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A B S T R A C T

Technological advances promise to greatly assist the study of animal behaviour, but the validation of these
technologies is often neglected due to its tedious and labour-intensive nature. This paper addresses the challenges
of manual annotation in validating technological tools for animal behaviour research. We detail the imple-
mentation and effectiveness of a computer vision method that automatically annotates animals within various
regions of interest (ROIs). This method uses ArUco markers, open-source visual markers with a grid pattern,
fitted onto vests worn by the animals. To validate this method, we used 245 10-minute videos capturing animals’
visits to key resources, using a mobile barn housing twenty-one chickens. Our method generates annotated
videos, revealing unique IDs of individuals and timestamps marking their presence in ROIs. Compared with
traditional human observation, our method performed excellently: Spearman’s correlation (ρ = 0.96, p < 0.01),
92.83 % sensitivity, 99.93 % specificity, 99.08 % accuracy, 98.77 % precision, and a 95.28 % F1-score. All
recordings were annotated automatically in 40.96 h, saving 82.72 % of the time compared to the 222.84 h
required for manual annotation. The proposed ArUco marker-based tracking method is easy to set up, based on
open-source technology, and accessible to researchers without advanced programming skills. This method has
the potential to replace or complement manual annotation, simplifying the validation of new technologies for
automated individual tracking.

1. Introduction

How much can we rely on the emerging technologies that offer
innovative approaches to monitoring animal behaviour? Given the
proliferation of technological tools recently introduced to study animal
behaviour, it becomes crucial to question their reliability and validity.
The need for validation of such tools prior to an observational or
experimental study, as Siegford et al. (2023) emphasised, should not be
underestimated.

The study of animal behaviour, defined as the systematic observation
of the coordinated responses of animals to various stimuli, whether in-
ternal or external (Levitis et al., 2009), is essential. Not only does it
enable us to better understand animals’ sensitivity and reactivity to their

physical and social environment, but it also aids the identification of
essential factors that influence their preferences, welfare and produc-
tivity. In the study conducted by AHAW (2015) on perch design, a
comprehensive analysis of individuals’ behaviour revealed that various
factors, including the material, shape, length, and width of the perch,
exert a significant influence on hens’ preferences and choices, empha-
sising the crucial role animal behaviour studies play in understanding
their needs and optimising environmental conditions. This is an example
of applied animal behaviour research informing policy and supporting
the livestock industry. In fundamental research, careful observation of
animal behaviour offers valuable insights into aspects such as social
interactions (Collias and Collias, 1996; Gómez et al., 2022).

As more and more technologies are used in such essential studies, a
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problem emerges: some tools may provide incorrect information
because their validity has not been adequately verified. Many re-
searchers neglect this crucial step before adopting new tracking tools.
For example, almost half of the studies using RFID to track poultry have
not tested the tool’s validity (Alindekon et al., 2023). This highlights
significant concerns about the reliability of the data collected using
these tracking technologies. It is difficult to ensure an accurate inter-
pretation of animal behaviours without adequate validation — an
assessment of whether a monitoring tool actually measures the behav-
iours it is supposed to measure in a reproducible and reliable manner.

The lack of thorough validation of animal behaviour monitoring
tools can be attributed to the inherent labour-intensive nature of manual
annotation by humans, either in real-time or on-screen, to evaluate the
effectiveness of these tools. Manual annotation can be exhausting,
requiring considerable labour, resources and time. Sales et al. (2015)
manually analysed 256 h of video to validate an RFID technology,
describing the experience as “time-intensive”.

Although manual annotation undeniably remains the benchmark for
validation, its lack of practicality, sometimes rudimentary nature, and
challenges have led us to propose an alternative method. This method is
intended to substitute or complement manual annotation when con-
straints make it difficult or impossible. Our overall aim in this paper is to
present an automated tracking technology based on visual markers that
is open-source, reliable, and adaptable to many animal species with
appropriate adjustments, requires no prior programming skills, and is
intended to serve as a tool for validating other tracking technologies.

Among the tracking methods based on pattern recognition, ArUco
markers are a popular option. They are widely used in various fields,
such as video editing, augmented reality in cinematography, camera
calibration (Čepon et al., 2023), robot navigation and localisation,
autonomous vehicles (Blachut et al., 2022) and drones (Siki and Takács,
2021). ArUco markers are a simplified version of QR codes, charac-
terised by their streamlined appearance (Fig. 1).

These markers have been specially designed to be easily detected and
tracked, among other visual elements (Garrido-Jurado et al., 2014,
2016). As soon as a marker is identified during image analysis, the

algorithm provides the identifier, which can be associated with the
identification timestamp or location (e.g., Eagan et al., 2022), enabling
precise tracking and identification of the marked object (Wubben et al.,
2019).

ArUco markers could encourage the validation of other animal-
tracking technologies for a number of reasons. Firstly, their simplicity
and accessibility are major advantages. Adopting ArUco markers does
not require advanced programming skills; they are based on existing
computer vision techniques (Garrido-Jurado et al., 2014, 2016). In
addition, these markers are characterised by their accuracy, robustness
and versatility. They can detect fine movements ranging from 0.1 to
0.01 mm (Siki and Takács, 2021). They remain effective even when the
marker is tilted by up to 70 degrees (Ferrão et al., 2018; Koeda et al.,
2018), or for fast-moving objects of up to 70 km/h (Blachut et al., 2022).
Their size is not a constraint as long as they remain visible in the videos.
They have been used successfully to track insects as varied as ants
(Sclocco et al., 2021) and cockroaches (Othayoth et al., 2022).

Our paper has two specific objectives:

(1) To detail the implementation of a 3D ArUco marker system for
reliable automated annotation of animal presence within a region
of interest; this can then be used to validate other animal tracking
technologies that are typically used for tracking animal presence,
as long as the 3D-marker does not interfere with their function-
ality. We assigned a unique ID to each animal by exploiting a pre-
existing pattern identification system. Using chickens housed in a
mobile barn as a model, we demonstrate the effectiveness of this
method, particularly for analysing the use of key resources
required to meet physiological and behavioural needs and to
provide opportunities for improving welfare in poultry.

(2) To validate the proposed 3D ArUco marker by comparing it with
human annotation, widely recognised as a standard reference.
Quantitative assessments were conducted to evaluate the per-
formance of our proposed technique compared to human refer-
ence. These assessments included calculating key metrics such as
sensitivity, specificity, accuracy, and precision. This second
objective aims to establish a trustworthy reference for future
studies and ensure the validity of our method. It is also meant to
serve as a model or case study for other research, including
validation efforts, reinforcing that the primary intention of this
paper is to provide a reliable validation tool rather than a
comprehensive behavioural study.

2. Materials and methods

2.1. Ethical considerations

The University of Rostock’s internal animal welfare committee
reviewed and approved the research protocol. The study commenced
upon receiving the necessary approvals (No. AZ 7221.3-18196_23) from
the ethics committee and the veterinary office in Mecklen-
burg–Pomerania, Germany.

2.2. Experimental setup

2.2.1. Animals, housing and management
Twenty-one chickens of mixed lines and sexes were included in this

study. Four of them were of the Lohmann breed (1 white Lohmann
Selected Leghorn and 3 of Lohmann Brown) and were 45 weeks old; the
remaining consisted of 16 females and one male of the Vorwerk breed, a
traditional dual-purpose breed of chicken, all of which were 68 weeks
old. This diversity is essential to reflect lineage and sex variability in
resource visits.

The study was carried out at the “Friedrich Harms” Animal Experi-
ment Station of Rostock University in Dummerstorf, Germany, using a
customised version of the mobile poultry barn ROWA 200 v4.0 (M&Z

Fig. 1. This shows what an ArUco marker looks like. This is a marker from a set
to which ID = 1 has been pre-assigned. These patterns are made freely available
from one of the many online ArUco marker generators to create markers with
fixed IDs.
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Manufaktur GmbH, Germany). The mobile barn has two areas: a main
compartment and a winter garden.

The main compartment (6.04 m × 2.80 m × 2.00 m) was equipped
with the wooden Europa Nest®, with six nests in two rows. These nests
measured 28 cm× 38 cm× 25 cm× 50 cm (length×width× height1×

height2). The animals had access to two types of perches. One was a
cylindrical metal rod, 2.25 m long, placed above the drinking line. The
other was a two-tiered L-shaped perch made of pine wood and inclined
at 38 degrees. Each level of this perch was 1.95 m long. The upper level
was positioned 60 cm above the floor, while the lower level was 18 cm
from it. The feeder was linear, made of plastic, measuring 20 cm × 200
cm, and accessible from both sides for the chickens. The drinker line
comprised three bowls and 12 nipples. LED lighting has also been
installed, programmed to provide 16 h of light daily, starting at 5:30 am.

The winter garden (6.04 m × 2.48 m × 2.00 m) was a semi-open
compartment shielded by a partially transparent tarpaulin with
netting. It was an indoor walking area with an outdoor climate that
allowed the animals to perform natural behaviours like scratching while
benefiting from natural light and fresh air and still being protected. The
floor was covered with wood shavings. The winter garden was accessible
through a 120 cm× 35 cm pophole with automatic opening and closing.
The winter garden also featured an alfalfa bale, a tray with mineral
blocks, scattered grit and oyster shells as supplements, and a box filled
with a mix of zeolite rock powder and wood shavings for the chickens’
dust baths. We occasionally scattered grains in the winter garden
throughout the day to promote foraging behaviour.

The hens had access to 3 kg of feed (PANTO® LMK Legemehlkorn,
Germany), distributed each morning manually. Water was available ad
libitum. The animals had been vaccinated against Newcastle disease, and
their well-being was visually checked every day. Poultry lice traps were
set, and hen droppings were sampled regularly for parasite control.
Production, health and environmental data were regularly monitored
and amended as required. The winter garden was accessible to the
chickens from 9:00 am to 8:15 pm. The animals were gradually accli-
matised for 15 days to the main compartment, the winter garden and
body-worn equipment.

Throughout this paper, we refer to seven resources collectively as
“key resources”. These are: drinker, enrichments within the winter
garden, feeder, indoor litter area, pophole allowing access to the winter
garden, and both metal and wooden perches. These are considered as
such because they are important for the chickens to meet their physio-
logical and behavioural needs; they also offer them behavioural op-
portunities, enhancing their welfare. During data collection, the animals
preferred laying eggs in the indoor litter area rather than in the provided
nests. Consequently, we considered that area as a “key resource” over
the actual nest. The listed key resources served as an effective model for
our study because they are generally the focus of research where tech-
nologies are used to investigate poultry behaviour.

2.2.2. Animal-worn Equipment: 3D-ArUco marker and vest
Selection of ArUco Markers for Detection in Poultry Barn. We

selected the ArUco DICT_4X4_1000 dictionary because it stood out
compared to others (DICT_5X5, DICT_6X6, DICT_7X7) that we had tested
beforehand with chickens. This dictionary offers 1000 distinct patterns,
minimizing the risk of overlap in marker identification. The markers
were easily detectable across a range of image resolutions, even when
tracking fast-moving chickens running from the barn to the winter
garden. Each ArUco marker consists of a grid of 4x4 squares, resulting in
16 small squares, or bits, which form a unique binary pattern. Addi-
tionally, it is open-source through OpenCV and accessible at https://ch
ev.me/arucogen/. For our study, we used the first 22 markers from this
dictionary, excluding marker number 17 (see Appendix A) due to its
tendency to cause frequent false detections during preliminary tests in
our poultry barn. Marker 17 was too simplistic, and at times, the poultry
barn features shared visual similarities with that marker’s pattern,
creating visual noise for the detection algorithm and leading to false

detections. This was particularly the case with the plastic slats with
hollow white edges, which were sometimes mistaken for the pattern of
marker 17.

Dimensions of ArUco Markers. We maintained a white buffer zone
around the markers. This zone, measuring 0.2 cm on all sides, framed
the unique pattern of the marker, making it easier to distinguish for
automated detection. A sufficient buffer space ensured that the ArUco
pattern stood out clearly and was readily detectable, minimising envi-
ronmental interference or potential stains that could mislead the algo-
rithm. Our markers, measuring 3.4 cm square (1:1 square aspect ratio),
were printed on white paper before being laminated to ensure dura-
bility. With the buffer zone included, each marker covered a total of 3.8
cm per side. As for the size chosen, the challenge was to find a balance:
large enough to be detected by the video processing algorithm but small
enough not to disrupt the animal’s natural behaviours. The size was also
determined by the available space on the chicken’s dorsal region—the
area between the neck and the tail—where the vest could hold the
marker securely without impairing movement. Several tests were car-
ried out beforehand with various sizes to arrive at this effective
compromise, ensuring detection while considering the anatomical con-
straints of the bird.

3D-optimised Design of the ArUco Markers. Although the flat 2D
markers could be practical, they may have limitations in terms of the
angle of detection. Therefore, we innovated with a 3D design, a cube-
like marker (Fig. 2). This 3D-marker, with each face measuring 3.8 cm
per side and the entire marker weighing 4.5 g, enhances detection by
featuring the same ArUco pattern on each face. The cubic design would
ensure that at least one marker was visible, regardless of the animal’s
orientation, covering almost every position and direction. It was made
from durable laminated paper glued to a lightweight foam support. The
effectiveness of this design is backed up by previous research from Eagan
et al. (2022) and Vagvolgyi et al. (2022), suggesting that placing several
copies of the same ArUco pattern on the target can maximise visibility
and detection, thus ensuring continuous identification of the animal,
regardless of its orientation.

Chicken Vests: Supports for both Automated Detection and Manual
Identification. Specially designed chicken vests, High-Vis Chicken
Jacket® (Omlet, UK), were used for two main functions. The first was
the carriage of the ArUco 3D marker, strategically positioned in the
centre of the vest, between the wings and at a roughly equal distance
from the chicken’s neck and tail. After preliminary testing, this location
ensured optimum marker visibility during recording. The second use of
these vests was as the primary means of identification, with a unique
number written manually on each vest. This identifier, written with
indelible ink, could be easily seen by the annotators when viewing the
videos, allowing independent validation of the results of the automatic
tracking system (Fig. 2). For the 21 hens, vests in three different colours
— green, blue, and purple — were used. This colour diversity facilitated
annotation, with each animal easily distinguishable, particularly when
the vest’s colour was considered in addition to the number written on
the marker (Appendix A).

During data collection, the vests were worn discontinuously,
removed after a maximum of 24 h, and then put back on the following
day. Each hen was quickly fitted with a vest held in place by Velcro
fasteners, ensuring a comfortable fit. The vests were mainly worn on
days when the temperature was below 20 degrees Celsius. When the
animals were fitted with the vests, IDs were randomly assigned to in-
dividuals, ensuring that the same subjects did not wear the same ID
throughout the study; this approach ensured that the vest reading per-
formance was not affected by the animal-specific routine.

2.2.3. Camera configuration and installation
Seven Axis network cameras, 4 of the M1135-E model and 3 of the

M1135-E MK II model (Axis Communications, Sweden), were used for
this study. With high-definition resolution, these cameras were equip-
ped with a 2-megapixel lens (1920 × 1080) with a horizontal field of
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view of 92 degrees. The lens’s focal length varied from 3.0 mm to 10.5
mm, ensuring wide coverage and vision of the area of interest. Both
camera models had a light sensitivity of 0.1 lx. AXIS Camera Station
software was used to set up the cameras.

All settings, from camera position to focal length, were adjusted
before recording to ensure optimum image quality. To optimise the view
and minimise blind spots, we fixed the cameras to the barn ceiling using
suitable clamps, ensuring easy rotation thanks to an adjustable mount
with a pivot range of up to 180 degrees. Due to the physical constraints
of the environment, overhead positioning was not always possible; most
of the cameras were tilted slightly to adjust the viewing angle. Each

camera was positioned at a specific distance from its target area, at a
determined height above the slatted floor or litter, and oriented at a
particular angle relative to the vertical axis. Details of the camera model
and position measurements are presented in Table 1.

The video was recorded using the H.264 codec in the MP4 format.
We opted for high frame rates to capture the chickens’ rapid movements
precisely. To put this into perspective, 30 frames per second videomeans
we capture 30 successive pictures of a chicken moving through space, all
within one second.

The camera system utilised Power over Ethernet (PoE) technology,
which means they are powered directly through the ethernet cable. All

Fig. 2. A chicken from our validation study outfitted with a visibility vest with “16” as its handwritten ID number. On its vest, there is also a cube fitted with the
pattern associated with ID 16 from the ArUco_4x4_1000 library, with that pattern displayed on all five visible sides of the cube.

Table 1
Characteristics and positional measurements of cameras at key resources.

No. Location of camera Model Distance Angle Frame rate

1 Drinker M1135 1.18 m 35.86◦ 25f/s
2 Enrichment facilities M1135 2.09 m 32.41◦ 30f/s
3 Feeder M1135-E MK II 1.61 m 34.06◦ 30f/s
4 Indoor litter area M1135-E MK II 1.95–2.50 m 19.34◦ 30f/s
5 Metal perch M1135 1 m 49.46◦ 25f/s
6 Pophole M1135-E MK II 2.277 m 31.57◦ 30f/s
7 Wooden perch M1135 0.77–1.35 m Overhead 30f/s
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the cameras were interconnected via an ethernet network and linked to a
central workstation computer.

2.2.4. Workstation computer configuration
For our study, we used a Lenovo ThinkStation P360 Tower computer.

This is equipped with a 12th generation Intel® Core™ i7-12700 pro-
cessor running at 2.10 GHz, a 16.0 GB DDR5 UDIMM memory (15.7 GB
usable), an NVIDIA T600 video card with 4 GB video memory, a 512 GB
M.2 SSD, and two hard disks with a capacity of 4 TB each.

2.3. Data acquisition and video sequence preparation

2.3.1. Video recording and sequence export
The recordings spanned five days and were conducted only when the

animals were fitted with the body-worn equipment (Fig. 2). The video
recordings were set to capture automatically, covering only the illumi-
nated periods in the barn, typically from 5:30 am to 9:30 pm. All raw
videos collected pertained to the seven resources of interest, capturing
both the presence and absence of animals near these resources.

After collecting the raw videos, we split them post-recording into 10-
minute sequences using Axis software. This splitting was done to
simplify manual annotations and reduce the need to process long video
stretches for automated analyses. The total number of manually
segmented videos per resource was as follows: metal perch (45), pophole
(45), drinker (72), wooden perch (72), feeder (80), enrichment (80), and
indoor litter area (80). For each of the seven key resources, 35 sequences
were randomly selected from the total segmented sequences, ensuring
representativeness across the five-day recording period involving all 21
chickens. The selection process ensured that sequences were distributed
across different times of the day—early morning, midday, and eve-
ning—based on their timestamps to account for varying lighting
conditions.

2.3.2. Pre-processing of video sequences
Our video sequence pre-processing primarily involved delineating a

Region of Interest (ROI), marked on each video to identify where most
interactions between animals and a specific resource occurred. This ROI,

essential for accurate manual and automated annotations, encompassed
the resource’s main functional area. We used Python’s OpenCV library
(v4.8.0) to define these ROIs, drawing boundary lines around the re-
source’s functional zones. Defining the ROIs involved three steps (Fig. 3;
Appendix B).

Starting with a static camera view focused on the resource, we used
this consistent visual reference to extract images from our recordings,
showing actual animal interactions with the resource. One randomly
selected image served as a baseline for outlining the resource’s func-
tional area. This process involved manually marking specific points on
each image, such as the tip of a chicken’s tail or the position of a 3D-
marker on chickens genuinely using the resource. These markings,
capturing the primary area where animals interacted with each
resource, considered behaviour-specific traits (Table 2). We then con-
verted these points into coordinates, overlaying them onto our baseline
image to sketch the ROI.

In the final step, the defined ROI from the baseline image was
highlighted while deliberately blurring the peripheral regions. The
delineated ROI was then superimposed onto each frame of the videos,
producing videos where only the animals within the ROI were distinctly
visible.

2.4. Manual annotation using BORIS: Reference or gold standard for
validation

We employed human observation as a benchmark to evaluate the
effectiveness of the proposed automated annotation technique in accu-
rately identifying animal presence within regions of interest (ROIs). Two
observers manually annotated all the pre-processed video sequences
using BORIS (v.8.21.5).

Following a pre-established annotation protocol, the annotations
were performed on pre-processed video sequences in which only the ROI
was visible. The manual annotation of video sequences was based on the
mere appearance within the ROI. It commenced when the midsection of
the animal’s back crossed into or out of the ROI’s limits. In cases where
the first criterion is not applicable, it started or ceased when both feet
were fully positioned inside or outside the ROI, respectively. Here, the

Fig. 3. Definition of Regions of Interest (ROIs), using the feeder as an example. In Step 1, the areas primarily occupied by animals using the resources are marked. In
Step 2, an ROI that encompasses most of the marked area is manually outlined. In Step 3, the defined ROI is highlighted, and the peripheral regions are inten-
tionally blurred.

Table 2
Behaviour-specific characteristics used for defining the various regions of interest.

Behaviours Indicators of effective resource use

Feeding The chicken is in a lowered head position with the beak in the feeder, pecking at the feed.
Drinking The chicken is observed standing in front of the drinking line, either with its beak inside a drinking cup, at a nipple, or with its head raised, utilising

gravity to ingest the water.
Perching The chicken is observed sitting or standing on a perch line, using both feet.
Use of the indoor litter area The chicken is observed standing, walking, scratching the ground, or lying down in the litter area of the barn.
Use of barn-to-winter garden
pophole

The chicken passed through the access pophole, leaving the main barn compartment for the winter garden or returning to the barn.

Use of enrichment facilities The chicken is observed near enrichment elements like the pecking stone, oyster shells, and alfalfa bales, either pecking directly at them or showing
interest in nearby fragments on the floor.
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specific behaviour of the animal (such as whether it was effectively using
the resource or not) was not a determining factor. This ethogram is
applied similarly across all resources. The annotators used predefined
keys to start and stop the annotations. Handwritten IDs, visible on the
videos, were used to track the subjects. Where necessary, the colour of
the vest worn by the chickens was also considered to ensure correct
manual annotations.

Measures were taken to guarantee reliability and inter-rater agree-
ment. Before starting the actual annotation, a preliminary training phase
was conducted, during which the two annotators were trained by an
experienced researcher. This training involved coding sample video
sequences and discussing the annotation protocol in detail. A sample of
27 video sequences, comprising 3 to 4 clips for each of the seven focus
resources, was used for this preliminary phase. The aim was threefold:
(1) to identify behavioural coding ambiguities using BORIS, (2) to
practise scoring, and (3) to ensure excellent inter-rater reliability be-
tween the two annotators. The annotators agreed on the rules for
annotation and practised coding before beginning the actual 245 video
sequences. Data recorded via BORIS included the subjects’ ID, start time,
end time, and duration of presence within the ROIs.

2.5. Marker detection and automated annotation

The “cv2.ArUco” module of the OpenCV (v4.8.0), a Python library
for automated video processing and computer vision (OpenCV De-
velopers, 2023), was employed. This library detected the ArUco
markers. Pandas v2.0.3 (The pandas development team, 2023) was used
to organise and export the data. Our computational framework pri-
marily consisted of two steps: (1) video processing, which produced a
video annotated with chicken ID, and (2) data extraction, resulting in a
CSV file that listed the appearances of the various IDs (i.e., individual
chickens) over time (Fig. 4).

The first step was to open the pre-processed video sequences with
OpenCV’s “VideoCapture”. These videos, all in MP4 format with a 1920
× 1080 resolution and frame rates of 30 or 25 frames per second, and
already pre-processed to highlight only the regions of interest, were our
input. Each video was then analysed frame-by-frame. At each frame, the
presence of ArUco markers was checked, and once detected, each
marker pattern was associated with its predefined unique ID. We
adapted the algorithm to filter relevant markers: only markers between
the first 22 of the ArUco.DICT_4X4_1000 dictionary, except 17, should
be read. Each detected marker was colour-framed to highlight it, and an
ID, such as “Chicken 16”, was displayed alongside it. These annotated
images were then compiled together to create the annotated video.

The second step, data extraction, was also based on frame-by-frame
analysis. The extracted data involved the duration of each chicken visit.
We inferred the presence of specific chickens at each instant using the
known frame rate of the input videos and the number of successive video
frames in which individuals appeared. For example, in a video at 30
frames per second, detecting an ID in one frame signifies a presence
duration of 1/30th of a second, i.e., approximately 33.33 ms. Therefore,
continuous presence in 100 successive frames equate to a total duration
of presence of 3.33 s. The visit duration was determined by accumu-
lating moments of presence across successive video frames. A visit was
considered ongoing until there was an interruption—loss of continuous
detection, either due to the chicken leaving the ROI or the marker
becoming obstructed or undetected—exceeding one second without
detection. At that point, we considered the visit event as interrupted and
recorded a new visit event if the same chicken appeared again in the
video sequence.

The data extracted was filtered before being exported as a final CSV
output. ArUco marker detection can lead to false readings, sometimes
detecting markers from random objects in the environment (Hurník
et al., 2021). To address these issues, we employed temporal filtering,
particularly because initial tests revealed frequent false readings in
certain barn sections. Most errors occurred in specific frames 1, 2, and
32, regardless of frame rate (in fps). Therefore, filters were applied to
these specific durations. For example, with a 30-fps camera, we excluded
detections of exactly 0.033 s, 0.067 s, and 1.067 s; for 25 fps, 0.04 s,
0.08 s, and 1.28 s were omitted. The cause was likely due to instability in
the video encoding process at the time of recording, where suboptimal
buffering and encoding settings, particularly in compression and bitrate
control, led to detection errors in specific frames. The data, including
chicken IDs, start and end times, and duration, were saved in a CSV files
for analysis.

2.6. Validation metrics for comparison of automated annotation vs.
Human reference

Validation of a tool is the process whereby its measurements are
compared with an established reference. This validation usually takes
place over a short period and involves calculating various metrics to
assess the tool’s performance. We employed two distinct approaches to
evaluate the performance and validate the proposed automated anno-
tation tool.

The first approach involved a correlation analysis focused on the
aggregated presence duration per ID in each video sequence, as detected

Fig. 4. Flowchart outlining the computational framework used for automated
annotation of animal presence within Regions of Interest. Outputs included
annotated videos displaying individuals annotated with their respective IDs and
the CSV containing data on the presence of the detected individuals.
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by automated annotation, and the corresponding duration observed by
human annotators. This approach, which only considered presence data,
provides an insight into the agreement between the two annotation
methods. We used Spearman’s correlation for this analysis, as the
aggregated durations were not normally distributed.

The second approach, involving the calculation of classic perfor-
mance metrics, was inspired by the principles of validation as explained
and illustrated by Adrion et al. (2020), Alindekon et al. (2023), and
Siegford et al. (2023). In this approach to validation, where both pres-
ence and absence could be taken into account, several steps were
necessary (Fig. 5). The first step involved chronologically aligning data
from the automated annotation with the manually annotated reference,
followed by a second-by-second comparison of both methods to deter-
mine classification outcomes (also known as confusion matrix
elements):

• True Positive (TP): second when automated and manual annotations
agreed on the presence of an individual within a specific region of
interest.

• True Negative (TN): second when both methods agreed on the
absence of an individual within a specific region of interest.

• False Negative (FN): second when the automated system missed an
individual that the manual annotation had identified within a spe-
cific region of interest.

• False Positive (FP): second when the automated system reported an
individual that the manual annotation had not identified.

Next, we standardised TP, FP, TN, and FN sums at the video sequence
level, adjusting for varying chicken presence across resources by
dividing these counts by the total presence duration per sequence. This
standardisation was crucial to account for longer presence yielding more
detection instances and to offset the tendency of animals to spend more
time away from resources, as Adrion et al. (2020) and Alindekon et al.
(2023) noted. Standardisation minimised bias, ensuring a fair compar-
ison of classification outcomes across resources.

Then, for each video sequence, we computed classic validation
metrics to evaluate the effectiveness of the proposed automated anno-
tation tool. Metrics were calculated individually for each video sequence
using the standardised TP, FP, TN, and FN counts. We considered 35
video sequences per resource, treating each sequence as an individual
evaluation unit and as a separate replicate to assess the performance of
the corresponding resource. Ultimately, the average of these metrics
across units was used to characterise the resources. The performance
metrics used were:

• Sensitivity, obtained by the formula: TPstd / (TPstd + FNstd). Sensi-
tivity refers to the proportion of seconds when an ID was present
within a given ROI and the system correctly identified it as such.

• Specificity, with the formula: TNstd / (TNstd + FPstd). Specificity as-
sesses the ability of our automated approach to correctly identify
seconds when a targeted ID is absent in the ROI.

• Accuracy, which was calculated as: (TPstd+ TNstd) / (TPstd+ TNstd +

FPstd + FNstd). Accuracy determines the overall ability of the

Fig. 5. Diagram summarising the procedure used to calculate the classic performance metrics employed to validate automated annotation against a manual reference
over the time points that constitute a video sequence. Here, a 10-second-long video sequence is considered for illustration purposes. The comparison process begins
with loading both datasets, aligning them chronologically, and comparing their annotations for each video second. Each circle represents the annotation for a specific
second, coloured based on a given individual’s presence (blue) or absence (red). Each comparison results in one of four outcomes (or confusion matrix elements):
True Positives (TP), True Negatives (TN), False Positives (FP), or False Negatives (FN). Next, the standardised sums of TP, FP, TN, and FN that would account for the
total duration of the chickens’ presence in each video were calculated. In this illustration, standardised sums of TP, FP, TN, and FN can be respectively obtained as
follows: TPstd = 4/6; FPstd = 2/6; TNstd = 2/6; FNstd = 2/6 (with the total duration of presence in the video, obtained from human annotation data, as the de-
nominator). Based on these results, classic validation metrics—such as Sensitivity, Specificity, Accuracy, Precision, and F1-Score (balanced average of precision and
sensitivity)—are computed to assess the performance of the automated annotation.
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Table 3
Comparison of video annotation durations between our automated system and human annotators for each key resource.

Key Resources Total Video Length
(in hours)

Automated Annotation Duration
(in hours)

Manual Annotation Duration
(in hours)

Time Savings
(%)

Drinker 5.86 5.69 19.17 70.32
Enrichment 5.85 4.69 32.50 85.57
Feeder 5.85 6.46 42.33 84.74
Indoor litter area 5.85 6.64 62.67 89.40
Metal perch 5.85 4.12 18.17 77.33
Pophole 5.85 4.49 32.00 85.97
Wooden perch 5.85 6.41 16.00 59.94

Fig. 6. Selected snapshots from video outputs after automated annotation of ArUco markers on animals present in resource-specific areas of interest—clearly defined,
non-blurred zones delineated by thin blue lines. a = region of interest (ROI) around the drinker, b = ROI around the feeder, c = ROI around the enrichment material,
d = ROI around the indoor litter area, e = ROI around the pophole, f = ROI around the metal perch, g = ROI around the wooden perch.
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automated annotation tool to correctly identify seconds, whether the
targeted ID is present or absent.

• Precision, calculated as: TPstd / (TPstd + FPstd). Precision quantifies
the proportion of seconds identified as positive (i.e., ID present
within ROI) that were actually correct.

• F1-Score, with the formula: 2 × (Precision× Sensitivity) / (Precision
+ Sensitivity). This metric serves as a harmonic mean that balances
Precision and Sensitivity, providing a single score to represent the
reliability of the automated annotation tool in identifying chicken
presence within the ROI.

Lastly, using Python libraries such as SciPy (v1.11.1) and Scikit-
posthocs (v0.8.0), we conducted statistical analyses to explore the in-
fluence of various resources on standardised confusion matrix elements
(TPstd; FPstd; TNstd; FNstd) and derived performance metrics. The
Kruskal-Wallis test was employed for these comparisons, as all data
distributions exhibited either right or left skewness.

3. Results

We conducted this study to propose an automated method, based on
3D-ArUco markers, to automatically annotate animal presence within
regions of interest, namely within functional areas of key resources in
poultry farming. A total of 245 10-minute-long sequences of videos of
chickens interacting with seven key resources were used. The automatic
annotation made it possible to annotate all these video sequences in
40.96 h, an 82.72 % time saving compared to 222.84 h of continuous
manual annotation by human observers in front of computer screens
(Table 3). Validation of the automated annotation, carried out by two
human reference annotators, with an index of inter-rater reliabili-
ty—Cohen’s Kappa, k= 0.95 (based on seven 10-min videos)—led to the
establishment of performance metrics.

3.1. Output from the developed program

The developed program enabled automated annotation of in-
dividuals, generating videos in which individuals’ IDs were displayed

alongside markers for all visible sides of the cube as long as they were
within the region of interest. It offered behavioural data that quantified
presence, indicating start and end timestamps, as well as the duration in
seconds of each ID during its presence in the region of interest, and
compiled these measurements into a dataset. To illustrate and demon-
strate these stated capabilities, we present snapshots of some annotated
videos in Fig. 6; short annotated video clips are provided in the Sup-
plementary material (Clip 1 to 7), and Fig. 7 offers a summary of the
duration data capturing the presence of markers in the region of interest
in selected videos.

3.2. Performance evaluation of the automated system

3.2.1. Correlation automated vs human annotations based on aggregated
presence duration

Spearman’s correlation analysis on all resources revealed an overall
correlation coefficient of ρ = 0.96 (p < 0.01, N = 1457). This was
calculated with the aggregated duration of the presence of each ID in the
videos, comparing automated annotations with human ones (Fig. 8).

When further broken down by resource, the lowest correlation was
observed with videos recorded onmetal perch (ρ = 0.56), while those for
all others ranged from 0.92 to 0.99 (Table 4).

3.2.2. Standardised classification outcomes (or confusion matrix elements)
across resources

The standardised classification outcomes varied according to re-
sources (H-test, p < 0.01; Table 5). Feeder visit recordings showed the
highest true positives, contrasting with enrichment, indoor litter, metal
perch and pophole. True negatives peaked in pophole recordings and
were lowest in the indoor litter area.

While false positives were generally low, they were highest in videos
of wooden perch, drinker, and feeder— resources for which plastic slats
appeared in the regions of interest. Conversely, indoor litter, metal
perch, and enrichment videos had the fewest. Pophole videos presented
a mix of these trends. False negatives were most frequent in metal perch,
indoor litter, enrichment, and pophole videos, with metal perch notably
higher in raw values. Feeder videos recorded the fewest false negatives.

Fig. 7. An illustration of possible behavioural data output (aggregated visit duration for each ID at various resources of interest for a specific timespan). The data
were generated along the annotated videos. Video sequences featuring the maximum number of observed individuals per resource were selected for optimal
representation.
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Examples of false positive and false negative cases are provided in
Appendices C and D, respectively.

3.2.3. Metrics-Based performance overview
The automated annotation method showed overall performance

metrics of 92.83 % sensitivity, 99.93 % specificity, 99.08 % accuracy,
98.77 % precision, and a 95.28 % F1-Score, with significant variations

across resources (H-test, p < 0.01; Table 6). Feeder visit recordings had
the highest sensitivity, in contrast to the enrichment, indoor litter area,
metal perch and pophole, with the metal perch showing notably lower
sensitivity at 81.29 %. A similar trend was seen in F1-scores.

Specificity was generally high, exceeding 99 % in all resources, with
the lowest figures at the wooden perch and feeder; the differences
stemmed from the decimals. The lowest accuracies, around 98 %, were
recorded in metal perch and indoor litter area, while other resources
exceeded 99 %. Precision values were lowest for wooden perch, pop-
hole, drinker and feeder, ranging from 98 % to 99 %, compared to above
99 % for other resources.

4. Discussion

With the aim of promoting automation in the annotation of animal
presence within a region of interest, which is crucial for validating and
adopting new technologies in ethology, our paper proposed an auto-
mated annotation method based on 3D-ArUco markers attached to the

Fig. 8. Scatter plot illustrating the Spearman correlation between automated and human annotations. Light blue data points represent aggregated presence duration
for each ID per video.

Table 4
Spearman correlation coefficients by resource based on aggregated presence
duration per ID for comparing automated and human annotations.

Key Resources Spearman’s rho
(r)

95 % confidence
interval

p-
value

N

Drinker 0.97 [0.96, 0.98] < 0.01 141
Enrichment 0.98 [0.98, 0.99] < 0.01 202
Feeder 0.98 [0.98, 0.99] < 0.01 254
Indoor litter
area

0.92 [0.90, 0.93] < 0.01 380

Metal perch 0.56 [0.44, 0.69] < 0.01 117
Pophole 0.99 [0.98, 0.99] < 0.01 195
Wooden perch 0.94 [0.92, 0.96] < 0.01 168

Table 5
Comparison of standardised values of the classification outcomes: True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN), ac-
counting for total durations of chicken presence in each video.

Key Resources TPstd TNstd FPstd FNstd

Drinker 0.95ab 27.15b 0.02a 0.05ab

Enrichment 0.95b 24.84b 0.00b 0.05a

Feeder 0.98a 10.37b 0.01a 0.02c

Indoor litter area 0.93b 2.70c 0.00b 0.07a

Metal perch 0.81b 10.30b 0.00b 0.19a

Pophole 0.93b 108.11b 0.02ab 0.07a

Wooden perch 0.96ab 15.96b 0.02a 0.04ab

In the table, ’a’, ’b’, and ’c’ categorise groups by statistical significance, with ’a’
indicating the highest group. Across columns, values with different superscripts
are statistically different (p < 0.05).

Table 6
Performance metrics for evaluation of validity across resources.

Key
resources

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision
(%)

F1-
Score
(%)

Drinker 94.80ab 99.92ab 99.75a 97.98b 95.96ab

Enrichment 94.55b 99.97a 99.60ab 99.59a 96.96b

Feeder 97.63a 99.89b 99.70ab 98.82b 98.09a

Indoor litter
area

92.78b 99.93ab 97.76c 99.82a 96.10b

Metal perch 81.29b 99.97ab 97.36bc 99.62a 88.32b

Pophole 92.79b 99.97ab 99.71ab 97.78b 94.72b

Wooden
perch

95.95ab 99.87b 99.65ab 97.77b 96.79ab

In the table, ’a’, ’b’, and ’c’ categorise groups by statistical significance, with ’a’
indicating the highest group. Across columns, values with different superscripts
are statistically different (p < 0.05).
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animals’ backs. This method has been detailed and can be used to ac-
quire annotated videos showing individuals’ IDs as they move through a
delimited region of interest (ROI), thought to represent the functional
area of the resources used. It can also collect individual-focused
behavioural data, including the start and end timestamps of each pres-
ence within the ROIs. The validation performance of this automatic
behavioural annotation tool, compared with human observations, the
limitations of the tool, and suggestions for its optimal deployment are
discussed.

4.1. An interpretation of the system performance through multiple
indicators

In our study, we used six key indicators to evaluate the quality and
suitability of the proposed automated annotation method. This multi-
dimensional evaluation is essential as it provides a more holistic and
reliable assessment of the method’s validity. Comparing the outcomes of
our study with those of previous studies was challenging, as many au-
thors do not consistently apply classic performance validation in-
dicators. Nevertheless, we have attempted to draw analogies, whichmay
be debatable, based on the calculation approach or aim of the metrics,
between our performance measurements and those of other studies.

4.1.1. Spearman correlation
Comparison of the automated annotation against that carried out by

human observers revealed a Spearman correlation of 0.96 for the total
duration of presence per individual from each video. This value in-
dicates a robust correlation (Martin and Bateson, 2007). Spearman’s
correlation measures the strength and direction of the relationship be-
tween two variables; it provides insights into the overall agreement
between the two annotation methods. In practical terms, the observed
correlation suggests that for each minute of video, the estimation of
presence by the automated system closely matched the human annota-
tions for at least 57 s, underlining its potential as a reliable tracker.

In comparison with the existing literature, our overall correlation
analysis, aimed to assess the general agreement between two annotation
methods, is in line with the approach, at least in terms of its purpose, of
Intraclass Correlation Coefficients (ICC) used by Eagan et al. (2022). Our
results corroborate with theirs (ICC of 80 % and 96 %) for validating
ArUco markers attached to cats for tracking within regions of interest.
Such corroboration is not surprising given our similar methodologies;
we both used 4x4-bit markers and placed several unique markers on the
same subject to improve detectability. Our method involved multiple
markers on the sides of a cube, whereas theirs used multiple unique
markers along necklaces. In addition, both studies operated with a high
frame rate for video recording, approximately 30 frames per second. The
importance of achieving high detection performance becomes evident
when considering the use of a substantial number of frames andmultiple
unique markers on a subject.

4.1.2. Sensitivity
In our study, a sensitivity of 92.83 % was obtained, indicating high

performance (Brown-Brandl et al., 2019). This metric evaluates the
system’s ability to identify actual presence correctly. Such a value im-
plies that, during a one-minute period when tagged animals are within a
region of interest, the automated tool would correctly detect them for at
least 55 s, demonstrating its strong effectiveness in capturing actual
presences within the region of interest.

Compared to previous literature, our sensitivity is higher than the
64.58 % detection rate reported by Alarcón-Nieto et al. (2018) after
interpolation for ArUco-like markers attached to domesticated zebra
finches. Aside from their subjects being smaller than ours, the discrep-
ancies between our results may be due to our different approaches to
mounting the markers. We used a 3D-marker design featuring multiple
unique IDs with low potential for physical interaction, minimising
marker damage and obscuration, thus improving the chances of

detection. The larger size of our markers (38 mm versus 10 mm for
theirs) and perhaps the technical capabilities of the specific algorithms
and marker dictionaries used, which these authors have not docu-
mented, could be other factors contributing to the divergence of results.

4.1.3. Specificity
Our validation study revealed a specificity of 99.93 %, reflecting a

robust identification of true negatives: the automatic annotation method
showed a significant ability to identify exactly what it is supposed to,
without going beyond this objective (Martin and Bateson, 2007; Brown-
Brandl et al., 2019). Specificity assesses the validity of a tool in recog-
nising actual absences, which translates into approximately 59 s of ac-
curate non-detection per minute. We have not been able to establish a
link with previous literature related to ArUco-like tracking validation
using specificity.

4.1.4. Accuracy
An accuracy of 99.08 % was achieved, a value considered excellent

(Martin and Bateson, 2007). Accuracy indicates correct classifications of
presence and absence, demonstrating the extent to which the system
resists systematic error. In practice, the value obtained is equivalent to a
margin of error of less than one second per minute, suggesting an
exceptional confidence level for annotating tagged animals within a
region of interest. We have also been unable to draw parallels with
previous literature on ArUco-like tracking for this metric.

4.1.5. Precision
The proposed annotation method had a precision of 98.77 %,

indicative of the system’s high reliability in true positive detections
(Martin and Bateson, 2007; Brown-Brandl et al., 2019). Such a value
suggests only 1 s of false detection per minute of a tagged animal within
a region of interest.

Compared to the literature, our overall precision is higher than that
of Sclocco et al. (2021), who reported a precision of 38.53 % for ArUco
tracking in ants. Precision reflects the proportion of true results among
all cases examined. Technical differences at the hardware level might
explain this variance. They used a lower frame rate than ours (10 versus
25/30 frames per second that we used). A higher frame rate could
reduce motion blur, allowing a smoother and more continuous capture
of subject movement and adapting more quickly to changes in speed and
direction (Sclocco et al., 2021). Additionally, variations in the setup,
among others, such as the characteristics of the cameras and the distance
ratio between the camera and the surface area of the markers, probably
contributed to this observed difference in performance. Moreover, their
system relies heavily on a top-down configuration, while our introduc-
tion of a cubic marker offers increased visibility in the camera’s field of
view.

4.1.6. F1-score
Our automated annotation yielded an F1-score of 95.28 %, implying

that the system correctly detected presences and excluded non-
presences. F1-score represents a harmonious balance between preci-
sion and sensitivity. Such a value means that out of 100 detections, 95
are expected to be correctly identified, attesting to the reliability of the
proposed automated annotation method. No parallel could be estab-
lished with previous literature related to ArUco-like tracking using this
metric.

In sum, the robustness and reliability of our system can be confirmed
given the high performance (mostly > 95 %) demonstrated by the
multiple indicators in our analysis. Each of these indicators, contributing
its unique perspective, converges to validate the system’s ability to
annotate animal presence within a region of interest with high
reliability.
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4.2. Misreadings

Although not significantly affecting overall performance indicators,
we observed that in our study, about 5 % of the performance decreases
in our annotation system were attributed to misreadings. These errors
can be categorised into two groups, namely reading failures (i.e., False
Negatives) and false readings (i.e., False Positives), each having distinct
causes. Some suggestions and practical arrangements to minimise mis-
readings when implementing 3D-ArUco markers for annotating animal
presence within a region of interest are formulated.

4.2.1. Reading failures (i.e., false negatives)
For ArUco detection to function correctly, the black and white grids

composing the marker and the surrounding white buffer zones must be
completely visible and free of any occlusions to ensure precise decoding.
Visibility issues with ArUco markers as causes of reading failures have
often been mentioned in previous studies (e.g., Alarcón-Nieto et al.,
2018; Eagan et al., 2022; Wolf et al., 2023). In our study, the highest rate
of reading failures was observed with video recordings about the metal
perch, followed by the indoor litter area, enrichment and pophole. Three
major reasons for reading failures can be highlighted.

Firstly, except for the metal perch, occasional blurriness was
observed, particularly in the focus region around most of these re-
sources, where the camera distances were the greatest, ranging from 2 to
2.5 m, compromising image clarity. For the metal perch, there was
notably poor camera arrangement with an oblique angle of nearly 50
degrees, limiting visibility from above while allowing only frontal visi-
bility of one side of the cubic marker when the chickens were perching.

Secondly, physical interferences also led to false negatives. These
reading failures occurred when chickens adopted stationary positions
where the marker became partially or completely obstructed. These
obstructions occurred when the birds’ feathers masked the marker, e.g.,
during (night-) daytime perching or preening; they also happened when
any other housing component or animal obstructed the camera’s view.

A final factor contributing to visibility issues could be related to
variable lighting conditions and or direct exposure of the markers,
causing reflections that hindered the precise detection of the pattern
during processing (Alarcón-Nieto et al., 2018; Crall et al., 2015; Sclocco
et al., 2021). We experienced such cases, which are problematic when
the animal remains stationary, especially in the indoor litter, pophole or
enrichment areas, which are the most exposed to daylight.

4.2.2. False readings (i.e., false positives)
The false readings, referred to as false positives, are misreadings that

can result from confusion between the random patterns in the envi-
ronment and those of the markers (Hurník et al., 2021). In our study, we
observed such erroneous readings mainly during the processing of re-
cordings from the drinker, feeder, and wooden perch, and this was
anticipated, as these resources were placed on slatted plastic with white
edges and hollow patterns that naturally mimic ArUco marker. False
readings only happened on rare occasions and only lasted for the
duration of a sudden lighting variation, light reflections, glare, motion
blur in environment components, and other unidentifiable causes.
Despite the implementation of temporal filtering to discard short-lasting
false detections, as well as the deliberate selection and reading restric-
tion of the tags on which our developed algorithm should operate,
eliminating these errors completely remained seemingly unattainable in
those areas of the poultry barn.

4.3. Other limitations of the study

Three limitations, particularly about the methodology, can be noted
in this study. One is the loss of the absolute scale of the classification
outcomes (i.e., elements of the confusion matrix); these were trans-
formed into ratios relative to the duration of presence. We opted for
standardised values rather than absolute counts to allow fair comparison

across resources, as chicken presence is over-represented in some re-
sources compared to others. Besides the loss of absolute scale, stand-
ardisation assumes a uniform visit of resources (i.e., a homogeneous
distribution across all standardised segments) and focuses on average
behaviour, assuming a constant level of chicken activity at the resources.
Given that the main objective of our study was to validate the use of the
ArUco marker and not to focus on the behaviours per se, the assumption
of a uniform distribution of resource visits did not affect the achieve-
ment of our aim.

The second limitation lies in the risk of inaccurately estimating
metrics such as accuracy and specificity. It is possible to observe artifi-
cial inflation of these metrics because, in their calculation formulas,
negative cases— situations where the chickens are not at the resource—
are a determining factor influencing the result, although our stand-
ardisation can reduce this influence to a certain extent. Adrion et al.
(2020) and Alindekon et al. (2024) highlighted that the number of
negatives in animal behaviours is generally very high, with animals
spending more time absent than present at the resource. The other
performance metrics, such as Precision, Sensitivity, and the F1-Score,
are nevertheless less susceptible to such an imbalance in the dataset.

The third limitation of our proposed automated annotation method
lies in its inability to distinguish actual resource use from mere presence
in the region of interest. Our marker-based tracking system, as we pro-
pose it, does not allow us to determine for certain if an animal is
genuinely using a resource, but it can confirm with more than 95 %
certainty if the animal is in the defined region of interest around the
resource. This constraint is similar to that of RFID technology, which
also indicates if an animal is in an area of interest but cannot confirm if
the animal is actually using the resource (Alindekon et al., 2023). To
annotate with certainty genuine resource usage, one must use equip-
ment capable of doing so. For example, for drinker use, a device
equipped with water flow meters to measure each animal’s water con-
sumption, as in Maselyne et al. (2016); for perch use in chickens, a
system that measures the use of perches using a load cell module
recording the weight of the animals as in Wang et al. (2019). Advanced
technologies, such as those incorporating machine learning algorithms
(e.g., Guo et al., 2022; Liu et al., 2023), may also be employed to gain
insights into actual resource use.

4.4. Practical insights on applying the 3D-ArUco system for validation

4.4.1. Minimising misreads
Several practical adjustments are required to minimise reading fail-

ures and improve the readability of ArUco markers. Instead of laminated
paper, non-reflective, 3D-printed supports can be used for better effec-
tiveness. Regular cleaning and maintenance are necessary to ensure
optimal performance over time. Camera placement should also be
tailored to the behaviours of interest. For static behaviours like resting
or sleeping, an overhead camera works best, while in areas with dy-
namic movements, such as near feeders or drinkers, cameras should be
angled at 35 degrees and placed about 1.6 m high.

To prevent false readings, it is crucial to use distinct marker patterns
that are not easily confused with the surrounding environment. Con-
ducting a preliminary analysis without markers can help identify po-
tential environmental patterns that might cause algorithmic errors,
allowing researchers to choose the most suitable markers for their study.

4.4.2. Cross-validation tool applicable to various technologies
Our 3D-ArUco system can be especially valuable for validating other

wearable tracking technologies, provided it does not interfere with their
functionality. For example, this could apply to body-worn trackers like
RFID, which, like the proposed system, tracks animals and generates
spatiotemporal data on their movements. By cross-referencing data from
the 3D-ArUco system, researchers can verify the accuracy of RFID
outputs.

However, the use of 3D-ArUco markers may present certain
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challenges, particularly when validating technologies that integrate
vision-based tracking systems. These systems often use object detectors
(e.g., bounding boxes; Siriani et al., 2022) to locate individual animals
and associate their identities across frames. Problems can arise when
two 3D-ArUco markers fall within the same bounding box, potentially
leading to identity confusion or tracking inaccuracies. This limitation
can also occur in segmentation-based and keypoint-based tracking sys-
tems, where overlapping markers or animals may complicate identity
association.

4.4.3. Adapting the 3D-ArUco system to different species and environments
While this study focuses on poultry, the adaptability of the 3D-ArUco

system makes it suitable for various species and environments. Re-
searchers must customise the system based on species-specific factors
like marker placement, material durability, and environmental
complexity. For example, robust materials are essential for pigs, known
for biting and potentially damaging markers. For cattle, which may
dislodge vests, using multiple identical ArUco markers on waterproof
supports attached to collars, as demonstrated in Sadrzadeh et al. (2024),
can be a viable alternative to vests or 3D markers. The successful use of
body-worn devices, such as accelerometers and GPS trackers, enduringly
fixed to animals like sheep and waterbirds (Kölzsch et al., 2016; Ikurior
et al., 2021), suggests that 3D markers could similarly be securely
affixed for these species. Since the 3D-ArUco system is intended for
short-term validation, it offers flexibility and can be tailored to meet the
needs of different species and research objectives effectively.

5. Conclusions

This paper has detailed the implementation and demonstrated the
effectiveness of a computer vision method employing cubic ArUco
markers for validating animal tracking technologies. The method
showed high validation performance in automated annotation of pres-
ence within regions of interest and significant time savings for humans,
offering a precise and reliable alternative to visual observation. This can
reduce observer fatigue, bias and physical discomfort in validating other
emerging technologies. Furthermore, the method utilises pre-existing
open-source pattern recognition techniques, simplifying its use. This
eliminates the need to develop complex new algorithms, making it
accessible to a broad range of researchers. This paper demonstrates that
introducing reliable technological solutions can support and signifi-
cantly improve animal behaviour research.
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Morris, D., Norton, T., Psota, E., Rosa, G.J.M., 2023. The quest to develop automated
systems for monitoring animal behavior. Appl. Anim. Behav. Sci. 265. https://doi.
org/10.1016/j.applanim.2023.106000.
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