So, the health status of the training
samples is known in advance (supervised learning).

Baseline removal was performed on the raw MS data
using TopHat filtering ([38]). In particular, no additional
calibration or noise reduction steps have been applied.
More information on the data and sample preparation can
be found in the supplementary material (S1).

Themissing-data problem
When dealing with data coming from measurements
of, say, a Mass Spectrometer instrument, the so called
missing-data problem usually occurs. This means that the
instrument failed to give measurements for some of the
measured masses, usually due to the stochastic nature
of the process happening inside the device. Due to the
smoothing step in our algorithm and the arguments of
e.g. Rubin et al. ([39]) this problem can be mainly ignored
in our case for identifying the relevant features. How-
ever, this does not necessarily hold for the classification
step, i.e. applying the identified sparse classifier to an
unknown data-set. In this scenario, where data is missing

Fig. 7 The height of true signals (6 spiked in peaks) comparing to the height of noise and height of the corresponding values in the pure data-set.
Signal-to-noise ratio, which was calculated as the ratio of median of spiked-in signals and the estimated level of noise is shown above the
corresponding peaks



Conrad et al. BMC Bioinformatics  (2017) 18:160 Page 14 of 20

in an unknown sample, there are basically two options:
(1) applying a method for inferring the missing data or
(2) stopping the classification and return an error message
to the user. In this work we decided to follow the latter
approach, since inferring missing data is not in the scope
of this paper22 but is an unarguable crucial point in any
data analysis pipeline and should depend on the actual
use-case.

Accuracy vs. number of features
We performed the real world experiments with respect to
the same evaluation categories as in the case of simulated
data. Note that the normalization and standardization as
described in “Algorithmic details” section were applied as
preprocessing steps in each of the methods. Similarly, a
hard thresholding as described in (11) was applied to all
classifiers estimated by the examined algorithms.
For the each of the algorithms, we are testing the per-

formance of the obtained classifiers learned on the pure
data-set which corresponds to the condition negative class
and one spiked data-set at a time corresponding to the
condition positive class.
The results of the classifier with 6 non-zeros on the

spiked data-set are shown in Table 2. The main ques-
tion in these experiments is how successful each of the
algorithms is in detecting the 6 peaks that were initially
spiked (see the data-set description above). We can see
that the values of sensitivity for SPA are at least as high
as those of the other methods, which implies that the
approach of 1-bit CS is very competitive in this situation
and mostly achieves the best detection rate. However, the
relatively poor performance of all the algorithms on the
spiked data-set can be explained by the nature of the data.
Since the peptide mix was added to the blood samples
before acquiring the mass spectra, the spiked peaks are
not always present in all the resulting mass spectra in the
positions where we expect to find them. There exist data-
sets for which all the mass spectra failed to exhibit certain
spiked peaks at their expected locations. as can be seen in
the Fig. 7. Thus, we cannot expect any of the algorithms

to find these missing peaks. Nonetheless, there is still a
chance to build a reliable fingerprint out of the remain-
ing spikes while there is no chance to detect the missing
spikes because the data-set is not rich enough to represent
it. On the other hand, this spiked data-set combines the
advantages of both simulated and clinical data, since the
positions of the desired biomarkers are known in advance
while their representative behavior in the spectra is quite
realistic.
In contrast to that in the case of pancreas cancer

data-sets, we do not know the true-positive feature posi-
tions. Consequently, we can only rely on the classifica-
tion performance of the obtained sparse classifiers by
each of the algorithms. To evaluate the reliability of our
results, for each of the methods, we have employed the
cross-validation scheme as described in the Algorithm
4 with the number of folds K set to 5. In order to
ensure statistical stability, each experiment was repeated
10-times. Figure 8 shows the average results over 10
repetitions.

Algorithm 4 (Cross-Validation of Classification Perfor-
mance).
Input: Raw data (x1, y1), . . . , (xn, yn) ∈ R

d × {−1,+1};
Number of CV-folds K ;
Output: Classification accuracy Acc ∈ [0, 1]; Average
sparsity #F (number of selected features)
Compute:

1: Split the sample set {1, . . . , n} randomly into K
disjoint folds P1, . . . ,PK of (almost) equal size.
For each fold k ∈ 1, . . . ,K perform the following
steps 2-4:

2: Compute the feature vector ωk employing the
desired method on the samples of

⋃
k′∈{1,...,K}\{k} Pk′

3: Dimension reduction as described in Algorithmic
Details (step 6). Project all spectra onto supp(ωk) and
put #Fk := ||ωk||0.

4: Classification of Pk : Use the projected samples of⋃
k′∈{1,...,K}\{k′} Pk′ to predict the labels of the spectra

Table 2 This table shows the main results comparing the feature selection benchmarks of our approach with Lasso and �1-SVM on the
spiked data-set. Given results correspond to the average results over 10 repetitions of the classifier with 6 non-zero values

SPA Lasso �1-SVM

Concentration TP[a] Sens[b] Specs[c] B. Acc[d] TP Sens Spec B. Acc TP Sens Spec B. Acc

0.075pMol/L 2 0.333 1.000 0.667 1 0.167 1.000 0.583 1 0.167 1.000 0.583

3.03pMol/L 4 0.667 1.000 0.833 2 0.333 1.000 0.667 1 0.167 1.000 0.583

0.30nMol/L 2 0.333 1.000 0.667 1 0.167 1.000 0.583 1 0.167 1.000 0.583

0.76nMol/L 2 0.333 1.000 0.667 2 0.333 1.000 0.667 2 0.333 1.000 0.667

121.21nMol/L 3 0.500 1.000 0.750 2 0.333 1.000 0.667 2 0.333 1.000 0.667

[a]TP: Number of spiked peaks that are correctly detected
[b]Sens: Sensitivity in detecting spiked peaks (TP/(TP + FN))
[c]Spec: Specificity in detecting spiked peaks (TN/(FP + TN))
[d]B. Acc: Balanced Accuracy ( sens.+spec.

2 )
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Fig. 8 Accuracies of sparse classifiers from SPA, Lasso, and �1-SVM on the real pancreatic cancer data-sets. While Lasso and �1-SVM achieve better
classification accuracy with increasing number of features, SPA is particularly well suited for the “very-sparse regime” where only few features (< 20)
are used for classification

Pk by an ordinary SVM[1]. Denote the prediction
accuracy by Acck .

5: Compute the average accuracy Acc := 1
K

∑K
k=1 Acck

and average sparsity #F := 1
K

∑K
k=1 #Fk .

In order to ensure statistical stability, each experiment
was repeated 10-times. Figure 8 shows the results. Note
that our results show that accurate predictions are already
possible with a very few features, so that the assump-
tion of small disease fingerprint seems to hold for this
data-set. Furthermore, it can be seen that SPA is espe-
cially well suited for situations where a sparse classifier
(containing only very few features) is preferred. This is
appealing because fewer features enable an easier inter-
pretation of the actual components of a potential disease
fingerprint. Moreover, follow-up experiments that often
involve an individual treatment of each component (e.g.,
potential biomarkers) would become much less costly.
Note that in the non-sparse region with more than 30 fea-
tures selected, it is not meaningful to relate the achieved
accuracy to the quality of the learned feature vector due to
the small sample size. The considered algorithms assume
the underlying fingerprint to be sparse. This assumption
usually does not fully hold in practice. Therefore, we can-
not expect that a learned feature vector achieves perfect
classification. The classification accuracy should be there-
fore considered as an indicator of how well our model
assumption of the sparse fingerprint fits to the unknown
ground-truth. If we let the algorithms operate out of the
region for which they have been designed for, we may
achieve indeed a higher accuracy, but this is probably a
consequence of overfitting. And even more importantly,

the learned feature vector (model) is not reliable any-
more.23

Best classifier
Apart from that, we are interested in the performance of
the best sparse classifier (i.e. small number of features)
found by each of the algorithms (SPA, Lasso, �1-SVM).
For all learned classifiers with 10 to 30 non-zero com-
ponents, Table 3 presents those with the best classifica-
tion accuracy. Furthermore, we also considered a typical
analysis pipeline (MALDIQuant) to see how the “purely-
data-based” approaches (SPA, Lasso, �1-SVM) compare
to a model-based approach24. In Table 3, it can be seen
that SPA provides the sparsest solutions while achieving
competitive results with respect to sensitivity and speci-
ficity at the same time. Lasso and �1-SVM select almost
the same features and therefore perform similarly. On the
other hand, MALDIQuant selects the features based on
a prior model-based peak detection followed by a fea-
ture selection based on shrinkage diagonal discriminant
analysis ([40]). But however, it still performs worst on the
UHL data-set.

Medical interpretation of results
Pancreatic cancer is not only a common and increasingly
frequent [41], but also still a fatal disease, with a
survival rate of 3-5% five years after diagnosis [42].
The conventional tumor marker, Carbohydrate Antigen
19-9 (CA19-9), as a blood group antigen not present
in a significant proportion of the patients [43], shows
insufficient diagnostic sensitivity and specificity (AUC
0.71), even in combination with the second-line tumor
marker Carcinoembryonic Antigen (CEA, combined
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AUC 0.75) [44]. The need for better markers for screen-
ing and differential diagnosis is evident, as panceratic
carcinoma would be principally curable if detected and
identified very early in the course of the disease. Along
with the emerging “-omics”-technologies great hope
was rised to find tumor-specific peptides or metabolic
alterations to increase sensitivity and specificity of early
and differential diagnostics, and several combinatory
marker models could be identified by proteomics [10] and
metabolomics [45]. Pancreatic carcinoma is a complex
disease - it affects the metabolism as a whole (e.g. the
so-called Warburg effect) [46], but also alters proteolytic
activity [47]. Therefore, it might be naïve to expect a
single marker capable to indicate presence, progression
and exact type of the malignancy at once [48] 9– it
might even be overly reductionistic to attribute these
capabilities to a single model, even if it consists of several
entities measured by different “- omics” technologies
[43]. As Raftery states “basing inferences on a single
“best” model as if the single selected model were true
ignores model uncertainty, which can result in under-
estimating uncertainty about quantities of interest”
[49], and the larger the “-omics” data-sets grow, the
larger is the ‘probability, that there is not one “single
best” predictive marker model, but instead several with
comparable selectivity [48]. And it is very reasonable
to assume that, even on the same data-set, different
algorithms might favor different models consisting of
different feature sets and bring forth completely different
results, when only the best differentiating models are
regarded. For an in-depth comparison of the validity of
the results of different algorithms, the underlying peak
features should also be taken into account, and similar-
ities in the selected features corroborate the algorithms
superimposed on them. In the case of our study, we
have the great advantage, that the same data-set was
evaluated in three different studies: the principal one by
Fiedler et al. [10], a subsequent BinDA-algorithm-based
manuscript by Gibb and Strimmer published recently
[50], and the present one. Fiedler et al. [10] identified
one discriminating peptide, Platelet Factor 4 (m/z 3884,
identified in italics, double hits in bold) within four
discriminating peaks (m/z 3194, 3884, 4055, and 5959).
The 30 most differential peaks in Gibb et al. [50] were
m/z 4495, 8868, 8989, 1855, 4468, 8937, 2023, 1866, 5864,
5946, 1780, 2093, 5906, 5960, 8131, 1207, 4236, 2953,
9181, 1021, 1466, 4092, 4251, 5005, 8184, 1897, 3264,
2756, 6051, and 1264, with m/z 8937 identified as pan-
creatic progenitor cell differentiation and proliferation
factor-like protein. m/z 3884 could not be identified
as discriminating marker (while it might play a role in
pancreatic carcinoma nonetheless [51]), whereas m/z
1466 can be attributed to a fragment of fibrinopeptide
A (DSGEGDFLAEGGGVR), as previously described in

tumor samples [52]. In the present study, the peaks m/z
1464, 1546, 1944, 5904, 1619, 4209, and 2662 could be
identified as discriminating features. The slight mass
shift of about 2 Da for m/z 1464 / 1466 and 5904 / 5906
is probably arising from different peak preprocessing
procedures, peaks are wide enough to tolerate this
deviation. Further investigations and the application of
further algorithms on the same data-set are highly likely
to yield a similar, partially overlapping set of features,
each with a comparable discriminating power (Fiedler
et al. [53] AUC[3884/(CA19−9∗CEA)] 1.0; Gibb et al. [50] in
a 5-feature model: accuracy of 0.96, sensitivity of 0.96,
specificity of 0.97, positive predictive value of 0.97 and
negative predictive value of 0.95; the present study
accuracy[UHL] 0.96, sensitivity[UHL] 0.97, specificity[UHL]
0.95 and accuracy[UHH] 0.98, sensitivity[UHH] 0.99,
specificity[UHH] 0.97. This also corresponds to a recently
published comparable study investigating a glycoprotein
marker panel (AUC 0.95) [54]. Biomarkers for clinical
diagnostics comprise a wide field of applications (e.g.
population-wide screening, early diagnostics, charac-
terization, treatment guidance, efficacy and toxicity
monitoring, prognosis, susceptibility estimation and
many more) [43], each with special requirements for
sensitivity and specificity, that are only partially con-
densed in the AUC as an overall selectivity measure [48].
Especially for screening purposes, sensitivity is extremely
important [45], and clinically applied tests e.g. for new-
born screening frequently surpass the 0.99 hallmark [53].
Compared with the conventional, “not-for-screening”
marker CA19-9, the SPA-based model shows consid-
erable improvement, however there is still a big gap to
screening suitability, which in the next years might be
bridged by improved sensitivity of new instrumentation,
refined algorithms (as the SPA), and combination with
other “markers” from the “big data” field, enabling a more
holistic view – not only of the disease, but also of the
affected patient [43].

Conclusions
Workflows for analyzing high-dimensional (bio-medical)
data often contain a step where discriminating fea-
tures between two groups need to be identified. This
is important for applications such as classification and
clustering but is also essential for understanding bio-
logical differences, e.g. between two phenotypes. In
this paper we have presented a new algorithm based
on the theory of Compressed Sensing that identifies
the minimal set of such features. This is of par-
ticular importance for modern, very high-dimensional
data-sets such as proteomics mass-spectrometry data
to allow interpretation of the results. Our experiments
and comparisons to state-of-the-art algorithms show
that our method finds smaller features sets resulting in
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similar or better results when used for a classification
task.

Endnotes
1Assays, e.g. immunoassays, are used inmolecular diag-

nostics to detect concentrations of specific molecules
even in low concentrations from a biological sample, such
as blood [55].

2 The data-sets used in this paper contain d = 42.381
dimensions in each MS1 spectrum but our approach is
not limited by that.

3 In feature selection, one is interested in identifying
relevant dimensions of the data (features) which can be
used to distinguish between two (or more) classes within
a data-set.

4Here, sign(·) denotes the sign function, i.e., sign(t) = 1
if t ≥ 0 and sign(t) = −1 if t < 0.

5We call a vector sparse if the number of non-zero
entries is small.

6Here, 〈·, ·〉 again denotes the Euclidean scalar product.
7 For the sake of convenience, we formulate our algo-

rithm as in (3), but with some slight modifications, it
could be equivalently stated in the form of (2).

8Here, ‖z‖0 := #{i | zi 	= 0} simply counts the number
of non-zero elements of z = (z1, . . . , zd) ∈ R

d.
9Here, conv(S) denotes the convex hull of the set S ⊂

R
d.
10m/z is the unit for the mass-to-charge ratio.
11Compared to “Compressed sensing-based data analy-

sis” section, we are now using the standard notations from
learning theory. In particular, the measurement vectors
are denoted by xi (instead of ai) and the feature vector is
ω0 (instead of x).

12Actually, we use the smoothed data vectors x̃i from
Step 2 as input for this computation. But in order to keep
the notation simple, we still write xi. This convention
holds also for all forthcoming steps.

13Here supp(ω̂) = {k | ω̂k 	= 0} denotes the support
of ω̂, i.e., the set of indices corresponding to its non-zero
entries.

14 In practice, one would simply reject all indices that are
not contained in supp(ω̃).

15 Signal-to-noise ratio was calculated as SNR =
power of signal
power of noise .
16Due to the redundancy of the peak-associated feature

variables (cf. Step 5 in “Algorithmic details” subsection),
an estimated feature vector is considered to be equal

to the ground-truth vector with some tolerance, which
particularly depends on the width of the peaks.

17 This difference arises from the implementation of
Lasso.

18 TP - true positives, i.e. correctly identified peaks
FP - false positives, i.e. incorrectly identified peaks
TN - true negatives, i.e. correctly rejected peaks
FN - false negatives, i.e. incorrectly rejected peaks

19 Blood serum of 16 apparently healthy individuals
from a clinical study ([37]) was used.

20 Protein calibration standard mix Part No.: 206355 &
206196) from Bruker Daltronics (Leipzig, Germany)

21The power of noise for each of the 5 analyzed data-
sets is estimated as an average of intensity of noise of the
observations using median absolute deviation.

22 The interested reader might find a good starting point
about this topic in these two reviews [56, 57]

23Here, the standardMATLAB implementation of SVM
was used.

24 By “model-based” we mean that specific model
assumptions on the data are made and exploited, such as
noise-structure for denoising or Gaussian-shaped struc-
tures for peak detection.
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