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Explanatory relationships between data and hypotheses have been suggested to play a role in 
the formation of posterior probabilities. This suggestion was tested in a toy environment and 
supported by simulations by David H. Glass. We here put forward a variety of inference to the 
best explanation approaches for determining posterior probabilities by intertwining Bayesian 
and inference to the best explanation approaches. We then simulate their performances for the 
estimation of parameters in the Brock and Hommes agent-based model for asset pricing in finance. 
We find that performances depend on circumstances and also on the evaluation metric. However, 
most of the time our suggested approaches outperform the Bayesian approach.

1. Introduction

This paper develops techniques for parameter estimation based on a well-known philosophical approach, Inference to the Best 
Explanation (IBE) [1], that has attracted recent interest [2–13]. Our starting hypothesis is that explanations may do important confir-
matory work beyond what can be covered by (Bayesian) probabilities [14].

While there is a debate on what exactly IBE is [14,15], the main idea is clearly that we ought to infer the hypothesis that best explains 
the data, since good explanations are truth-conducive [16], see further Section 2.1.1. The question arises of how to best measure 
the quality of an explanation? Furthermore, how strongly should we infer the best-explaining hypothesis or the best-explaining 
hypotheses? A number of competing measures of explanation quality have thus been put forward, see Section 2.2. We contribute 
to this ongoing work of determining the best, or most appropriate in a given situation, measure of explanation quality. Qualities of 
explanations have also been considered in formal (“Dung-style”) argumentation models [17] and black-box models [18].

Standard interpretations of IBE currently tell us to infer the hypothesis that best explains the data, they do however not specify 
how strongly we should infer or believe the hypothesis that best explains the data. In this paper, a hypothesis of interest is a specific 
set of parameters in an Agent-Based Model (ABM), and inferring the parameters that best explain asset prices seems unwarranted. 
In order to avoid overfitting, it appears more prudent instead to infer various hypotheses to the degrees to which they explain the 
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available data. We show hence how IBE and the Bayesian framework can be intertwined to obtain probabilities for parameter values 
and subsequently evaluate these different methods for determining posterior probabilities via ABM simulations.1

ABMs are commonly used computational tools in several scientific disciplines ranging from biology [20] and epidemiology [21] to 
economics [22] and the social sciences [23]. They are simulation-based models that allow the study of collective phenomena emerging 
from the interactions of autonomous agents. ABMs typically require the specification of a number of parameters, some of which do 
not have equivalents in the real world. The development of general methods to find these parameters using real-world data, a process 
commonly referred to as “calibration” or “estimation”, is a current challenge and an active area of research, especially for economic 
ABMs [24–28]. Many of these methods require the definition of meaningful priors, which however might sometimes be arbitrary 
and thus raise concerns about the suitability of posterior probabilities. In this context, the incorporation of further information into 
the posterior via explanatory relationships may be seen as carrying some promise. We here investigate this promise in the context of 
ABMs, which are closer to real-world applications than the previously used synthetic evaluation environments.

Our main contributions are i) an improved evaluation of the measures of explanation quality in [7] and ii) a proposal for a model 
of gradual interaction between Bayesian and IBE probabilities improving on [29,30].

The rest of the paper is organised as follows: We next provide background and describe our methodology (§ 2), discuss its imple-
mentation (§ 3) and then report and interpret the results of our simulations (§ 4). § 5 discusses our results and offers some conclusions.

2. Background and methodology

In this section, we outline the theoretical and methodological foundations of this study. First, the Background subsection introduces 
IBE, agent-based models and agent-based modelling. Next, the section Measures of Explanation Quality discusses various methods 
for evaluating the explanatory power of hypotheses, which play a central role in determining their plausibility. The subsection titled 
Evidence addresses how data, specifically time series, are processed and discretised to avoid computational difficulties. In the section 
Specification of Prior Probabilities, we explain how prior beliefs are assigned to the model parameters, utilising simulations to compute 
likelihoods. Finally, the section Posterior Probabilities explores different methodologies for updating beliefs, comparing the Bayesian 
and IBE approaches for determining posterior distributions over hypotheses.

2.1. Background

Here, we address two fundamental concepts for the building of this article: IBE and ABM. IBE is a reasoning approach where one 
infers the most likely hypothesis based on how well it explains the available data. It has been widely discussed across disciplines, 
particularly in relation to and in comparison with Bayesian methods. ABMs, on the other hand, are a computational approach used 
to simulate complex economic systems by modelling the interactions of diverse agents, offering valuable insights into emergent 
behaviours such as market dynamics, business cycles, and financial instability. Since these two concepts form the foundation of this 
article, we will further elaborate on both in the following sections.

2.1.1. Inference to the best explanation

People reason non-deductively from observations in a number of ways. Explanations play central parts in our cognitive processes, 
e.g., how we change our minds [31]. That a hypothesis or theory explains what is before our eyes tends to raise, in some shape or 
form, our confidence in the hypothesis/theory.

What one – or an artificial agent – ought to infer from the available information, evidence and/or data has been debated for many 
decades in a variety of fields including economics, computer science, philosophy and cognitive science. One important theme is that 
ideal (normative) rationality must resemble the most sophisticated reasoners (human beings) to some degree. Since we pay much 
attention to explanations and cherish their roles in learning, teaching and reasoning, it is not surprising that explanations have also 
been appealed to in normative theories of rationality. The theories we are concerned with here are known under the name Inference 
to the Best Explanation which is covered by the umbrella term abduction.

The basic idea is simple enough, one ought to believe what best explains the data. The typical story goes as follows. The cheese 
left on the kitchen table yesterday evening is gone in the morning and there is a small hole in the wall. These observations are best 
explained by a mouse finding a late-night snack. Your goldfish devouring the cheese is a much worse explanation, since the fish lives 
in the garden pond and is rather ill-equipped to make a hole in the wall. So, one ought to infer that the mouse and not the goldfish 
ate the cheese. Summarising, abduction is “a mode of inference that makes explanatory considerations relevant to what we are licensed to 
believe” [14, Section 1.2.1].

A number of questions arise immediately: How do we know what a good explanation is, what even is an explanation? What 
if a hypothesis explains perfectly but is otherwise ridiculous? What if two competing hypothesis explain equally well? What if all 
hypotheses explain poorly? How strongly should one believe a well-explaining hypothesis compared to a hypothesis which explains 
less well? What is the relationship to Bayesian rationality?

We refer the reader for answers to the first question to the debate on the nature of explanations to [32–35], which has become of 
interest in explainable AI [36–38]. The second type of question can be raised from a Bayesian point of view insisting on the importance 
of the prior probability of hypotheses; see [3, Section 2] for further discussions. We will return to the other four types of questions in 

1 Our comparison of IBE posteriors with the Bayesian approach is thus data-driven rather than based on a priori arguments, see [19] for the latter approach.
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the following. A word of warning to those unfamiliar with IBE and abduction: proponents of this approach acknowledge violations of 
dynamic Dutch book arguments but deny that this is fatal and instead highlight attractive properties [3,29]. The relationship between 
IBE and Bayesian rationality has also been investigated in [39].

IBE can, in principle, be applied to all situations of uncertain reasoning. We however think that there is little to be gained in 
situations in which the data clearly indicate the actual state of the world, e.g., via uncertainty resolution [40], Bayesians refer to this 
situation as a “washed out prior” [41], statisticians think of this as successful “calibration” [42] and successful applications of Big 
Data more recently. If however there is much less information and uncertainty is ripe, then there seems to be a larger potential gain 
by exploiting explanatory relationships for formalising beliefs. In the following, we are considering the problem of assigning prior 
beliefs to parameters in an agent-based model. Since we are highly unsure about these parameters, we adopt a uniform prior. We 
hence believe that an application of IBE might help us to find better probabilities.

2.1.2. Economic agent-based models

Agent-Based Modeling (ABM) is a computational approach that has gained significant traction in the analysis of complex economic 
systems. Unlike traditional economic models that often rely on aggregate variables and assume representative agents with homoge-
neous behaviours, ABM focuses on the interactions of heterogeneous, autonomous agents. These agents operate based on individual 
rules and adapt their behaviours in response to interactions with other agents and changes in their environment [43]. At its core, 
ABM involves the creation of virtual environments where individual agents - such as consumers, firms, and policymakers - interact 
according to predefined rules. These interactions can lead to the emergence of complex macroeconomic phenomena that are not eas-
ily predictable from the behaviour of individual agents alone. The strength of ABM lies in its ability to model bottom-up dynamics, 
capturing how micro-level behaviours aggregate to produce macro-level outcomes [44]. Agents in ABM are typically endowed with 
characteristics such as memory, learning capabilities, and decision-making processes that can evolve over time. This allows ABM to 
incorporate concepts like bounded rationality, where agents make decisions based on limited information and cognitive resources, 
reflecting more realistic economic behaviours compared to the fully rational agents often assumed in traditional models [45,46]; for 
a game-theoretic discussion see also [47, Section 2].

The application of ABM in economics has provided new insights into various economic phenomena that are difficult to analyse 
using conventional models. One of the primary areas where ABM has been influential is in the study of market dynamics and financial 
systems. By simulating the interactions of individual market participants, ABM can capture the emergence of market prices, trading 
volumes, and volatility patterns that result from the collective behaviour of agents [48].

ABM has also been instrumental in exploring the mechanisms behind business cycles and economic fluctuations. Traditional eco-
nomic theories often rely on equilibrium conditions to explain cycles, whereas ABM allows for the examination of out-of-equilibrium 
dynamics and the role of agent heterogeneity in generating economic instability [43]. For instance, the interaction of firms with 
varying strategies and adaptive behaviours can lead to endogenous cycles of growth and recession, providing a more nuanced under-
standing of economic volatility.

In the financial sector, ABM has been applied to model the behaviour of investors, financial institutions, and markets. These models 
can simulate scenarios such as asset price fluctuations, liquidity crises, and the effects of regulatory policies on financial stability. By 
incorporating features such as adaptive learning and bounded rationality, ABM provides a more realistic representation of market 
participants’ decision-making processes compared to traditional models that assume perfect rationality [49].

ABM has been particularly useful in understanding systemic risk and the propagation of financial shocks. By modelling the inter-
connectedness of financial institutions and the feedback loops between them, ABM can identify potential sources of instability and 
assess the effectiveness of regulatory interventions designed to mitigate systemic risk [50]. This capability is crucial for designing 
policies that enhance the resilience of financial systems against crises.

Additionally, ABM has been employed to study market microstructure and the impact of high-frequency trading. By simulating 
the interactions between different types of traders, including algorithmic and human traders, ABM can analyse how trading strategies 
influence market liquidity, price discovery, and volatility [51]. The pioneering work by Brock and Hommes [52] on asset pricing will 
be further described in the following sections.

Although ABM can provide valuable insights for regulators and market participants supporting fair and efficient market exchanges, 
ABM also presents several challenges. The calibration and validation of agent-based models require detailed data on individual 
behaviours and interactions, which can be difficult to obtain. Moreover, the computational intensity of simulating large-scale ABMs 
can be a limitation, although advances in computational power and specialised software tools have mitigated this issue to some 
extent. Another challenge is ensuring the robustness and reliability of computations. Due to the inherent complexity and stochastic 
nature of these models, it is essential to perform extensive sensitivity analyses and to verify that the results are not artefacts of 
specific model configurations or parameter choices [43]. Transparency in model specification and rigorous methodological standards 
are crucial for the credibility and reproducibility of ABM research. The present work seeks to advance knowledge in this direction. 
As will be detailed further, we aim to explore inference to the best explanation methods for ABMs, aligning with the research strand 
of data-driven ABMs (see, for instance, [53]).

2.2. Measures of explanation quality

Our main aim is to determine reasonable probabilities over sets of parameters specifying ABMs. Parameters are real-valued and 
thus there are potentially an infinite number of combinations of them. To circumvent this issue, we choose to discretise the parameter 
space into a finite number of bins. We hence aim to assign probabilities to the elements of a set of hypotheses ℍ = {𝐻1,… ,𝐻𝑛}, 
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which we take to be a partition, meaning that the 𝐻𝑖 are mutually exclusive and exhaustive. We refer to [54,55] for measures of 
explanation quality for hypotheses that do not form a partition and to [56,57] for explanations from conjunctions of hypotheses.

Measures of Explanation Quality aim to formalise the intuitive idea that some hypotheses do a better job of explaining what is 
before our eyes. What exactly an explanation is, shall not concern us here. Instead, we consider the measures in [7], which assign 
every hypothesis 𝐻 ∈ℍ an explanatory quality score given the available evidence, 𝐸, see [58,59] for more background.

These measures are 𝑆𝑆 (Schupbach & Sprenger, [60]), 𝐶𝑇 (Crupi & Tentori, [10]), 𝐺𝑀 (Good & McGrew, [61,62]), 𝑂𝐶𝑀

(Overlap Coherence Measure, [5,6]), 𝑃𝐶𝑀 (Product Coherence Measure, [63]), 𝐿𝑅 (Likelihood Ratio), 𝑀𝑃𝐸 (Most Probable 
Explanation) and 𝑀𝐿 (Maximum Likelihood)2 and are defined as follows:

𝑆𝑆 (𝐻,𝐸) = 𝑃 (𝐻|𝐸) − 𝑃 (𝐻|¬𝐸)
𝑃 (𝐻|𝐸) + 𝑃 (𝐻|¬𝐸)

𝐶𝑇 (𝐻,𝐸) =
⎧⎪⎨⎪⎩
𝑃 (𝐸|𝐻) − 𝑃 (𝐸)

1 − 𝑃 (𝐸) 
, if 𝑃 (𝐸|𝐻) ≥ 𝑃 (𝐸)

𝑃 (𝐸|𝐻) − 𝑃 (𝐸)
𝑃 (𝐸) 

, if 𝑃 (𝐸|𝐻) < 𝑃 (𝐸)

𝐺𝑀 (𝐻,𝐸) = ln
(
𝑃 (𝐸|𝐻)
𝑃 (𝐸) 

)
𝑂𝐶𝑀 (𝐻,𝐸) = 𝑃 (𝐻 ∧𝐸)

𝑃 (𝐻 ∨𝐸)
𝑃𝐶𝑀 (𝐻,𝐸) = 𝑃 (𝐸|𝐻) ⋅ 𝑃 (𝐻|𝐸)

𝐿𝑅(𝐻,𝐸) = 𝑃 (𝐸|𝐻) 
𝑃 (𝐸|¬𝐻)

𝑀𝑃𝐸 (𝐻,𝐸) = 𝑃 (𝐻|𝐸)

𝑀𝐿(𝐻,𝐸) = 𝑃 (𝐸|𝐻) .

These measures are, as their names suggest, meant to capture how well a hypothesis explains data. Note that these measures of 
explanation quality are not additive: (𝐻1 ∨𝐻2,𝐸) is in general not equal to (𝐻1,𝐸) + (𝐻2,𝐸). There is a tradition of arguing 
about the (relative) merits of these measures on a priori grounds, see for example [7,63,64].

Since 𝑆𝑆 ,𝐶𝑇 and 𝐺𝑀 (𝐻,𝐸) can take negative values and we want to combine measures of explanation quality with Bayesian 
approaches, they do not lend themselves directly to our current purposes. There are, of course, ways in which these measures can be 
changed to produce positive measures of explanation quality such as adding a suitably large positive constant or via exponentiation. 
Such normalisation procedures invalidate the axiomatic characterisations [5,6,10,60–63] motivating these measures. Furthermore, 
since different normalisation procedures result in markedly different measures, it is not clear at all which normalisation to apply. In 
the case of 𝐺𝑀 however, there is a canonical normalisation procedure by dropping the logarithm, which is a normalisation function 
mapping the positive real numbers to the set of all real numbers. Since there is no canonical way to normalise 𝑆𝑆 ,𝐶𝑇 we will not 
consider these measures in the following. We will come back to the normalised 𝐺𝑀 measure, denoted by 𝐺𝑀𝑁 , in Section 3.1.3.

2.3. Evidence

The ABMs we use in our simulations depend on multiple parameters. For every fixed set of parameters they non-deterministically 
output a time series of asset prices. For every fixed set of parameters, the conditional probability of obtaining a particular time series 
is (very close to) zero, if the time series spans more than a few discrete time steps. Conditional probabilities that are (too close to) 
zero create computational intractabilities (rounding errors swamping data and divisions by zero).

In order to circumvent this computational problem, we do not take these time series as our observations but rather the discretised 
first and second moments of the time series. Provided we have established bounds on their mean and the variance, the number of 
values the observations, 𝐸, may take is finite. Let us denote this set by 𝔼.

2.4. Specification of prior probabilities

Prior probabilities have to be assigned to the space spanned by ℍ and 𝔼, ℍ× 𝔼. We do this in the usual way by i) assigning prior 
probabilities to the parameter space, 𝑃 (𝐻) for all 𝐻 ∈ℍ and ii) setting conditional probabilities (likelihoods), 𝑃 (𝐸|𝐻) for all 𝐸 ∈ 𝔼
and all 𝐻 ∈ℍ.3

Due to the complexity of the ABMs, the conditional probabilities 𝑃 (𝐸|𝐻) (likelihoods) cannot be calculated analytically. Rather, 
we can compute them numerically as natural frequencies observed in simulations. Recall that every fixed hypothesis 𝐻 is determined 

2 Glass adopts 𝑀𝑃𝐸 (𝐻,𝐸) as a baseline rather than a comprehensive IBE measure (see [7, footnote 2] and [63]). Moreover, his focus on an ordinal ranking means 
that he does not distinguish between the first three measures, as they yield identical rankings (see again [7]). However, since we are interested in concrete values, we 
cannot conflate these measures and treat them individually.

3 In [7], Glass also considered performances of posteriors depending on prior probabilities. Since we did not find intuitively reasonable different priors in our 
modelling approach, we have not considered different prior probabilities.
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by a set of parameter values. For these fixed parameter values we can run the models and observe the distribution of the statistical 
properties (here, first and second moments).

2.5. Posterior probabilities

Recall that we want to compare different methodologies for determining sensible posterior probabilities over the hypothesis space 
ℍ. A fully Bayesian analysis is often – as it is here – possible. However, since we lack a sensible way for setting priors (in our 
implementation we resort to adopting the uniform prior on ℍ), the degree to which the ABMs explain statistical properties of the 
observed data may provide extra information [16]. We shall thus compare the Bayesian approach with IBE methods.

Douven and Wenmackers suggested in [29,30] the following formula for obtaining a posterior probability over ℍ taking the 
explanatory relationships between hypotheses and evidence, 𝐸, into account

𝑃𝑓 (𝐻) = 𝑃 (𝐻) ⋅ 𝑃 (𝐸|𝐻) + 𝑓 (𝐻,𝐸) ∑
𝐻𝑖∈ℍ 𝑃 (𝐻𝑖) ⋅ 𝑃 (𝐸|𝐻𝑖) + 𝑓 (𝐻𝑖,𝐸)

, (1)

where 𝑓 is a function rewarding only the best explanation

𝑓 (𝐻) =

{
𝑐, if 𝐻 best explains 𝐸
0, otherwise .

If 𝑐 = 0, then the function 𝑓 is equal to zero for all inputs and the updating procedure is the usual Bayesian posterior on ℍ, which 
we denote by 𝑃0.

Recall that measures of explanation quality are not additive, in general. The functions defined in Equation (1) are hence, in 
general, also not additive. In order to define a posterior probability over ℍ we define the posterior probability, 𝑃𝑓 , of a disjunction 
of hypotheses, as the sum of the posteriors of hypotheses: 𝑃𝑓 (

⋁
𝑞∈𝑄⊆{1,…,𝑛}𝐻𝑞) ∶=

∑
𝑞∈𝑄⊆{1,…,𝑛} 𝑃𝑓 (𝐻𝑞). This convention shall also 

apply to the functions defined in Equations (2) and (3).
We see two major issues and one minor problem with the suggestion by Douven and Wenmackers. Firstly, the value of the constant 

𝑐 is left unspecified. Although, possible values of 𝑐 are explored in a number of simulations in [30], it remains unclear which value of 
𝑐 is most appropriate in their simulations on a fixed toy domain of coin tossing. This means that the value of 𝑐 for our application is 
not clear at all. Secondly, 𝑓 rewards only the best explanation. The degree to which other hypotheses explain the data is irrelevant. 
Such a strong condition seems unwarranted for our ABMs, because differences in explanatory power can be minimal. Finally, it is 
not obvious what to do when several hypotheses explain the evidence equally well. Should they all get the reward 𝑐, or should the 
reward be distributed equally among them?

Bayes + IBE In order to side-step these complications we modified the proposed formula in [29,30] by an alternative reward function, 
which provides gradual rewards and does not require the specification of a rather arbitrary parameter. Let us thus fix a measure of 
explanation,  ∉ {𝑆𝑆,𝐶𝑇 }, and consider the degree to which hypotheses explain the evidence 𝐸

𝑃Bayes+IBE, (𝐻) ∶= 𝑃 (𝐻) ⋅ 𝑃 (𝐸|𝐻) + (𝐻,𝐸) ∑
𝐻𝑖∈ℍ 𝑃 (𝐻𝑖) ⋅ 𝑃 (𝐸|𝐻𝑖) + (𝐻𝑖,𝐸)

. (2)

The above convention on disjunctions extends these functions to disjunctions of hypotheses.
Having excluded problematic measures of explanation quality (negative values, see § 2.2), we note that 𝑃Bayes+IBE, is a probability 

distribution over ℍ.

IBE A proponent of pure IBE might not be satisfied with the mixing of Bayesian posterior probabilities with explanation qualities in 
[29,30] and (2). To answer this possible criticism, we shall also consider a purely IBE-based way of gradually assessing hypotheses:

𝑃IBE, (𝐻) ∶= (𝐻,𝐸) ∑
𝐻𝑖∈ℍ (𝐻𝑖,𝐸)

. (3)

The above convention on disjunctions extends these functions to disjunctions of hypotheses.
Having excluded problematic measures of explanation quality (see § 2.2), we note that 𝑃IBE, is a probability distribution over ℍ.
Since the Most Probable Explanation posteriors, 𝑃IBE,𝑀𝑃𝐸

(𝐻) and 𝑃Bayes+IBE,𝑀𝑃𝐸
(𝐻) are both equal to the Bayesian posterior of 

𝐻 ,

𝑃IBE,𝑀𝑃𝐸
(𝐻) = 𝑃 (𝐻|𝐸) ∑

𝐻𝑖∈ℍ 𝑃 (𝐻𝑖|𝐸)
= 𝑃 (𝐻|𝐸)

1 
= 𝑃 (𝐻|𝐸)

𝑃Bayes+IBE,𝑀𝑃𝐸
(𝐻) = 𝑃 (𝐻) ⋅ 𝑃 (𝐸|𝐻) + 𝑃 (𝐻|𝐸) ∑

𝐻𝑖∈ℍ 𝑃 (𝐻𝑖) ⋅ 𝑃 (𝐸|𝐻𝑖) + 𝑃 (𝐻𝑖|𝐸)

=
𝑃 (𝐸 ∧𝐻) ⋅ (1 + 1 

𝑃 (𝐸) ) ∑
𝐻𝑖∈ℍ 𝑃 (𝐸 ∧𝐻𝑖) +

𝑃 (𝐸∧𝐻𝑖)
𝑃 (𝐸) 
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=
𝑃 (𝐸 ∧𝐻) ⋅ (1 + 1 

𝑃 (𝐸) )

𝑃 (𝐸) ⋅ (1 + 1 
𝑃 (𝐸) ) 

= 𝑃 (𝐸 ∧𝐻)
𝑃 (𝐸) 

= 𝑃 (𝐻|𝐸) ,

we exclude them from further considerations. Note that these posteriors are equal for all prior probability function defined on ℍ.
We have thus defined 10 different ways (𝑃Bayes+IBE, and 𝑃IBE, for 5 different measures  : 𝐺𝑀𝑁,𝑂𝐶𝑀,𝑃𝐶𝑀,𝐿𝑅,𝑀𝐿) of 

setting posterior probabilities by applying IBE. We go on to compare these 10 methods with the traditional Bayesian way of obtaining 
the posterior by conditionalisation, 𝑃0.

The 5 explanation measures (the ) of current interest can be computed from the prior (the 𝑃 (𝐻) for 𝐻 ∈ℍ) and likelihoods (the 
𝑃 (𝐸|𝐻) for 𝐻 ∈ℍ) as follows. The prior is flat. So, 𝑃 (𝐻) = 𝑃 (𝐻𝑖) for all 𝐻,𝐻𝑖 ∈ℍ. Furthermore,

𝐿𝑅(𝐻,𝐸) = 𝑃 (𝐸|𝐻) 
𝑃 (𝐸|¬𝐻)

= 𝑃 (𝐸|𝐻) ⋅ 𝑃 (¬𝐻)
𝑃 (𝐸 ∧ ¬𝐻) 

= 𝑃 (𝐸|𝐻) ⋅ [1 − 𝑃 (𝐻)] ∑
𝐻𝑖∈ℍ⧵{𝐻} 𝑃 (𝐸|𝐻𝑖) ⋅ 𝑃 (𝐻𝑖)

𝑂𝐶𝑀 (𝐻,𝐸) = 𝑃 (𝐻 ∧𝐸)
𝑃 (𝐻 ∨𝐸)

= 𝑃 (𝐻 ∧𝐸) 
𝑃 (𝐻) + 𝑃 (𝐸 ∧ ¬𝐻)

= 𝑃 (𝐻) ⋅ 𝑃 (𝐸|𝐻) 
𝑃 (𝐻) +

∑
𝐻𝑖∈ℍ⧵{𝐻} 𝑃 (𝐻𝑖 ∧𝐸)

= 𝑃 (𝐻) ⋅ 𝑃 (𝐸|𝐻) 
𝑃 (𝐻) +

∑
𝐻𝑖∈ℍ⧵{𝐻} 𝑃 (𝐸|𝐻𝑖) ⋅ 𝑃 (𝐻𝑖)

𝑃𝐶𝑀 (𝐻,𝐸) = 𝑃 (𝐸|𝐻) ⋅ 𝑃 (𝐻|𝐸) = 𝑃 (𝐸|𝐻) ⋅ 𝑃 (𝐻 ∧𝐸)
𝑃 (𝐸) 

= 𝑃 (𝐸|𝐻)2 ⋅ 𝑃 (𝐻) ∑
𝐻𝑖∈ℍ 𝑃 (𝐻𝑖 ∧𝐸)

= 𝑃 (𝐸|𝐻)2 ⋅ 𝑃 (𝐻) ∑
𝐻𝑖∈ℍ 𝑃 (𝐸|𝐻𝑖) ⋅ 𝑃 (𝐻𝑖)

.

We will show in Section 3.1.3 that the other two explanation measures lead to posterior probabilities that are equal to the Bayesian 
posterior and thus trivially computable from the prior.

Before moving on, we briefly discuss properties of the approach suggested here. Following the spirit of the IBE approach, the 
posteriors calculated here are based on all the available evidence. Splitting the body of available evidence into multiple parts and 
updating piecemeal is thus undesirable, it will also produce, in general, results that depend on the way the evidence is split. Our 
approach thus differs in this respect from traditional Bayesian updating via conditionalisation but resembles an objective Bayesian 
approach via maximising entropy given all the available evidence [65,66].

We use a uniform prior over the space of hypothesis here, which reflects our lack of background knowledge. In other circumstances, 
background knowledge is available and can be plugged into our approach via a non-uniform prior.

3. Implementation

We next describe the implementation of our testing environment, beginning with the setup based on the ABM developed by Brock 
and Hommes for asset pricing [52]. We explain the model’s dynamics and parameter selection process based on prior validation 
literature. We then describe the evidence production process, which involves generating simulated time series and calculating Bayesian 
and inference to the best explanation (IBE) posteriors. Finally, we introduce two performance measures for assessing parameter 
approximation and forecast accuracy. Table A.1 provides a pseudo-code description of our implementation.

3.1. Set up

This section provides an overview of the key components in our setup. We employ the Brock and Hommes ABM to simulate 
asset pricing, focusing on parameter adjustments for realistic outcomes. We generate time series data, use first and second moments 
as evidence, and discretise the evidence space with a hexagonal tessellation. We then compute posterior probabilities for various 
hypotheses using Bayesian, IBE, and hybrid approaches.

3.1.1. The agent-based model and its parameters

For our testing purposes, we employed the closed-form ABM model developed by Brock and Hommes for asset pricing [52]. This 
model is well known in the literature as an early example of a class of ABMs that simulate the trading of assets on an artificial stock 
market by modelling the interactions of heterogeneous traders following various trading strategies.

Every strategy, 𝑠, has an associated trend-following component, 𝑔𝑠, and bias, 𝑏𝑠, both of which are real-valued parameters that 
are of particular interest in our investigation. The number of strategies, 𝑆 , can vary depending on the application. In line with 
previous work [25,52,67,68], we selected 𝑆 = 4. Thus, there are four trading strategies (BH4) in this model, each specified by two 
real parameters, 𝑔𝑖 and 𝑏𝑖 for 𝑖 ∈ {1,2,3,4}, where again 𝑔𝑖 represents trend-following and 𝑏𝑖 represents bias. The model dynamics 
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Table 1
Parameters specification for Setting 1 and Set-
ting 2 as in [25,28]. Note that in our experi-
ments 𝑔2 and 𝑏2 are the two free parameters.

Parameters Setting 1 Setting 2 
(𝑔1, 𝑏1) (0,0) (0,0)
(𝑔2, 𝑏2) (0.9,0.2) (−0.7,−0.4)
(𝑔3, 𝑏3) (0.9,−0.2) (0.5,0.3)
(𝑔4, 𝑏4) (1.01,0) (1.01,0)

can be expressed via the following system of coupled equations, where the main component 𝑥𝑡+1 = 𝑝𝑡+1 − 𝑝∗
𝑡+1, i.e., the deviation of 

the asset price 𝑝𝑡 from its benchmark fundamental 𝑝∗
𝑡

is:

𝑥𝑡+1 =
1 
𝑅

[
𝑆∑
𝑠=1 

𝑛𝑠,𝑡+1
(
𝑔𝑠𝑥𝑡 + 𝑏𝑠

)
+ 𝜖𝑡+1

]
, 𝜖𝑡 ∼ (0, 𝜎2), (4)

𝑛𝑠,𝑡+1 =
exp

[
𝛽
(
𝑥𝑡 −𝑅𝑥𝑡−1

)(
𝑔𝑠𝑥𝑡−2 + 𝑏𝑠 −𝑅𝑥𝑡−1

)]
𝑆∑

𝑠′=1
exp

[
𝛽
(
𝑥𝑡 −𝑅𝑥𝑡−1

)(
𝑔𝑠′𝑥𝑡−2 + 𝑏𝑠′ −𝑅𝑥𝑡−1

)] . (5)

The parameters 𝑅, 𝛽 and 𝜎 represent respectively: (a) the gross return, (b) the intensity of choice measuring how fast agents switch 
between different prediction strategies, and (c) the common, constant conditional variance (namely 𝜎2) that all traders are assumed 
to have. We follow [25] setting their values: (𝑅,𝛽, 𝜎) = (1.01,10,0.04).

We adopt the simulation environment outlined in [28, § 4.2, 4.2.1 and 4.2.2], which defines two settings by specifying parameter 
sets as described in Table 1. The two settings specified in the table were chosen to conform to previous literature. Our implementation 
employs the Python package Black-it [69].

We here took 𝑔2 and 𝑏2 as free parameters each ranging over the unit interval following [25,28]. Exploratory simulations showed 
that most parameter values for 𝑔2 and 𝑏2 produced (average) time series that were in line with how asset prices tend to behave, 
however some (combinations of parameters) produced outliers. We hence constrained both parameters to the range [0.1,0.9], which 
produced the desired effects of removing the outliers and being more in line with observed asset prices, see Fig. 1.

Discretising the interval [0.1,0.9] into steps of 0.05, we obtained 172 = 289 pairs of parameters, where each pair represents a 
trading strategy. For both settings (fixed parameters 𝑏1, 𝑔1, 𝑏3, 𝑔3, 𝑏4, 𝑔4) we thus considered 289 competing hypotheses.4

3.1.2. Evidence production

The following procedure was carried out for Setting 1 and Setting 2.
We sampled from every hypothesis 10,000 times (a total of 104 ⋅289 = 2,890,000 time series) for 200 timesteps each. As explained 

in Section 2.3, we here considered the first and second moment of the time series as the evidence, see Fig. 2 for sample time series.
For every observed time series we computed the average asset price over the 200 timesteps. For every hypothesis, 𝐻 ∈ ℍ, we 

then averaged the 10,000 averaged asset prices obtaining an average first moment. Furthermore, for every observed time series we 
computed its second moment. For every hypothesis, 𝐻 ∈ ℍ, we then averaged the 10,000 second moments obtaining an average 
second moment.

These averaged first and second moments fell into the intervals [−1,19] and respectively [0,140], cf. Fig. 1. The space of average 
first and second order moments, 𝔼, was then covered by a hexagonal tessellation of 566,705 tiles. We could thus compute likelihoods 
for all hypotheses 𝐻 ∈ℍ and all potential observations, 𝐸 ∈ 𝔼, see Fig. 3 for an example.

In order to obtain a single observed event 𝐸 ∈ 𝔼 on which to update, we calculated, for a fixed hypothesis 𝐻 , the outcome with 
maximal likelihood arg sup𝐸∈𝔼 𝑃 (𝐸|𝐻) =∶𝐸∗, cf. Fig. 4. There we plot the likelihoods 𝑃 (𝐸∗|𝐻) for five different 𝐻 ∈ℍ in Setting 
2. So, 𝐸 denotes a potential observation and 𝐸∗ the actual observation.

3.1.3. Updating

For Setting 1 and Setting 2 we chose these five pairs of parameters, 𝑔2, 𝑏2, representing the actual hypothesis, 𝐻∗ : (0.25,0.25), 
(0.25,0.75), (0.5,0.5), (0.75,0.25) and (0.75,0.75). For each of these five pairs parameters, we used the outcomes of the simulations 
described in Section 3.1.2 as evidence. For these outcomes we also computed the likelihoods of the actual observations.

For Setting 1 and Setting 2, for all  ∈ {𝐿𝑅,𝑂𝐶𝑀,𝑃𝐶𝑀} and all five pairs of parameters we computed the two types posterior 
probabilities 𝑃post ∶ℍ→ [0,1] described by (2) and (3)

𝑃IBE, (𝐻) ∶= (𝐻,𝐸∗) ∑
𝐻𝑖∈ℍ (𝐻𝑖,𝐸

∗)

4 This set-up entails that we only compare Brock and Hommes models with each other. We thus exclude from the beginning the possibility of a “true” state of the 
world, which is not a Brock and Hommes model.
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Fig. 1. Scatter plot of first (𝑋-axis) and second (𝑌 -axis) moments of time series in the Brock and Hommes model. Every blue dot represents an average of 10,000 time 
series for 200 timesteps each, for a different pair of parameters (𝑔2, 𝑏2). Top row: (𝑔2, 𝑏2) ∈ [0,1]2 , lower row: (𝑔2, 𝑏2) ∈ [0.1,0.9]2 , left: Setting 1, right: Setting 2. The 
plots in the lower row show how restricting the pair (𝑔2 , 𝑏2) to [0.1,0.9]2 leads to more reasonable asset prices: a five-fold decrease in maximal average first moments 
and a 35-fold decrease in maximal average second moments. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Two examples of simulated target time-series originating from the Brock and Hommes model in Setting 1, where 𝑦(𝑡) = 𝑥𝑡+1 for 𝑡≥ 1, see Equation (4). 
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Fig. 3. Two examples of sampling first (𝑥-axis) and second (𝑦-axis) moments in the tessellation. a) Setting 1 with (𝑔2, 𝑏2) = (0.8,0.15), and b) Setting 2 (lower panel) 
with (𝑔2 , 𝑏2) = (0.7,0.75). The numbers indicate how many of the 10,000 observed time series have a first and second moment in a tile, tiles without a time series are 
not labelled.

𝑃Bayes+IBE, (𝐻) ∶ = 𝑃 (𝐻) ⋅ 𝑃 (𝐸∗|𝐻) + (𝐻,𝐸∗) ∑
𝐻𝑖∈ℍ 𝑃 (𝐻𝑖) ⋅ 𝑃 (𝐸∗|𝐻𝑖) + (𝐻𝑖,𝐸

∗)
.

We also computed the Bayesian posterior 𝑃0 for all these cases.
Since the prior is flat, the maximum likelihood posteriors and the two normalised Good & McGrew posteriors all agree with the 

Bayesian posterior. Unlike the Most Probable Explanation posteriors, these posteriors are, in general, different, from the Bayesian 
posterior. These measures might be of interest in cases with a non-uniform prior.
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Fig. 4. Likelihoods of the observed outcome with maximal likelihood: for a fixed 𝐻∗ we computed the outcome with maximal likelihood arg sup𝐸∈𝔼 𝑃 (𝐸|𝐻) =∶ 𝐸∗ . 
We then plotted 𝑃 (𝐸∗|𝐻) for all 𝐻 ∈ℍ. All five plots are for Setting 2 for 𝐻∗ given by 𝑔2 (𝑥-axes) and 𝑏2 (𝑦-axes) for varying (𝑔2, 𝑏2).

𝑃IBE,𝑀𝐿
(𝐻) = 𝑃 (𝐸|𝐻) ∑

𝐻𝑖∈ℍ 𝑃 (𝐸|𝐻𝑖)

= 𝑃 (𝐸 ∧𝐻)
𝑃 (𝐻) 

⋅
𝑃 (𝐻) ∑

𝐻𝑖∈ℍ 𝑃 (𝐸 ∧𝐻𝑖)

= 𝑃 (𝐸 ∧𝐻)
𝑃 (𝐸) 

= 𝑃 (𝐻|𝐸)
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𝑃Bayes+IBE,𝑀𝐿
(𝐻) = 𝑃 (𝐻) ⋅ 𝑃 (𝐸|𝐻) + 𝑃 (𝐸|𝐻) ∑

𝐻𝑖∈ℍ 𝑃 (𝐻𝑖) ⋅ 𝑃 (𝐸|𝐻𝑖) + 𝑃 (𝐸|𝐻𝑖)

= (𝑃 (𝐻) + 1) ⋅ 𝑃 (𝐸|𝐻) ∑
𝐻𝑖∈ℍ(𝑃 (𝐻𝑖) + 1) ⋅ 𝑃 (𝐸|𝐻𝑖)

= 𝑃 (𝐸|𝐻) ∑
𝐻𝑖∈ℍ 𝑃 (𝐸|𝐻𝑖)

= 𝑃 (𝐸 ∧𝐻) ⋅ 𝑃 (𝐻) 
𝑃 (𝐻) ⋅

∑
𝐻𝑖∈ℍ 𝑃 (𝐸 ∧𝐻𝑖)

= 𝑃 (𝐸 ∧𝐻)
𝑃 (𝐸) 

= 𝑃 (𝐻|𝐸)

𝑃IBE,𝐺𝑀𝑁
(𝐻) =

𝑃 (𝐸|𝐻)
𝑃 (𝐸) ∑

𝐻𝑖∈ℍ𝑖

𝑃 (𝐸|𝐻𝑖)
𝑃 (𝐸) 

= 𝑃 (𝐸|𝐻) ∑
𝐻𝑖∈ℍ𝑖

𝑃 (𝐸|𝐻𝑖)
= 𝑃IBE,𝑀𝐿

(𝐻)

= 𝑃 (𝐻|𝐸)

𝑃Bayes+IBE,𝐺𝑀𝑁
(𝐻) =

𝑃 (𝐻) ⋅ 𝑃 (𝐸|𝐻) + 𝑃 (𝐸|𝐻)
𝑃 (𝐸) ∑

𝐻𝑖∈ℍ

[
𝑃 (𝐻𝑖) ⋅ 𝑃 (𝐸|𝐻𝑖) +

𝑃 (𝐸|𝐻𝑖)
𝑃 (𝐸) 

]
=

𝑃 (𝐸|𝐻)
(
𝑃 (𝐻) + 1 

𝑃 (𝐸)

)
∑

𝐻𝑖∈ℍ 𝑃 (𝐸|𝐻𝑖)
(
𝑃 (𝐻𝑖) +

1 
𝑃 (𝐸)

) = 𝑃 (𝐻|𝐸) .

We hence exclude these measures from further considerations in this paper.

3.2. Performance measures

Next, we were interested in determining how well these posteriors performed. We therefore evaluated how well the posteriors 
managed to capture the five hypotheses specified by pairs of parameters 𝑔2, 𝑏2. We used two different measures.

3.2.1. Measure 1: Parameters – distance on ℍ
Firstly, we determined how well the posteriors approximate the true parameter values. This was achieved by computing the 

Euclidean distance, which is closely related to the Brier Score [70], between a posterior probability of hypotheses 𝑃post ∶ ℍ→ [0,1]
(as defined by (2) and (3) as well as 𝑃0) and the probability, 𝑃 ∗, assigning one to the true parameter values and zero to all other 
parameter values. Recall that 𝑃post depends on the actual observation and thus depends on the setting and the parameter pair 𝑔2 , 𝑏2. 
Denoting the true hypothesis be 𝐻∗ we have,

𝑑1(𝑃post, 𝑃
∗) ∶ =

√∑
𝐻∈ℍ

(𝑃post(𝐻) − 𝑃 ∗(𝐻))2

=
√

(1 − 𝑃post(𝐻∗))2 +
∑

𝐻∈ℍ⧵{𝐻∗}
𝑃post(𝐻)2 .

3.2.2. Measure 2: Forecasts – distance on 𝔼
The measure 𝑑1 is invariant under all permutations of hypotheses 𝜎 that map 𝐻∗ onto itself, 𝜎(𝐻∗) =𝐻∗. This is undesirable in 

some sense, since the hypotheses, which are close to 𝐻∗ in an Euclidean sense, tend to output similar time series, whereas hypotheses 
at the extremes of the hypothesis space tend to output time series that do not look at all like those of 𝐻∗ .

Secondly, we also evaluated how well the posteriors approximate the forecasts of 𝐻∗. We thus determined the posterior probability 
of an 𝐸 ∈ 𝔼 as the product of the likelihood of 𝐸 multiplied by the posterior of 𝐻 ,

𝑃post(𝐸) =
∑
𝐻∈ℍ

𝑃post(𝐻) ⋅ 𝑃 (𝐸|𝐻) .

The assumption of a uniform prior, 𝑃 (𝐻) = constant, ensures that the conditional probability 𝑃 (𝐸|𝐻) is well-defined.5

We then computed the Euclidean distance between these posterior probabilities and the likelihoods of 𝐸 given 𝐻∗ varying 𝐸 ∈ 𝔼. 
This distance is a measure of how well the predictions of the posteriors agree with the predictions of 𝐻∗ . We have,

5 Furthermore, we note that a normal Bayesian posterior probability of an elementary event is either zero or one. In our setting, the posterior probability is initially 
defined on ℍ and serves as our new prior over ℍ, which can be used to define a “posterior” probability of 𝐸 ∈ 𝔼 in the way specified above.
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𝑑2(𝑃post, 𝑃
∗) ∶ =

√∑
𝐸∈𝔼

(𝑃 ∗(𝐸|𝐻∗) − 𝑃post(𝐸))2

=

√√√√√∑
𝐸∈𝔼

(
𝑃 (𝐸|𝐻∗) −

∑
𝐻∈ℍ

𝑃post(𝐻) ⋅ 𝑃 (𝐸|𝐻)

)2

.

Recall from § 2.4 that prior probabilities 𝑃 are defined as priors over the parameter space ℍ and conditional probabilities (likelihoods) 
𝑃 (𝐸|𝐻). § 3.1.2 explains that these likelihoods depend on 𝐸 and ℍ but not on 𝑃 . Thus, 𝑃 ∗(𝐸|𝐻∗) = 𝑃 (𝐸|𝐻∗).

We refrain from defining a third measure, which measures distances of probabilities on ℍ × 𝔼. Such a measure would have to 
compare – and trade off – distances between parameter values and forecasts, since we did not wish to enter the treacherous grounds 
of such comparisons and trade-offs, cf. [71, p. 249].

3.2.3. Most likely hypotheses

One could argue that the spirit of IBE is to adopt a single hypothesis after receiving information. We have so far defined posterior 
probabilities and described how to measure their performances. Instead, one might want to (defeasibly!) infer the hypothesis with 
largest posterior probability. We thus computed the hypotheses with the largest posterior probability and determined on which 
hypothesis a posterior puts the most probability, see Tables 6 and 7.6

4. Results and interpretation

We now report and interpret the results of our simulations for the two settings, the two measures and the five parameter pairs 
(𝑔2, 𝑏2), a total of 20 scenarios.

4.1. Results

Tables 2–5 report the performance of the studied posteriors for Settings 1-2 and Measure 1-2, respectively. In all Tables, best-
performing posteriors are highlighted in yellow, posteriors performing better than the Bayesian posterior are highlighted in orange, 
and posteriors performing worse than the Bayesian posterior are coloured blue. Our noteworthy findings are as follows.

Performance Our most important finding is that there was no posterior which performs best in all scenarios. While there was no 
posterior that always performed best, the posterior 𝑃𝑃𝐶𝑀 performed best in 15 out of 20 scenarios. The Bayesian posterior, often 
considered the gold-standard of rationality, performed best in 3 out of 20 scenarios. The PCM + IBE posterior as well as the LR 
posteriors performed best in one scenario. There was no scenario in which an OCM posterior performed best.

IBE vs. Bayes Overall, the IBE posteriors put forward in (3) performed better than the Bayesian posterior.
Mixing Bayes and IBE There was only one scenario in which a Bayes + IBE posterior performed better than all other posteriors, 

see Table 4. In all other cases, the Bayes + IBE Posteriors never outperformed the Bayesian and the respective IBE posterior. Instead, 
these mixed posteriors were closely aligned with their respective IBE posterior.

Bayes The Bayesian posterior did not outperform a single posterior in a scenario in Setting 2 according to Measure 1, see Table 4. 
Using Measure 1 instead, the Bayesian posterior only outperformed the PCM posteriors in one scenario.

ML, MPE and GMN The ML, MPE and GMN posteriors are all equal to the Bayesian posteriors and are hence not reported in the 
tables.

Measure The choice of a measure is relevant to the relative performance of posteriors. Tables 2 and 3 differ only in terms of the 
performance measure of posteriors as do Tables 4 and 5, however we did find differences in measured performances highlighted by 
different colourings in these tables. These findings highlight the importance of employing more than one evaluation methodology. 
Had we only considered Measure 1 and Setting 2, we would have concluded that the Bayesian approach is clearly worst and PCM is 
the best IBE approach, see Table 4. After carrying out multiple assessments, a different and more varied picture emerges.

Tables 6 and 7 show that in both settings and for all choices of 𝐻∗ all posteriors assign the same hypothesis 𝐻 the greatest 
probability. Only in the case of (0.75,0.75) do they assign the greatest probability to 𝐻∗. The pure PCM posterior always assigns the 
maximal probability to the a posterior most probable hypothesis, for every setting and every choice of 𝐻∗ there exists a hypothesis 
𝐻max ∈ℍ that has maximal posterior probability for every posterior probability, 𝐻max = arg sup𝐻∈ℍ 𝑃post(𝐻), and 𝑃IBE,𝑃𝐶𝑀

(𝐻max) >
𝑃post(𝐻max) for all posteriors 𝑃post ≠ 𝑃IBE,𝑃𝐶𝑀

.

4.2. Interpretation

Our results suggest that sweeping claims trumpeting the superiority of one approach over the other are not justified.
The relative performances of posteriors were sensitive to the setting (background parameters, (𝑔1 , 𝑏1, 𝑔3, 𝑏3, 𝑔4, 𝑏4)), the measure 

used to evaluate performance and the true state of the world to be learned (𝑔2, 𝑏2). Furthermore, we used an Euclidean distance 
measure to assess performances of posterior probabilities. While Euclidean distance measure are often the measure of choice there is 
no means the only distance measure one could consider [65,72–75].

6 This evaluation has been suggested to us by Sébastien Destercke.
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Table 2
Measure 1: Setting 1 For (𝑔2, 𝑏2) =
(0.25,0.25), (0.25,0.75), (0.75,0.75) the posterior 
𝑃𝑃𝐶𝑀 outperforms all other posteriors (in terms of 
minimising 𝑑1). For the other two parameter pairs 
(𝑔2, 𝑏2) = (0.5,0.5), (0.75,0.25) the Bayesian posterior, 
𝑃𝑀𝐿 and 𝑃𝑀𝑃𝐸 and their combinations outperform all 
other posteriors. 
All posteriors performed worst on the parame-
ters (𝑔2, 𝑏2) = (0.5,0.5) and best on the parameters 
(𝑔2, 𝑏2) = (0.75,0.75). While there is in general not 
much difference in performance between posteriors 
(for fixed (𝑔2, 𝑏2)), the largest absolute differences 
obtain for the parameter values (𝑔2, 𝑏2) = (0.75,0.75)
on which all posteriors perform best.

Bayes

𝐻∗ Bayes 
(0.25, 0.25) 0.97421 
(0.25, 0.75) 0.97718 
(0.50, 0.50) 1.39253 
(0.75, 0.25) 0.99526 
(0.75, 0.75) 0.76698 

Bayes + IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) 0.97386 0.97395 0.96496 
(0.25, 0.75) 0.97692 0.97700 0.96971 
(0.50, 0.50) 1.39260 1.39258 1.39611 
(0.75, 0.25) 0.99547 0.99542 1.00417 
(0.75, 0.75) 0.73453 0.76543 0.67806 
IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) 0.97386 0.97395 0.96407 
(0.25, 0.75) 0.97692 0.97700 0.96888 
(0.50, 0.50) 1.39260 1.39258 1.39679 
(0.75, 0.25) 0.99547 0.99542 1.00572 
(0.75, 0.75) 0.73453 0.76542 0.67690 

Our results provide further support for previous works by Glass and co-workers highlighting the performance of PCM (“PCM 
performs much better than ML and LR in almost all cases and better than OCM for larger sample sizes” [7, p. 191] and “PCM seems 
preferable to ML as a measure for abductive inference” [8, p. 315]) and the superiority of best explanation posteriors over the Bayesian 
posterior (“explanationist updating out-performs Bayesian updating on all desirable counts: it takes one, in general, faster to the truth, 
it minimizes, in general, one’s Brier scores, and it leads, in general, to a lower average Brier score” [30, p. 566]), see also [31]. We are 
thus led to believe that intertwining Bayesian and IBE can be technically fruitful and provide posterior probabilities with desirable 
characteristics. There seems to be ample scope for further studies of intertwining IBE and Bayesian ideas.

While PCM posteriors outperformed the other posteriors most of the time in our simulations, we also found scenarios in which 
the PCM posterior performed worst (Table 2). It thus not only the case that the apparent front-runner does not always come first, it 
sometimes even comes last.

The approach of mixing the best of both worlds by forming Bayes + IBE Posteriors did not have the desired result of a performance 
increase. Instead, these mixed posteriors closely followed their respective IBE posteriors. We believe that this is because in our simu-
lation environment the absolute values of the explanations, the  , have greater absolute values than the Bayesian part (Equation (2)), 
since the weighting involves the prior probability of 𝐻 , which is 1∕289. Table 3 shows that the posteriors defined by Equation (2)
and Equation (3) are different.

In every fixed case, all posteriors assign the same hypothesis 𝐻 ∈ ℍ the greatest probability (Tables 6 and 7). In a sense they 
hence all perform equally well as an inference to the best explanation procedure.

5. Conclusions

Previous works assessed versions of IBE to determine posterior probabilities using synthetic data and found evidence for the 
superiority of IBE approaches over the Bayesian approach.

We found in our simulations that the best-performing posterior in any given scenario is typically performing worst in other 
scenarios. This raises the possibility that a general method for obtaining posterior probabilities that is guaranteed to deliver close to 
optimal performances might not exist. This would be especially detrimental for applications in which there is normally no way to 
assess a priori the performance of posterior probabilities. Post hoc assessments of posteriors may provide some guidance for future 
applications, but then hindsight is 20/20 and of little use prior to making important decisions.
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Table 3
Measure 2: Setting 1: For (𝑔2, 𝑏2) =
(0.25,0.25), (0.25,0.75), (0.5,0.5), (0.75,0.75) the 
posterior 𝑃𝑃𝐶𝑀 outperforms all other posteriors (in 
terms of minimising 𝑑2). For the other parameter 
pairs (𝑔2, 𝑏2) = (0.75,0.25) the Bayesian posterior, 
𝑃𝑀𝐿 and 𝑃𝑀𝑃𝐸 and their combinations outperform 
all other posteriors. 
All posteriors but the PCM measures performed worst 
on the parameters (𝑔2, 𝑏2) = (0.5,0.5) and best on the 
parameters (𝑔2, 𝑏2) = (0.75,0.75). The PCM measures 
performed worst on (𝑔2, 𝑏2) = (0.75,0.25) and best on 
(𝑔2, 𝑏2) = (0.75,0.75). While there is in general not 
much difference in performance between posteriors 
(for fixed (𝑔2, 𝑏2)), the largest absolute differences 
obtain for the parameter values (𝑔2, 𝑏2) = (0.25,0.25)
on which all posteriors perform worst.

Bayes

𝐻∗ Bayes 
(0.25, 0.25) 0.11971 
(0.25, 0.75) 0.07728 
(0.50, 0.50) 0.05067 
(0.75, 0.25) 0.07241 
(0.75, 0.75) 0.04521 

Bayes + IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) 0.11873 0.11899 0.08899 
(0.25, 0.75) 0.07678 0.07694 0.06106 
(0.50, 0.50) 0.05029 0.05040 0.03987 
(0.75, 0.25) 0.07298 0.07283 0.09453 
(0.75, 0.75) 0.04180 0.04503 0.03492 
IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) 0.11873 0.11898 0.08529 
(0.25, 0.75) 0.07678 0.07693 0.05902 
(0.50, 0.50) 0.05029 0.05040 0.03895 
(0.75, 0.25) 0.07298 0.07284 0.09798 
(0.75, 0.75) 0.04180 0.04503 0.03479 

From a foundational point of view, the trend that the Bayesian approach, long and widely held to be a gold standard of rationality, 
is outperformed continues. It is not particularly surprising that there are some instances in which other posteriors outperform the 
Bayesian posterior, since gerrymandering a posterior that is (very close to) the actual state of the world is always possible and such 
posteriors tend to outperform all other (including the Bayesian) posteriors. However, the approach that has been shown to outperform 
Bayesian posterior is based on axiomatic foundations, and hence it does not seem reasonable to explain the performance increase 
simply as “adhocness”.

It is, of course, possible to trace the performance increase to different axiomatic foundations and to assess, on whatever grounds, 
that the axiomatic foundations for PCM are better than those for the Bayesian approach. We are sceptical that such assessments can 
shed much light on the observed performance increase. We are instead wondering whether there are, in our view, more illuminating 
reasons according to which IBE posteriors outperform the Bayesian approach in a (growing) number of simulation environments.

While we have made some progress with evaluating different versions of IBE in this paper, we surely did not (aim to) close the 
debate. Since i) the quest for determining the best measure of explanation (for a given purposes) on a priori considerations continues 
[76,77] and further promising measures may be found, ii) we only tested on one (set of) ABMs and it is not necessarily true that 
comparable results will obtain for other ABMs and iii) none of the evaluations carried out so far have used real-world data, however, 
arguably, the real challenge is the real world and not a controlled synthetic environment, see [78–80] for comparisons of various 
forms of Bayesian posteriors (such as imprecise and objective posteriors).

In future work, we plan to assess different versions of IBE with respect to each other and a Bayesian approach on real-world 
data. Bayesian methods have been indeed suggested and applied for empirical validations and estimations of ABM, e.g., [81–83]. 
Other possible avenues of future research are i) ABMs with large parameter spaces, which may require techniques to reduce the 
dimensionality, such as principal component analysis [84,85], ii) the speed with which different updating methods converge to the 
truth, if they do converge, iii) the search for reasons for the (relative) performances of different updating procedures and iv) the 
use of background knowledge resulting in non-uniform priors. A non-uniform prior can also shed light on the maximum likelihood 
posteriors which are equal to the Bayesian posterior in our simulations due to the uniform prior.
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Table 4
Measure 1: Setting 2 For (𝑔2, 𝑏2) =
(0.25,0.25), (0.25,0.75), (0.75,0.25), (0.75,0.75) the 
posterior 𝑃𝑃𝐶𝑀 outperforms all other posteriors (in 
terms of minimising 𝑑1). For the other parameter 
pair (𝑔2, 𝑏2) = (0.5,0.5) the Bayes + 𝑃𝑃𝐶𝑀 posterior 
outperforms all other posteriors. This is one of the 
few instances in which a Bayes + IBE Posterior 
outperforms both the Bayesian and the IBE posterior 
(on the level of precision in this table) – other such 
instances are (𝑔2, 𝑏2) = (0.25,0.25) and the ML and 
MPE posteriors. Since no posteriors performs worse 
than the Bayesian posterior there is no blue-coloured 
number. 
All posteriors performed worst on the parameters 
(𝑔2, 𝑏2) = (0.5,0.5) and best on the parameters 
(𝑔2, 𝑏2) = (0.75,0.75). While there is in general not 
much difference in performance between posteriors 
(for fixed (𝑔2, 𝑏2)), the largest absolute differences 
obtain for the parameter values (𝑔2, 𝑏2) = (0.75,0.75)
on which all posteriors perform best.

Bayes

𝐻∗ Bayes 
(0.25, 0.25) 0.98879 
(0.25, 0.75) 0.94324 
(0.50, 0.50) 1.38050 
(0.75, 0.25) 0.93604 
(0.75, 0.75) 0.70110 

Bayes + IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) 0.98877 0.98877 0.98795 
(0.25, 0.75) 0.94232 0.94245 0.93442 
(0.50, 0.50) 1.38028 1.38030 1.37963 
(0.75, 0.25) 0.93475 0.93498 0.92564 
(0.75, 0.75) 0.65103 0.69028 0.60633 
IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) 0.98877 0.98877 0.98785 
(0.25, 0.75) 0.94232 0.94243 0.93412 
(0.50, 0.50) 1.38028 1.38030 1.37973 
(0.75, 0.25) 0.93475 0.93496 0.92541 
(0.75, 0.75) 0.65103 0.69023 0.60544 
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Table 5
Measure 2: Setting 2 For (𝑔2, 𝑏2) =
(0.25,0.25), (0.25,0.75), (0.75,0.25), (0.75,0.75) the 
posterior 𝑃𝑃𝐶𝑀 outperforms all other posteriors (in 
terms of minimising 𝑑2). For the other parameter pair 
(𝑔2, 𝑏2) = (0.5,0.5) the LR posteriors outperform all 
other posteriors. 
All posteriors performed worst on the parameters 
(𝑔2, 𝑏2) = (0.5,0.5) and best on the parameters 
(𝑔2, 𝑏2) = (0.75,0.75). While there is in general not 
much difference in performance between posteriors 
(for fixed (𝑔2, 𝑏2)), the largest absolute differences 
obtain for the parameter values (𝑔2, 𝑏2) = (0.75,0.75)
on which all posteriors perform worst.

Bayes

𝐻∗ Bayes 
(0.25, 0.25) 0.22311 
(0.25, 0.75) 0.17717 
(0.50, 0.50) 0.27547 
(0.75, 0.25) 0.19708 
(0.75, 0.75) 0.14380 

Bayes + IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) 0.22226 0.22238 0.18720 
(0.25, 0.75) 0.17136 0.17215 0.11534 
(0.50, 0.50) 0.27529 0.27531 0.29453 
(0.75, 0.25) 0.19313 0.19385 0.16403 
(0.75, 0.75) 0.13401 0.14167 0.12580 
IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) 0.22226 0.22228 0.18131 
(0.25, 0.75) 0.17136 0.17201 0.11315 
(0.50, 0.50) 0.27529 0.27531 0.29668 
(0.75, 0.25) 0.19313 0.19378 0.16326 
(0.75, 0.75) 0.13401 0.14166 0.12564 

Table 6
Setting 1 Hypotheses with largest posterior probabilities, in terms of (𝑔2, 𝑏2), and their re-
spective probability.

Bayes

𝐻∗ Bayes

(0.25, 0.25) (0.10, 0.25), 0.04901
(0.25, 0.75) (0.20, 0.80), 0.03906
(0.50, 0.50) (0.20, 0.70), 0.03498
(0.75, 0.25) (0.10, 0.45), 0.03751
(0.75, 0.75) (0.75, 0.75), 0.32948

Bayes + IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) (0.10, 0.25), 0.05021 (0.10, 0.25), 0.04989 (0.10, 0.25), 0.08889
(0.25, 0.75) (0.20, 0.80), 0.03960 (0.20, 0.80), 0.03943 (0.20, 0.80), 0.05701
(0.50, 0.50) (0.20, 0.70), 0.03542 (0.20, 0.70), 0.03529 (0.20, 0.70), 0.05103
(0.75, 0.25) (0.10, 0.45), 0.03807 (0.10, 0.45), 0.03793 (0.10, 0.45), 0.05795
(0.75, 0.75) (0.75, 0.75), 0.36487 (0.75, 0.75), 0.33125 (0.75, 0.75), 0.43760
IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) (0.10, 0.25), 0.05021 (0.10, 0.25), 0.04990 (0.10, 0.25), 0.09431
(0.25, 0.75) (0.20, 0.80), 0.03960 (0.20, 0.80), 0.03944 (0.20, 0.80), 0.05943
(0.50, 0.50) (0.20, 0.70), 0.03542 (0.20, 0.70), 0.03529 (0.20, 0.70), 0.05346
(0.75, 0.25) (0.10, 0.45), 0.03807 (0.10, 0.45), 0.03793 (0.10, 0.45), 0.06101
(0.75, 0.75) (0.75, 0.75), 0.36487 (0.75, 0.75), 0.33126 (0.75, 0.75), 0.43911
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Table 7
Setting 2 Hypotheses with largest posterior probabilities and their respective probability.

Bayes

𝐻∗ Bayes

(0.25, 0.25) (0.25, 0.20), 0.02232
(0.25, 0.75) (0.35, 0.65), 0.09581
(0.50, 0.50) (0.20, 0.75), 0.09398
(0.75, 0.25) (0.65, 0.30), 0.11812
(0.75, 0.75) (0.75, 0.75), 0.41796

Bayes + IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) (0.25, 0.20), 0.02242 (0.25, 0.20), 0.02240 (0.25, 0.20), 0.02697
(0.25, 0.75) (0.35, 0.65), 0.09767 (0.35, 0.65), 0.09741 (0.35, 0.65), 0.11748
(0.50, 0.50) (0.20, 0.75), 0.09673 (0.20, 0.75), 0.09634 (0.20, 0.75), 0.13049
(0.75, 0.25) (0.65, 0.30), 0.12309 (0.65, 0.30), 0.12216 (0.65, 0.30), 0.17245
(0.75, 0.75) (0.75, 0.75), 0.47083 (0.75, 0.75), 0.42974 (0.75, 0.75), 0.53227
IBE Posteriors

𝐻∗ LR OCM PCM 
(0.25, 0.25) (0.25, 0.20), 0.02242 (0.25, 0.20), 0.02242 (0.25, 0.20), 0.02787
(0.25, 0.75) (0.35, 0.65), 0.09767 (0.35, 0.65), 0.09746 (0.35, 0.65), 0.11845
(0.50, 0.50) (0.20, 0.75), 0.09673 (0.20, 0.75), 0.09641 (0.20, 0.75), 0.13238
(0.75, 0.25) (0.65, 0.30), 0.12310 (0.65, 0.30), 0.12224 (0.65, 0.30), 0.17480
(0.75, 0.75) (0.75, 0.75), 0.47083 (0.75, 0.75), 0.42980 (0.75, 0.75), 0.53348

Germany) for helpful discussions. 
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Appendix A

Table A.1

Step by step pseudo code detailing the implementation of our simulations.

Step Task Description

1 Initialise Model 
Parameters

- Define number of strategies 𝑆 = 4. 
- Initialise parameters 𝑔𝑠 and 𝑏𝑠 for all strategies 𝑠. 
- Set global parameters 𝑅,𝛽, 𝜎, using pre-defined values: (𝑅,𝛽, 𝜎) = (1.01,10,0.04).

2 Setting Simulation 
Environment

- Parameters: 𝑔2, 𝑏2 ∈ [0.1,0.9] generate set of hypothesis, ℍ. 
- Initialise parameter values from Table 1 for Setting 1 and Setting 2. 
- Do all of the following for Setting 1 and Setting 2.

3 Compute Time 
Series

- For every hypothesis 𝐻 ∈ℍ, generate 10,000 time series, 200 time steps each.

4 Compute First and 
Second Moments

- For every time series, compute the average of asset prices (first moment) over 200 time steps. 
- For every time series, compute the variance (second moment) over 200 time steps.

5 Tessellation and 
Likelihoods

- Cover the space spanned by first and second moments with a hexagonal tessellation. 
- For every hypothesis 𝐻 and every tile of the tessellation, calculate the frequency of time series with first and second 
moments being within this tile.

6 Evidence - Define five actual hypotheses 𝐻∗ given by: (0.25,0.25), (0.25,0.75), (0.5,0.5), (0.75,0.25) and (0.75,0.75). 
- Do all of the following for all 𝐻∗. 
- For every 𝐻∗ compute the tile 𝐸∗ with greatest likelihood.

7 Posteriors - For every hypothesis 𝐻 ∈ℍ, compute the Bayesian posterior 𝑃Bayes(𝐻|𝐸∗). 
- For every hypothesis 𝐻 ∈ℍ, compute the IBE posterior 𝑃IBE(𝐻|𝐸∗). 
- For every hypothesis 𝐻 ∈ℍ, compute the Bayes + IBE posterior 𝑃Bayes+IBE (𝐻|𝐸∗).

8 Parameter 
Approximation 
(Measure 1)

- For all posteriors, calculate the Euclidean distance, 𝑑1, to the true posterior given by 𝑃 (𝐻∗) = 1.

9 Forecast 
Accuracy 
(Measure 2)

- For all posteriors, calculate the probability of every tile, 𝑃post(𝐸). 
- For all posteriors, calculate the Euclidean difference, 𝑑2, between the 𝑃post(𝐸) and the 𝑃 (𝐸|𝐻∗).

10 Greatest 
Probabilities

- For every posterior, compute the tile with the greatest posterior probability and compute this posterior probability.
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Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ijar.2025.109388. 

Data availability

All data used in this study is publicly available at the specified websites. Computer code used in this study is either publicly 
available or attached.
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