
Journal of Fourier Analysis and Applications (2025) 31:35
https://doi.org/10.1007/s00041-025-10163-w

Computability of Classification and Deep Learning: From
Theoretical Limits to Practical Feasibility Through
Quantization

Holger Boche1,2 · Vit Fojtik3,4 · Adalbert Fono3 · Gitta Kutyniok3,4,5,6

Received: 6 August 2024 / Revised: 24 February 2025 / Accepted: 18 April 2025
© The Author(s) 2025

Abstract
The unwavering success of deep learning in the past decade led to the increasing preva-
lence of deep learning methods in various application fields. However, the downsides
of deep learning, most prominently its lack of trustworthiness, may not be compatible
with safety-critical or high-responsibility applications requiring stricter performance
guarantees. Recently, several instances of deep learning applications have been shown
to be subject to theoretical limitations of computability, undermining the feasibility
of performance guarantees when employed on real-world computers. We extend the
findings by studying computability in the deep learning framework from two perspec-
tives: From an application viewpoint in the context of classification problems and a
general limitation viewpoint in the context of training neural networks. In particular,

Dedicated to Prof. Dr. Karlheinz Gröchenig on the occasion of his 65th birthday.

Communicated by Hans G. Feichtinger.

B Holger Boche
boche@tum.de

Vit Fojtik
fojtik@math.lmu.de

Adalbert Fono
fono@math.lmu.de

Gitta Kutyniok
kutyniok@math.lmu.de

1 Technical University of Munich, Munich, Germany

2 BMBF Research Hub 6G-life, Munich, Germany

3 Ludwig-Maximilians-Universität München, Munich, Germany

4 Munich Center for Machine Learning (MCML), Munich, Germany

5 University of Tromsø, Tromsø, Norway

6 DRL-German Aerospace Center, Cologne, Germany

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-025-10163-w&domain=pdf
http://orcid.org/0000-0002-8375-8946
http://orcid.org/0009-0008-7938-2596
http://orcid.org/0000-0002-4302-8762
http://orcid.org/0000-0001-9738-2487

 35 Page 2 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

we show restrictions on the algorithmic solvability of classification problems that also
render the algorithmic detection of failure in computations in a general setting infeasi-
ble. Subsequently, we prove algorithmic limitations in training deep neural networks
even in cases where the underlying problem is well-behaved. Finally, we end with a
positive observation, showing that in quantized versions of classification and deep net-
work training, computability restrictions do not arise or can be overcome to a certain
degree.

Keywords Computability · Deep learning · Classification · Approximation theory ·
Quantization · Decision problems

Mathematics Subject Classification 68T07 · 68T05 · 03D80 · 65D15

1 Introduction

With the advent of deep learning [58, 59, 65, 66] a new machine learning approach
materialized that provides state-of-the-art results in various tasks. The performance
of deep neural networks makes them the go-to strategy to tackle a multitude of prob-
lems in relevant applications such as image classification, speech recognition, and
game intelligence, as well as more recent developments such as image and sound
synthesis, chat tools, and protein structure prediction, to name a few [1, 36, 49, 53,
57, 76, 79]. Although a wide range of literature supports the power of deep learning,
such as the well-known Universal Approximation Theorems [33, 41, 50], its univer-
sality and success still lack theoretical underpinning. Moreover, despite its impressive
performance deep learning typically comes at the cost of black-box behavior and non-
interpretability, as well as instability, non-robustness, and susceptibility to adversarial
manipulation [2, 3, 5, 25, 45, 48, 56, 73, 77, 87].

In certain applications, the highlighted drawbacks, informally summarized by a lack
of trustworthiness [20, 39], are tolerable or even avoidable by a human-in-the-loop
approach [84]. However, increasing the autonomy of deep learning systems without
impairing their trustworthiness poses a great challenge, especially in safety-critical
or high-responsibility tasks—a prime example being autonomous driving [61, 68]
and autonomous agents in general [81]. Moreover, regulators have begun to set forth
guidelines, most prominently the European AI Act [42], to mitigate unforeseen and
undesired effects of deep learning by stressing the importance of trustworthiness via
principles such as transparency, accountability, and right to explanation [37, 38].
Therefore, it is crucial for forthcoming deep learning methods to tackle and alle-
viate the lack of trustworthiness. To that end, we first need to understand whether or
to what degree trustworthiness can be realized, e.g., is it feasible to ask for ’hard’
performance guarantees or verifiably correct results? We study this question from
the viewpoint of algorithmic computations with correctness guarantees and analyze
whether trustworthiness can be established from a mathematical perspective.

Journal of Fourier Analysis and Applications (2025) 31:35 Page 3 of 32 35

1.1 Algorithmic Computability

Computability theory aims to mathematically model computation and answer ques-
tions about the algorithmic solvability and complexity of given problems. The most
commonly studied model of computation is the Turing machine [78], which is an ide-
alized version of real-world digital hardware neglecting time and space constraints.
We distinguish between two different modes of computations-problems on continuous
and discrete domains. The former typically represents an idealized scenario whereas
the latter treats a setting closer to the actual realization of digital hardware.

1.1.1 Computability on Continuous Domains

In recent years, there has been an increased interest in the computability of continu-
ous problems, studying the capabilities of inherently discrete digital computers when
employed in the real domain. For instance, complex real-world problems—a typical
application scenario for deep learning techniques due to their increasing capabilities—
may be represented by a model with continuous state and parameter space despite the
eventual implementation on digital hardware. However, some results indicate a non-
conformity between these two realms, and limitations of two types can be identified:
By Type 1 failure of computability we refer to the situation where the problem in
question cannot be algorithmically solved with performance guarantees, i.e., the com-
puted output comes without error bounds specifying the distance to the true solution,
leaving room for potential failure. This has been found in diverse settings including
inverse problems, optimization, information and communication theory, and financial
mathematics [7, 15, 17–19, 24, 60]. On the other hand, in Type 2 failure a computable
solver (with performance guarantees) may exist, but we cannot algorithmically learn
it from data. There have not been many results in this direction, but it has been shown
to occur in the context of inverse problems [29] and simple neural networks [60].

1.1.2 Quantization

While modeling problems abstractly in a framework of real numbers certainly has
benefits, in many applications access to real-valued data and parameters with unlim-
ited precision is unrealistic since physical measurements generally guarantee only
some bounded accuracy. For these reasons, problems can be described by discretized
models. A typical approach in practice is to perform real-valued computation under
quantization, i.e., associating continuous ranges with a discrete set of values [6, 46,
52, 75]. For instance, quantized deep learning has been a topic of interest, comparing
its theoretical and practical capabilities to non-quantized deep learning [64, 85]. Nat-
urally, the question arises of how these quantization techniques affect the properties
of algorithmic computations, including the limitations of computability on continuous
domains. Hereby, the key property of quantization techniques and the resultingmodels
is their amenability to classical computing theory (based on exact binary representa-
tions).

 35 Page 4 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

1.2 Our Contributions

This paper aims to extend the theory of computability in deep learning and highlight
the importance of ground truth descriptions in questions of computability by providing
insights from two perspectives.

• We analyze the field of classification tasks, an instance of a classic applica-
tion field for deep learning, from the computability viewpoint and highlight in
Propositions 3.3 and 3.5 that the computability of a classifier is equivalent to the
semi-decidability of its classes. Since only specific real sets are semi-decidable,
classification on the real domain is typically not algorithmically solvable, i.e., Type
1 failure of computability arises. This emphasizes the importance of studying the
computability of a specific problem independent of the employed solution strat-
egy: If a tackled problem has computability restrictions, one can not expect to
circumvent them with a deep learning approach.

• Furthermore, we study the computable realizability of training neural networks,
askingwhether a function representable by a neural network can be exactly learned
fromdata. Regarded as a parametricmodel, one key issue in deep learning is identi-
fying suitable parameters, i.e., finding an appropriate deep learningmodel, to solve
a given task. This search process—the so-called learning or training—is typically
based on data samples and constitutes the main obstacle in successfully employing
deep learning. Theorem 3.7 shows that no general learning algorithm applicable
to all (real-valued) networks exists implying that Type 2 failure is unavoidable in
this scenario, i.e., providing general performance guarantees is not feasible for the
derived solver.

• We also consider strategies for coping with the introduced failures. We show it
is impossible to predict when an algorithmic approximation of a non-computable
problemwill fail in Proposition 4.1 andCorollary 4.3.On the other hand, Theorems
4.4 and 4.5 indicate that computability limitations in the context of learning can
be avoided by relaxing exactness requirements on the learned network.

• Finally—and perhaps most importantly—we show in Theorems 4.8 and 4.9 and
Proposition 4.11 that when considering quantized versions of the previous settings,
issues of non-computability do not arise. Proposition 4.12 provides a word of
caution, stating that the quantization function itself is non-computable—we cannot
algorithmically determine which quantized values faithfully represent the original
(real-valued) problem.

Non-computability should not be understood as undermining the power of deep
learning, which has been consistently demonstrated. Rather it provides a different
perspective on fundamental problems bringing us closer to trustworthy deep learn-
ing methods in major applications such as autonomous decision-making and critical
infrastructure. In this theme, we also discuss connections to autonomous agents and
their ability to ask for human intervention to avoid failure. In particular, our non-
computability results indicate that theoretical correctness guarantees typically cannot
be provided in digital hardware computations of continuous problems, including deep
learning, and that automated detection of these limitations can not be algorithmi-
cally guaranteed. However, our positive findings demonstrate that in certain specific

Journal of Fourier Analysis and Applications (2025) 31:35 Page 5 of 32 35

settings—primarily, if the problem domain does not reside in a continuous but discrete
domain—correctness guarantees and trustworthiness can be established for deep learn-
ing algorithms in the digital computing framework.Hence, the ground truth description
of problems has a decisive influence on the feasible performance guarantees.

1.3 RelatedWork

‘Hardness’ results in neural network training have a long tradition going back to the
90s [14, 80], where it was already shown that the training process can be NP-complete
for certain architectures. The learning of existing neural networks has also been stud-
ied in [12], where difficulties in the form of an explosion of required sample size were
shown, rather than algorithmic intractability. Similar results concerning the sample
complexity were established in the framework of statistical query algorithms in [26].
The infeasibility of algorithmically learning an existing computable neural network
(Type 2 failure) in a continuous setting has been shown for the specific context of
inverse problems in [29] and classification problems in [8]. Furthermore, [60] showed
that no algorithmcan reachnear-optimal training loss on all possible datasets for simple
neural networks. Further properties of deep learning from the computability perspec-
tive concerning adversarial attacks, implicit regularization, hardness of approximation,
and reasoning were studied in [8, 10, 43, 83].

Obtaining guarantees for successfully accomplishing a computation is not restricted
to deep learning and training. The need to understand if an algorithmicmethod behaves
in an intended manner to establish trustworthiness is a well-established concept. Clas-
sical automated verification tools range from testing, i.e., trying to falsify a system
on specific instances, to model checking, i.e., aiming to verify the model of a system
against its formal specification [28]. Testing is also the commonly employed approach
in deep learning, however, it is by design unable to establish global guarantees and
thereby increase trustworthiness. Therefore, interpretabilitymethods, which shed light
on the inner workings of deep learning by trying to explain the decision-making of
neural networks, have been proposed as a strategy to establish more trustworthy meth-
ods [54, 69, 73]. The most rigorous approach relies on verifying the accuracy and
correctness of deep learning methods without explicitly tracing internal computations
[13, 55, 67, 86]. However, the findings in [9, 20] indicate that certifying the accuracy
and robustness of deep learning in the computability framework is challenging if at
all possible—similar to the classical model checking strategies.

Exit flags provide a middle ground (between testing and verification) by indicating
(potentially) incorrect outputs of a computation given the input instance. However, it
was already observed that for optimization problems correct exit flag routines can not
exist in general [7]. In contrast, [32] analyzed the feasibility of verification methods
in a classification setting (on real numbers) and came to a positive conclusion. The
difference to our negative result in the same setting is explained by the underlying
approach, i.e., in [32] the question is posed whether formal verification systems can
be implemented given a computable classification setting. We contrast this view by
highlighting that this ideal scenario may not always be achievable. Additionally, we

 35 Page 6 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

also want to mention a different perspective on classification problems in [62], where
a measure describing the stability of a classification function is presented and studied.

1.4 Outline

In Sect. 2, we introduce the applied formalisms, including computability theory and
neural networks as the main workhorse of deep learning. We present our main results
concerningType 1 andType 2 failure of computability in Sect. 3.We conclude in Sect. 4
by studying strategies to cope with computability failures, whereby quantization is a
main theme. The proofs of the theorems are provided in Appendix B.

2 Notation and Definitions

We first introduce some basic concepts and notation used in the following.

2.1 Computability of Real Functions

We begin by reviewing definitions from real-valued computability theory necessary
for our analysis. For a more comprehensive overview, see, for instance, [4, 72, 82].
We also omit elementary topics of computability theory such as recursive functions
and Turing machines. Here we refer the reader to [30].

Previous results in applied computability on the real domain introduce many dif-
ferent, although partly equivalent, versions of computation and computability. The
general paradigmdescribing digital computation on real numbers introduced byTuring
himself [78] is based on the transformation of sequences approximating real numbers
with arbitrary precision. It provides the tools to study the capabilities and limitations
of perfect digital computing.

Definition 2.1 We define the following notions of computability:

• A sequence of rational numbers (qk)∞k=1 inQ is computable if there exist recursive
functions a, b, s : N → N such that

qk = (−1)s(k)
a(k)

b(k)
.

• A rational sequence (qk)∞k=1 converges effectively to x ∈ R, if there exists a
recursive function e : N → N such that for all k0 ∈ N and all k ≥ e(k0)

|x − qk | ≤ 1

2k0
.

• A real number x ∈ R is computable if there exists a computable rational sequence
(qk)∞k=1 converging effectively to x . Such a sequence is called a representation (or
a rapidly converging Cauchy name) of x . We denote the set of all computable reals
by Rc.

Journal of Fourier Analysis and Applications (2025) 31:35 Page 7 of 32 35

• A real vector x ∈ Rd is computable if all of its components are computable
numbers, that is, x = (x1, . . . , xd)� for x1, . . . , xd ∈ Rc We denote the set of all
computable real vectors by Rd

c .
• A real sequence (xk)∞k=1 in R is computable if there exists a computable double-
indexed rational sequence (qk,�)∞k,�=1 such that, for some recursive function e :
N × N → N and all k, �0 ∈ N and � ≥ e(k, �0), we have

∣
∣xk − qk,�

∣
∣ ≤ 1

2�0
.

Remark 2.2 All previous definitions can be extended to Rd and Rd
c with d > 1 by

requiring that each (one-dimensional) component or component-wise sequence is
computable, respectively.

Out of the various definitions of a computable real function (see [4, Appendix
2.9] for an overview) we introduce two. Borel–Turing computability can be seen
as the standard intuitive notion of computation, i.e., an algorithm approximating a
given function to any desired accuracy exists. On the other hand, Banach–Mazur
computability is the weakest common definition of computability meaning that a
function is not computable in any usual sense if it is not Banach-Mazur computable.

Definition 2.3 Given D ⊂ Rd , a function f : D → Rm
c is

• Borel-Turing computable if there exists a Turing machine M such that, for all
x ∈ D ∩ Rd

c and all representations (qk)
∞
k=1 of x, the sequence (M(qk))

∞
k=1 is a

representation of f (x);
• Banach-Mazur computable if for all computable sequences (xk)∞n=1 in D∩Rd

c the
sequence (f (xk))∞k=1 is also computable.

Remark 2.4 For a Borel–Turing computable function, there exists a Turing machine
taking a sequence of increasingly precise approximations of the input and producing
increasingly accurate approximations of the output, whereas, a Banach-Mazur com-
putable function only guarantees that it preserves the computability of real sequences.
However, it is well known that all Borel-Turing computable functions are alsoBanach–
Mazur computable, and computable functions in either sense are continuous—that is,
continuous on Rc with the inherited topology [4]. For simplicity, we often refer to
“computable” functions rather than “Borel-Turing computable”, as this is our frame-
work’s standard version of computability. We explicitly specify whenever we apply
the notion of Banach-Mazur computability.

The main theme of this paper revolves around the failure of algorithmic computations
studied from the perspective of computability. In particular, we ask in what circum-
stances failures arise, and under what additional conditions they potentially can be
avoided. Thereby, we associate in the real domain the more intuitive term “algorithm”
with “Borel–Turing computable function” andwe distinguish two cases of algorithmic
failure:

• We say that a problem suffers from Type 1 failure of computability if it has no
computable solver, that is, for any algorithm there exists an instance of the problem
to which the algorithm is not guaranteed to provide a correct solution.

 35 Page 8 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

• A problem is subject to Type 2 failure of computability if a solver cannot be
algorithmically found based on data, that is, for any learning algorithm � there
exists a problem instance s such that for any dataset X the output �(X) of the
algorithm is not guaranteed to be a correct solver of s.

Note that Type 1 as a special case of Type 2 failure is more fundamental since a
(computable) solution cannot be learned from data if it does not exist. However, we
show in Subsection 3.2 that instances of Type 2 free of Type 1 failure exist in the
context of training neural networks.

2.2 Neural Networks

In this paper, we restrict our attention to feedforward neural networks. For addi-
tional background on (deep) neural networks theory—usually referred to as deep
learning—we point to [44]. We characterize neural networks by their structure, coined
architecture, and the associated sequence of their parameters, i.e., theirweightmatrices
and bias vectors.

Definition 2.5 Given L ∈ N, an architecture of depth L is a vector S :=
(N0, N1, . . . , NL−1, NL) ∈ NL+1. A neural network with architecture S is a sequence
of pairs of weight matrices and bias vectors ((A�, b�))

L
�=1 such that A� ∈ RN�×N�−1

and b� ∈ RN� for all � = 1, . . . , L . We denote the set of neural networks with
architecture S by NN (S) and the total number of parameters in the architecture by
N (S) := ∑L

�=1(N�N�−1 + N�).

Remark 2.6 Typically, we consider bL := 0 and denote the input dimension N0 := d.
Also, throughout this paper,we focus on the case NL = 1 for simplicity of presentation,
even though the results can be reformulated for the general case.

The architecture and the parameter then induce the network’s input–output function,
the so-called realization.

Definition 2.7 For� ∈ NN (S), D ⊂ RN0 , and σ : R → R denote by RD
σ (�) : D →

RNL the realization of the neural network � with activation σ and domain D, that is,

RD
σ (�) := TL ◦ σ ◦ · · · ◦ σ ◦ T1|D,

where � = ((A�, b�))
L
�=1 and T�(x) := A�x + b�, � = 1, . . . , L .

Parameters of neural networks are almost always the result of a learning algorithm.
Let us briefly recapitulate the learning process since it pertains to our discussion
on computability. A learning algorithm receives as input a dataset of sample pairs
(xi , yi)

n
i=1, which are usually sampled from some underlying target function f , that

is, f (xi) = yi , and aims to find a function f̂ approximating f . In deep learning, we
typically take f̂ := RD

σ (�) for some neural network � with a fixed architecture S.
The algorithm initializes the network with typically random parameters, followed by

Journal of Fourier Analysis and Applications (2025) 31:35 Page 9 of 32 35

an iterative optimization on a loss function L : NN (S) × (

RN0 × RNL
)n → R. A

popular choice is the mean square error

L(�, x1, y1, . . . , xn, yn) := 1

n

n
∑

i=1

∥
∥
∥RD

σ (�)(xi) − yi
∥
∥
∥

2
,

where ‖·‖ indicates the Euclidean norm throughout the paper. Note that there exists
a homeomorphism between neural networks with architecture S and their parame-
ter space RN (S), that is, NN (S) ≈ RN (S). Thus we view the learning algorithm as
a computable function � : R

n(N0+NL)
c → R

N (S)
c , which receives a set of samples

(xi , yi)
n
i=1 and returns weights and biases of the optimized network. More precisely,

given rational sequences representing the real data the algorithm produces a sequence
representing weights and biases. Therefore, the parameters of the resulting neural
network will be computable numbers. To distinguish between networks with real
and computable parameters, we introduce the notation NNc(S) for the set of neu-
ral networks with architecture S and parameters in Rc. Again, we can establish a
homeomorphism between neural networks NNc(S) and their parameters RN (S)

c with
the inherited topology. An important property of any network in NNc(S) is that its
realization is a computable function provided that the applied activation function is
computable.

Finally, for ease of presentation of our analysis concerning Type 2 failure of neural
networks, we apply the following concise form to describe sampled data sets.

Definition 2.8 Given n ∈ N, D ⊂ Rd and f : D → Rm , we denote by Dn
f ,D the set

of all datasets of size n generated from f on the input domain D, that is,

Dn
f ,D :=

{

(xi , f (xi))ni=1 ∈ (Rd × Rm)n | xi ∈ D, i = 1, . . . , n
}

.

For a neural network � ∈ NN (S) with activation σ we denote for short Dn
�,D :=

Dn
RD

σ (�)|D,D
.

3 Computability Limitations

Our first goal is to study and, in fact, establish Type 1 and Type 2 failure for general
problem descriptions, namely in classification and learning. Subsequently, we will
analyze approaches to cope and ideally lessen the derived failures without compro-
mising the generality of the considered problems. The two settings are chosen because
of their importance in deep learning: Classification is one of the main objectives tack-
led by deep learning, whereas learning is one key component of the method. Having
reliable, flexible, and universal learning algorithms hugely benefits the applicability of
deep learning in various fields. Thus, classification and learning are suitable choices
to highlight the consequences of computability failures.

 35 Page 10 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

3.1 Type 1 Failure in Classification

A classification problem is modeled by a function

f : D → {1, . . . ,C}, D ⊂ Rd , C ∈ N,

that assigns each input x ∈ D a corresponding class c ∈ {1, . . . ,C}. A typical
example is image classification where the input domain D is for instance given by
D = [0, 255]h×w with [0, 255] and h, w ∈ N encoding color and size (height and
width) of an image, respectively. The range [0, 255] may also be quantized to obtain a
discrete input domain {0, . . . , 255}h×w—a setting studied in Subsection 4.2 to assess
the impact of the input domain on computability properties.

As described in Subsection 2.2, the goal of deep learning is to learn a function
f̂ : D ∩ Rd

c → {1, . . . ,C} based on samples (xi , f (xi))ni=1 in D × {1, . . . ,C}
such that f̂ is close to f with respect to a suitable metric. Hence, a crucial question is
whether f̂ can be obtained from an algorithmic computation given a specific closeness
condition. Equivalently, this question can be expressed in terms of (semi-)decidability
on the input domain of f in Rd if f̂ is expected to exactly emulate f , i.e., f̂ = f |Rd

c
.

Definition 3.1 A set A ⊂ D ∩ Rd
c is

• decidable in D, if its indicator function 1A : D ∩ Rd
c → Rc is computable;

• semi-decidable in D, if there exists a computable function f : D′ → Rc, D′ ⊂
D ∩ Rd

c , such that A ⊂ D′ and f = 1A|D′ .

Remark 3.2 The notion of (semi-)decidability can be formulated in terms of algorithms
as follows: A set A ⊂ D ∩ Rd

c

• is Borel–Turing decidable in D if there exists a Turing machine M correctly
determines, after finitely many steps, whether an input x ∈ D ∩ Rd

c belongs
to A or its complement D\A.

• is semi-decidable in D if there exists a Turing machine M correctly identifies all
x ∈ A in finite time but may run indefinitely for D \ A.

Recall that computable functions are necessarily continuous onRd
c . Since indicator

functions are discontinuous on Rd
c (excluding the trivial cases Rd

c and ∅), only sets
of the type Rd

c ∪ B, B ⊂ Rd \ Rd
c , are decidable in Rd . Therefore, decidability

in Rd is a very restrictive notion that typically will not be satisfied by a classifier f .
Regarding semi-decidability, the following equivalence is immediate and also provides
a necessary condition for learning a perfect emulator f̂ = f |Rd

c
since computability

is a prerequisite for learnability.

Proposition 3.3 For a domain D ⊂ Rd and a function f : D → {1, . . . ,C}, the
restriction f |Rd

c
is computable if and only if each set f −1(i), i = 1, . . . ,C, is semi-

decidable in D.

Remark 3.4 Note that semi-decidability in D of all sets f −1(i), i = 1, . . . ,C , implies
decidability in D of each of the sets. Therefore, for f to be computable, D has to have

Journal of Fourier Analysis and Applications (2025) 31:35 Page 11 of 32 35

a specific structure. In particular, if D ∩ Rd
c is a connected set homeomorphic to Rd

c ,
e.g., D = (0, 1)d , then f is not computable unless it is constant on D∩Rd

c . However,
in this case, the classification problem is itself trivial. Thus, a necessary condition for
computability is that the sets f −1(i) are separated to a certain degree.

Example Asimple example for a computable classification problemwith disconnected
input domain is given by f : D → {1, 2} with f −1(1) = (0, 1), f −1(2) = (2, 3),
and D = f −1(1) ∪ f −1(2). Here, a simple check of whether a given input is smaller
or larger than 1.5 is sufficient to determine the associated class of the input.

Theseobservations canbe summarized in the following conclusion,where dist(A, B) =
infa∈A,b∈B ‖a − b‖ denotes the distance between sets A and B.

Proposition 3.5 If for a function f : D → {1, . . . ,C} there exist distinct i, j ∈
{1, . . . ,C} with dist(f −1(i), f −1(j)) = 0, then f |Rd

c
is not computable.

Remark 3.6 The results in Proposition 3.3 and 3.5 imply that Type 1 computabil-
ity failure is unavoidable in sufficiently general classification problems. Indeed, a
requested property in many applications is identifying inputs not associated with the
given classes. Instances that represent a new class, not determined beforehand, or erro-
neous/distorted instances that cannot be unequivocally assigned to the given classes
maybe part of the feasible input set. Formally,we can express this setting by a classifier

f̂ ′ : D′ → {1, . . . ,C + 1}, D ⊂ D′ ⊂ Rd ,

where D′ is connected, such that f̂ ′(x) = f (x) for x ∈ D and f̂ ′(x) = C + 1
otherwise. However, we immediately observe that f ′ is not computable and the desired
property cannot be achieved.

3.2 Type 2 Failure in Deep Learning

Going beyond the previous context of classification, our next step is to study whether
algorithmic solvability can be expected in the absence of Type 1 failure. We explore
this setting in the context of training in deep learning independently of a concrete
application and show that algorithmic solvability still can not be attained in general.
The following theorem states that for any learning algorithm, there exist functions
representable by computable neural networks (i.e., not suffering from Type 1 failure)
that the algorithm cannot learn from data. This implies that there is no universal
algorithm for training neural networks based ondata, evenwhen a correct (computable)
solving network exists, i.e., deep learning suffers from Type 2 failure of computability.
More precisely, for any learning algorithm�, there exists a computable neural network
� such that given any training data set generated from �, the algorithm � cannot
reconstruct any neural network with the same realization as �.

Theorem 3.7 Let σ : R → R be a Lipschitz continuous, but not affine linear activation
function, such that σ |Rc is Banach-Mazur computable. Consider an architecture S =
(d, N1, . . . , NL−1, 1) of depth L ≥ 2 with N1 ≥ 3, and let D ⊂ Rd

c be bounded with
a nonempty interior.

 35 Page 12 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

For any ε > 0, n ∈ N, and any Banach-Mazur computable function � : (Rd
c ×

Rc)
n → R

N (S)
c there exists � ∈ NNc(S) such that for all X ∈ Dn

�,D and all

�′ ∈ NNc(S) satisfying RD
σ (�′) = RD

σ (�), we have

∥
∥�(X) − �′∥∥

2 > ε. (1)

Remark 3.8 The assumption that σ is not affine linear excludes none of the commonly
used activations such as ReLU, tanh, or sigmoid. Only functions of the type σ(t) =
at +b are not permitted. Moreover, the computability assumption concerning σ is not
restrictive since it guarantees a computable realization, a prerequisite for subsequent
algorithmic evaluation in usage.

As a direct consequence, we cannot reconstruct the original input–output function.

Corollary 3.9 Under the assumptions of Theorem 3.7, there exists no Banach-Mazur
computable function� : (Rd

c×Rc)
n → R

N (S)
c for n ∈ N such that for all� ∈ NNc(S)

there exists a dataset X ∈ Dn
�,D satisfying

RD
σ (�(X)) = RD

σ (�).

Note that the lower bound on the distance in (1) in Theorem3.7 applies to the parameter
space, i.e., weight space, of neural networks. It is known that networks with weights
far apart can still represent functions close together [71]. Despite the failure of exact
reconstruction obtained in Corollary 3.9, a neural network with the same architecture,
which approximates the desired realization to an arbitrary degree, might still exist. We
will return to this observation in Subsection 4.1.3, where we consider strategies for
coping with non-computability by relaxing the exactness condition.

4 Strategies for Failure Circumvention

Can we overcome Type 1 and Type 2 limitations described in the previous section?
We analyze different approaches to either reformulate or relax the tackled problems
thus making them less amenable to computability failures. In particular, we explore
two strategies. First, we study the effect of incorporating a reasonable error mode
(depending on a given task) in the computation. Subsequently, we investigate the
impact of moving the problem from the real to a discrete space via quantization.

4.1 Error Control Strategies

The requirement of exact emulation f̂ = f |Rd
c
of a classification function f or exact

reconstruction of neural networks as analyzed in Sect. 3may be too strict. In a practical
setting, errors may be unavoidable or even acceptable to a certain degree. In particular,
approximation of f |Rd

c
via f̂ or reconstructing an approximate network based on an

appropriate metric is a simpler task than exact emulation or reconstruction, respec-
tively. However, in both cases, we certainly would like to have guarantees either in

Journal of Fourier Analysis and Applications (2025) 31:35 Page 13 of 32 35

the form of a description of the inputs that lead to deviations from the ground truth or
via worst/average case error bounds. Whether and to what degree such guarantees are
achievable is the subject of the following analysis.

4.1.1 Computable Unpredictability of Correctness in Type 1 Failure

A key observation in classification was that Type 1 failure, i.e., the non-semi-
decidability of the classes, is closely associated with the decision boundaries of the
classes. Informally speaking, the semi-decidability of classes hinges on the ability to
algorithmically describe the decision boundary so that inputs on the decision boundary
can be properly classified. Therefore, identifying these critical inputs or indicating that
the computation for a given input may be inaccurate would certainly be beneficial. Is
it possible to implement this identification—the so-called exit flag—algorithmically?

To study the posed question we do not restrict ourselves to classification functions
but consider a slightly more general framework. We formalize the problem for general
real-valued functions f : D → R, D ⊂ Rd . Assume we are given a computable
function f̂ : Dc → Rc, Dc = D ∩ Rd

c , typically constructed by an algorithmic
method to approximate f . Our aim is to algorithmically identify inputs x ∈ Dc such
that f̂ satisfies

‖ f (x) − f̂ (x)‖ < ε for given ε > 0.

In other words, we ask if there exists an algorithm, i.e., a computable function, �ε :
Dc → Rc such that

�ε(x) =
{

1, if ‖ f (x) − f̂ (x)‖ < ε,

0, otherwise.
(2)

One can further relax the complexity of the task by demanding that an algorithm
�+

ε only identifies inputs x for which f̂ (x) satisfies the ε-closeness condition in (2),
but does not necessarily indicate when it does not hold. For instance, �+

ε (x) may
either output zero or not stop the computation in finite time on the given input x if
‖ f (x)− f̂ (x)‖ ≥ ε. If f is a computable function, we can construct �ε for any ε > 0.
Hence, more interesting problems arise when f is non-computable and ε appropriately
small. Otherwise, choosing ε large enough, certainly still entails the existence of �ε

if f is, for instance, a bounded function. By associating �ε and �+
ε with classification

functions, we can apply Proposition 3.3 to derive the following result.

Proposition 4.1 Let f : D → R, D ⊂ Rd , and assume that f̂ : Dc → Rc, Dc =
D ∩ Rd

c , is a computable function. Define for ε > 0 the set

D<
ε :=

{

x ∈ Dc
∣
∣ ‖ f (x) − f̂ (x)‖ < ε

}

Then the following holds:

 35 Page 14 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

1. The function �ε : Dc → Rc given by

�ε(x) =
{

1, if ‖ f (x) − f̂ (x)‖ < ε,

0, otherwise,

is computable if and only if D<
ε is decidable in D.

2. A computable function �+
ε : D′

c → R, D′
c ⊂ Dc, such that D<

ε ⊂ D′
c and

�+
ε = �ε|D′

c
exists if and only if D<

ε is semi-decidable in D.

Remark 4.2 Depending on the context, we might be more interested in finding the set
of inputs where f̂ fails rather than succeeds. This would lead us to the analogous
observation that the semi-decidability of the set

D≥
ε =

{

x ∈ Dc
∣
∣ ‖ f (x) − f̂ (x)‖ ≥ ε

}

determines computability of �−
ε : D′

c → R, D′
c ⊂ Dc, given by �−

ε = �ε|D′
c
with

D≥
ε ⊂ D′

c.

For a connected input domain, applying Proposition 3.5 yields the following result,
which is a direct consequence of the already mentioned fact that only trivial subsets
of Rd

c are decidable.

Corollary 4.3 Under the conditions of Proposition 4.1, additionally assume that D is
connected. Then an approximator f̂ such that D<

ε is decidable exists if and only if f
can be computably approximated with precision ε, that is, if there exists a computable
function f̃ such that

‖ f − f̃ ‖∞ < ε.

Example A similar statement does not hold if D<
ε is only assumed to be semi-

decidable. Consider the sign function sgn : R → R, which is non-continuous
on Rc and therefore non-computable, and take ŝgn(x) = 2

π
arctan(x). For a given

ε > 0 we can computably construct intervals (−∞,−x0) and (x0,∞) where
|sgn(x) − ŝgn(x)| < ε, i.e., D<

ε = (−∞,−x0) ∪ (x0,∞) is semi-decidable. In fact,
we can adjust the approximator to achieve the desired precision on a given interval
(x0,∞), x0 > 0. However, due to the discontinuity at 0, no computable function
approximating sgn on the entire real line with precision ε < 1 exists.

These results also directly apply to the classification setting as a special case of the
considered framework. By design, the classification setting even allows for stronger
statements regarding the magnitude of the error ε. In particular, requiring precision of
ε < 1

2 for the approximator f̂ of a classifier f mapping to {1, . . . ,C} is equivalent to
requiring exact emulation f̂ = f |Rd

c
. However, this scenario was already covered in

Subsection 3.1, where Type 1 failure was established. Hence, we can conclude that exit
flag computations may be beneficial in certain situations but they are not appropriate
to tackle Type 1 failure in classification.

Journal of Fourier Analysis and Applications (2025) 31:35 Page 15 of 32 35

Instead of analyzing individual inputs, one could seek global guarantees for the
approximator f̂ such as measuring the size of the failure set, i.e., estimating the
likelihood of error on a given domain. While interesting, this approach has two key
limitations for our purposes. First, there exists no established algorithmic framework
supporting theoretical analysis in this setting (see Appendix A for potential concepts).
Second andmore important, it primarily provides a global quantitativemeasure of fail-
ure, whereas we focus on local guarantees for specific inputs. Thus, this method offers
insights into the problem behavior but does not address individual input limitations.

4.1.2 Broader Reflections

In a broader context, related research questions have been raised in fields such as
artificial general intelligence by Daniel Kahneman [40] or robotics by Pieter Abbeel
[31]: Can autonomous systems recognize when they cannot correctly solve a task or
instance and request human assistance instead ofmaking erroneous decisions? In other
words: ‘Do they know when they don’t know?’ [27, 74].

The infeasibility of general exit flag computations in Proposition 4.1, as well as
previous results on practically relevant physical problems in [16], can be viewed as
evidence on limitations of artificial general intelligence in this sense. In particular, it
provides a negative answer to the above question in certain scenarios. For example, a
self-driving car with the option of human assistance cannot be guaranteed to ask for
intervention in cases where computability limits its performance. Themain conclusion
should not be that autonomous systems are generally failure-prone since it is unclear
to what degree non-computability limits practical performance. Rather, our results
entail that strict technical trustworthiness demands [39] as well as legal requirements
(interpreted in a strict technical sense) [20] can not be met. In other words, algorithmic
verification of trustworthiness may not be able to provide sufficient guarantees so
different, less strict reliability measures, such as statistical testing, must suffice.

It is worth pointing out that our results are limited to Turing complete models of
computation, i.e., models equivalent to Turing machines, such as (idealized) digital
computers. Theoretical models have been proposed that surpass Turing computability
(so-called hypercomputation), able to process infinite-precision real numbers, which
can in some settings overcome classic computability limitations and provide in prin-
ciple trustworthiness guarantees [20, 21]. However, all currently commercially used
computing devices are (at most) Turing complete. For a discussion of the realizability
of hypercomputation, we refer to [34, 63], and references therein.

4.1.3 Problem Relaxation for Type 2 Failure

In contrast to classification, relaxing the exact reconstruction requirement yields learn-
ing benefits. The main advantage is that the solution set of networks connected to
approximate reconstruction is noticeably larger enabling algorithmic approaches to
perform the previously unattainable reconstruction task. Type 2 failure does not arise
in our learning setting on the training data if an approximation error is permitted.

 35 Page 16 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

Theorem 4.4 Let σ : R → R be such that σ |Rc is computable and let S =
(d, N1, . . . , NL−1, 1) be an architecture.

Then, for any ε > 0 and n ∈ N, there exists a computable function � : (Rd
c ×

Rc)
n → R

N (S)
c such that for all � ∈ NNc(S) and X ∈ Dn

�,Rd
c
we have

∣
∣R

R
d
c

σ (�(X)) (x) − y
∣
∣ < ε for (x, y) ∈ X . (3)

Although Theorem 4.4 provides a positive computability result concerning learning it
still has certain limitations:

• The algorithm constructed to prove Theorem 4.4 serves only for theoretical anal-
ysis. It is typically not efficiently translatable into a practically usable one in
a generic problem setting. Thus, a relevant and open question is whether more
applicable learning algorithms can be constructed with similar guarantees.

• The learning algorithm � derived from Theorem 4.4 presupposes a fixed accuracy
parameter ε and dataset size n, i.e., for different choices of these parameters a
separate learning algorithm needs to be constructed.

• The reconstruction guarantee only holds on the training data. However, given
access to the training data X , the posed task could be solved without constructing
a neural network since one could explicitly implement an algorithm that on the
input (x, y) ∈ X returns y. Constructing a neural network with some prescribed
realization on the training data is expected to yield a network that performs ’rea-
sonably well’ on, i.e., generalizes to, unseen data. The learning and evaluation, as
given in (3), should ideally be performed on different data to ensure this hypothesis.

We cannot alleviate the first but resolve the second issue. Indeed, the proof of The-
orem 4.4 implies that one could generalize the algorithm � by requiring it to take
(computable) ε and n as additional inputs. In particular, the key step of the proof relies
on an enumeration argument that can be extended to incorporate ε and n as well.
Moreover, in a slightly different setting, one can connect the desired accuracy with
the input dimension and sample complexity [12].

Hence, the final issue left to consider is the generalization ability. By imposing
further conditions on the admissible networks, we can indeed ensure certain general-
ization capabilities of the networks.

Theorem 4.5 Let σ : R → R be such that σ |Rc is computable and Lipschitz continu-
ous. Fix Amax ∈ N and consider an architecture S = (d, N1, . . . , NL−1, 1).

Then, for any ε > 0 and n ∈ N, there exist computable functions� : (Rd
c ×Rc)

n →
R

N (S)
c and � : RN (S)

c → R+
c such that for all � = ((A�, b�))

L
�=1 ∈ NNc(S) with

weights uniformly bounded by Amax and X ∈ Dn
�,Rd

c
we have

∣
∣
∣
∣
R
R
d
c

σ (�(X)) (x) − y

∣
∣
∣
∣
< ε for (x, y) ∈ X�

�(�(X)), (4)

where X�
r := {(x,�(x)) | x ∈ ⋃

(xi ,yi)∈X Br (xi)}.

Journal of Fourier Analysis and Applications (2025) 31:35 Page 17 of 32 35

Remark 4.6 For specific classes of neural networks, a uniform lower bound δ > 0
on �(�) over the set of considered networks � can be established. Therefore, it is
possible to provide approximate reconstruction guarantees for the entire input domain
D if X�

�(�(X))
covers D. For instance, given an equidistant data grid on D with width

δ, an approximate reconstruction guarantee holds for the entire domain.

The imposed conditions on data and networks are necessary—without them, guaran-
tees like (4) in Theorem 4.5 cannot be ensured. Besides, Theorems 4.4 and 4.5 assume
the existence of networks that realize the ground truth, limiting the remaining task
to algorithmically finding them. A natural extension is to consider training data from
an arbitrary ground truth function g : Rd → R, which may not be realizable by a
given neural network architecture. For arbitrary training samples (xi , g(xi))ni=1, one
must first confirm that a neural network with the given architecture can approximate
g sufficiently well to employ Theorems 4.4 and 4.5. Given sufficient conditions on
the data and the ground truth function class, computability guarantees remain feasible
by considering the architecture’s expressivity, which is a well-studied field [11]. An
alternative approach is to seek an optimal network minimizing a loss function on the
training data. However, in [60], it was shown that this leads to Type 2 failure of com-
putability, even for simple networks. One possible strategy to circumvent this issue is
to relax the optimality requirement, but this problem warrants further investigation.

4.1.4 Broader Reflections

Lastly, we want to highlight the key differences between neural network training and
general classification tasks. Why do the problems entail different degrees of com-
putability failures? The crucial observation is that our considered model of neural
networks does not cover the typical (more general) neural network model applied
in classification. A classifier f̂ as considered in Subsection 3.1 is a discontinuous
function, whereas a neural network, assuming continuous activation, possesses a
continuous realization. In the context of neural network classification, a classifier
f̂ = f̂1 ◦ RD

σ (�) is composed of a neural network �—the so-called feature map—
and a (discontinuous) function f̂1 mapping from the features to the classes. The Type 1
failure of computability appears due to f̂1, with no a priori restriction on computability
of �, i.e., Type 2 failure on this level is avoidable.

4.2 Quantization Strategies

Due to real-world constraints, a simplified and quantized real number model is typ-
ically employed to implement digital computations in practice. In quantization, real
numbers are approximated by a discrete set of rationals. For instance, under fixed-point
quantization, real numbers are replaced by rational numbers with a fixed number k of
decimal places in some base system b, i.e., algorithms strictly operate on the set b−kZ.
Thus, assuming fixed-point quantization we can restrict the previous analysis without
loss of generality to classification problems onZd as well as neural networks with inte-
ger parameters and data. The crucial difference between integer computability and the
previously considered real-valued framework is the feasibility of exact computations

 35 Page 18 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

so that approximative computations are not inherently necessary. The concept of exact
algorithmic computations on integers is described by recursive functions (which the
previously considered framework of Borel-Turing computable functions extends to
the real domain); we refer to [30] for more details on recursive functions and classical
computability on discrete sets.

Interestingly, quantizing the parameter does not lead to a critical degradation of
expressive power in neural networks. In particular, in the limit, the capabilities of
quantized and real networks align [22, 35, 47]. Nevertheless, in the context of the
simplest quantization technique, namely fixed-point quantization, the computability
limitations introduced in Sect. 3 are alleviated to a certain degree. In particular, we
establish that both Type 2 and Type 1 failures of computability are mainly resolved in
this setting.

4.2.1 Computability of Quantized Deep Learning

We show that under fixed-point quantization, the negation of Theorem 3.7 holds. That
is, an algorithm exists that can re-learn the exact realization of neural networks of fixed
architecture on the training data. To that end, we introduce the set of neural networks
with integer parameters.

Definition 4.7 Given an architecture S, we denote by NNZ(S) ⊂ NNc(S) the set of
neural networks with architecture S and parameters in Z.

Now, we can formulate the exact statement about re-learning neural networks.

Theorem 4.8 For any σ : R → R, any architecture S = (d, N1, . . . , NL−1, 1), and
all n ∈ N, there exists a recursive function � : (Zd × Z)n → ZN (S) such that for all
� ∈ NNZ(S) there exists a dataset X ∈ Dn

�,Zd with

RZ
d

σ (�(X)) = RZ
d

σ (�).

Despite its positive result, we can still raise two main limitations of Theorem 4.8.
First, the theory-to-practice gap in learning algorithms remains an (open) issue as in
the previous analysis. Second, Theorem 4.8 only guarantees the existence of a dataset
enabling reconstruction. Can we improve the statement to ensure reconstruction for
any dataset satisfying some (weak) conditions? Before answering the question we
want to point out a well-known fact: One cannot expect an exact reconstruction of a
neural network’s realization on the entire input domain based on an arbitrary but finite
set of data samples in general. On the one hand, networks with different architecture or
parameters may realize the same function, on the other hand, networks, whose outputs
agree on some inputs, may wildly diverge in their realization [71].

Theorem 4.9 For any σ : R → R, such that σ |Z is a recursive function, any archi-
tecture S = (d, N1, . . . , NL−1, 1), and all n ∈ N, there exists a recursive function
� : (Zd × Z)n → ZN (S) such that for all � ∈ NNZ(S) and X ∈ Dn

�,Zd we have

RZ
d

σ (�(X)) (x) = RZ
d

σ (�)(x) for all x ∈ X .

Journal of Fourier Analysis and Applications (2025) 31:35 Page 19 of 32 35

Remark 4.10 From a data-centric perspective, Theorems 4.8 and 4.9 describe edge
cases, i.e., guarantees applicable to any test data in the former (at the cost of flexibility
in the training data) and guarantees for any training data (at the cost of flexibility in
the test data). Similar to Subsection 4.1.3, one can extend Theorem 4.9 by imposing
regularity conditions on the considered networks or relaxing the exactness condition
to provide generalization bounds. Furthermore, if quantization yields a finite input
domain one can trivially control the data set sizes to ensure exact generalization on
the considered domain.

4.2.2 Computability of Quantized Classification

Turning our attention to classification and Type 1 failure, we can distinguish between
two cases. In many applications, classification is performed on a bounded domain
D such as in image classification described in Subsection 3.1. Hence, the quantized
version of the input domain is finite so any integer-valued function on the quantized
domain is computable-one can encode the input–output pairs directly in an algorithm.

Proposition 4.11 If D ⊂ Zd is bounded, then f : D → {1, . . . ,C} is recursive.

4.2.3 Broader Reflections

In contrast to Proposition 4.11, unbounded sets typically do not appear in practical
quantized classification problems since they correspond to working on an infinite
domain. However, in such a scenario we cannot provide formal guarantees on the
computability of classifiers. Similar to the real case, the task reduces to classical
(semi-)decidability of (infinite) sets of integers, which is not algorithmically solvable
in general [30]. Hence, in both real and quantized classification Type 1 failure may
arise due to non-(semi)-decidable sets in the respective frameworks. Nevertheless,
the occurrence of Type 1 failure appears to diverge in the frameworks. Although it is
intricate to derive a formal proof to back this statement, informally it ismotivated by the
observation that non-semi-decidability is a more severe drawback in the real domain.
For instance, we have seen that non-trivial sets on Rd

c are generally not decidable
whereas such a strong claim is not valid for the integer domain.

We have shown that quantization circumvents or at least mitigates Type 1 and Type
2 failure. Does it imply that in a real-world setting, where we typically compute with
digital computers in the quantized model, Type 1 and Type 2 failures do not arise? Not
necessarily, it depends on the ground truth problem. If the ground truth is itself quan-
tized, then it typically can be directly translated into the quantized model of a digital
computer and in principle algorithmically solved. In contrast, a ground truth problem
on a continuous domain must first be converted into an appropriate quantized prob-
lem that approximates the original problem. Therefore, a crucial question is whether
the quantization process of a given problem can be carried out algorithmically with-
out computability failure. In particular, it would be desirable to provide computable
guarantees that the obtained approximation is close to the original. However, for a
non-computable ground truth problem such an algorithmic verification contradicts its

 35 Page 20 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

non-computability, as the ground truth problem could then be algorithmically com-
puted/approximated using the verifier. Thus, quantization itself is a non-computable
task, which is a direct consequence of Proposition 4.1.

Proposition 4.12 Let f : R → R such that f |Rc is not computable and define for all
x ∈ Rc

f̂ (x) := f
(�x − 1

2�
)

.

Then, there exists ε0 > 0 such that for all ε ≤ ε0 the function �ε : Rc → Rc given by

�ε(x) =
{

1, if
∣
∣
∣ f (x) − f̂ (x)

∣
∣
∣ < ε,

0, otherwise

is not computable.

Appendix A (Semi-)decidability of Real Sets

In this section, we provide further background on the (semi-)decidability of subsets
of real numbers. The related definitions can be found in Subsection 2.1, in particular
Definitions 2.1 and 2.3. For more details, we refer to [23, 51, 70, 82, 88].

First, note that feasible notions of computability exist beyond Borel–Turing and
Banach–Mazur computability. A common approach is to relax the computability
requirements on the input domain. The underlying idea is to separate the mapping
from the input description leading to the following definition of computable function,
which we call oracle computability to distinguish it from the previous notions.

Definition A.1 (Oracle model) For x ∈ Rd , a sequence (qk)
∞
k=1 in Q

d such that

∥
∥x − qk

∥
∥ ≤ 1

2k
for all n ∈ N,

is called an oracle representation of x. A function f : D → Rm
c , where D ⊂ Rd ,

is oracle computable if there exists an Oracle Turing machine M such that for all
x ∈ D and all oracle representations (qk)

∞
k=1 of x the sequence (M(qk))

∞
k=1 is a

representation of f (x).

Remark A.2 Note that, unlike Borel–Turing computability, the representing rational
sequence (qk)

∞
k=1 is not required to be computable. By the density of Q, any real

number has an oracle representation and, therefore, we can study computability on the
whole real line. Intuitively, one can think of the sequences (qk)

∞
k=1 being provided to

the Turing machine by an oracle tape; for an introduction on Oracle Turing machines
see citecomputabilitybook. This model is more general, but in typical practical appli-
cations, the presence of an oracle able to approximate any real number to arbitrary
precision cannot be assumed.

Journal of Fourier Analysis and Applications (2025) 31:35 Page 21 of 32 35

The differences in the computability notion (and the respective input domains) in
comparison with Borel–Turing computability also directly transfer to the (semi-
)decidability of sets: Only trivial subsets of Rd are oracle decidable—whereas for
Borel-Turing decidability the same statement holds for Rd

c .

Definition A.3 A set A ⊂ D ∩ Rd is

• oracle decidable in D, if its indicator function 1A : D → Rc is oracle computable;
• oracle semi-decidable in D, if there exists an oracle computable function f :

D′ → Rc, D′ ⊂ D, such that A ⊂ D′ and f = 1A|D′ .

Intuitively, oracle decidability, as well as Borel-Turing decidability, is infeasible in
general (except for the trivial cases) since there does not exist an algorithm that decides
on arbitrary input x ∈ R (via representations) whether x = 0, x > 0 or x < 0—
the crucial input is the edge case zero [72]. Hence, the best one can hope for is a
notion of decidability ‘up to equality’: Instead of relying on the characterization of
(semi-)decidability via characteristic functions, one can consider the (continuous and
computable) distance function dA : Rd → R of A ⊂ Rd defined by

dA(x) := dist(x, A) = inf
a∈A

‖x − a‖ .

The distance function allows for a given x ∈ Rd to compute how close x lies to A
although, in general, we cannot determine whether x ∈ A or x /∈ A. Therefore, a
decidability notion based on the distance function does not lead to the existence of
algorithms deciding membership for a given set even though closed sets are uniquely
determined by their distance function.

Nevertheless, for subsets of natural numbers, one can derive an interesting connec-
tion between classical decidability and the distance function [23, 88].

Proposition A.4 A subset A ⊂ N is decidable (in the classical sense), if and only if
A considered as a subset of the real numbers induces a (oracle) computable distance
function.

A similar statement also holds for semi-decidable sets onN. To that end, we introduce
a specific characterization of oracle semi-decidable sets [82].

Theorem A.5 Let V ⊂ Rd . The following are equivalent:

(i) V is oracle semi-decidable.
(ii) V is recursively enumerable open, i.e., there exists a Turing machine that can

enumerate centers ck ∈ Qd and radii rk ∈ Q>0 of open balls such that

V =
⋃

k∈N
B(ck, rk), (A1)

i.e., there exist computable rational sequences (ck)∞k=1, (rk)
∞
k=1 such that (A1)

holds.

Remark A.6 Any oracle semi-decidable set has a specific structure, in particular, it is
necessarily open.

 35 Page 22 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

The observed equivalence also carries over to Borel-Turing semi-decidability by
adjusting the expression in (A1) to

V ∩ Rc =
⋃

n∈N
B(cn, rn) ∩ Rc. (A2)

To highlight the differences note that one can show under certain assumptions that an
interval (a, b) ⊂ Rwith non-computable endpoints a, b ∈ R is oracle semi-decidable
and thus also Borel–Turing semi-decidable. Moreover, [a, b] can be Borel–Turing
semi-decidable aswell for specific choices of non-computable a, b (since [a, b]∩Rc =
(a, b) ∩ Rc), whereas [a, b] is not oracle semi-decidable as a closed set.

Proposition A.7 ([23, 88]) A set A ⊂ N is semi-decidable (in the classical sense), if
and only if A considered as a subset of the real numbers is recursively enumerable
open.

Finally, we want to summarize and highlight the conclusions based on the introduced
statements.Due to the extended input domain, oracle (semi-)decidability is the stronger
condition than Borel-Turing (semi-)decidability. However, in both frameworks decid-
ability is not a practical notion on the real numbers due to the inability to decide
equality. Although semi-decidability is less restrictive, it is still rather impractical
since only open sets are amenable to semi-decidability, e.g., closed sets or sets that
are neither open nor closed do not fit the framework. Nevertheless, (semi-)decidability
on real domains based on the distance function recovers the classical theory of (semi-
)decidability on natural numbers indicating that the introduced definitions are indeed
the right ones. The difference between the two domains is that non-(semi-)decidability
does not arise due to the inability to test equality on natural numbers and is therefore
much scarcer in this setting. In comparison, non-semi-decidability on the real domain
may not necessarily be related to the inability to test inequality, however, due to this
shortcoming non-semi-decidability is likely to occur if no further assumptions are
posed on the considered sets.

Hence, one might urge for more suitable notions of (semi-)decidability on the real
numbers, which circumvent equality comparisons. For instance, a reliable description
of ’near-decidability’ indicates whether an object is in a set or not up to some limited
error. Simply relying on the distance function does not immediately entail the desired
property. In contrast, recursive approximability related to a measure μ [70] describes
the following setting: Given a parameter n ∈ N, there exists an algorithm that correctly
decides A ⊂ Rd except on some set B ⊂ Rd with μ(B) < 2−n , in which case the
algorithm still halts but with possibly incorrect output. Hence, there is a trade-off
between correctness and guaranteed termination of the computation in finite time.
Thus, the approach measures the possible error via μ. Borel–Turing semi-decidability
on the other hand ensures that an algorithm always provides the correct output once
it finalizes the computation but it may not stop for certain inputs. In other words, it
only indicates whether a point is near another point that is not in the considered set.
However, this information cannot be used to deduce whether the considered point lies
inside or outside the set.

Journal of Fourier Analysis and Applications (2025) 31:35 Page 23 of 32 35

Further pursuing notions related to recursive approximability is certainly valu-
able and might lead to further insights; in this work, we consider the extension of
the classical (semi-)decidability definitions that lead to oracle/Borel–Turing (semi-
)decidability. These definitions describe the existence of effective (semi-)decision
programs, i.e., algorithms that necessarily compute correct outputs (or do not halt
their computations). In this sense, the output of the algorithm can be unequivocally
trusted. Moreover, the theory as well as the results in Subsection 3.1 can be extended
to spaces with less structure thanRd , e.g., to computable metric spaces withRd being
a special case thereof [23, 51].

Appendix B Proofs

B.1 Proof of Theorem 3.7

The proof of Theorem 3.7 is based on two results we present next. The key component
of the first lemma lies behind many non-computability results, such as in [29] for the
special case of inverse problems, but here we formulate a general version.

Lemma B.1 Let
 be a nonempty set, � a nonempty set of functions from
 to Rc,
ε > 0, and � :
 → P(Rm

c), where m ∈ N and P denotes the power set. Assume
there exist sequences (ι1k)

∞
k=1, (ι

2
k)

∞
k=1 in
 satisfying

(i)
∣
∣ f (ι1k) − f (ι2k)

∣
∣ → 0 uniformly in f ∈ �. That is,

∀δ > 0 ∃k0 ∈ N ∀k ≥ k0 ∀ f ∈ � :
∣
∣
∣ f (ι1k) − f (ι2k)

∣
∣
∣ < δ;

(ii) for all k ∈ N, dist(�(ι1k),�(ι2k)) > ε.

Then, for all n ∈ N and all Banach-Mazur computable functions � : Rn
c → Rm

c there
exists ι ∈
 such that for all (f1, . . . , fn) ∈ �n:

dist(�(f1(ι), . . . , fn(ι)),�(ι)) >
ε

3
.

Proof For contradiction assume that for some n ∈ N there exists a Banach–Mazur
computable function � : Rn

c → Rm
c such that for all ι ∈
 there exists (f1, . . . , fn) ∈

�n with

dist(�(f1(ι), . . . , fn(ι)),�(ι)) ≤ ε

3
. (B3)

Since � is Banach–Mazur computable, it is continuous on Rn
c [82], that is,

∀η > 0 ∃δ > 0 ∀x1, x2 ∈ Rn
c : ‖x1 − x2‖ < δ ⇒ ‖�(x1) − �(x2)‖ < η.

Take η = ε
3 . For the corresponding δ there exists by condition (i). some k ∈ N such that

for all f ∈ � we have
∣
∣ f (ι1k) − f (ι2k)

∣
∣ < δ

n . This implies for all (f1, . . . , fn) ∈ �n

 35 Page 24 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

that

∥
∥
∥(f1(ι

1
k), . . . , fn(ι

1
k)) − (f1(ι

2
k), . . . , fn(ι

2
k))

∥
∥
∥ =

√
√
√
√

n
∑

i=1

(

fi (ι1k) − fi (ι2k)
)2

≤
n

∑

i=1

√
(

fi (ι1k) − fi (ι2k)
)2 =

n
∑

i=1

∣
∣
∣ fi (ι

1
k) − fi (ι

2
k)

∣
∣
∣ < δ,

and therefore
∥
∥
∥�(f1(ι

1
k), . . . , fn(ι

1
k)) − �(f1(ι

2
k), . . . , fn(ι

2
k))

∥
∥
∥ <

ε

3
.

Together with (B3) we get

dist
(

�(ι1k),�(ι2k)
)

≤ dist
(

�(f1(ι
1
k), . . . , fn(ι

1
k)),�(ι1k)

)

+
∥
∥
∥�(f1(ι

1
k), . . . , fn(ι

1
k)) − �(f1(ι

2
k), . . . , fn(ι

2
k))

∥
∥
∥+

dist
(

�(f1(ι
2
k), . . . , fn(ι

2
k)),�(ι2k)

)

< 3
ε

3
= ε,

which contradicts condition (ii). ��
The following is a reformulation of Theorem 4.2 from [71], stating that there exist

functions representable by neural networks that are arbitrarily close in the supremum
norm but can only be represented by networks with weights arbitrarily far apart. The
norm ‖·‖scaling on the (parameter) space of neural networks is used in the mentioned
theorem because it provides a bound on the Lipschitz constant of neural network
realizations Lip(RD

σ (·)), i.e., Lip(RD
σ (�)) ≤ C ‖�‖scaling for some C > 0 and a

network �, thus connecting the parameter space and the function space.

Definition B.2 For a neural network � = ((A�, b�))
L
�=1 set

‖�‖scaling := max
1≤�≤L

‖A�‖max = max
1≤�≤L

max
i, j

|(A�)i, j |.

Lemma B.3 ([71, Theorem 4.2]) Let σ : R → R be Lipschitz continuous, but not
affine linear. Let S = (d, N1, . . . , NL−1, 1) be an architecture of depth L ≥ 2 with
N1 ≥ 3. Let D ⊂ Rd be bounded with a nonempty interior. Then there exist sequences
(�k)

∞
k=1, (μk)

∞
k=1 in NN (S) such that

(i) ‖RD
σ (�k) − RD

σ (μk)‖∞ → 0,
(ii) for any (�′

k)
∞
k=1, (μ

′
k)

∞
k=1 in NN (S) with RD

σ (�′
k) = RD

σ (�k) and RD
σ (μ′

k) =
RD

σ (μk) for all k ∈ N, it holds that
∥
∥�′

k − μ′
k

∥
∥
scaling → ∞.

Journal of Fourier Analysis and Applications (2025) 31:35 Page 25 of 32 35

Remark B.4 It can be shown that the divergence in point (ii) is uniform in the following
sense:

∀ε > 0 ∃k0 ∀k ≥ k0

∀�′
k, μ

′
k ∈ NN (S) such that RD

σ (�′
k) = RD

σ (�k), R
D
σ (μ′

k) = RD
σ (μk) :

∥
∥�′

k − μ′
k

∥
∥
scaling > ε.

To see this, assume RD
σ (μk) ≡ 0, and for contradiction let there be a subsequence

(�′
k�

)∞�=1 inNN (S) with RD
σ (�′

k�
) = RD

σ (�k�
) and

∥
∥
∥�′

k�

∥
∥
∥
scaling

≤ ε for some ε > 0.

Then for some C > 0:

Lip(RD
σ (�k�

)) = Lip(RD
σ (�′

k�
)) ≤ C

∥
∥�′

k�

∥
∥
scaling

≤ Cε,

which contradicts Lip
(

RD
σ (�k�

)
) → ∞ in condition (ii).

From the proof in [71] it can also be seen that for a computable σ at least one such
pair of these sequences of neural networks lies in NNc(S).

Proof of Theorem 3.7 Let
 = {

RD
σ (�) | � ∈ NNc(S)

}

. For i ∈ {1, . . . , d} and x ∈
D denote by f ix :
 → Rc the constant operator

f ix(g) = xi

and by f(x) :
 → Rc the operator

f(x)(g) = g(x).

Let � = {

f ix | x ∈ D, i ∈ {1, . . . , d}} ∪ {

f(x) | x ∈ D
}

and define � :
 →
P(R

N (S)
c) by

�(g) =
{

� | RD
σ (�) = g

}

.

By Lemma B.3 there exists a pair of sequences (gk)∞k=1, (hk)
∞
k=1 in
 such that

‖gk − hk‖∞ → 0. Therefore also
∣
∣ f(x)(gk) − f(x)(hk)

∣
∣ → 0 uniformly in x ∈ D.

The same trivially holds for all f ix , therefore condition (i). of Lemma B.1 is satisfied.
By Remark B.4, the sequences diverge uniformly in the scaling norm and therefore

also in the Euclidean norm, meaning dist(�(gk),�(hk)) → ∞ and, in particular,
for any ε > 0 there exists k0 such that dist(�(gk),�(hk)) > 3ε for k ≥ k0. Hence,
condition (ii). of Lemma B.1 holds with 3ε.

Together, by Lemma B.1 for all n ∈ N and all Banach-Mazur computable functions
� : (Rd

c × Rc)
n → R

N (S)
c there exists g ∈
, such that for all

(

f1, . . . , fn(d+1)
) ∈

�n(d+1) we have

dist
(

�(f1(g), . . . , fn(d+1)(g)),�(g)
)

> ε.

 35 Page 26 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

However, by construction of � and �, this entails that there exists � ∈ �−1(g),
i.e., � ∈ NNc(S), such that for all x1, . . . , xn ∈ D and all �′ ∈ NNc(S) with
RD

σ (�′) = RD
σ (�) = g we have

∥
∥�(X) − �′∥∥

2 > ε.

��

B.2 Proof of Theorem 4.4 and 4.5

The key component of the proofs in this section relies on enumerating rational neural
networks, i.e., networks with rational parameters, and subsequently controlling the
error induced thereby.

Proof of Theorem 4.4 First, enumerate the countable set of rational neural networks
{�1,�2, . . . } of the given architecture, in particular, we can associate QN (S) with
{�1,�2, . . . }. For all �̂,�∗ ∈ NNc(S), �̂ is a computable function so that

g
�̂,�∗(x) :=

∣
∣
∣
∣
R
R
d
c

σ (�̂)(x) − R
R
d
c

σ (�∗)(x)

∣
∣
∣
∣

is computable. Assume the training data X = {(x1, y1), . . . , (xn, yn)} was generated
by a neural network �. Next, we construct an algorithm that correctly recognizes
whether g�k ,�(xi) < ε for all i = 1, . . . , n: Compute g�k ,�(xi) with precision (at
least) 1

2ε and subsequently check whether the magnitude of the obtained (rational)
number is smaller than 1

2ε. If so, the algorithm returns �k , if not, it continues by
increasing k ∈ N.

Moreover, by the density of rational networks, there exists a rational network �k0
such that for all i = 1, . . . , n: g�k0 ,�(xi) < 1

2ε. Hence, the algorithm terminates
not later than the k0-th iteration, returning a correct answer. This characterizes a
computable function � satisfying the claim. ��
Extending the proof by incorporating the additional conditions yields Theorem 4.5.

Proof of Theorem 4.5 Fix some architecture S. First, observe that for arbitrary �, �̂ ∈
NNc(S) and X ∈ Dn

�,Rd
c
the following holds:

|�(x) − �̂(x)| ≤ |�(x) − �(x̂)| + |�(x̂) − �̂(x̂)| + |�̂(x̂) − �̂(x)|
≤ ‖x − x̂‖(Lip(RD

σ (�)) + Lip(RD
σ (�̂))) + |�(x̂) − �̂(x̂)|,

where x ∈ D and x̂ = argmin{xi :(xi ,yi)∈X ‖x − xi‖. Therefore, using Definition B.2
we get for arbitrary r > 0 and (x, y) ∈ X�

r

|y − �̂(x)| ≤ rC(σ, S)(‖�‖scaling + ‖�̂‖scaling) + |�(x̂) − �̂(x̂)|,

Journal of Fourier Analysis and Applications (2025) 31:35 Page 27 of 32 35

where C(σ, S) > 0 is a computable constant depending on the architecture and the
activation function. Hence, applying Theorem 4.4 shows that for all ε̃ > 0 and n ∈ N

there exists a computable function �ε̃ : (Rd
c × Rc)

n → R
N (S)
c such that for all

� ∈ NNc(S) and X ∈ Dn
�,Rd

c
we have

∣
∣R

R
d
c

σ (�ε̃(X)) (x) − y
∣
∣ < rC(σ, S)(‖�‖scaling + ‖�ε̃(X)‖scaling) + ε̃ for (x, y) ∈ X�

r .

Restricting to input networks � with ‖�‖scaling ≤ Amax and setting

r∗ = ε − ε̃

C(σ, S)(Amax + ‖�ε̃(X)‖scaling) for some ε > ε̃

gives

∣
∣
∣
∣
R
R
d
c

σ (�ε̃(X)) (x) − y

∣
∣
∣
∣
< ε for (x, y) ∈ X�

r∗ .

Finally, for given ε > 0 and n ∈ N, set � = � 1
2 ε

and define � : RN (S)
c → Rc by

�(�) = ε

2C(σ, S)(Amax + ‖�‖scaling) .

Observing that � satisfies (4) and � is a computable function (since C(σ, S) and
‖ · ‖scaling are computable, and we may assume without loss of generality that ε and
Amax are computable) gives the claim. ��

B.3 Proof of Theorem 4.8 and 4.9

An enumeration argument similar to the ones in the previous proofs implies Theorem
4.8. In particular, the idea is to encode the target network as a single datapoint, which
can be done recursively for integer vectors representing neural networks with integer
parameters.

Proof of Theorem 4.8 Given an architecture S = (d, N1, . . . , NL−1, 1), NNZ(S) can
be associated with ZN (S), which in turn can be recursivelly encoded into Zd by a
recursivelly invertible function g : ZN (S) → Zd (see for instance [30] for details).
Then, taking �(X) = g−1(x1) with X = {(x1, y1) . . . , (xn, yn)}, a single datapoint
of the form

(

g(�), RZ
d

σ (�)(g(�)), 0, . . .
) ∈ (Zd × Z)n can be used to reconstruct

any neural network � ∈ NNZ(S). Here we utilize the fact, that we can choose the
dataset for each network specifically. ��
By taking the training data more explicitly into account Theorem 4.9 follows.

Proof of Theorem 4.9 Given a dataset X = {(xi , yi)}ni=1 ∈ Dn
�,Zd , enumerate the

countable set of all neural networks {�1,�2, . . . } with a given architecture S, in

 35 Page 28 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

particular, we can associate ZN (S) with {�1,�2, . . . }. For increasing k ∈ N, check
whether for all i = 1, . . . , n: RZ

d

σ (�k)(xi) = yi . If so, return �k , if not, continue.
If the data was generated using a neural network � = �k0 , then the algorithm ter-

minates at the latest in the k0-th iteration, returning a correct answer. This characterizes
a (partially) recursive function � satisfying the theorem. ��

Funding Open Access funding enabled and organized by Projekt DEAL. Holger Boche acknowledges the
financial support by the BMBF in the programme of “Souverän. Digital. Vernetzt”, research HUB 6G-
life, project identification number: 16KISK002, and the financial support by the BMBF Quantum Projects
QUIET, Grant 16KISQ093, QD-CamNetz, Grant 16KISQ077, and QuaPhySI, Grant 16KIS1598K. H.
Boche was also partially supported by the project “Next Generation AI Computing (gAIn)”, funded by
the Bavarian Ministry of Science and the Arts and the Saxon Ministry for Science, Culture, and Tourism.
This work of V. Fojtik was supported by the the Munich Center for Machine Learning (MCML). This
work of G. Kutyniok was supported in part by the Konrad Zuse School of Excellence in Reliable AI
(DAAD), the Munich Center for Machine Learning (MCML) as well as the German Research Foundation
under Grants DFG-SPP-2298, KU 1446/31-1 and KU 1446/32-1. Furthermore, G. Kutyniok acknowledges
additional support by the project “Next Generation AI Computing (gAIn)”, funded by the BavarianMinistry
of Science and the Arts and the Saxon Ministry for Science, Culture, and Tourism.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Achiam, J., Adler, S., Agarwal, S., et al.: GPT-4 Technical Report. arXiv:2303.08774 (2023)
2. Adcock, B., Dexter, N.: The gap between theory and practice in function approximation with deep

neural networks. SIAMJ.Math.Data Sci. 3(2), 624–655 (2021). https://doi.org/10.1137/20M131309X
3. Antun, V., Renna, F., Poon, C., et al.: On instabilities of deep learning in image reconstruction and the

potential costs of AI. Proc. Natl. Acad. Sci. 117(48), 30088–30095 (2020). https://doi.org/10.1073/
pnas.1907377117

4. Avigad, J., Brattka, V.: Computability and analysis: the legacy of Alan Turing, In: Lecture Notes in
Logic, p. 1–47. Cambridge University Press, Cambridge, (2014)

5. Bach, S., Binder, A.,Montavon, G., et al.: On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation. PlOSONE (2015). https://doi.org/10.1371/journal.pone.0130140

6. Bar-Shalom, O., Weiss, A.J.: DOA estimation using one-bit quantized measurements. IEEE Trans.
Aerosp. Electron. Syst. 38(3), 868–884 (2002). https://doi.org/10.1109/TAES.2002.1039405

7. Bastounis, A., Hansen,A.C., Vlačić, V.: The extended Smale’s 9th problem—on computational barriers
and paradoxes in estimation, regularisation, computer-assisted proofs and learning. arXiv:2110.15734
(2021a)

8. Bastounis, A., Hansen, A.C., Vlačić, V.: The mathematics of adversarial attacks in AI—why deep
learning is unstable despite the existence of stable neural networks. arxiv:2109.06098 (2021b)

9. Bastounis, A., Gorban, A.N., Hansen, A.C., et al.: The boundaries of verifiable accuracy, robustness,
and generalisation in deep learning. In: Iliadis, L., Papaleonidas, A., Angelov, P., et al. (eds.) Artificial
Neural Networks and Machine Learning-ICANN 2023, pp. 530–541. Springer, Cham (2023)

10. Bastounis, A., Campodonico, P., van der Schaar, M., et al.: On the consistent reasoning paradox of
intelligence and optimal trust in AI: the power of ’I don’t know’. arXiv:2408.02357 (2024)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2303.08774
https://doi.org/10.1137/20M131309X
https://doi.org/10.1073/pnas.1907377117
https://doi.org/10.1073/pnas.1907377117
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1109/TAES.2002.1039405
http://arxiv.org/abs/2110.15734
http://arxiv.org/abs/2109.06098
http://arxiv.org/abs/2408.02357

Journal of Fourier Analysis and Applications (2025) 31:35 Page 29 of 32 35

11. Berner, J., Grohs, P., Kutyniok, G., et al.: The modern mathematics of deep learning. In: Mathe-
matical Aspects of Deep Learning. Cambridge University Press, (2022a). https://doi.org/10.1017/
9781009025096.002

12. Berner, J., Grohs, P., Voigtlaender, F.: Learning ReLU networks to high uniform accuracy is intractable.
arXiv:2205.13531 (2022b)

13. Biondi, A., Nesti, F., Cicero, G., et al.: A safe, secure, and predictable software architecture for deep
learning in safety-critical systems. IEEE Embed. Syst. Lett. 12(3), 78–82 (2020). https://doi.org/10.
1109/LES.2019.2953253

14. Blum, A.L., Rivest, R.L.: Training a 3-node neural network is NP-complete. Neural Netw. 5(1), 117–
127 (1992). https://doi.org/10.1016/S0893-6080(05)80010-3

15. Boche, H., Mönich, U.J.: Turing computability of Fourier transforms of bandlimited and discrete
signals. IEEE Trans. Signal Process. 68, 532–547 (2020). https://doi.org/10.1109/TSP.2020.2964204

16. Boche, H., Pohl, V.: On non-detectability of non-computability and the degree of non-computability of
solutions of circuit andwave equations on digital computers. IEEETrans. Inf. Theory 68(8), 5561–5578
(2022). https://doi.org/10.1109/TIT.2022.3172837

17. Boche, H., Schaefer, R.F., Poor, H.V.: Denial-of-service attacks on communication systems: detectabil-
ity and jammer knowledge. IEEE Trans. Signal Process. 68, 3754–3768 (2020). https://doi.org/10.
1109/TSP.2020.2993165

18. Boche, H., Fono, A., Kutyniok, G.: Limitations of deep learning for inverse problems on digital hard-
ware. IEEE Trans. Inf. Theory 69(12), 7887–7908 (2023). https://doi.org/10.1109/TIT.2023.3326879

19. Boche, H., Schaefer, R.F., Poor, H.V.: Algorithmic computability and approximability of capacity-
achieving input distributions. IEEE Trans. Inf. Theory 69(9), 5449–5462 (2023). https://doi.org/10.
1109/TIT.2023.3278705

20. Boche, H., Fono, A., Kutyniok, G.: Mathematical algorithm design for deep learning under societal
and judicial constraints: the algorithmic transparency requirement. arXiv:2401.10310 (2024)

21. Boche, H., Fono, A., Kutyniok, G.: Inverse problems are solvable on real number signal processing
hardware. Appl. Comput. Harmon. Anal. (2025). https://doi.org/10.1016/j.acha.2024.101719

22. Bolcskei, H., Grohs, P., Kutyniok, G., et al.: Optimal approximation with sparsely connected deep
neural networks. SIAM J. Math. Data Sci. 1(1), 8–45 (2019). https://doi.org/10.1137/18M118709X

23. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theor. Comput. Sci. 305(1), 43–76
(2003). https://doi.org/10.1016/S0304-3975(02)00693-X

24. Brattka, V., Ziegler, M.: Turing computability of (non-)linear optimization. In: Proceedings of the 13th
Canadian Conference on Computational Geometry (CCCG’01) (2001)

25. Chang, C.H., Creager, E., Goldenberg, A., et al.: Explaining image classifiers by counterfactual gen-
eration. arXiv:1807.08024 (2018)

26. Chen, S., Gollakota, A., Klivans, A., et al.: Hardness of noise-free learning for two-hidden-layer neural
networks. Adv. Neural. Inf. Process. Syst. 35, 10709–10724 (2022)

27. Cheng, Q., Sun, T., Liu, X., et al.: Can AI assistants know what they don’t know? In: Proceedings of
the 41st International Conference on Machine Learning. JMLR.org (2024)

28. Clarke, E., Grumberg, O., Peled, D., et al.: Model checking. In: The Cyber-Physical Systems Series.
MIT Press (1999)

29. Colbrook, M.J., Antun, V., Hansen, A.C.: The difficulty of computing stable and accurate neural
networks: on the barriers of deep learning and Smale’s 18th problem. Proc. Natl. Acad. Sci. 119(12),
e2107151119 (2022). https://doi.org/10.1073/pnas.2107151119

30. Cooper, S.B.: Computability Theory. Chapman and Hall/CRC, New York (2017)
31. Covariant: AI Robotics for the RealWorld. https://www.youtube.com/watch?v=AAr99hQ64AI (2021)
32. Crook, T., Morgan, J., Pauly, A., et al.: A computability perspective on (verified) machine learning. In:

Madeira, A., Martins, M.A. (eds.) Recent Trends in Algebraic Development Techniques, pp. 63–80.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43345-0_3

33. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.
2(4), 303–314 (1989). https://doi.org/10.1007/BF02551274

34. Davis, M.: Why there is no such discipline as hypercomputation. Appl. Math. Comput. 178(1), 4–7
(2006)

35. Elbrächter, D., Perekrestenko, D., Grohs, P., et al.: Deep neural network approximation theory. IEEE
Trans. Inf. Theory 67(5), 2581–2623 (2021). https://doi.org/10.1109/TIT.2021.3062161

https://doi.org/10.1017/9781009025096.002
https://doi.org/10.1017/9781009025096.002
http://arxiv.org/abs/2205.13531
https://doi.org/10.1109/LES.2019.2953253
https://doi.org/10.1109/LES.2019.2953253
https://doi.org/10.1016/S0893-6080(05)80010-3
https://doi.org/10.1109/TSP.2020.2964204
https://doi.org/10.1109/TIT.2022.3172837
https://doi.org/10.1109/TSP.2020.2993165
https://doi.org/10.1109/TSP.2020.2993165
https://doi.org/10.1109/TIT.2023.3326879
https://doi.org/10.1109/TIT.2023.3278705
https://doi.org/10.1109/TIT.2023.3278705
http://arxiv.org/abs/2401.10310
https://doi.org/10.1016/j.acha.2024.101719
https://doi.org/10.1137/18M118709X
https://doi.org/10.1016/S0304-3975(02)00693-X
http://arxiv.org/abs/1807.08024
https://doi.org/10.1073/pnas.2107151119
https://www.youtube.com/watch?v=AAr99hQ64AI
https://doi.org/10.1007/978-3-031-43345-0_3
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/TIT.2021.3062161

 35 Page 30 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

36. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE Computer
Society, pp. 12873–12883, (2021). https://doi.org/10.1109/CVPR46437.2021.01268

37. European Commission: European Centre for Algorithmic Transparency. https://algorithmic-
transparency.ec.europa.eu/about_en (2024a)

38. European Commission: Regulatory Framework Proposal on Artificial Intelligence. https://digital-
strategy.ec.europa.eu/policies/regulatory-framework-ai (2024b)

39. Fettweis, G., Boche, H.: On 6G and trustworthiness. Commun. ACM 65(4), 48–49 (2022). https://doi.
org/10.1145/3512996

40. Fridman, L.: Daniel Kahneman: Thinking Fast and Slow, Deep Learning, and AI. https://lexfridman.
com/daniel-kahneman/ (2020)

41. Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks. Neural
Netw. 2(3), 183–192 (1989). https://doi.org/10.1016/0893-6080(89)90003-8

42. Future of Life Institute: EU Artificial Intelligence Act. https://artificialintelligenceact.eu/ (2024)
43. Gazdag, L.E., Hansen, A.C.: Generalised hardness of approximation and the SCI hierarchy—on deter-

mining the boundaries of training algorithms in AI. arxiv:2209.06715 (2023)
44. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
45. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.

arXiv:1412.6572 (2014)
46. Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383 (1998). https://

doi.org/10.1109/18.720541
47. Haase, C.A., Hertrich, C., Loho, G.: Lower bounds on the depth of integral ReLU neural networks via

lattice polytopes. arXiv:2302.12553 (2023)
48. He, Y., Meng, G., Chen, K., et al.: Towards security threats of deep learning systems: a survey. IEEE

Trans. Softw. Eng. 48(5), 1743–1770 (2020). https://doi.org/10.1109/TSE.2020.3034721
49. Hinton, G., Deng, L., Yu, D., et al.: Deep neural networks for acoustic modeling in speech recognition:

the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012). https://doi.
org/10.1109/MSP.2012.2205597

50. Hornik,K., Stinchcombe,M.,White,H.:Multilayer feedforward networks are universal approximators.
Neural Netw. 2(5), 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8

51. Iljazović, Z., Kihara, T.: Computability of subsets of metric spaces. In: Brattka, V., Hertling, P. (eds.)
Handbook of Computability and Complexity in Analysis, pp. 29–69. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-59234-9_2

52. Jacovitti, G., Neri, A.: Estimation of the autocorrelation function of complex Gaussian stationary
processes by amplitude clipped signals. IEEE Trans. Inf. Theory 40(1), 239–245 (1994). https://doi.
org/10.1109/18.272490

53. Jumper, J., Evans, R., Pritzel, A., et al.: Highly accurate protein structure prediction with AlphaFold.
Nature 596(7873), 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2

54. Kästner, L., Crook, B.: Explaining AI through mechanistic interpretability. http://philsci-archive.pitt.
edu/22747/ (2023)

55. Katz, G., Barrett, C., Dill, D.L., et al.: Reluplex: an efficient SMT solver for verifying deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification, pp. 97–117. Springer,
Cham (2017)

56. Kolek, S., Windesheim, R., Andrade-Loarca, H., et al.: Explaining image classifiers with multiscale
directional image representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. IEEE Computer Society, pp. 18600–18609, (2023). https://doi.org/10.1109/
CVPR52729.2023.01784

57. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural
networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

58. Le, Q., Miralles-Pechuán, L., Kulkarni, S., et al.: An overview of deep learning in industry. In: Data
Analytics andAI. pp. 65–98, Auerbach Publications. (2020). https://doi.org/10.1201/9781003019855-
5

59. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/
10.1038/nature14539

60. Lee, Y., Boche, H., Kutyniok, G.: Computability of optimizers. IEEE Trans. Inf. Theory 70(4), 2967–
2983 (2024). https://doi.org/10.1109/TIT.2023.3347071

https://doi.org/10.1109/CVPR46437.2021.01268
https://algorithmic-transparency.ec.europa.eu/about_en
https://algorithmic-transparency.ec.europa.eu/about_en
https://digital-strategy.ec.europa.eu/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/policies/regulatory-framework-ai
https://doi.org/10.1145/3512996
https://doi.org/10.1145/3512996
https://lexfridman.com/daniel-kahneman/
https://lexfridman.com/daniel-kahneman/
https://doi.org/10.1016/0893-6080(89)90003-8
https://artificialintelligenceact.eu/
http://arxiv.org/abs/2209.06715
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/18.720541
https://doi.org/10.1109/18.720541
http://arxiv.org/abs/2302.12553
https://doi.org/10.1109/TSE.2020.3034721
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/978-3-030-59234-9_2
https://doi.org/10.1007/978-3-030-59234-9_2
https://doi.org/10.1109/18.272490
https://doi.org/10.1109/18.272490
https://doi.org/10.1038/s41586-021-03819-2
http://philsci-archive.pitt.edu/22747/
http://philsci-archive.pitt.edu/22747/
https://doi.org/10.1109/CVPR52729.2023.01784
https://doi.org/10.1109/CVPR52729.2023.01784
https://doi.org/10.1145/3065386
https://doi.org/10.1201/9781003019855-5
https://doi.org/10.1201/9781003019855-5
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/TIT.2023.3347071

Journal of Fourier Analysis and Applications (2025) 31:35 Page 31 of 32 35

61. Liu, L., Lu, S., Zhong, R., et al.: Computing systems for autonomous driving: state of the art and chal-
lenges. IEEE Internet Things J. 8(8), 6469–6486 (2021). https://doi.org/10.1109/JIOT.2020.3043716

62. Liu, Z.N.D., Hansen, A.C.: Do stable neural networks exist for classification problems? A new view
on stability in AI. arXiv:2401.07874 (2024)

63. Loff, B., Costa, J.F.: Five views of hypercomputation. Int. J. Unconv. Comput. 5, 193–207 (2009)
64. Maly, J., Saab, R.: A simple approach for quantizing neural networks. Appl. Comput. Harmon. Anal.

66, 138–150 (2023). https://doi.org/10.1016/j.acha.2023.04.004
65. Mathew, A., Amudha, P., Sivakumari, S.: Deep learning techniques: an overview. In: Hassanien, A.E.,

Bhatnagar, R., Darwish, A. (eds.) Advanced Machine Learning Technologies and Applications, pp.
599–608. Springer, Cham (2021)

66. Minar, M.R., Naher, J.: Recent advances in deep learning: an overview. arXiv:1807.08169 (2018)
67. Mirman, M., Hägele, A., Bielik, P., et al.: Robustness certification with generative models. In: Pro-

ceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation. Association for Computing Machinery, New York, NY, USA, pp. 1141–1154,
(2021). https://doi.org/10.1145/3453483.3454100

68. Muhammad, K., Ullah, A., Lloret, J., et al.: Deep learning for safe autonomous driving: current chal-
lenges and future directions. IEEE Trans. Intell. Transp. Syst. 22(7), 4316–4336 (2021). https://doi.
org/10.1109/TITS.2020.3032227

69. Olah, C.: Mechanistic interpretability, variables, and the importance of interpretable bases. https://
www.transformer-circuits.pub/2022/mech-interp-essay (2022)

70. Parker,M.W.: Three concepts of decidability for general subsets of uncountable spaces. Theor. Comput.
Sci. 351(1), 2–13 (2006). https://doi.org/10.1016/j.tcs.2005.09.052

71. Petersen, P., Raslan, M., Voigtlaender, F.: Topological properties of the set of functions generated by
neural networks of fixed size. Found. Comput. Math. 21(2), 375–444 (2021). https://doi.org/10.1007/
s10208-020-09461-0

72. Pour-El, M.B., Richards, J.I.: Computability in analysis and physics. In: Perspectives in Logic, Cam-
bridge University Press, Cambridge, (2017). https://doi.org/10.1017/9781316717325

73. Ras, G., Xie, N., van Gerven, M., et al.: Explainable deep learning: a field guide for the uninitiated. J.
Artif. Int. Res. (2022). https://doi.org/10.1613/jair.1.13200

74. Ren, A.Z., Dixit, A., Bodrova, A., et al.: Robots that ask for help: uncertainty alignment for large
language model planners. Proc. Mach. Learn. Res. 229 (2023)

75. Roth, K., Munir, J., Mezghani, A., et al.: Covariance based signal parameter estimation of coarse
quantized signals. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), IEEE,
pp. 19–23, (2015). https://doi.org/10.1109/ICDSP.2015.7251323

76. Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of go with deep neural networks and
tree search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

77. Tsipras, D., Santurkar, S., Engstrom, L., et al.: Robustness may be at odds with accuracy.
arXiv:1805.12152 (2019)

78. Turing,A.M.:On computable numbers,with an application to theEntscheidungsproblem.Proc.London
Math. Soc. s2–42(1), 230–265 (1936). https://doi.org/10.1112/plms/s2-42.1.230

79. Van Den Oord, A., Dieleman, S., Zen, H., et al.: Wavenet: a generative model for raw audio. In:
Proceedings 9th ISCA Workshop on Speech Synthesis Workshop (SSW 9) (2016)

80. Vu, V.: On the infeasibility of training neural networks with small mean-squared error. IEEE Trans.
Inf. Theory 44(7), 2892–2900 (1998). https://doi.org/10.1109/18.737520

81. Wang, L., Ma, C., Feng, X., et al.: A survey on large language model based autonomous agents. Front.
Comput. Sci. (2024). https://doi.org/10.1007/s11704-024-40231-1

82. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Berlin (2012). https://doi.org/10.
1007/978-3-642-56999-9

83. Wind, J.S., Antun, V., Hansen, A.C.: Implicit regularization in AI meets generalized hardness of
approximation in optimization—sharp results for diagonal linear networks. arxiv:2307.07410 (2023)

84. Wu, X., Xiao, L., Sun, Y., et al.: A survey of human-in-the-loop for machine learning. Future Gener.
Comput. Syst. 135, 364–381 (2022). https://doi.org/10.1016/j.future.2022.05.014

85. Yang, J., Shen, X., Xing, J., et al.: Quantization networks. In: Proceedings of the IEEE/CVFConference
on Computer Vision and Pattern Recognition, pp. 7308–7316 (2019)

86. Zhang, H., Chen, H., Xiao, C., et al.: Towards stable and efficient training of verifiably robust neural
networks. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26–30, 2020 (2020)

https://doi.org/10.1109/JIOT.2020.3043716
http://arxiv.org/abs/2401.07874
https://doi.org/10.1016/j.acha.2023.04.004
http://arxiv.org/abs/1807.08169
https://doi.org/10.1145/3453483.3454100
https://doi.org/10.1109/TITS.2020.3032227
https://doi.org/10.1109/TITS.2020.3032227
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://doi.org/10.1016/j.tcs.2005.09.052
https://doi.org/10.1007/s10208-020-09461-0
https://doi.org/10.1007/s10208-020-09461-0
https://doi.org/10.1017/9781316717325
https://doi.org/10.1613/jair.1.13200
https://doi.org/10.1109/ICDSP.2015.7251323
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1805.12152
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1109/18.737520
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9
http://arxiv.org/abs/2307.07410
https://doi.org/10.1016/j.future.2022.05.014

 35 Page 32 of 32 Journal of Fourier Analysis and Applications (2025) 31:35

87. Zhang, Y., Li, Y., Cui, L., et al.: Siren’s song in the AI ocean: a survey on hallucination in large language
models. arXiv:2309.01219 (2023)

88. Zhou, Q.: Computable real-valued functions on recursive open and closed subsets of Euclidean space.
Math. Log. Q. 42(1), 379–409 (1996). https://doi.org/10.1002/malq.19960420132

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/2309.01219
https://doi.org/10.1002/malq.19960420132

	Computability of Classification and Deep Learning: From Theoretical Limits to Practical Feasibility Through Quantization
	Abstract
	1 Introduction
	1.1 Algorithmic Computability
	1.1.1 Computability on Continuous Domains
	1.1.2 Quantization

	1.2 Our Contributions
	1.3 Related Work
	1.4 Outline

	2 Notation and Definitions
	2.1 Computability of Real Functions
	2.2 Neural Networks
	3 Computability Limitations
	3.1 Type 1 Failure in Classification
	3.2 Type 2 Failure in Deep Learning

	4 Strategies for Failure Circumvention
	4.1 Error Control Strategies
	4.1.1 Computable Unpredictability of Correctness in Type 1 Failure
	4.1.2 Broader Reflections
	4.1.3 Problem Relaxation for Type 2 Failure
	4.1.4 Broader Reflections

	4.2 Quantization Strategies
	4.2.1 Computability of Quantized Deep Learning
	4.2.2 Computability of Quantized Classification
	4.2.3 Broader Reflections

	Appendix A (Semi-)decidability of Real Sets
	Appendix B Proofs
	B.1 Proof of Theorem 3.7
	B.2 Proof of Theorem 4.4 and 4.5
	B.3 Proof of Theorem 4.8 and 4.9
	References

