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ARTICLE INFO ABSTRACT
Keywords: Explanatory relationships between data and hypotheses have been suggested to play a role in
Agent-based models the formation of posterior probabilities. This suggestion was tested in a toy environment and
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Bayesian updating

Explanation

Inference to the best explanation

supported by simulations by David H. Glass. We here put forward a variety of inference to the
best explanation approaches for determining posterior probabilities by intertwining Bayesian
and inference to the best explanation approaches. We then simulate their performances for the
estimation of parameters in the Brock and Hommes agent-based model for asset pricing in finance.
We find that performances depend on circumstances and also on the evaluation metric. However,
most of the time our suggested approaches outperform the Bayesian approach.

1. Introduction

This paper develops techniques for parameter estimation based on a well-known philosophical approach, Inference to the Best
Explanation (IBE) [1], that has attracted recent interest [2-13]. Our starting hypothesis is that explanations may do important confir-
matory work beyond what can be covered by (Bayesian) probabilities [14].

While there is a debate on what exactly IBE is [14,15], the main idea is clearly that we ought to infer the hypothesis that best explains
the data, since good explanations are truth-conducive [16], see further Section 2.1.1. The question arises of how to best measure
the quality of an explanation? Furthermore, how strongly should we infer the best-explaining hypothesis or the best-explaining
hypotheses? A number of competing measures of explanation quality have thus been put forward, see Section 2.2. We contribute
to this ongoing work of determining the best, or most appropriate in a given situation, measure of explanation quality. Qualities of
explanations have also been considered in formal (“Dung-style”) argumentation models [17] and black-box models [18].

Standard interpretations of IBE currently tell us to infer the hypothesis that best explains the data, they do however not specify
how strongly we should infer or believe the hypothesis that best explains the data. In this paper, a hypothesis of interest is a specific
set of parameters in an Agent-Based Model (ABM), and inferring the parameters that best explain asset prices seems unwarranted.
In order to avoid overfitting, it appears more prudent instead to infer various hypotheses to the degrees to which they explain the
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available data. We show hence how IBE and the Bayesian framework can be intertwined to obtain probabilities for parameter values
and subsequently evaluate these different methods for determining posterior probabilities via ABM simulations.'

ABMs are commonly used computational tools in several scientific disciplines ranging from biology [20] and epidemiology [21] to
economics [22] and the social sciences [23]. They are simulation-based models that allow the study of collective phenomena emerging
from the interactions of autonomous agents. ABMs typically require the specification of a number of parameters, some of which do
not have equivalents in the real world. The development of general methods to find these parameters using real-world data, a process
commonly referred to as “calibration” or “estimation”, is a current challenge and an active area of research, especially for economic
ABMs [24-28]. Many of these methods require the definition of meaningful priors, which however might sometimes be arbitrary
and thus raise concerns about the suitability of posterior probabilities. In this context, the incorporation of further information into
the posterior via explanatory relationships may be seen as carrying some promise. We here investigate this promise in the context of
ABMs, which are closer to real-world applications than the previously used synthetic evaluation environments.

Our main contributions are i) an improved evaluation of the measures of explanation quality in [7] and ii) a proposal for a model
of gradual interaction between Bayesian and IBE probabilities improving on [29,30].

The rest of the paper is organised as follows: We next provide background and describe our methodology (§ 2), discuss its imple-
mentation (§ 3) and then report and interpret the results of our simulations (§ 4). § 5 discusses our results and offers some conclusions.

2. Background and methodology

In this section, we outline the theoretical and methodological foundations of this study. First, the Background subsection introduces
IBE, agent-based models and agent-based modelling. Next, the section Measures of Explanation Quality discusses various methods
for evaluating the explanatory power of hypotheses, which play a central role in determining their plausibility. The subsection titled
Evidence addresses how data, specifically time series, are processed and discretised to avoid computational difficulties. In the section
Specification of Prior Probabilities, we explain how prior beliefs are assigned to the model parameters, utilising simulations to compute
likelihoods. Finally, the section Posterior Probabilities explores different methodologies for updating beliefs, comparing the Bayesian
and IBE approaches for determining posterior distributions over hypotheses.

2.1. Background

Here, we address two fundamental concepts for the building of this article: IBE and ABM. IBE is a reasoning approach where one
infers the most likely hypothesis based on how well it explains the available data. It has been widely discussed across disciplines,
particularly in relation to and in comparison with Bayesian methods. ABMs, on the other hand, are a computational approach used
to simulate complex economic systems by modelling the interactions of diverse agents, offering valuable insights into emergent
behaviours such as market dynamics, business cycles, and financial instability. Since these two concepts form the foundation of this
article, we will further elaborate on both in the following sections.

2.1.1. Inference to the best explanation

People reason non-deductively from observations in a number of ways. Explanations play central parts in our cognitive processes,
e.g., how we change our minds [31]. That a hypothesis or theory explains what is before our eyes tends to raise, in some shape or
form, our confidence in the hypothesis/theory.

What one — or an artificial agent — ought to infer from the available information, evidence and/or data has been debated for many
decades in a variety of fields including economics, computer science, philosophy and cognitive science. One important theme is that
ideal (normative) rationality must resemble the most sophisticated reasoners (human beings) to some degree. Since we pay much
attention to explanations and cherish their roles in learning, teaching and reasoning, it is not surprising that explanations have also
been appealed to in normative theories of rationality. The theories we are concerned with here are known under the name Inference
to the Best Explanation which is covered by the umbrella term abduction.

The basic idea is simple enough, one ought to believe what best explains the data. The typical story goes as follows. The cheese
left on the kitchen table yesterday evening is gone in the morning and there is a small hole in the wall. These observations are best
explained by a mouse finding a late-night snack. Your goldfish devouring the cheese is a much worse explanation, since the fish lives
in the garden pond and is rather ill-equipped to make a hole in the wall. So, one ought to infer that the mouse and not the goldfish
ate the cheese. Summarising, abduction is “a mode of inference that makes explanatory considerations relevant to what we are licensed to
believe” [14, Section 1.2.1].

A number of questions arise immediately: How do we know what a good explanation is, what even is an explanation? What
if a hypothesis explains perfectly but is otherwise ridiculous? What if two competing hypothesis explain equally well? What if all
hypotheses explain poorly? How strongly should one believe a well-explaining hypothesis compared to a hypothesis which explains
less well? What is the relationship to Bayesian rationality?

We refer the reader for answers to the first question to the debate on the nature of explanations to [32-35], which has become of
interest in explainable AI [36-38]. The second type of question can be raised from a Bayesian point of view insisting on the importance
of the prior probability of hypotheses; see [3, Section 2] for further discussions. We will return to the other four types of questions in

1 Our comparison of IBE posteriors with the Bayesian approach is thus data-driven rather than based on a priori arguments, see [19] for the latter approach.
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the following. A word of warning to those unfamiliar with IBE and abduction: proponents of this approach acknowledge violations of
dynamic Dutch book arguments but deny that this is fatal and instead highlight attractive properties [3,29]. The relationship between
IBE and Bayesian rationality has also been investigated in [39].

IBE can, in principle, be applied to all situations of uncertain reasoning. We however think that there is little to be gained in
situations in which the data clearly indicate the actual state of the world, e.g., via uncertainty resolution [40], Bayesians refer to this
situation as a “washed out prior” [41], statisticians think of this as successful “calibration” [42] and successful applications of Big
Data more recently. If however there is much less information and uncertainty is ripe, then there seems to be a larger potential gain
by exploiting explanatory relationships for formalising beliefs. In the following, we are considering the problem of assigning prior
beliefs to parameters in an agent-based model. Since we are highly unsure about these parameters, we adopt a uniform prior. We
hence believe that an application of IBE might help us to find better probabilities.

2.1.2. Economic agent-based models

Agent-Based Modeling (ABM) is a computational approach that has gained significant traction in the analysis of complex economic
systems. Unlike traditional economic models that often rely on aggregate variables and assume representative agents with homoge-
neous behaviours, ABM focuses on the interactions of heterogeneous, autonomous agents. These agents operate based on individual
rules and adapt their behaviours in response to interactions with other agents and changes in their environment [43]. At its core,
ABM involves the creation of virtual environments where individual agents - such as consumers, firms, and policymakers - interact
according to predefined rules. These interactions can lead to the emergence of complex macroeconomic phenomena that are not eas-
ily predictable from the behaviour of individual agents alone. The strength of ABM lies in its ability to model bottom-up dynamics,
capturing how micro-level behaviours aggregate to produce macro-level outcomes [44]. Agents in ABM are typically endowed with
characteristics such as memory, learning capabilities, and decision-making processes that can evolve over time. This allows ABM to
incorporate concepts like bounded rationality, where agents make decisions based on limited information and cognitive resources,
reflecting more realistic economic behaviours compared to the fully rational agents often assumed in traditional models [45,46]; for
a game-theoretic discussion see also [47, Section 2].

The application of ABM in economics has provided new insights into various economic phenomena that are difficult to analyse
using conventional models. One of the primary areas where ABM has been influential is in the study of market dynamics and financial
systems. By simulating the interactions of individual market participants, ABM can capture the emergence of market prices, trading
volumes, and volatility patterns that result from the collective behaviour of agents [48].

ABM has also been instrumental in exploring the mechanisms behind business cycles and economic fluctuations. Traditional eco-
nomic theories often rely on equilibrium conditions to explain cycles, whereas ABM allows for the examination of out-of-equilibrium
dynamics and the role of agent heterogeneity in generating economic instability [43]. For instance, the interaction of firms with
varying strategies and adaptive behaviours can lead to endogenous cycles of growth and recession, providing a more nuanced under-
standing of economic volatility.

In the financial sector, ABM has been applied to model the behaviour of investors, financial institutions, and markets. These models
can simulate scenarios such as asset price fluctuations, liquidity crises, and the effects of regulatory policies on financial stability. By
incorporating features such as adaptive learning and bounded rationality, ABM provides a more realistic representation of market
participants’ decision-making processes compared to traditional models that assume perfect rationality [49].

ABM has been particularly useful in understanding systemic risk and the propagation of financial shocks. By modelling the inter-
connectedness of financial institutions and the feedback loops between them, ABM can identify potential sources of instability and
assess the effectiveness of regulatory interventions designed to mitigate systemic risk [50]. This capability is crucial for designing
policies that enhance the resilience of financial systems against crises.

Additionally, ABM has been employed to study market microstructure and the impact of high-frequency trading. By simulating
the interactions between different types of traders, including algorithmic and human traders, ABM can analyse how trading strategies
influence market liquidity, price discovery, and volatility [51]. The pioneering work by Brock and Hommes [52] on asset pricing will
be further described in the following sections.

Although ABM can provide valuable insights for regulators and market participants supporting fair and efficient market exchanges,
ABM also presents several challenges. The calibration and validation of agent-based models require detailed data on individual
behaviours and interactions, which can be difficult to obtain. Moreover, the computational intensity of simulating large-scale ABMs
can be a limitation, although advances in computational power and specialised software tools have mitigated this issue to some
extent. Another challenge is ensuring the robustness and reliability of computations. Due to the inherent complexity and stochastic
nature of these models, it is essential to perform extensive sensitivity analyses and to verify that the results are not artefacts of
specific model configurations or parameter choices [43]. Transparency in model specification and rigorous methodological standards
are crucial for the credibility and reproducibility of ABM research. The present work seeks to advance knowledge in this direction.
As will be detailed further, we aim to explore inference to the best explanation methods for ABMs, aligning with the research strand
of data-driven ABMs (see, for instance, [53]).

2.2. Measures of explanation quality
Our main aim is to determine reasonable probabilities over sets of parameters specifying ABMs. Parameters are real-valued and

thus there are potentially an infinite number of combinations of them. To circumvent this issue, we choose to discretise the parameter
space into a finite number of bins. We hence aim to assign probabilities to the elements of a set of hypotheses H = { H;, ..., H,},
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which we take to be a partition, meaning that the H; are mutually exclusive and exhaustive. We refer to [54,55] for measures of
explanation quality for hypotheses that do not form a partition and to [56,57] for explanations from conjunctions of hypotheses.

Measures of Explanation Quality aim to formalise the intuitive idea that some hypotheses do a better job of explaining what is
before our eyes. What exactly an explanation is, shall not concern us here. Instead, we consider the measures in [7], which assign
every hypothesis H € H an explanatory quality score given the available evidence, E, see [58,59] for more background.

These measures are £gg (Schupbach & Sprenger, [60]), £-7 (Crupi & Tentori, [10]), g (Good & McGrew, [61,62]), Egcar
(Overlap Coherence Measure, [5,6]), £pcps (Product Coherence Measure, [63]), £, g (Likelihood Ratio), £),pr (Most Probable
Explanation) and &,; (Maximum Likelihood)? and are defined as follows:

P(H|E) - P(H|-E)
P(H|E) + P(H|-E)
P(E|H) - P(E)

8SS(H7 E) =

, if P(E|H) > P(E)

- 1-
Fertih- =1 peEin) ~ ey PE) it pee1H) < P(E)

P(E)
_ P(E|H)
Egp(H, E)_ln(—P(E) )
PHAE
Eocm(H,.E)= 7PEH CE;
Epcy(H,E)=P(E|H)- P(H|E)
_ P(E|H)
Err(Hl. E)= P(E|-H)

Eypp(H,E)=P(H|E)
Evr(H,E)=P(E|H) .

These measures are, as their names suggest, meant to capture how well a hypothesis explains data. Note that these measures of
explanation quality are not additive: £(H, V H,, E) is in general not equal to £(H|, E) + £(H,, E). There is a tradition of arguing
about the (relative) merits of these measures on a priori grounds, see for example [7,63,64].

Since Egg, Ecr and £, (H, E) can take negative values and we want to combine measures of explanation quality with Bayesian
approaches, they do not lend themselves directly to our current purposes. There are, of course, ways in which these measures can be
changed to produce positive measures of explanation quality such as adding a suitably large positive constant or via exponentiation.
Such normalisation procedures invalidate the axiomatic characterisations [5,6,10,60-63] motivating these measures. Furthermore,
since different normalisation procedures result in markedly different measures, it is not clear at all which normalisation to apply. In
the case of £;,, however, there is a canonical normalisation procedure by dropping the logarithm, which is a normalisation function
mapping the positive real numbers to the set of all real numbers. Since there is no canonical way to normalise Egg, -7 We will not
consider these measures in the following. We will come back to the normalised £;,, measure, denoted by £g,,, in Section 3.1.3.

2.3. Evidence

The ABMs we use in our simulations depend on multiple parameters. For every fixed set of parameters they non-deterministically
output a time series of asset prices. For every fixed set of parameters, the conditional probability of obtaining a particular time series
is (very close to) zero, if the time series spans more than a few discrete time steps. Conditional probabilities that are (too close to)
zero create computational intractabilities (rounding errors swamping data and divisions by zero).

In order to circumvent this computational problem, we do not take these time series as our observations but rather the discretised
first and second moments of the time series. Provided we have established bounds on their mean and the variance, the number of
values the observations, E, may take is finite. Let us denote this set by E.

2.4. Specification of prior probabilities

Prior probabilities have to be assigned to the space spanned by H and E, H X E. We do this in the usual way by i) assigning prior
probabilities to the parameter space, P(H) for all H € H and ii) setting conditional probabilities (likelihoods), P(E|H) for all E € E
and all H € H.®

Due to the complexity of the ABMs, the conditional probabilities P(E|H) (likelihoods) cannot be calculated analytically. Rather,
we can compute them numerically as natural frequencies observed in simulations. Recall that every fixed hypothesis H is determined

2 Glass adopts &, p:(H, E) as a baseline rather than a comprehensive IBE measure (see [7, footnote 2] and [63]). Moreover, his focus on an ordinal ranking means
that he does not distinguish between the first three measures, as they yield identical rankings (see again [7]). However, since we are interested in concrete values, we
cannot conflate these measures and treat them individually.

3 In [7], Glass also considered performances of posteriors depending on prior probabilities. Since we did not find intuitively reasonable different priors in our
modelling approach, we have not considered different prior probabilities.
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by a set of parameter values. For these fixed parameter values we can run the models and observe the distribution of the statistical
properties (here, first and second moments).

2.5. Posterior probabilities

Recall that we want to compare different methodologies for determining sensible posterior probabilities over the hypothesis space
H. A fully Bayesian analysis is often — as it is here — possible. However, since we lack a sensible way for setting priors (in our
implementation we resort to adopting the uniform prior on H), the degree to which the ABMs explain statistical properties of the
observed data may provide extra information [16]. We shall thus compare the Bayesian approach with IBE methods.

Douven and Wenmackers suggested in [29,30] the following formula for obtaining a posterior probability over H taking the
explanatory relationships between hypotheses and evidence, E, into account

P(H)-P(E|H)+ f(H,E)
Yuen P(H) - P(E|H) + f(H, E)

P(H)= 6))

where f is a function rewarding only the best explanation

¢, if H best explains E
S(H)= .
0, otherwise .

If ¢ =0, then the function f is equal to zero for all inputs and the updating procedure is the usual Bayesian posterior on H, which
we denote by P,.

Recall that measures of explanation quality are not additive, in general. The functions defined in Equation (1) are hence, in
general, also not additive. In order to define a posterior probability over H we define the posterior probability, Py, of a disjunction
of hypotheses, as the sum of the posteriors of hypotheses: Pf(\/ qeoci,. . Hy) 1= ¥ qeoci1....ny Pr(H,). This convention shall also
apply to the functions defined in Equations (2) and (3).

We see two major issues and one minor problem with the suggestion by Douven and Wenmackers. Firstly, the value of the constant
¢ is left unspecified. Although, possible values of ¢ are explored in a number of simulations in [30], it remains unclear which value of
¢ is most appropriate in their simulations on a fixed toy domain of coin tossing. This means that the value of ¢ for our application is
not clear at all. Secondly, f rewards only the best explanation. The degree to which other hypotheses explain the data is irrelevant.
Such a strong condition seems unwarranted for our ABMs, because differences in explanatory power can be minimal. Finally, it is
not obvious what to do when several hypotheses explain the evidence equally well. Should they all get the reward ¢, or should the
reward be distributed equally among them?

Bayes + IBE In order to side-step these complications we modified the proposed formula in [29,30] by an alternative reward function,
which provides gradual rewards and does not require the specification of a rather arbitrary parameter. Let us thus fix a measure of
explanation, £ ¢ {Egg,Ecr}, and consider the degree to which hypotheses explain the evidence E

P(H)- P(E|H)+ E(HLE)

Pyayestmee(H) 1= ZH,E[H] P(H,)- P(EH,) + £(H,.E) 2

The above convention on disjunctions extends these functions to disjunctions of hypotheses.
Having excluded problematic measures of explanation quality (negative values, see § 2.2), we note that Pg,yes1p5,¢ 1S @ probability
distribution over H.

IBE A proponent of pure IBE might not be satisfied with the mixing of Bayesian posterior probabilities with explanation qualities in
[29,30] and (2). To answer this possible criticism, we shall also consider a purely IBE-based way of gradually assessing hypotheses:

E(HLE)

YenEHLE)

The above convention on disjunctions extends these functions to disjunctions of hypotheses.
Having excluded problematic measures of explanation quality (see § 2.2), we note that Pygg, . is a probability distribution over H.

Since the Most Probable Explanation posteriors, Pgg ¢, ,, (H) and Ppayeoiipe ¢, . (F) are both equal to the Bayesian posterior of
H3

Pppe(H) := 3

P(H|E) P(H|E)

Pgg g, pp (H) = 3 4 e PUH|E) N 1

., . P(H)- P(E|H)+ P(H|E)
Bayes+IBE,Ep pp - ZH,E[H] P(H,) . P(E|H1)+P(H1|E)

=P(H|E)

P(E/\H)~(l+$)

P(EAH;)
P(E)

Sen P(EAH) +
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) P(EAH)-(H‘ﬁ)_ P(E’\H)—P(HIE)
T Ty e ’
(B)-(1+ 575)

we exclude them from further considerations. Note that these posteriors are equal for all prior probability function defined on H.
We have thus defined 10 different ways (Ppayestisr,e and P ¢ for 5 different measures €: Egy . Eocm-Epem-ELr-Epr) Of
setting posterior probabilities by applying IBE. We go on to compare these 10 methods with the traditional Bayesian way of obtaining
the posterior by conditionalisation, P,.
The 5 explanation measures (the £) of current interest can be computed from the prior (the P(H) for H € H) and likelihoods (the
P(E|H) for H € H) as follows. The prior is flat. So, P(H) = P(H,) for all H, H; € H. Furthermore,
P(E|H) _ P(E|H)- P(-H)
P(E|-H) ~  P(EA-H)
__ P(EIH)-[1- P(H)]
Zuen\ny P(EIH)) - P(H})
P(HAE) P(HAE)
P(HVE) P(H)+ P(EA-H)
_ P(H)- P(E|H)
P(H)+ ZH,-G[H]\(H) P(H;\NE)
_ P(H)- P(E|H)
P(H)+ Xy ey () PCEIH,) - P(H)

£ r(H,E)=

Eocu(H, E)=

P(E|H)-P(HAE)  P(E|H)*-P(H)

Epcr(H,E)=P(E|H)- P(H|E) = B =S i AD
H;eH i

_ P(E|H)*- P(H)
ZH,-EIH] P(E|Hi) - P(H;) .

We will show in Section 3.1.3 that the other two explanation measures lead to posterior probabilities that are equal to the Bayesian
posterior and thus trivially computable from the prior.

Before moving on, we briefly discuss properties of the approach suggested here. Following the spirit of the IBE approach, the
posteriors calculated here are based on all the available evidence. Splitting the body of available evidence into multiple parts and
updating piecemeal is thus undesirable, it will also produce, in general, results that depend on the way the evidence is split. Our
approach thus differs in this respect from traditional Bayesian updating via conditionalisation but resembles an objective Bayesian
approach via maximising entropy given all the available evidence [65,66].

We use a uniform prior over the space of hypothesis here, which reflects our lack of background knowledge. In other circumstances,
background knowledge is available and can be plugged into our approach via a non-uniform prior.

3. Implementation

We next describe the implementation of our testing environment, beginning with the setup based on the ABM developed by Brock
and Hommes for asset pricing [52]. We explain the model’s dynamics and parameter selection process based on prior validation
literature. We then describe the evidence production process, which involves generating simulated time series and calculating Bayesian
and inference to the best explanation (IBE) posteriors. Finally, we introduce two performance measures for assessing parameter
approximation and forecast accuracy. Table A.1 provides a pseudo-code description of our implementation.

3.1. Set up

This section provides an overview of the key components in our setup. We employ the Brock and Hommes ABM to simulate
asset pricing, focusing on parameter adjustments for realistic outcomes. We generate time series data, use first and second moments
as evidence, and discretise the evidence space with a hexagonal tessellation. We then compute posterior probabilities for various
hypotheses using Bayesian, IBE, and hybrid approaches.

3.1.1. The agent-based model and its parameters

For our testing purposes, we employed the closed-form ABM model developed by Brock and Hommes for asset pricing [52]. This
model is well known in the literature as an early example of a class of ABMs that simulate the trading of assets on an artificial stock
market by modelling the interactions of heterogeneous traders following various trading strategies.

Every strategy, s, has an associated trend-following component, g,, and bias, b,, both of which are real-valued parameters that
are of particular interest in our investigation. The number of strategies, .S, can vary depending on the application. In line with
previous work [25,52,67,68], we selected .S = 4. Thus, there are four trading strategies (BH4) in this model, each specified by two
real parameters, g; and b; for i € {1,2,3,4}, where again g; represents trend-following and b; represents bias. The model dynamics
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Table 1

Parameters specification for Setting 1 and Set-
ting 2 as in [25,28]. Note that in our experi-
ments g, and b, are the two free parameters.

Parameters Setting 1 Setting 2
(81:01) 0,0 (0,0)
(g2.by) (0.9,0.2) (=0.7,-0.4)
(g3,b3) 0.9,-0.2)  (0.5,0.3)
(g4.b4) (1.01,0) (1.01,0)

can be expressed via the following system of coupled equations, where the main component x, | =p,.; —p
the asset price p, from its benchmark fundamental p; is:

:‘H, i.e., the deviation of

S
1
X4l = R Z”S,HI (gsxt + bs) teEyr |, €&~ N (O, 0'2)» 4)
s=1

exp [ﬁ (x, - Rx,_l) (gsx,_z +b,— Rx,_l)]

Rspt1 = 5 . (5)

Zl exp [ﬁ (xt - th—l) (gs'xt—2 +by — Rx,_4 )]
S’_

The parameters R, f and o represent respectively: (a) the gross return, (b) the intensity of choice measuring how fast agents switch
between different prediction strategies, and (c) the common, constant conditional variance (namely 62) that all traders are assumed
to have. We follow [25] setting their values: (R, f,0) = (1.01,10,0.04).

We adopt the simulation environment outlined in [28, § 4.2, 4.2.1 and 4.2.2], which defines two settings by specifying parameter
sets as described in Table 1. The two settings specified in the table were chosen to conform to previous literature. Our implementation
employs the Python package Black-it [69].

We here took g, and b, as free parameters each ranging over the unit interval following [25,28]. Exploratory simulations showed
that most parameter values for g, and b, produced (average) time series that were in line with how asset prices tend to behave,
however some (combinations of parameters) produced outliers. We hence constrained both parameters to the range [0.1,0.9], which
produced the desired effects of removing the outliers and being more in line with observed asset prices, see Fig. 1.

Discretising the interval [0.1,0.9] into steps of 0.05, we obtained 172 = 289 pairs of parameters, where each pair represents a
trading strategy. For both settings (fixed parameters b, g, b3, g3, b4, g4) we thus considered 289 competing hypotheses.4

3.1.2. Evidence production

The following procedure was carried out for Setting 1 and Setting 2.

We sampled from every hypothesis 10,000 times (a total of 10* - 289 =2, 890, 000 time series) for 200 timesteps each. As explained
in Section 2.3, we here considered the first and second moment of the time series as the evidence, see Fig. 2 for sample time series.

For every observed time series we computed the average asset price over the 200 timesteps. For every hypothesis, H € H, we
then averaged the 10,000 averaged asset prices obtaining an average first moment. Furthermore, for every observed time series we
computed its second moment. For every hypothesis, H € H, we then averaged the 10,000 second moments obtaining an average
second moment.

These averaged first and second moments fell into the intervals [—1, 19] and respectively [0, 140], cf. Fig. 1. The space of average
first and second order moments, [, was then covered by a hexagonal tessellation of 566,705 tiles. We could thus compute likelihoods
for all hypotheses H € H and all potential observations, E € E, see Fig. 3 for an example.

In order to obtain a single observed event E € E on which to update, we calculated, for a fixed hypothesis H, the outcome with
maximal likelihood arg sup g P(E|H) =: E*, cf. Fig. 4. There we plot the likelihoods P(E*|H) for five different H € H in Setting
2. So, E denotes a potential observation and E* the actual observation.

3.1.3. Updating

For Setting 1 and Setting 2 we chose these five pairs of parameters, g,,b,, representing the actual hypothesis, H*: (0.25,0.25),
(0.25,0.75), (0.5,0.5), (0.75,0.25) and (0.75,0.75). For each of these five pairs parameters, we used the outcomes of the simulations
described in Section 3.1.2 as evidence. For these outcomes we also computed the likelihoods of the actual observations.

For Setting 1 and Setting 2, for all £ € {LR,OCM,PCM } and all five pairs of parameters we computed the two types posterior
probabilities Progt H — [0, 1] described by (2) and (3)

E(H,E")
Pppe(H) '= g—————
hyen €(H;, E¥)

4 This set-up entails that we only compare Brock and Hommes models with each other. We thus exclude from the beginning the possibility of a “true” state of the
world, which is not a Brock and Hommes model.
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Fig. 1. Scatter plot of first (X -axis) and second (Y -axis) moments of time series in the Brock and Hommes model. Every blue dot represents an average of 10,000 time
series for 200 timesteps each, for a different pair of parameters (g,, b,). Top row: (g,,b,) € [0, 11, lower row: (g,,b,) €[0.1,0.9], left: Setting 1, right: Setting 2. The
plots in the lower row show how restricting the pair (g,, b,) to [0.1, 0.9]? leads to more reasonable asset prices: a five-fold decrease in maximal average first moments
and a 35-fold decrease in maximal average second moments. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
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Fig. 2. Two examples of simulated target time-series originating from the Brock and Hommes model in Setting 1, where y(f) = x,,, for t > 1, see Equation (4).
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Fig. 3. Two examples of sampling first (x-axis) and second (y-axis) moments in the tessellation. a) Setting 1 with (g,, b,) =(0.8,0.15), and b) Setting 2 (lower panel)
with (g, b,) = (0.7,0.75). The numbers indicate how many of the 10,000 observed time series have a first and second moment in a tile, tiles without a time series are
not labelled.

_ P(H)-P(E*|H)+ E(H,E*)
Y en P(H) - P(E*|H) + E(H, E*)

PBayes+IBE,8(H) :

We also computed the Bayesian posterior P, for all these cases.

Since the prior is flat, the maximum likelihood posteriors and the two normalised Good & McGrew posteriors all agree with the
Bayesian posterior. Unlike the Most Probable Explanation posteriors, these posteriors are, in general, different, from the Bayesian
posterior. These measures might be of interest in cases with a non-uniform prior.
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Fig. 4. Likelihoods of the observed outcome with maximal likelihood: for a fixed H* we computed the outcome with maximal likelihood argsup.cz P(E|H)=: E*.
We then plotted P(E*|H) for all H € H. All five plots are for Setting 2 for H* given by g, (x-axes) and b, (y-axes) for varying (g,, b,).

Pgee,,, (H) = —ZH,Z[iﬁl(IZ I
_P(EAH) P(H)
P(H) Y PEAH,)
~PEAH) _ poyiE
P(E)
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" Yuen P(H) - P(E|H)+ P(E|H,)

_ (P(H)+1)- P(E|H)

 Yuen(P(H)+1)- P(E|H)

_ P(E|H)

- ZH,E[H] P(E|H))

_ P(EAH)-P(H)

~ P(H)- Yy cq P(EAH)
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“P(E)_ _ P(E|H)

PIBESGMN(H)= = = Pgge,,, (H)
4 P(E|H;) P(E|H. CML
H;eH; P(E) ZH,E[H],- ( | ’)

PBayes+IBE,€ML (H)

=P(H|E)

= P(H|E)

) P(E|H)
P(H)- P(E|H)+ =5

P(E|H;)
S e | PCH) - PCEIH) + L

PBayeerIBE,E’GMN (H) =

= D) — P(H|E) .

S e PELH) (PCH) + 54 )

We hence exclude these measures from further considerations in this paper.

P(E|H) (P(H) + L)

3.2. Performance measures

Next, we were interested in determining how well these posteriors performed. We therefore evaluated how well the posteriors
managed to capture the five hypotheses specified by pairs of parameters g,, b,. We used two different measures.

3.2.1. Measure 1: Parameters — distance on H

Firstly, we determined how well the posteriors approximate the true parameter values. This was achieved by computing the
Euclidean distance, which is closely related to the Brier Score [70], between a posterior probability of hypotheses Pyost : H—[0,1]
(as defined by (2) and (3) as well as P,) and the probability, P*, assigning one to the true parameter values and zero to all other
parameter values. Recall that P, depends on the actual observation and thus depends on the setting and the parameter pair g, b,.
Denoting the true hypothesis be H* we have,

HeH

dl(Ppost’P*) -= \/Z (Ppost(H) - P*(H))z

= \/(I—Ppost(H*))2+ Y Prog(H)? .

HeW\{H*}

3.2.2. Measure 2: Forecasts — distance on E

The measure d; is invariant under all permutations of hypotheses ¢ that map H* onto itself, c(H*) = H*. This is undesirable in
some sense, since the hypotheses, which are close to H* in an Euclidean sense, tend to output similar time series, whereas hypotheses
at the extremes of the hypothesis space tend to output time series that do not look at all like those of H*.

Secondly, we also evaluated how well the posteriors approximate the forecasts of H*. We thus determined the posterior probability
of an E € E as the product of the likelihood of E multiplied by the posterior of H,

Poost(E) =Y Ppog(H) - P(E|H) .
HeH

The assumption of a uniform prior, P(H) = constant, ensures that the conditional probability P(E|H) is well-defined.®
We then computed the Euclidean distance between these posterior probabilities and the likelihoods of E given H* varying E € E.
This distance is a measure of how well the predictions of the posteriors agree with the predictions of H*. We have,

5 Furthermore, we note that a normal Bayesian posterior probability of an elementary event is either zero or one. In our setting, the posterior probability is initially
defined on H and serves as our new prior over H, which can be used to define a “posterior” probability of E € E in the way specified above.

11
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\/ D (PHEH*) = Pyogy(E))?

Eek

dy(Pposts P*):

2
D <P(E|H*)— D Ppost(H>~P(E|H>> :
EcE HeH

Recall from § 2.4 that prior probabilities P are defined as priors over the parameter space H and conditional probabilities (likelihoods)
P(E|H). § 3.1.2 explains that these likelihoods depend on E and H but not on P. Thus, P*(E|H*)= P(E|H*).

We refrain from defining a third measure, which measures distances of probabilities on H X E. Such a measure would have to
compare — and trade off — distances between parameter values and forecasts, since we did not wish to enter the treacherous grounds
of such comparisons and trade-offs, cf. [71, p. 249].

3.2.3. Most likely hypotheses

One could argue that the spirit of IBE is to adopt a single hypothesis after receiving information. We have so far defined posterior
probabilities and described how to measure their performances. Instead, one might want to (defeasibly!) infer the hypothesis with
largest posterior probability. We thus computed the hypotheses with the largest posterior probability and determined on which
hypothesis a posterior puts the most probability, see Tables 6 and 7.°

4. Results and interpretation

We now report and interpret the results of our simulations for the two settings, the two measures and the five parameter pairs
(g;. b,), a total of 20 scenarios.

4.1. Results

Tables 2-5 report the performance of the studied posteriors for Settings 1-2 and Measure 1-2, respectively. In all Tables, best-
performing posteriors are highlighted in yellow, posteriors performing better than the Bayesian posterior are highlighted in orange,
and posteriors performing worse than the Bayesian posterior are coloured blue. Our noteworthy findings are as follows.

Performance Our most important finding is that there was no posterior which performs best in all scenarios. While there was no
posterior that always performed best, the posterior Pp.,, performed best in 15 out of 20 scenarios. The Bayesian posterior, often
considered the gold-standard of rationality, performed best in 3 out of 20 scenarios. The PCM + IBE posterior as well as the LR
posteriors performed best in one scenario. There was no scenario in which an OCM posterior performed best.

IBE vs. Bayes Overall, the IBE posteriors put forward in (3) performed better than the Bayesian posterior.

Mixing Bayes and IBE There was only one scenario in which a Bayes + IBE posterior performed better than all other posteriors,
see Table 4. In all other cases, the Bayes + IBE Posteriors never outperformed the Bayesian and the respective IBE posterior. Instead,
these mixed posteriors were closely aligned with their respective IBE posterior.

Bayes The Bayesian posterior did not outperform a single posterior in a scenario in Setting 2 according to Measure 1, see Table 4.
Using Measure 1 instead, the Bayesian posterior only outperformed the PCM posteriors in one scenario.

ML, MPE and GMN The ML, MPE and GMN posteriors are all equal to the Bayesian posteriors and are hence not reported in the
tables.

Measure The choice of a measure is relevant to the relative performance of posteriors. Tables 2 and 3 differ only in terms of the
performance measure of posteriors as do Tables 4 and 5, however we did find differences in measured performances highlighted by
different colourings in these tables. These findings highlight the importance of employing more than one evaluation methodology.
Had we only considered Measure 1 and Setting 2, we would have concluded that the Bayesian approach is clearly worst and PCM is
the best IBE approach, see Table 4. After carrying out multiple assessments, a different and more varied picture emerges.

Tables 6 and 7 show that in both settings and for all choices of H* all posteriors assign the same hypothesis H the greatest
probability. Only in the case of (0.75,0.75) do they assign the greatest probability to H*. The pure PCM posterior always assigns the
maximal probability to the a posterior most probable hypothesis, for every setting and every choice of H* there exists a hypothesis
H, .. € H that has maximal posterior probability for every posterior probability, H, = argsupycy Pyosi(H), and P Epem (H pax) >

max
Pt (H gy ) for all posteriors Pyog # Pgg e, ), -

4.2. Interpretation

Our results suggest that sweeping claims trumpeting the superiority of one approach over the other are not justified.

The relative performances of posteriors were sensitive to the setting (background parameters, (g;, b, g3, b3, &4, b4)), the measure
used to evaluate performance and the true state of the world to be learned (g5, b,). Furthermore, we used an Euclidean distance
measure to assess performances of posterior probabilities. While Euclidean distance measure are often the measure of choice there is
no means the only distance measure one could consider [65,72-75].

6 This evaluation has been suggested to us by Sébastien Destercke.
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Table 2
Measure 1: Setting 1 For (g,0,) =
(0.25,0.25),(0.25,0.75),(0.75,0.75) ~ the  posterior
Ppcy, outperforms all other posteriors (in terms of
minimising d,). For the other two parameter pairs
(g,.b,) =(0.5,0.5),(0.75,0.25) the Bayesian posterior,
Py, and Py pp and their combinations outperform all
other posteriors.
All posteriors performed worst on the parame-
ters (g,,b,) = (0.5,0.5) and best on the parameters
(82,b,) = (0.75,0.75). While there is in general not
much difference in performance between posteriors
(for fixed (g,,b,)), the largest absolute differences
obtain for the parameter values (g5, b,) = (0.75,0.75)
on which all posteriors perform best.

Bayes

H* Bayes

(0.25, 0.25) 0.97421
(0.25, 0.75) 0.97718
(0.50, 0.50) 1.39253
(0.75, 0.25) 0.99526
(0.75, 0.75) 0.76698

Bayes + IBE Posteriors

H* LR OCM PCM
(0.25,0.25) | 0.97386  0.97395 0.96496
(0.25,0.75) = 0.97692  0.97700  0.96971
(0.50,0.50) ~ 1.39260  1.39258 1.39611
(0.75,0.25) = 0.99547  0.99542  1.00417
(0.75,0.75) = 0.73453  0.76543 0.67806
IBE Posteriors

H* LR OCM PCM

(0.25, 0.25) 0.97386 0.97395 0.96407
(0.25, 0.75) 0.97692 0.97700 0.96888
(0.50, 0.50) 1.39260 1.39258 1.39679
(0.75, 0.25) 0.99547 0.99542 1.00572
(0.75, 0.75) 0.73453 0.76542 0.67690

Our results provide further support for previous works by Glass and co-workers highlighting the performance of PCM (“PCM
performs much better than ML and LR in almost all cases and better than OCM for larger sample sizes” [7, p. 191] and “PCM seems
preferable to ML as a measure for abductive inference” [8, p. 315]) and the superiority of best explanation posteriors over the Bayesian
posterior (“explanationist updating out-performs Bayesian updating on all desirable counts: it takes one, in general, faster to the truth,
it minimizes, in general, one’s Brier scores, and it leads, in general, to a lower average Brier score” [30, p. 566]), see also [31]. We are
thus led to believe that intertwining Bayesian and IBE can be technically fruitful and provide posterior probabilities with desirable
characteristics. There seems to be ample scope for further studies of intertwining IBE and Bayesian ideas.

While PCM posteriors outperformed the other posteriors most of the time in our simulations, we also found scenarios in which
the PCM posterior performed worst (Table 2). It thus not only the case that the apparent front-runner does not always come first, it
sometimes even comes last.

The approach of mixing the best of both worlds by forming Bayes + IBE Posteriors did not have the desired result of a performance
increase. Instead, these mixed posteriors closely followed their respective IBE posteriors. We believe that this is because in our simu-
lation environment the absolute values of the explanations, the £, have greater absolute values than the Bayesian part (Equation (2)),
since the weighting involves the prior probability of H, which is 1/289. Table 3 shows that the posteriors defined by Equation (2)
and Equation (3) are different.

In every fixed case, all posteriors assign the same hypothesis H € H the greatest probability (Tables 6 and 7). In a sense they
hence all perform equally well as an inference to the best explanation procedure.

5. Conclusions

Previous works assessed versions of IBE to determine posterior probabilities using synthetic data and found evidence for the
superiority of IBE approaches over the Bayesian approach.

We found in our simulations that the best-performing posterior in any given scenario is typically performing worst in other
scenarios. This raises the possibility that a general method for obtaining posterior probabilities that is guaranteed to deliver close to
optimal performances might not exist. This would be especially detrimental for applications in which there is normally no way to
assess a priori the performance of posterior probabilities. Post hoc assessments of posteriors may provide some guidance for future
applications, but then hindsight is 20/20 and of little use prior to making important decisions.
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Table 3
Measure  2: Setting  1: For (g.b)) =
(0.25,0.25),(0.25,0.75),(0.5,0.5),(0.75,0.75) the
posterior Ppc,, outperforms all other posteriors (in
terms of minimising d,). For the other parameter
pairs (g,,b,) = (0.75,0.25) the Bayesian posterior,
Py, and Py pp and their combinations outperform
all other posteriors.
All posteriors but the PCM measures performed worst
on the parameters (g5, b,) = (0.5,0.5) and best on the
parameters (g,,b,) = (0.75,0.75). The PCM measures
performed worst on (g,,b,) = (0.75,0.25) and best on
(g.b,) = (0.75,0.75). While there is in general not
much difference in performance between posteriors
(for fixed (g,,b,)), the largest absolute differences
obtain for the parameter values (g,,b,) = (0.25,0.25)
on which all posteriors perform worst.

Bayes

H* Bayes

(0.25, 0.25) 0.11971
(0.25, 0.75) 0.07728
(0.50, 0.50) 0.05067
(0.75, 0.25) 0.07241
(0.75, 0.75) 0.04521

Bayes + IBE Posteriors

H* LR OCM PCM
(0.25,0.25) = 0.11873  0.11899  0.08899
(0.25,0.75) = 0.07678  0.07694  0.06106
(0.50,0.50) = 0.05029  0.05040  0.03987
(0.75,0.25) = 0.07298  0.07283  0.09453
(0.75,0.75) = 0.04180  0.04503  0.03492
IBE Posteriors

H* LR OCM PCM

(0.25, 0.25) 0.11873 0.11898 0.08529
(0.25, 0.75) 0.07678 0.07693 0.05902
(0.50, 0.50) 0.05029 0.05040 0.03895
(0.75, 0.25) 0.07298 0.07284 0.09798
(0.75, 0.75) 0.04180 0.04503 0.03479

From a foundational point of view, the trend that the Bayesian approach, long and widely held to be a gold standard of rationality,
is outperformed continues. It is not particularly surprising that there are some instances in which other posteriors outperform the
Bayesian posterior, since gerrymandering a posterior that is (very close to) the actual state of the world is always possible and such
posteriors tend to outperform all other (including the Bayesian) posteriors. However, the approach that has been shown to outperform
Bayesian posterior is based on axiomatic foundations, and hence it does not seem reasonable to explain the performance increase
simply as “adhocness”.

It is, of course, possible to trace the performance increase to different axiomatic foundations and to assess, on whatever grounds,
that the axiomatic foundations for PCM are better than those for the Bayesian approach. We are sceptical that such assessments can
shed much light on the observed performance increase. We are instead wondering whether there are, in our view, more illuminating
reasons according to which IBE posteriors outperform the Bayesian approach in a (growing) number of simulation environments.

While we have made some progress with evaluating different versions of IBE in this paper, we surely did not (aim to) close the
debate. Since i) the quest for determining the best measure of explanation (for a given purposes) on a priori considerations continues
[76,77] and further promising measures may be found, ii) we only tested on one (set of) ABMs and it is not necessarily true that
comparable results will obtain for other ABMs and iii) none of the evaluations carried out so far have used real-world data, however,
arguably, the real challenge is the real world and not a controlled synthetic environment, see [78-80] for comparisons of various
forms of Bayesian posteriors (such as imprecise and objective posteriors).

In future work, we plan to assess different versions of IBE with respect to each other and a Bayesian approach on real-world
data. Bayesian methods have been indeed suggested and applied for empirical validations and estimations of ABM, e.g., [81-83].
Other possible avenues of future research are i) ABMs with large parameter spaces, which may require techniques to reduce the
dimensionality, such as principal component analysis [84,85], ii) the speed with which different updating methods converge to the
truth, if they do converge, iii) the search for reasons for the (relative) performances of different updating procedures and iv) the
use of background knowledge resulting in non-uniform priors. A non-uniform prior can also shed light on the maximum likelihood
posteriors which are equal to the Bayesian posterior in our simulations due to the uniform prior.
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Table 4

Measure 1: Setting 2  For (g5,b,) =
(0.25,0.25),(0.25,0.75),(0.75,0.25),(0.75,0.75)  the
posterior Ppc,, outperforms all other posteriors (in
terms of minimising d,). For the other parameter
pair (g,,b,) =(0.5,0.5) the Bayes + Ppc,, posterior
outperforms all other posteriors. This is one of the
few instances in which a Bayes + IBE Posterior
outperforms both the Bayesian and the IBE posterior
(on the level of precision in this table) — other such
instances are (g,,b,) = (0.25,0.25) and the ML and
MPE posteriors. Since no posteriors performs worse
than the Bayesian posterior there is no blue-coloured
number.

All posteriors performed worst on the parameters
(g5.b,) = (0.5,0.5) and best on the parameters
(82,b,) = (0.75,0.75). While there is in general not
much difference in performance between posteriors
(for fixed (g,,b,)), the largest absolute differences
obtain for the parameter values (g, b,) = (0.75,0.75)
on which all posteriors perform best.

Bayes

H* Bayes

(0.25, 0.25) 0.98879
(0.25, 0.75) 0.94324
(0.50, 0.50) 1.38050
(0.75, 0.25) 0.93604
(0.75, 0.75) 0.70110

Bayes + IBE Posteriors

H* LR OCM PCM
(0.25,0.25) = 0.98877  0.98877  0.98795
(0.25,0.75) ~ 0.94232  0.94245  0.93442
(0.50,0.50) = 1.38028  1.38030  1.37963
(0.75,0.25) = 0.93475  0.93498  0.92564
(0.75,0.75) = 0.65103  0.69028  0.60633
IBE Posteriors

H* LR OCM PCM

(0.25, 0.25) 0.98877 0.98877 0.98785
(0.25, 0.75) 0.94232 0.94243 0.93412
(0.50, 0.50) 1.38028 1.38030 1.37973
(0.75, 0.25) 0.93475 0.93496 0.92541
(0.75, 0.75) 0.65103 0.69023 0.60544
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Table 5

Measure 2: Setting 2 For (g,b,) =
(0.25,0.25),(0.25,0.75),(0.75,0.25), (0.75,0.75)  the
posterior Ppc,, outperforms all other posteriors (in
terms of minimising d,). For the other parameter pair
(85,b,) = (0.5,0.5) the LR posteriors outperform all
other posteriors.

All posteriors performed worst on the parameters
(g5.b,) = (0.5,0.5) and best on the parameters
(82,b,) = (0.75,0.75). While there is in general not
much difference in performance between posteriors
(for fixed (g,,b,)), the largest absolute differences
obtain for the parameter values (g, b,) = (0.75,0.75)
on which all posteriors perform worst.

Bayes
H* Bayes
(0.25, 0.25) 0.22311
(0.25,0.75)  0.17717
(0.50, 0.50)  0.27547
(0.75, 0.25) 0.19708
(0.75,0.75)  0.14380
Bayes + IBE Posteriors
H* LR OCM PCM
(0.25,0.25) = 0.22226  0.22238  0.18720
(0.25,0.75) = 0.17136  0.17215  0.11534
(0.50, 0.50)  0.27529 = 0.27531 0.29453
(0.75,0.25) = 0.19313  0.19385  0.16403
(0.75,0.75) = 0.13401 0.14167  0.12580
IBE Posteriors
H* LR OCM PCM
(0.25,0.25) = 0.22226  0.22228  0.18131
(0.25,0.75) = 0.17136  0.17201 0.11315
(0.50, 0.50)  0.27529 = 0.27531 0.29668
(0.75,0.25) = 0.19313 0.19378  0.16326
(0.75,0.75) = 0.13401 0.14166  0.12564
Table 6
Setting 1 Hypotheses with largest posterior probabilities, in terms of (g,,b,), and their re-
spective probability.
Bayes
H* Bayes
(0.25,0.25)  (0.10, 0.25), 0.04901
(0.25,0.75)  (0.20, 0.80), 0.03906
(0.50, 0.50) (0.20, 0.70), 0.03498
(0.75,0.25)  (0.10, 0.45), 0.03751
(0.75, 0.75) (0.75, 0.75), 0.32948

Bayes + IBE Posteriors

H* LR OCM PCM

(0.25, 0.25) (0.10, 0.25), 0.05021 (0.10, 0.25), 0.04989 (0.10, 0.25), 0.08889
(0.25, 0.75) (0.20, 0.80), 0.03960 (0.20, 0.80), 0.03943 (0.20, 0.80), 0.05701
(0.50, 0.50) (0.20, 0.70), 0.03542 (0.20, 0.70), 0.03529 (0.20, 0.70), 0.05103
(0.75, 0.25) (0.10, 0.45), 0.03807 (0.10, 0.45), 0.03793 (0.10, 0.45), 0.05795
(0.75, 0.75) (0.75, 0.75), 0.36487 (0.75, 0.75), 0.33125 (0.75, 0.75), 0.43760

IBE Posteriors

H* LR OCM PCM

(0.25, 0.25) (0.10, 0.25), 0.05021 (0.10, 0.25), 0.04990  (0.10, 0.25), 0.09431
(0.25, 0.75) (0.20, 0.80), 0.03960  (0.20, 0.80), 0.03944  (0.20, 0.80), 0.05943
(0.50, 0.50) (0.20, 0.70), 0.03542  (0.20, 0.70), 0.03529  (0.20, 0.70), 0.05346
(0.75, 0.25) (0.10, 0.45), 0.03807 (0.10, 0.45), 0.03793 (0.10, 0.45), 0.06101
(0.75, 0.75) (0.75, 0.75), 0.36487 (0.75, 0.75), 0.33126  (0.75, 0.75), 0.43911
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Table 7
Setting 2 Hypotheses with largest posterior probabilities and their respective probability.
Bayes
H* Bayes
(0.25, 0.25) (0.25, 0.20), 0.02232
(0.25, 0.75) (0.35, 0.65), 0.09581
(0.50, 0.50) (0.20, 0.75), 0.09398
(0.75, 0.25) (0.65, 0.30), 0.11812
(0.75, 0.75) (0.75, 0.75), 0.41796

Bayes + IBE Posteriors

H* LR OCM PCM

(0.25, 0.25) (0.25, 0.20), 0.02242 (0.25, 0.20), 0.02240 (0.25, 0.20), 0.02697
(0.25, 0.75) (0.35, 0.65), 0.09767 (0.35, 0.65), 0.09741 (0.35, 0.65), 0.11748
(0.50, 0.50) (0.20, 0.75), 0.09673 (0.20, 0.75), 0.09634 (0.20, 0.75), 0.13049
(0.75, 0.25) (0.65, 0.30), 0.12309 (0.65, 0.30), 0.12216 (0.65, 0.30), 0.17245
(0.75, 0.75) (0.75, 0.75), 0.47083 (0.75, 0.75), 0.42974 (0.75, 0.75), 0.53227

IBE Posteriors

H* LR OCM PCM

(0.25, 0.25) (0.25, 0.20), 0.02242 (0.25, 0.20), 0.02242 (0.25, 0.20), 0.02787
(0.25, 0.75) (0.35, 0.65), 0.09767 (0.35, 0.65), 0.09746 (0.35, 0.65), 0.11845
(0.50, 0.50) (0.20, 0.75), 0.09673 (0.20, 0.75), 0.09641 (0.20, 0.75), 0.13238
(0.75, 0.25) (0.65, 0.30), 0.12310 (0.65, 0.30), 0.12224 (0.65, 0.30), 0.17480
(0.75, 0.75) (0.75, 0.75), 0.47083 (0.75, 0.75), 0.42980 (0.75, 0.75), 0.53348

Germany) for helpful discussions.
The views and opinions expressed in this paper are those of the authors and do not necessarily reflect the official policy or position
of Banca d’Italia.

Appendix A
Table A.1
Step by step pseudo code detailing the implementation of our simulations.
Step  Task Description
1 Initialise Model - Define number of strategies .S = 4.
Parameters - Initialise parameters g, and b, for all strategies s.
- Set global parameters R, #, o, using pre-defined values: (R, #,0) = (1.01,10,0.04).
2 Setting Simulation - Parameters: g,,b, € [0.1,0.9] generate set of hypothesis, H.
Environment - Initialise parameter values from Table 1 for Setting 1 and Setting 2.
- Do all of the following for Setting 1 and Setting 2.
3 Compute Time - For every hypothesis H € H, generate 10,000 time series, 200 time steps each.
Series
4 Compute First and - For every time series, compute the average of asset prices (first moment) over 200 time steps.

Second Moments - For every time series, compute the variance (second moment) over 200 time steps.

5 Tessellation and - Cover the space spanned by first and second moments with a hexagonal tessellation.
Likelihoods - For every hypothesis H and every tile of the tessellation, calculate the frequency of time series with first and second
moments being within this tile.
6 Evidence - Define five actual hypotheses H* given by: (0.25,0.25),(0.25,0.75),(0.5,0.5),(0.75,0.25) and (0.75,0.75).
- Do all of the following for all H*.
- For every H* compute the tile E* with greatest likelihood.
7 Posteriors - For every hypothesis H € H, compute the Bayesian posterior Py, ,(H|E™).
- For every hypothesis H € H, compute the IBE posterior Pyp(H|E*).
- For every hypothesis H € H, compute the Bayes + IBE posterior Pg,yeq gz (H|E").
8 Parameter - For all posteriors, calculate the Euclidean distance, d,, to the true posterior given by P(H*) = 1.
Approximation

(Measure 1)

9 Forecast
Accuracy
(Measure 2)

- For all posteriors, calculate the probability of every tile, P, (E).
- For all posteriors, calculate the Euclidean difference, d,, between the P, (FE) and the P(E|H*).

pos|

10 Greatest
Probabilities

- For every posterior, compute the tile with the greatest posterior probability and compute this posterior probability.
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Appendix B. Supplementary material
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ijar.2025.109388.
Data availability

All data used in this study is publicly available at the specified websites. Computer code used in this study is either publicly
available or attached.
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