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SUMMARY

In the dorsolateral geniculate nucleus (dLGN) of the thalamus, stimulus-driven signals combine with modu-

latory inputs such as corticothalamic (CT) feedback and behavioral state, but their impact in shaping dLGN 

activity is debated. We recorded extracellular responses in the dLGN of mice viewing a movie stimulus, while 

photosuppressing CT feedback and tracking locomotion and pupil size. Using generalized linear models fit to 

single neuron responses, we found that including CT feedback and behavioral state improved model predic-

tions, especially for a subpopulation of neurons poorly responsive to the movie. Intriguingly, the impact of CT 

feedback was stronger without a patterned visual stimulus. Finally, for neurons sensitive to CT feedback, vi-

sual stimuli could be more easily discriminated when CT feedback was suppressed. Together, these results 

show that the effects of modulatory inputs in dLGN depend on visual responsiveness and stimulus type, with 

CT feedback affecting sensitivity and reliability, potentially to tune the thalamic relay.

INTRODUCTION

Visual information is processed through a hierarchy of brain 

areas, which are connected by feedforward and feedback pro-

jections. Early in this hierarchy is the dorsolateral geniculate nu-

cleus (dLGN) of the thalamus, a central node for visual informa-

tion en route from the retina to the primary visual cortex (V1).1,2

The dLGN has long been recognized as one of the first visual 

stages that combines stimulus-driven inputs with additional 

modulatory inputs,3 such as signals arising from L6 corticothala-

mic (CT) feedback,4–8 and signals from the brainstem carrying in-

formation related to behavioral state9–12 and arousal.3,10,13,14

How visually driven and modulatory inputs are quantitatively 

combined to yield dLGN responses, potentially in a cell-type 

and stimulus dependent way, remains poorly understood.

On the one hand, it has been firmly established that, even dur-

ing wakefulness, dLGN responses are modulated according to 

the animal’s internal9,15 and overt behavioral state.15–17 For 

instance, in the mouse, locomotion-11,18 or pupil-indexed 

arousal9,10,13,14,19 are associated with overall enhancements of 

firing rates in dLGN, which seem to preferentially affect specific 

neuronal populations depending on their spatiotemporal feature 

selectivity.18,19 Similar to related findings in the somatosensory 

system,20 the increase in dLGN firing rates seems to be a neces-

sary condition for the sustained depolarization of primary visual 

cortex during active behaviors.9

On the other hand, little consensus has been achieved for 

dLGN modulations by CT feedback, where a plethora of pre-

vious studies have together highlighted its diverse and poten-

tially stimulus-dependent effects. For instance, CT feedback 

is known to sharpen spatial dLGN RFs and increase contex-

tual effects,6,7,21–24 by enhancing or suppressing dLGN firing 

rates depending on grating size and potentially its spatial ho-

mogeneity or contrast. The sign of CT feedback effects might 

further depend on the alignment of retinotopic position and/or 

feature selectivity between L6 and dLGN neurons.6,7,25 The 

combination of enhancing and suppressing effects of CT 

feedback are likely mediated by a differential engagement of 

both direct excitatory and indirect inhibitory pathways, whose 

balance will depend on the stimulus selectivity, connectivity 

and intrinsic properties of corticothalamic neurons in L6 of 

V1, neurons in the thalamic reticular nucleus (TRN) and 

dLGN.8,26 Indeed, a landmark study in the somatosensory 

corticothalamic system26 has demonstrated that differential 

short-term synaptic plasticity rules in the direct corticothala-

mic pathway and the indirect pathway through the TRN can 

change the sign of corticothalamic influence depending on 

cortical L6 firing frequency.
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Generalized linear models (GLMs) provide an established 

framework for statistical analysis of neural responses, which 

can help to disentangle the combined impact of multiple stim-

ulus-driven and modulatory influences and investigate their 

properties.27–29 While GLMs are relatively simple phenomeno-

logical models, they offer the advantage of being interpretable: 

for instance, GLM kernels learned for the visual stimulus approx-

imate the integration by the spatiotemporal receptive field (RF), 

and kernels learned for any additional inputs represent spike- 

induced gain adjustments.28,30 First applied in the retina,28,31

GLMs have since then been used in numerous studies to sepa-

rate influences of the visual stimulus and other variables, such as 

spike history, interneuronal interaction effects, task-engage-

ment, learning, reward prediction, task-related motor action, 

locomotion, and arousal.32–38 One recent extension of classical 

GLMs is to estimate RFs by choosing a set of cubic spline basis 

functions in order to encode smoothness, decrease the number 

of parameters, and thus be more data efficient.39

Here, we investigated how feedforward, stimulus-driven sig-

nals, feedback signals, and behavioral state jointly influence 

dLGN activity in awake, head-fixed mice viewing a rich movie 

stimulus. We simultaneously recorded extracellular dLGN activ-

ity, mouse run speed and pupil size, while photosuppressing CT 

feedback. We then fitted a spline-GLM model containing kernels 

for the spatiotemporal RF, CT feedback, and behavior to predict 

responses of dLGN neurons. The learned kernels were biologi-

cally plausible, including diverse spatiotemporal RFs, as well 

as kernels for behavior and CT feedback. Including modulatory 

inputs overall improved the prediction of dLGN responses; the 

improvements, however, were most prominent for a subpopula-

tion of neurons that were poorly predicted by the movie stimulus. 

Focusing on the effects of CT feedback, we found that these ef-

fects depended on stimulus type in both the model and the data, 

being stronger, more prevalent and faster during the absence of 

a patterned visual stimulus. Using the spline-GLM for in silico ex-

periments and confirming its predictions in vivo, we demon-

strate, for CT feedback-sensitive, individual dLGN neurons, 

that stimulus discrimination during CT feedback suppression 

was enhanced. We relate our findings to previous frameworks 

about CT feedback, injecting synaptic background noise to 

enhance sensitivity and linearity of dLGN responses.40,41 We 

conclude that the effects of modulatory inputs in dLGN can be 

complex and depend on visual responsiveness and stimulus 

type, with CT feedback affecting sensitivity and reliability, poten-

tially to tune the thalamic relay.

RESULTS

Dorsolateral geniculate nucleus responses to movies 

are modulated by behavioral variables and 

corticothalamic feedback suppression

To investigate how CT feedback, locomotion and arousal modu-

late thalamic responses, we recorded in vivo extracellular dLGN 

activity in response to a rich movie stimulus in four head-fixed 

mice together with running speed and pupil size, while randomly 

photo-suppressing CT feedback (Figure 1A). For the photo-sup-

pression of CT feedback, we conditionally expressed the soma-

targeting, chloride-conducting channelrhodopsin stGtACR2- 

RFP42 in L6 CT pyramidal cells, by injecting a small volume of 

Cre-dependent AAV into V1 of Ntsr1-Cre mice.43 The localization 

of stGtACR2 to L6 CT somata and the accurate placement of 

electrodes were confirmed through postmortem histological an-

alyses (Figure 1B). During electrophysiological recordings, the 

mouse viewed a rich movie stimulus that consisted of a 

sequence of black-and-white clips from various feature films 

(‘‘movies,’’ Figure 1C, top). Here, photo-suppression occurred 

every second with 50% probability. We also measured the 

mouse’s run speed and pupil size to infer the animal’s changing 

behavioral state.

To develop initial insights into the modulations of dLGN re-

sponses by CT feedback and the behavioral inputs, we aligned 

movie responses to onsets of photo-suppression, running, and 

pupil dilation. We found that certain neurons responded to the 

onset of CT feedback suppression with a substantial reduction 

in firing rate (Figures 1D–1F, left, OFF-ON transitions in blue), 

while others showed milder effects or no modulation at all 

(Figure 1F, left). Despite the relatively small effect size, the overall 

reduction of dLGN firing rates during CT feedback suppression 

was genuine, as none of the recorded neurons in a control mouse 

without opsin expression showed systematic modulations at 

light onset (Figures S1A and S1B). Furthermore, neural re-

sponses aligned to time points in which the optogenetic light 

was not switched on (i.e., OFF-OFF transitions in gray, 

Figures 1D and 1E) did not show any systematic modulation 

(Figure S1C). Finally, neurons with stronger CT feedback effects 

were closer to each other (Figure S2), as predicted by the topog-

raphy of the corticothalamic system.7,44–46 Consistent with pre-

vious findings,10,11,18,47 we also found that firing rates could 

gradually increase around transitions from sitting to running 

(Figure S3A), and during pupil dilation (Figure S3B).

These modulations of dLGN responses were also observed 

across the population of recorded neurons. Specifically, dLGN 

firing rates during the time of CT feedback suppression 

compared to periods without CT feedback suppression were 

reduced (control vs. CT FB supp. mean: 12.6 vs. 11.5 Hz, p = 

1.24 × 10− 2, paired Wilcoxon signed-rank test; Figure 1F, left), 

while time windows with running and dilated pupil were associ-

ated with an overall increase in average firing rates (sit vs. run 

mean: 11.0 vs. 12.8 Hz, p = 8.31 × 10− 16, Figure 1F, middle; 

small vs. large pupil mean: 11.0 vs. 13.0 Hz, p = 4.98 × 10− 7, 

paired Wilcoxon signed-rank test; Figure 1F, right). Although 

these modulations affected the recorded dLGN population on 

average, we also noticed considerable neuron-to-neuron vari-

ability. Indeed, for all three modulatory inputs, we found neurons 

that were affected to various degree across the different condi-

tions (Figure 1F, insets).

So far, we have shown that dLGN responses to our movie 

stimulus were modulated by multiple additional inputs; this sim-

ple analysis on the mean firing rates, however, did not take into 

account potential correlations between the different inputs. 

Consistent with various previous studies,9,48,49 we found a pos-

itive correlation between pupil diameter and running speed 

(r = 0.18 ± 0.17, mean ± SD; p < 0.001 for 7/10 experiments, per-

mutation test; Figure S3C). Moreover, we found pupil size to also 

be influenced by stimulus brightness, where lower average in-

tensity of movie frames was associated with larger pupil 
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diameters (r = − 0.41 ± 0.15, mean ± SD; p < 0.001 for 10/10 ex-

periments, permutation test; Figure S3C). Pupil diameter, in turn, 

is known to influence responses in the early visual system.50,51

A spline-based generalized linear model captures 

dorsolateral geniculate nucleus spatiotemporal RFs and 

their modulation by corticothalamic feedback and 

behavior

To disentangle how the various contributions together shape the 

responses of dLGN neurons, we used a generalized linear model 

(GLM)28 that predicted the neuron’s firing rate based on a com-

bination of stimulus-driven and modulatory inputs (running 

speed, pupil size, and CT feedback suppression; Figure 2). The 

model consisted of one linear kernel for each input, followed 

by a softplus function that accounted for response nonlinearities 

(Figure 2A). The shape of the stimulus kernel captured the neu-

ron’s spatiotemporal RF, while the shapes of the modulatory ker-

nels captured modulations of the neuron’s firing. We employed a 

GLM with a spline basis39 in order to efficiently generate smooth 

kernels, rather than operating directly on the pixels of the visual 

stimulus or the discrete time bins of the additional inputs 

(Figures S6A–S6D). The GLM allowed us to effectively capture 

the temporal correlations between the inputs (see also above, 

Figure S3C), and the spatiotemporal correlations in pixel inten-

sities in naturalistic stimuli52,53 (Figure S4A).

After model fitting (see STAR Methods), we assessed the pre-

dictive power of the learned kernel shapes using a session- 

based permutation test (Figure 2B). To keep the temporal statis-

tics of the time series data intact, we provided the model with 

input data recorded on a different day (for the model inputs 

‘‘stimulus,’’ ‘‘running,’’ and ‘‘pupil size’’) or with synthetic inputs 

generated with the same statistics as the original (for the ‘‘CT 

feedback suppression’’ input). To determine significance of the 

learned kernels, we compared for each input the actual model 

performance (Pearson’s r) against a distribution of model perfor-

mances with that specific input permuted.

We observed a rich diversity of learned GLM kernels for the 

dLGN neurons’ spatiotemporal RFs, the effects of CT feedback, 

and the behavioral variables. To begin with, we considered three 

example neurons (Figure 2C). Of these, the first had a negative 

spatial and a transient temporal stimulus response kernel, which 

contributed significantly to the model’s performance (p = 

3.51 × 10− 2, permutation test; Figure 2C1, top, same neuron 

as in Figures 1D and 1E). In addition, it had a significant negative 

kernel for CT feedback suppression (p = 2.67 × 10− 4, permuta-

tion test; Figure 2C1, top). In contrast, the running and pupil size 

A

D E F

B C

Figure 1. CT feedback and behavior modulate dLGN responses to movies 

(A) Schematic of the recording setup and photo-suppression of V1 L6 CT pyramidal neurons in Ntsr1-Cre mice with Cre-dependent AAV-stGtACR2-RFP. 

(B) Histology. Left: Coronal section near the V1 injection site, with stGtACR2-RFP expression (red) in Ntsr1+ somata. Blue: DAPI; scale bar: 1 mm. Inset: 

Magnification of area marked by dotted rectangle. Scale bar: 50 μm. Right: Coronal section of dLGN recording sites, with electrode tracks for two consecutive 

recording sessions (arrows 1 and 2) marked with DiI (yellow). Scale bar: 1 mm. Dotted line: dLGN contour. Numbers on top: position relative to Bregma in mm. 

(C) Snippet of an example dLGN recording. Top to bottom: example frames of the movie stimulus, photo-suppression pulse train (blue), running speed (green), 

pupil area (yellow), and time varying firing rate (sorted by first principal component) of simultaneously recorded dLGN neurons. 

(D) Raster plot of responses of an example dLGN neuron, time locked to the onset of CT feedback photo-suppression (blue, OFF-ON transition) and to control 

periods without photosuppression (gray, OFF-OFF transition). Note that the example neuron illustrates the observed effect of CT feedback photo-suppression, 

but the size of the effect is not representative of that observed in the population of recorded dLGN neurons. 

(E) Corresponding PSTHs (solid line: average across trials, shaded area: standard error of the mean). 

(F) Effects of CT feedback photo-suppression (left), locomotion (middle), and pupil size (right) on dLGN mean firing rates. Example neuron from (D, E) marked 

with ×. p values denote results of a Wilcoxon signed-rank test, n = 122 neurons. Insets: Histogram of firing rate fold-change relative to control (Δ FR log2-ratio).
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kernels had minimal impact on this neuron’s model predictions 

(p > 0.05, permutation test; Figure 2C1–C3). The second example 

neuron exhibited a positive spatial RF with an antagonistic 

surround (p = 2.31 × 10− 3, permutation test; Figure 2C1, middle). 

While both behavioral kernels seemed to contribute (Figure 2C2, 

middle), only the kernel for pupil size reached significance in the 

permutation test (p = 1.13 × 10− 2). This neuron was also not 

influenced by CT feedback suppression (p > 0.05; Figure 2C3, 

middle). Finally, example neuron 3 was primarily visually driven, 

with a positive RF center and a more sustained temporal 

response kernel (p = 2.31 × 10− 3, permutation test; 

Figure 2C1, bottom). It also had a significant negative kernel for 

A B

C1 C2 C3

D E F G H

Figure 2. Spline-based GLM captured the RF, the influence of CT feedback, and the impact of behavior on responses of dLGN neurons 

(A) Schematics of the spline-GLM model architecture. Firing rate of individual dLGN was predicted as a combination of kernel outputs summed at the linear stage 

and then passed through a softplus nonlinearity. Each modeled neuron had a kernel for the stimulus and kernels for the three modulatory inputs: run speed 

(green), pupil size (orange), and CT feedback suppression (blue). 

(B) Schematics of the permutation test54 to assess the significance of the learned kernels. Model performance was evaluated by comparing the actual correlation 

(Pearson r) between predicted and observed firing rates to correlations when one of the inputs was taken from an unrelated experimental session (for movie, 

running, and pupil size) or randomly generated with the same statistics (for CT feedback suppression). Inputs were considered significant if the actual perfor-

mance differed from the permuted performance with p ≤ 0.05. 

(C) Three dLGN example neurons, their learned kernels, firing rate predictions, and outcomes of the permutation test (neuron 1 is the same example neuron as in 

Figures 1D and 1E). (C1) Spatial and temporal RF components separated by singular value decomposition (SVD, see STAR Methods), along with kernels for the 

modulatory inputs. (C2) Observed (gray) versus predicted (black) firing rates during 80 s of movie presentation. (C3) Actual model performance (Pearson’s r, red 

dashed line) and performance for permuted stimulus (gray), CT feedback suppression (blue), running (green), and pupil size (orange) inputs. Kernels that 

contribute significantly to the model’s performance are marked with ←. The box displays the quartiles of the distribution, the whiskers represent its range, 

excluding outliers. 

(D) Spatial RFs of example neurons with significant stimulus kernels. Gray: outline of common visual space (azimuth: -35–110 deg; elevation: -35–50 deg); Solid 

lines: monitor border. 

(E) Temporal RFs (SVD component of the stimulus kernel) in the recorded dLGN population, sorted by their area under the curve. 

(F–H) Modulatory kernels in the recorded dLGN population, sorted by their area under the curve, for CT feedback suppression (F), running (G), and pupil size (H). 

Horizontal bars, side: Neurons with significant kernels based on the permutation test. Panels (E–H) show data from all n = 122 neurons.
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CT feedback suppression (p = 2.67 × 10− 4, permutation test; 

Figure 2C3, bottom). The other two modulatory kernels had 

only negligible influences (permutation test, p > 0.05; 

Figure 2C3, bottom).

The diversity observed in the three example neurons was also 

evident in the model fits across the population of recorded dLGN 

neurons, where we obtained a variety of spatiotemporal RFs and 

combinations of modulatory influences. Assessing the learned 

spatiotemporal kernels, we found that ∼70% of the recorded 

dLGN neurons were visually responsive to our movie stimulus 

(85/122 neurons; permutation test visual stimulus, p ≤ 0.05; 

Figure S6E). For many of these neurons (representative exam-

ples in Figure 2D), the spline-GLM recovered spatial RF proper-

ties that were consistent with previous descriptions of mouse 

dLGN RFs obtained using artificial stimuli55–57 and in many cases 

resembled those obtained from conventional sparse noise ex-

periments (Figures S4B and S4C). These properties included 

various RF locations, RFs with either positive (66%, 56/85 neu-

rons) or negative polarity kernels (34%, 29/85 neurons), a broad 

range of RF surround strengths (Figures S4D and S4F), and 

various RF center sizes (Figure S4E). Furthermore, the GLM 

captured the well-known diversity of temporal response proper-

ties of dLGN neurons,55,58 with some neurons showing more 

sustained, and others showing more transient temporal kernels 

(Figures 2E and S4H). Importantly, both the spatial and temporal 

GLM kernels matched well with the expected polarity and the dy-

namics obtained from clustering responses into sustained-OFF, 

Sustained-ON, and Transient groups during full-field luminance 

steps (Figure S5). This correspondence further underscores 

our model’s capacity to capture meaningful spatiotemporal RF 

properties and essential visual response characteristics of 

dLGN neurons based on the recorded movie responses.

We next assessed the learned kernels for the modulatory in-

puts. According to the permutation test, approximately 10% 

(12/122 neurons) of the recorded dLGN neurons were affected 

by CT feedback suppression, 11% (13/122 neurons) by running, 

and 19% (23/122 neurons) by pupil size (Figures 2F–2H and S6F– 

S6H). The overall direction of modulation for the significant ker-

nels aligned with the modulation indices obtained directly from 

the data (Figure 1F): for the significantly modulated neurons, 

CT feedback suppression kernels were predominantly negative 

(Figure 2F), while running speed (Figure 2G) and pupil size 

(Figure 2H) kernels were predominantly positive. These results 

indicate that both CT feedback and behavioral state variables 

during the viewing of our natural movie contribute to an overall 

increase of dLGN responses. Beyond the general sign of modu-

lation, the learned model kernels also offered insights into the 

temporal dynamics of the modulatory influences: consistent 

with the well-known slow impact of pupil indexed arousal on re-

sponses in the visual system,48,49 we found that kernels for pupil 

size had a more sustained profile compared to kernels for 

running modulations (time to half max kernel running vs. pupil 

size: 106.3 ms vs. 146.3 ms, Wilcoxon signed-rank test: p = 

7.51 × 10− 3, Figure S6P). Separating the recorded dLGN neu-

rons by their extracellular waveshape to distinguish broad- 

spiking, putative relay cells, from narrow-spiking, putative local 

dLGN interneurons, yielded no significant difference in sensitivity 

to stimulus or modulatory inputs, likely due to the low number of 

putative dLGN interneurons in our sample (Figures S6Q–S6T). 

Taken together, the ability to learn differential kernels and a close 

correspondence between data-driven modulation indices and 

the impact of the modulatory inputs for model performance 

(Figures S7D–S7G) demonstrate that our GLM model was suc-

cessful in extracting the impact of the various modulatory inputs.

Despite the spline-GLM’s overall success in predicting dLGN 

responses and learning biologically plausible kernels, it also 

faced challenges. First, it was not successful in capturing fast 

modulations and response peaks, as typical also for traditional 

GLMs27,59; and second, it showed typical boundary artifacts 

often associated with splines, which manifested as increased 

variance at the left side of some kernels, in particular for running 

modulated neurons (Figures 2E–2H and S6I–S6L). Despite these 

challenges, incorporating running information proved beneficial, 

as confirmed by the permutation test (Figure S6G). These 

running modulated neurons showed reduced response reliability 

in repeated stimulus trials (Figures S6M and S6N), which was ex-

pected given that their activity was substantially influenced by 

locomotion state. In line with a previous study,60 we found that 

run-modulated neurons as identified by our model had overall 

low firing rates (Figure S6O).

Is the contribution of modulatory inputs to dLGN neurons’ 

activity consistent and strong enough to improve the prediction 

of dLGN responses? While dLGN has long been known to 

exhibit state-dependent changes in firing11,15,18,61 and to 

receive extensive feedback from cortex,5,62 the impact of these 

influences, in particular during the viewing of naturalistic stimuli, 

is not well understood. Thus, to quantitatively assess the con-

tributions of CT feedback suppression and behavioral vari-

ables, we compared the performance between our model 

including all inputs and reduced variants of the model with 

only a subset of inputs (Figures 3A and 3B). Starting with the 

‘‘Stimulus only’’ model that only considered the stimulus as 

input, we found that incorporating one or more modulatory in-

puts increased the correlation between observed and predicted 

dLGN responses (ANOVA: p = 0.022; Figure 3A). In particular, 

adding pupil size or a combination of two or more modulatory 

predictors showed a significantly better performance than the 

‘‘Stimulus only’’ model (‘‘Stimulus only’’ vs. ‘‘Stimulus + Pupil 

size’’: 0.186 vs. 0.235, Wilcoxon signed-rank test: Bonferroni 

corrected p = 3.39 × 10− 6; ‘‘Stimulus only’’ vs. ‘‘Full model’’: 

0.186 vs. 0.249, Wilcoxon signed-rank test: Bonferroni cor-

rected p = 2.08 × 10− 7; Figure 3A). Note that even in the full 

model, we still observed neurons with suboptimal predictions, 

maybe due to low response reliability (Figure S6N) and sparse 

firing (Figures S6O and S7H).

Indeed, when we compared the prediction performance of the 

‘‘Stimulus-only’’ model with the ‘‘Full model’’ (Figure 3B), we 

noticed that the inclusion of the modulatory inputs did not merely 

shift the distribution to higher performances. Instead, a closer 

examination allowed us to identify a subgroup of neurons 

whose responses could be predicted only poorly by the visual 

stimulus, but which showed substantial improvements in 

their response prediction with the inclusion of modulatory 

inputs (Figures 3C–3E; we call them the ‘‘modulation-sensitive’’ 

group; Figures S7A–S7G). In contrast, another subgroup 

showed no improvement when we added the modulatory inputs 
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(Figures 3C–3E; ‘‘stimulus-explained’’ group). To test the extent 

to which this might reflect a ceiling effect in explainable variance, 

we fitted models that contained only modulatory inputs but not 

the stimulus (‘‘CT FB supp.’’ + ‘‘Running’’ + ‘‘Pupil size’’; ‘‘Mod-

ulation only’’ models; Figure 3F). For these models, the ‘‘modu-

lation-sensitive’’ neurons still exhibited relatively high perfor-

mance (Figure 3F, dark dots), and the ‘‘stimulus-explained’’ 

group had lower performance, although not zero (Figure 3F, light 

gray dots). This indicates that even in the ‘‘Stimulus-explained’’ 

group, modulatory inputs might have some, albeit generally 

weak effect that was obscured in the full model; alternatively, 

some modulatory inputs if considered in the ‘‘modulation only’’ 

models might contain stimulus information, in particular pupil 

size, which is known to be related not only to arousal, but also 

to stimulus brightness (Figure S3C). Taken together, our analysis 

of model performance suggests that dLGN neurons are ex-

plained by the visual stimulus, behavior, and CT feedback, albeit 

with considerable heterogeneity.

Corticothalamic feedback is enhanced in the absence of 

a patterned visual stimulus

Our model showed only a relatively small subset of dLGN neu-

rons with significant effects of CT feedback. Could the reason 

for this be that the responses elicited by the rich naturalistic 

movie stimulus might have dominated dLGN activity relative to 

the effects of CT feedback? We thus predicted that CT feedback 

effects might be stronger without patterned stimulus input 

(Figure 4A).

To test this prediction, we expanded our analyses to the 

period of blank screen stimulation flanking the movie presenta-

tion, and compared the effects of CT feedback suppression in 

the recorded data and in models fit separately to responses dur-

ing movies vs. blank periods (Figure 4B). Consistent with our pre-

diction, we indeed observed that CT feedback suppression 

reduced the firing rates of individual example neurons more 

strongly during blanks (MICT FB supp.: − 0.65, Figure 4C1) 

compared to movies (MICT FB supp.: − 0.45, Figure 4C2). This 

A B C

D E F

Figure 3. Adding model predictors for modulatory inputs improves the performance for a subgroup of poorly visually responsive dLGN 

neurons 

(A) Comparison of model performance for models with different sets of inputs indicated in the table on the left, sorted by performance. Bonferroni corrected 

p-values of paired Wilcoxon signed-rank test: * * * * p ≤ 1.0 × 10− 4; ‘‘ns’’ non-significant. Error bars: 95% confidence intervals. 

(B) Comparison of model performance (Pearson’s r) for the ‘‘Full model’’ (black, inputs: stimulus, CT feedback suppression, run speed, pupil size) and the 

‘‘Stimulus only’’ model (gray). Arrow heads: mean performance (n = 122 neurons). 

(C) Improvement in model performance (‘‘Full model’’− ‘‘Stimulus only’’) for neurons grouped by their performance of the ‘‘Stimulus only’’ model. Bonferroni 

corrected p-values of paired Wilcoxon test: *p ≤ 0.05; * * * * p ≤ 1.0 × 10− 4. Dotted lines indicate the mean of each group. The box displays the quartiles of the 

distribution, the whiskers represent its range, excluding outliers. 

(D) Comparison of model performance for all neurons in the ‘‘Stimulus only’’ model and the ‘‘Full model.’’ Arrows indicate the group of neurons that benefits from 

adding CT feedback, running, and pupil size (‘‘Modulation-explained’’) and the group that does not improve (‘‘Stimulusexplained’’). 

(E) Relationship between the amount of joint modulation by CT feedback, running, and pupil size estimated directly from the data without a model (see STAR 

Methods), and the improvement in model performance when adding predictors for modulatory inputs (‘‘Full model’’− ‘‘Stimulus only’’). 

(F) Comparison of model performance for the ‘‘stimulus only’’ model and a model without the stimulus (‘‘modulation only’’). Arrows indicate ‘‘modulation-ex-

plained’’ and ‘‘stimulus-explained’’ neurons. In panels (D, F), darker colors indicate stronger joint modulation by CT feedback, running, and pupil size (MIJoint) 

estimated directly from the data without a model (see STAR Methods). Panels (D–F) show data from all n = 122 neurons.
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observation held true across the recorded dLGN population 

(mean MICT FB supp. − 0.09 vs. − 0.03; p = 2.5 × 10− 6, Wilcoxon 

signed-rank test; Figure 4D), and did not depend on the exact 

metric used for quantifying the differential effect size of CT feed-

back suppression (difference, ratio, or MI). Furthermore, during 

blank periods, more dLGN neurons were affected by the sup-

pression of CT feedback (45% vs. 18% with |MICT FB supp.| ≥

0.1; Figure 4J). The stronger effect of CT feedback suppression 

could not be explained by the difference in overall firing rate be-

tween the two stimulus conditions (Figures S8A and S8B), nor 

was it related to the different number of optogenetic pulses 

(Figure S8C).

Is the stronger modulation by CT feedback suppression dur-

ing blank periods vs. movies also captured by our spline-GLM 

model? We indeed found that the model learned a more nega-

tive CT feedback suppression kernel for the blank condition 

compared to the movie, both in the example neuron (peak 

amplitude − 1.8 vs. − 0.94; Figure 4F) as well as in the popula-

tion of neurons with a significant CT feedback suppression 

kernel (− 0.86 vs. − 0.46, p = 0.044, Mann-Whitney-U test, 

Figure 4G; all neurons: − 0.4 vs. − 0.2, p = 5 × 10− 8, Wilcoxon 

signed-rank test). To avoid potential confounds of firing rates 

on kernel amplitudes (Figures S8D and S8E) and enable 

a more direct comparison to the recorded data, we used 

the model predictions in the two stimulus conditions and 

calculated model-derived MICT FB supp., analogously to 

those based on the recorded data. Consistent with our data- 

driven observations, we found that CT feedback suppression 

reduced modeled responses more strongly during the 

blank periods (modeled MICT FB supp., − 0.057) compared to 

movies (− 0.017; p = 0.002, Wilcoxon signed-rank test, 

Figure 4H).

Inspecting the learned model kernels (Figures 4F and 4G) 

suggested that, besides amplitude, the dynamics of the CT 

A B C1 C2 D E

F G H I J

Figure 4. The effect of CT feedback is dependent on the presence or absence of the visual stimulus 

(A) Schematics of the hypothesis that the absence of a patterned visual stimulus elicits weaker stimulus-driven input to dLGN, which is in turn accompanied by 

stronger CT feedback. Note that the schematics should not imply stronger L6 CT pyramidal neuron firing, but that the net effect of CT feedback on dLGN firing is 

stronger in the absence of a patterned visual stimulus. 

(B) Schematics of fitting the spline-GLM model separately during movies (top) vs. blank periods (bottom). 

(C) Effects of CT feedback suppression. (C1) Mean PSTHs time locked to the onset of photosuppression for one example dLGN neuron (same example neuron as 

in Figures 1D and 1E) during blank periods (gray screen) flanking the movie presentation. The shaded area represents the SEM. (C2) Same as (C1), during movie 

presentation. Purple, blue: PSTH during CT feedback suppression (OFF-ON transition), light gray, dark gray: PSTH during control condition (OFF-OFF transition). 

(D) Comparison of MICT FB supp. during blanks vs. movies for the recorded dLGN population (number of neurons n = 122). Note that the results do not depend 

on the exact metric used for the comparison of CT feedback suppression effects, and also hold if raw differences or simple ratios are considered instead of the 

MICT FB supp. 

(E) Percentage of recorded dLGN neurons modulated by CT feedback during the two stimulus conditions. Three modulation metrics were separately 

considered to count the modulated neurons. A neuron was considered modulated (1) based on data: |MICT FB supp.| from (D) ≥ 0.1, (2) based on model predictions: 

|MICT FB supp.| from (H) ≥ 0.1, or (3) based on model performance: permutation test p ≤ 0.05. Notably, all three modulation metrics consistently revealed a higher 

proportion of neurons displaying CT feedback modulation during the blank condition compared to the movie condition. 

(F) CT feedback suppression kernel for the example dLGN neuron in (C1). The model was trained on either the data during movie presentation (dark blue) or blank 

periods (light blue). 

(G) Same for all significantly CT feedback modulated neurons (nmovie = 12, nblank = 21). Solid lines represent the mean of the kernels, and transparent surrounds 

represent the standard error of the mean (SEM). 

(H) Comparison of MICT FB supp. for blanks vs. movies calculated from simulated data using the fitted model for the dLGN population to the two stimuli. 

(I) Comparison of the Rate of Change (RoC) of model-predicted neurons’ responses to CT feedback suppression during movie presentation vs. blank periods. 

(J) Same as (I), for the recorded data. Panels (H–J) show data from all n = 122 neurons.
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feedback suppression effects might also differ between visual 

stimulus conditions. Specifically, the spline-GLM learned a 

kernel characterised by a faster and briefer time course for 

blank periods compared to movie stimulation. This observa-

tion could be quantified by calculating the rate of change 

(RoC) of the neurons’ predicted and actual responses after 

photosuppression (see STAR Methods). Indeed, we found 

that the effect of CT feedback suppression was faster during 

blank periods (model-based RoC: p = 0.004, Wilcoxon 

signed-rank test, Figure 4I; data-based: p = 9 × 10− 12, Wil-

coxon signed-rank test; Figure 4J). In conclusion, the fitted 

splineGLM models revealed that the observed impact of CT 

feedback suppression was weaker and slower during the 

presence of a rich patterned visual stimulus in comparison 

to blank periods, suggesting that the observed effect of CT 

feedback depends on the visual stimulus characteristics.

Corticothalamic feedback suppression can improve 

stimulus discrimination

Finally, we sought to understand how suppressing CT feedback 

affected the representation of visual information in the dLGN 

(Figure 5). To do so, we evaluated the performance of a decoder 

A B C D E

F G H I J

Figure 5. 2AFC decoder applied to modeled and recorded dLGN responses reveals that CT feedback suppression can improve stimulus 

discrimination 

(A) Schematics of the decoder: the trained model was used to simulate responses with CT feedback being either on (blue) or off (black; 70 s example trace). The 

movie stimulus, running, and pupil inputs remained the same between CT feedback on and off, using recorded data. Random 50 ms stimulus fragments (Green: A 

and yellow: B) were chosen, each with the corresponding simulated responses. The decoder’s task was to determine which stimulus was more likely based on the 

observed responses. The decision of the decoder was directly derived from the model likelihood for the correct and incorrect pairing31 (see STAR Methods). 

(B) Decision matrix for one example neuron with 20 random stimulus fragments and their simulated responses. Green: correct pairing of stimulus and response; 

yellow: incorrect pairing. Left: control condition; right: CT feedback suppressed condition. 

(C) Percentage of correct decisions in the control and the CT feedback suppressed condition, same example modeled neuron as in (B). Error bars indicate 95% 

confidence intervals. 

(D) Change in decoder performance during CT feedback suppression vs. control conditions, split according to whether the modeled neurons were significantly 

modulated by CT feedback suppression (dark blue) or not (light gray). The box displays the quartiles of the distribution, the whiskers represent its range, excluding 

outliers. 

(E) Relationship between the fold change in trial-by-trial reliability and the fold change in decoding accuracy with CT feedback suppression across the population 

of dLGN neurons, obtained from the simulated responses in (A–D). 

(F) Spike rasters for one dLGN example neuron in response to a 5 s natural movie clip during the control condition (left) and CT feedback suppression (middle), 

obtained from the published dataset by Spacek et al. (2022).10 Green/orange shading: two random 50 ms, non-overlapping movie fragments used to illustrate the 

analysis. Right: illustration of the support vector machine (SVM) trained to perform 2AFC discrimination of the movie fragments based on single-trial responses. 

(G) Principal component analysis of the single trial responses to two random 500 ms movie fragments. 

(H) Percentage of correct decisions of the SVM trained on the example neuron’s responses to 200 random movie fragment-pairs for held-out trials not used for 

training, separately for the control condition and during CT feedback suppression. Error bars indicate 95% confidence intervals. 

(I) Change in SVM discrimination accuracy during CT feedback suppression vs. control conditions, split according to whether the modeled neurons were 

significantly modulated by CT feedback suppression (dark blue) or not (light gray). Modulated neurons were defined as the neurons whose firing rates were 

significantly negatively modulated by CT feedback suppression (p ≤ 0.01,n = 200 trials, Mann-Whitney-U test). The box displays the quartiles of the distribution, 

the whiskers represent its range, excluding outliers. 

(J) Relationship between the fold change in trial-by-trial reliability and the fold change in decoding accuracy across the population of dLGN neurons, obtained 

from the published dataset by Spacek et al. (2022)10 in (F–I). Error bars indicate 95% confidence intervals. Significant results are indicated with * * p ≤ 0.01, * * *p ≤

0.001 and * * * * p ≤ 0.0001.
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applied to individual dLGN neurons, comparing its ability to 

discriminate between movie fragments during CT feedback sup-

pression and the control condition with intact feedback.

To isolate the effects of CT feedback suppression on the rep-

resentation of stimulus information, we used an in silico 

approach based on our trained model (‘‘Full model’’) 

(Figure 5A). By selectively changing CT feedback suppression, 

while keeping the visual stimulus, running and pupil inputs the 

same across CT feedback conditions, we conducted a decoding 

experiment based on the simulated model responses to distin-

guish between video clips in a two-alternative forced choice 

(2AFC) setting. We randomly selected 50 ms fragments of stim-

ulus-responsepairs from the test set that had not been used for 

model fitting. To discriminate between two movie clips, we used 

the maximum-likelihood decoding rule from Pillow et al. (2005)31

(see STAR Methods). The decision of the 2AFC decoder was 

directly derived from the model likelihood for the correct and 

incorrect pairing.31 We considered the decision correct if a 

Bayesian decoder assigned a higher likelihood to the correct 

pairing than the incorrect pairing. We found that the decoder 

achieved more correct decisions in the CT feedback suppressed 

condition compared to the control condition (Figure 5B, 20 

representative stimulus-response pairs for one example neuron; 

Figure 5, across all 100 stimulus pairs: 68.3% vs. 60.3%, p = 

1.20 × 10− 12, Wilcoxon rank-sum test).

To quantify how well each modeled neuron distinguished 

between movie fragments, we calculated the change in decod-

ing success between the CT feedback-suppressed and control 

conditions (Figure 5D). For neurons without significant CT feed-

back kernel, the change in decoding was near zero, suggesting 

little difference in stimulus information between CT feedback 

suppression and control conditions (average 0.006 ± 0.01, 

mean ± SD; Figure 5D, gray; Figure S9A). However, for CT feed-

back modulated neurons, decoding success was significantly 

higher in the CT feedback suppressed condition than the control 

condition (p = 0.002, Wilcoxon rank-sum test, average change in 

decoding success 0.05 ± 0.05, mean ± SD; Figure 5D, blue; 

Figure S9A). Furthermore, the change in decoding accuracy 

was higher in the population of CT feedback modulated neurons 

in comparison to non-modulated neurons (p = 4.35 × 105, 

MannWhitney-U test; Figure 5D). We found that this increase in 

decoder accuracy during CT feedback suppression was highly 

correlated to response reliability of the simulated trials (Pear-

son’s r = 0.84, n = 122, p = 5.9 × 10− 33; Figure 5E). Thus, our 

model predicted that with CT feedback ‘‘on,’’ short duration ac-

tivity of individual dLGN neurons can carry less information about 

the visual stimulus.

To test the prediction of our in silico experiment regarding the 

potential for improved decoding during CT feedback suppres-

sion, we analyzed a published dataset.10 This dataset includes 

responses of dLGN neurons to a large number of repeated pre-

sentations of a natural movie clip under two conditions: a control 

condition and a condition with CT feedback suppression 

(Figure 5F, left and right). We first visualized the distinctiveness 

of single trial responses to two randomly selected 500 ms time 

windows and found that responses during CT feedback sup-

pression appeared to be more separable compared to the con-

trol condition (Figure 5G). Encouraged by these results, we then 

used a support vector machine (SVM) classifier (see STAR 

Methods) with settings mimicking those applied to the simulated 

data, to discriminate in a 2AFC setting single trial responses be-

tween randomly selected 50 ms movie fragments (Figure 5F). 

Consistent with our in silico predictions, the SVM decoder 

achieved higher accuracy in the FB suppressed condition 

compared to the control condition, for both the example neuron 

(70.5% vs. 62.4%, p = 6.07 × 10− 11, Mann-Whitney-U test; 

Figure 5H) and for the subpopulation of CT feedback modulated 

vs. non-modulated neurons (p = 9.6 × 10− 3, Mann-Whitney-U 

test; Figures 5I and S9B). Similar results were obtained for 

different fragment durations (Figures S9C–S9E).

Finally, in accordance with our results for the simulated data, 

we also found that for the published dataset, improvements in 

decoding accuracy with CT feedback suppression were associ-

ated with enhancements in trial-by-trial reliability (Pearson’s r = 

0.57, n = 78, p = 3.59 × 10− 8, Figures 5J, S9F, and S9G). Taken 

together, both our simulations and analysis performed with an in-

dependent dataset suggest that CT feedback can impair the rep-

resentation of visual stimulus information in individual dLGN neu-

rons, which seems to be related to their reduced trial-by-trial 

response reliability with CT feedback intact.

How could this counter-intuitive result be explained? One 

possibility could be a framework suggested by previous 

research40,41 according to which CT feedback could linearize 

the input output relationship of thalamic neurons through the in-

jection of synaptic noise (Figure 6). This linearization would 

enhance the excitability of thalamic neurons to weaker inputs, 

in line with the stronger CT feedback effects for blanks vs. 

movies, but would additionally push them into more unreliable, 

probabilistic firing regimes (Figure 6), in line with our observation 

of worse single-neuron decoding performance with CT feedback. 

Importantly, such increased variability in individual dLGN neu-

rons could still be useful for visual processing, as it might be offset 

and even exploited by the strong convergence in the thalamo-

cortical system.63–65 Specifically, synaptic noise mediated by 

CT feedback might allow V1 L4 neurons to extract from the 

Figure 6. Synaptic noise framework of CT feedback 

Schematic illustration of the framework by Wolfart et al. (2005)40 and Behuret 

et al. (2015),41 proposing that CT feedback induced synaptic noise could tune 

the transfer function of individual dLGN neurons, making them more sensitive 

to weaker inputs. The noise-induced increased sensitivity, however, comes at 

the expense of making action potential firing more probabilistic, thus 

decreasing single-neuron reliability. Such decreased single-neuron reliability 

could be offset through the strong convergence at the geniculo-cortical syn-

apse,63–65 where the pooled afferent signal would not only have increased 

sensitivity to weak inputs, but also an increased dynamic range and hence 

better resolution. Adapted from Behuret et al. (2015), originally published un-

der a Creative Commons Attribution License (CC BY).
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pooled afferent signal stimulus-related information not only with 

enhanced sensitivity to weaker inputs but also with a larger dy-

namic range and hence better resolution.40,41 Alternative expla-

nations for the increased trial-by-trial variability could include 

that CT feedback conveys cortical representations of variables 

to dLGN that are uncontrolled between trials in our experimental 

settings and benefit vision beyond stimulus decoding.

DISCUSSION

Here, we quantitatively characterized how dLGN responses dur-

ing the viewing of a naturalistic movie are influenced by the com-

bination of visual stimulus-related inputs, CT feedback, and 

behavioral state. We modeled the responses of individual 

dLGN neurons using a data-efficient GLM, which predicted the 

spatiotemporal RFs and response modulations by CT FB sup-

pression, the animal’s run speed, and pupil size. We found that 

overall model performance improved when including the modu-

latory predictors, in particular for a subpopulation of dLGN neu-

rons whose responses were poorly explained by the visual stim-

ulus. Guided by the model, we found that the effect of CT FB 

suppression depended on stimulus type, being relatively stron-

ger, more prevalent, and faster in the absence of a patterned vi-

sual stimulus. Finally, our model predicted that the responses of 

a subset of CT-feedback-sensitive dLGN neurons contained 

more visual information when CT feedback was suppressed, 

which we verified in a published dataset. Together, our results 

show that the activity of dLGN neurons is influences by a combi-

nation of stimulus-driven and modulatory inputs, whose relative 

impact depends on visual responsiveness and stimulus type, 

with CT feedback affecting sensitivity and variability potentially 

to tune the thalamic relay.

Using a spline-generalized linear models for modeling 

thalamic responses

Our work extends previous approaches that the modeled 

thalamic processing of naturalistic visual stimuli (e.g.,37,38,66). 

In particular, our framework allowed us to test model variants 

with different combinations of predictors, which revealed a 

subpopulation of dLGN neurons whose responses were poorly 

predicted by the movie stimulus and more strongly affected 

by the modulatory inputs. These might correspond to a 

previously reported set of neurons in mouse dLGN, amounting 

to 30–40%,58,67 with poor or unclear visual feature selectivity. 

Given that this subpopulation also contained an over-represen-

tation of low-firing neurons, their relatively stronger modulation 

(see also Dearnley et al., 202360) might be indicative of a tight 

excitatory/inhibitory (E/I) coupling in the recorded network.68

Such tight E/I coupling in the thalamo-cortico-thalamic network 

might be mechanistically achieved through feedforward and 

feedback inhibition by inhibitory neurons in dLGN and the 

thalamic reticular nucleus, respectively, and the joint modulation 

of thalamic neurons by CT feedback and neuromodulation.1,4,7,9

The general success of our model is indicated by the close 

neuron-by-neuron correspondence between RF properties and 

response types derived from the model and more traditional an-

alyses and stimuli, and by the prominent relationship between 

learned model kernels and data-driven modulation indices for 

CT feedback suppression, run speed and pupil size. Yet, while 

our data-driven modulation indices generally matched well with 

the magnitudes of modulatory influences previously observed 

in mouse dLGN,7,10,11,14,18 we were surprised to find only a rela-

tively small fraction of dLGN neurons with significant kernels for 

CT feedback suppression, running, and pupil size. Reasons for 

the small fraction might be at least 3-fold: (1) the conservative 

method for assessing significance in the model derived from 

session-based permutation tests,54 (2) the continuous nature 

of inputs to the model rather than a split into extreme conditions 

for some of the modulation indices (e.g., sit vs. run while 

excluding transition states), (3) the direct suppression of L6 CT 

feedback through the soma-targeted, light-gated chloride chan-

nel stGtACR2,42 which might have yielded comparatively weaker 

effects (see also10,69) than alternative approaches recruiting 

powerful intracortical inhibition through the photostimulation of 

inhibitory V1 neurons.6,7,9,10,69,70

In the future, our spline-GLM could be extended by thalamic 

mechanisms, such as the fast adaptation of integration time ac-

cording to luminance and contrast,66,71 accounting for the con-

stant changes in spatial and temporal integration elicited by dy-

namic natural stimuli.72 Further, by combining the model inputs, 

one could test for interactions, for instance to clarify the depen-

dence of CT feedback effects and behavioral state-related mod-

ulations as proposed by some studies.69 Incorporating adaptive 

amplitudes of input and post-spike kernels73 could differentiate 

tonic and burst spiking behaviors, characteristic of thalamic neu-

rons74 and known to be affected by both stimulus-related75 and 

modulatory inputs.10,11,15,61 Finally, alternative modeling ap-

proaches based on deep neural networks (DNNs)76–78 promise 

to better capture non-linear dynamics and faster transients, 

potentially enhancing our capabilities to capture neuronal re-

sponses and complex neural interactions, yet likely at the 

expense of interpretability and uncontrolled biases.79,80

Spatiotemporal RFs and modulatory inputs of mouse 

dorsolateral geniculate nucleus neurons

Through a combination of analyzing receptive fields obtained 

from the model using a naturalistic movie stimulus, a noise stim-

ulus, and more traditional RF mapping techniques, we identified 

both expected and unexpected types of dLGN spatiotemporal 

RFs. Indeed, consistent with previous studies quantifying RFs 

in mouse dLGN to simple stimuli,55–58 our model learned circular 

spatial RFs for the majority of neurons, which often consisted of a 

single domain resembling the well-known ON and OFF fields. 

Reminiscent of a study showing that retinal ganglion cells can 

reverse the polarity of their RFs in response to different natural 

images,81 we found that some dLGN neurons had an opposite 

RF polarity when characterized with simple luminance steps or 

the movie stimulus. Finally, some of the RFs obtained with our 

modeling approach had a complex spatial structure, and might 

thus correspond to a subset of dLGN neurons that had been pre-

viously noted to lack clearly localized RFs.56,58 Future studies, 

for instanced based on the ‘‘maximally exciting image’’ 

approach initially applied to mouse V1,82 are needed to verify 

to which degree these complex RF structures indeed reflect 

complex feature selectivity of dLGN neurons or might be poten-

tial consequences of the modeling approach.
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Despite its frequent portrayal as a relay station, the dLGN of 

the thalamus has long been recognized as one of the earliest 

stages in the visual system that integrates visual representations 

with additional information.3,4,12,15,83 Corroborating this, we 

found that the performance of our model generally improved 

with the inclusion of modulatory inputs, albeit with considerable 

neuron-by-neuron diversity. Previous studies have already re-

ported differential effects of behavioral state and arousal, and 

could relate them to the neurons’ feature selectivity.18,19,84 In 

dLGN, the firing of neurons with non-linear responses to high 

spatial frequencies and with transient ON responses seem pref-

erentially enhanced by locomotion.18 In addition, retinal boutons 

preferring low spatial frequencies and luminance decrements 

seem preferentially suppressed by arousal.19 The neuron-by- 

neuron diversity in the impact of the modulatory inputs might 

thus serve to enhance particular visual inputs during active 

states.

Corticothalamic feedback effects on single dorsolateral 

geniculate nucleus neuron stimulus encoding and 

decoding

Our observation of faster and relatively stronger CT feedback ef-

fects during blank periods compared to movie viewing contrib-

utes to the growing appreciation that CT feedback effects on 

dLGN firing rates seem to be stimulus-dependent, and poten-

tially overridden by strong visual stimulation (see also10,85). 

Indeed, the effect of CT feedback seems to be most potent in 

the absence of patterned stimulus input, both in mice (this study 

and10,44 for related findings with gratings) and ferrets,85 which 

might point to a common mechanism across species. Across 

all these studies without patterned visual stimulus, CT feedback 

had a net enhancing effect. Similarly, also our previous work in 

Born et al.,7 although largely focusing on suppressive effects 

of CT feedback for large-sized gratings, observed enhancing ef-

fects of CT FB during blank screen conditions (and for small- 

sized gratings). We propose that the observed greater influence 

of CT feedback suppression during spontaneous activity than 

movie viewing could arise from a differential engagement of 

direct excitatory and inhibitory feedback pathways during these 

visual stimulus types. Supplying thalamic relay neurons with 

different ratios of excitatory and inhibitory conductances, 

mimicking the impact of modulatory inputs, can shift their 

input/output function, such that the same somatic input can 

generate markedly different spiking responses.40,41 Future 

studies will need to use more subtle manipulations of stimulus 

type, including contrast and spatial structure, together with 

pathway-specific CT feedback suppression, to test the hypoth-

esis that CT feedback might be most effective with weak visual 

inputs, as potentially encountered during challenging sensory 

conditions. In addition, future studies will profit from simulta-

neous recordings of V1 and dLGN to further disentangle the 

origin and potential interaction of CT feedback and other modu-

latory influences.

Besides relatively stronger and faster CT feedback effects on 

dLGN firing rates in the absence of a patterned visual input, we 

also observed that CT feedback could reduce single-trial infor-

mation in individual dLGN neurons about the visual stimulus. 

This result might at first glance seem counter-intuitive given prior 

research associating cortico-cortical feedback with attention 

and enhancements of stimulus encoding (e.g.,86–90). Both 

enhanced sensitivity to weak inputs and decreased reliability of 

firing in individual dLGN neurons are core ideas of a framework 

proposing that one function of CT feedback might be to linearize 

the input-output relationship of thalamic neurons through the in-

jection of synaptic noise.40,41 This linearization would enhance 

the excitability of thalamic neurons to weaker inputs, at the 

expense of pushing them into more unreliable, probabilistic firing 

regimes. The predictions of the noise framework of CT feed-

back40,41 would thus be in line with both of our results regarding 

the stronger impact of CT feedback during blank stimuli than 

movies and the decreased trial-by-trial reliability and compro-

mised single-neuron stimulus decoding.

How could a CT feedback induced decrease in single-neuron 

reliability serve vision? The synaptic noise framework of CT 

feedback40,41 proposes that increased variability in individual 

dLGN neurons could be offset and even exploited by the strong 

convergence in the thalamocortical system.63–65 Specifically, 

synaptic noise mediated by CT feedback might allow to extract 

from the pooled afferent signal stimulus-related information not 

only with enhanced sensitivity to weaker inputs but also with a 

larger dynamic range and hence better resolution.40,41 Thus, in 

the future, a more realistic decoder would consider local pop-

ulations of thalamocortical neurons, to test the hypothesis 

that, through CT feedback mediated synaptic noise, cortex en-

hances both its sensitivity to ambiguous inputs and its resolu-

tion of the stimulus representation, through the linearization of 

the pooled afferent thalamic inputs. Note that this framework 

relies not only on strong thalamocortical convergence, but 

also on the feedback-mediated synaptic noise being at least 

somewhat statistically independent across dLGN neurons. 

This would need to be tested in future experiments suppressing 

CT feedback during recordings of large populations of single 

dLGN neurons.

In conclusion, our results add to the growing body of evidence 

that dLGN activity is influenced not only by visual inputs but also 

by modulatory influences from CT feedback and behavioral 

state. Our work presents an important step toward a quantitative 

understanding of how dLGN responses to complex, naturalistic 

stimuli are shaped by the simultaneous influences of stimulus 

related feedforward inputs, CT feedback and behavior.

Limitations of the study

There are also several limitations in our study. First, the amount 

of expression and optogenetic light placement for CT feedback 

suppression was not exactly the same across each mouse. 

This may result in variable results. More importantly, firing 

mode of thalamic neurons, i.e., tonic and burst mode, an impor-

tant target for neuromodulation and CT feedback, was not 

considered in our analysis. Second, we attempted to adjust 

our GLM by replacing the soft plus nonlinearity with an exponen-

tial nonlinearity to better reflect the known gain modulations of 

CT feedback and behavioral state,28 instead of modeling them 

as additive effects. However, this approach led to instability dur-

ing model training, thus preventing us from using the exponential 

nonlinearity. The model and its simulated responses thus can not 

fully capture the neuronal mechanisms underlying response 
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modulations by CT feedback and behavioral state. Lastly, effects 

of CT feedback and behavioral state might be different under 

freely moving conditions and in a task context. Both aspects 

require further investigation.

RESOURCE AVAILABILITY
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18. Aydın, Ç., Couto, J., Giugliano, M., Farrow, K., and Bonin, V. (2018). 

Locomotion modulates specific functional cell types in the mouse visual 

thalamus. Nat. Commun. 9, 4882. https://doi.org/10.1038/s41467-018- 

06780-3.

19. Liang, L., Fratzl, A., Reggiani, J.D.S., El Mansour, O., Chen, C., and An-

dermann, M.L. (2020). Retinal inputs to the thalamus are selectively gated 

by arousal. Curr. Biol. 30, 3923–3934.e9. https://doi.org/10.1016/j.cub. 

2020.07.065.

20. Poulet, J.F.A., Fernandez, L.M.J., Crochet, S., and Petersen, C.C.H. 

(2012). Thalamic control of cortical states. Nat. Neurosci. 15, 370–372. 

https://doi.org/10.1038/nn.3035.

21. McClurkin, J.W., and Marrocco, R.T. (1984). Visual cortical input alters 

spatial tuning in monkey lateral geniculate nucleus cells. J. Physiol. 

348, 135–152. https://doi.org/10.1113/jphysiol.1984.sp015103.

22. Murphy, P.C., and Sillito, A.M. (1987). Corticofugal feedback influences 

the generation of length tuning in the visual pathway. Nature 329, 

727–729. https://doi.org/10.1038/329727a0.

23. Jones, H.E., Andolina, I.M., Ahmed, B., Shipp, S.D., Clements, J.T.C., 

Grieve, K.L., Cudeiro, J., Salt, T.E., and Sillito, A.M. (2012). Differential 

feedback modulation of center and surround mechanisms in parvocellu-

lar cells in the visual thalamus. J. Neurosci. 32, 15946–15951. https://doi. 

org/10.1523/jneurosci.0831-12.2012.

24. Hasse, J.M., and Briggs, F. (2017). Corticogeniculate feedback sharpens 

the temporal precision and spatial resolution of visual signals in the ferret. 

Proc. Natl. Acad. Sci. USA 114, E6222–E6230. https://doi.org/10.1073/ 

pnas.1704524114.

25. Wang, W., Jones, H.E., Andolina, I.M., Salt, T.E., and Sillito, A.M. (2006). 

Functional alignment of feedback effects from visual cortex to thalamus. 

Nat. Neurosci. 9, 1330–1336. https://doi.org/10.1038/nn1768.

26. Crandall, S.R., Cruikshank, S.J., and Connors, B.W. (2015). A corticotha-

lamic switch: Controlling the thalamus with dynamic synapses. Neuron 

86, 768–782. https://doi.org/10.1016/j.neuron.2015.03.040.

27. Paninski, L. (2004). Maximum likelihood estimation of cascade point-pro-

cess neural encoding models. Netw. Comput. Neural Syst. 15, 243–262. 

https://doi.org/10.1088/0954-898x_15_4_002.

28. Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E. 

J., and Simoncelli, E.P. (2008). Spatio-temporal correlations and visual 

signalling in a complete neuronal population. Nature 454, 995–999. 

https://doi.org/10.1038/nature07140.

29. Butts, D.A. (2019). Data-driven approaches to understanding visual 

neuron activity. Annu. Rev. Vis. Sci. 5, 451–477. https://doi.org/10. 

1146/annurev-vision-091718-014731.

30. Paninski, L., Pillow, J., and Lewi, J. (2007). Statistical models for neural 

encoding, decoding, and optimal stimulus design. In Computational 

Neuroscience: Theoretical Insights into Brain Function (Elsevier), 

pp. 493–507. https://doi.org/10.1016/s0079-6123(06)65031-0.

31. Pillow, J.W., Paninski, L., Uzzell, V.J., Simoncelli, E.P., and Chichilnisky, 

E.J. (2005). Prediction and decoding of retinal ganglion cell responses 

with a probabilistic spiking model. J. Neurosci. 25, 11003–11013. 

https://doi.org/10.1523/JNEUROSCI.3305-05.2005.

32. Steinmetz, N.A., Zatka-Haas, P., Carandini, M., and Harris, K.D. (2019). 

Distributed coding of choice, action and engagement across the 

mouse brain. Nature 576, 266–273. https://doi.org/10.1038/s41586- 

019-1787-x.

33. Runyan, C.A., Piasini, E., Panzeri, S., and Harvey, C.D. (2017). Distinct 

timescales of population coding across cortex. Nature 548, 92–96. 

https://doi.org/10.1038/nature23020.

34. Park, I.M., Meister, M.L.R., Huk, A.C., and Pillow, J.W. (2014). Encoding 

and decoding in parietal cortex during sensorimotor decision-making. 

Nat. Neurosci. 17, 1395–1403. https://doi.org/10.1038/nn.3800.

35. Musall, S., Kaufman, M.T., Juavinett, A.L., Gluf, S., and Churchland, A.K. 

(2019). Singletrial neural dynamics are dominated by richly varied move-

ments. Nat. Neurosci. 22, 1677–1686. https://doi.org/10.1038/s41593- 

019-0502-4.

36. Goltstein, P.M., Reinert, S., Bonhoeffer, T., and Hübener, M. (2021). 
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Cre-dependent, stGtACR2-expressing 

adeno-associated virus (pAAV hSyn1- 

SIO-stGtACR2-FusionRed)
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Deposited data

This study https://doi.org/10.5281/zenodo.15479878
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Experimental models: Organisms/strains

B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/ 

Mmcd; MMRR

Mutant Mouse Resource and 

Research Center (MMRRC)

RRID:MMRRC_030648-UCD

Software and algorithms

This study https://doi.org/10.5281/zenodo.15058825

Fiji/ImageJ NIH https://imagej.net/; RRID: SCR_003070

Datajoint Yatsenko et al.92 https://datajoint.org/; RRID: SCR_014543

RFEst Huang et al.39 https://github.com/berenslab/RFEst

EXPO visual display software developed by Dr. Peter Lennie and 
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Center for Neural Science at 

New York University
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Spyke Spacek et al.94 https://spyke.github.io/

Other
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Sharp micropipette Science Products, Hofheim, DE GB150F-8P

Vibratome Leica, Wetzlar, Germany Leica VT1200 S

DAPI-containing mounting medium Thermo Fisher Scientific, Waltham, 

Massachusetts, USA

Vectashield DAPI

DiI Invitrogen, Carlsbad, USA

Olympus BX61 Upright Wide 

Field Microscope

Olympus, Tokyo, Japan RRID:SCR_020343

OptiBond FL primer and adhesive Kerr dental, Rastatt, DE Cat#35369

Dental cement Ivoclar Vivadent, Ellwangen, DE Tetric EvoFlow

Ground and reference screws Bilaney 00-96 X 1/16 stainless steel screws
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laboratory-supplies/adhesives.aspx

Gamma-corrected LCD screen Samsung Samsung SyncMaster 2233

32-channel edge silicon probes Neuronexus, Ann Arbor, USA A1x32Edge-5mm-20-177-A32

Arduino-type microcontroller Arduino http://www.arduino.cc/

Infrared camera (Guppy AVT camera) Allied Vision, Exton, USA Guppy AVT camera

Blue light (blue LED, center wavelength 465 nm) Doric Lenses, Quebec, Canada LEDC2 465/635 SMA

Optic fiber Doric Lenses, Quebec, Canada MFP_480/500/1000-0.63_m_SMA

Blackrock microsystems amplifier Blackrock Microsystems Europe 
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128-Channel Neural signal processor
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures complied with the European Communities Council Directive 2010/63/EU and the German Law for Protection of An-

imals, and were approved by local authorities, following appropriate ethics review. Experiments were carried out under License ROB- 

55.2-2532.Vet_02-17-40 in 4 adult Ntsr1-Cre mice (median age: 15.5 ± 6.45 weeks; B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmcd; 

MMRRC) of either sex (1 female, 3 male) and in a male Ntsr1-Cre negative control mouse, in order to assess potential light confounds 

of the optogenetic manipulations. Prior to experimentation, the genotype of the mice was confirmed via polymerase chain reaction 

(PCR) analysis. We do not expect that sex plays a role in our study, but future experiments should explicitly address this question.

The mouse strain used for this research project, B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmucd, RRID:MMRRC_030648-UCD, was 

obtained from the Mutant Mouse Resource and Research Center (MMRRC) at University of California at Davis, an NIH-funded strain 

repository, and was donated to the MMRRC by MMRRC at University of California, Davis. Made from the original strain 

(MMRRC:017266) donated by Nathaniel Heintz, Ph.D., The Rockefeller University, GENSAT and Charles Gerfen, Ph.D., National In-

stitutes of Health, National Institute of Mental Health.

METHOD DETAILS

Surgical procedures

Stereotactic surgeries were performed to implant a head-post for head-fixation, implant a ground/reference screw for electrophys-

iology, inject a virus for optogenetic feedback manipulation, and drill a craniotomy for acute electrode insertions.

Thirty minutes prior to the surgical procedure, mice were injected with an analgesic (Metamizole, 200 mg/kg, sc, MSD Animal 

Health, Brussels, Belgium). To induce anesthesia, animals were placed in an induction chamber and exposed to isoflurane (5% in 

oxygen, CP-Pharma, Burgdorf, Germany). After induction of anesthesia, mice were fixated in a stereotaxic frame (Drill & Microinjec-

tion Robot, Neurostar, Tuebingen, Germany) and the isoflurane level was lowered (0.5%–2% in oxygen), such that a stable level of 

anesthesia could be achieved as judged by the absence of an interstitial reflex. Throughout the procedure, the eyes were covered 

with an eye ointment (Bepanthen, Bayer, Leverkusen, Germany) and a closed loop temperature control system (ATC 1000, WPI Ger-

many, Berlin, Germany) ensured that the animal’s body temperature was maintained at 37◦C. At the beginning of the surgical pro-

cedure, an additional analgesic was administered (Buprenorphine, 0.1 mg/kg, sc, Bayer, Leverkusen, Germany) and the animal’s 

head was shaved and thoroughly disinfected using iodine solution (Braun, Melsungen, Germany). Before performing a scalp incision 

along the midline, a local analgesic was delivered (Lidocaine hydrochloride, sc, bela-pharm, Vechta, Germany). The skin covering the 

skull was partially removed and cleaned from tissue residues with a drop of H2O2 (3%, AppliChem, Darmstadt, Germany). Using four 

reference points (bregma, lambda, and two points 2 mm to the left and to the right of the midline respectively), the animal’s head was 

positioned into a skull-flat configuration for the further steps.

In order to suppress V1 L6 CT feedback selectively and reversibly, we conditionally expressed the chloride-conducting channelr-

hodopsin stGtACR242,95,96 in L6a CT pyramidal cells5,62,83 by injecting AAV-stGtACR2-RFP into the left hemisphere V1 of Ntsr1-Cre 

mice43,97,98 (Figure 1A). Ntsr1+ neurons are known to correspond with >90% specificity to L6 CT pyramidal cells.6,99,100 Furthermore, 

the opsin stGtACR2 restricts expression to somata and the axon-initial segment which prevents possible accidental axonal depo-

larization due to a differential Cl- ion reversal potential across different neuronal compartments.101–103 It also offers improved pho-

tocurrents and higher sensitivity, which are of particular relevance to manipulating deeply located L6 CT neurons, while avoiding light 

artifacts and tissue damage arising from excessive light intensities.103

Before surgery, the Cre-dependent, stGtACR2-expressing adeno-associated virus (AAV) vector (pAAV_hSyn1-SIO-stGtACR2-Fu-

sionRed, Addgene, #105677) stock solution was diluted to 5×1011 gc/ml titers, and aliquotted to 4 μl. During surgery, aliquots were 

front-loaded into a glass pipette mounted on a Hamilton syringe (SYR 10 μl 1701 RN no NDL, Hamilton, Bonaduz, Switzerland), 

controlled by the Injection Robot of the Neurostar Stereotax. After performing a small craniotomy for injection (100 μm diameter), 

we injected 300 nl of virus solution into V1 (2×50 nl shots injected at a rate of 50 nl/30 s at a respective depth of 900 μm, 800 μm 

and 700 μm below the brain surface).

For implant fixation, the exposed skull was covered with OptiBond FL primer and adhesive (Kerr Dental, Rastatt, Germany) omitting 

three locations: V1 (AP: -3.28 mm, ML: -2.4 mm), dLGN (AP: -2.3 mm, ML: -2 mm), and a position roughly 1.5 mm anterior and 1 mm to 

the right of bregma, designated for a miniature ground and reference screw. A custom-made lightweight stainless steel head bar was 

positioned over the posterior part of the skull such that the round opening in the bar was centered on V1/dLGN. The head bar was 

attached with dental cement (Ivoclar Vivadent, Ellwangen, Germany) to the primer/adhesive. The opening was later filled with the 

silicone elastomer sealant Kwik-Cast (WPI Germany, Berlin, Germany). Then the miniature screw (00-96 X 1/16 stainless steel 

screws, Bilaney), which served both as ground and reference that was soldered to a custom-made connector pin, was implanted.

At the end of the procedure, an iodine-based ointment (Braunodivon, 10%, B. Braun, Melsungen, Germany) was applied to the 

edges of the wound and a long-term analgesic (Meloxicam, 2 mg/kg, sc, Böhringer Ingelheim, Ingelheim, Germany) was administered 

and for 3 consecutive days. For at least 5 days post-surgery, the animal’s health status was assessed via a score sheet. After at least 

1 week of recovery, animals were gradually habituated to the experimental setup by first handling them and then simulating the exper-

imental procedure. To allow for virus expression, neural recordings started after an incubation time of 2-4 weeks after injection.
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On the day prior to the first day of recording, mice were fully anesthetized using the same procedures as described for the initial 

surgery, and a craniotomy (ca. 2×1 mm on the AP×BL axes) was performed over dLGN (ca. 2.5 mm posterior from bregma and 

2.3 mm lateral from midline) and V1 and re-sealed with Kwik-Cast (WPI Germany, Berlin, Germany). As long as the animals did 

not show signs of discomfort, the long-term analgesic Metacam was administered only once at the end of surgery, to avoid any con-

founding effect on experimental results. Recordings were performed daily and continued for as long as the quality of the electrophys-

iological signals remained high.

Extracellular recordings

After 2-4 weeks of expression time, we performed in vivo extracellular multi-electrode array (MEA) recordings of dLGN neurons in 

awake, head-fixed mice (Figure 1A). Extracellular signals were recorded at 30 kHz (Blackrock microsystems, Blackrock Microsys-

tems Europe GmbH, Hanover, Germany). For each recording session, the silicon plug sealing the craniotomy was removed. For 

dLGN recordings, a 32-channel linear silicon probe (Neuronexus A1x32Edge-5mm-20-177-A32) was lowered to a depth of 

∼2500–3500 μm below the brain surface. We judged recording sites to be located in dLGN based on the characteristic progression 

of RFs from upper to lower visual field along the electrode shank,55 the presence of responses strongly modulated at the temporal 

frequency of the drifting gratings (F1 response), and the preference of responses to high temporal frequencies.55,58 For post hoc his-

tological reconstruction of the recording site, the electrode was stained with DiI (Invitrogen, Carlsbad, USA) for some (typically the 

last) recording sessions.

Locomotion

During the experiment, mice were free to run on an air-floating Styrofoam ball and the run speed was recorded via locomotion sen-

sors (Figure 1A). Two optical computer mice interfaced with a microcontroller (Arduino Duemilanove) sampled ball movements 

at 90 Hz.

To compute animal run speed, we used the Euclidean norm of three perpendicular components of ball velocity (roll, pitch and yaw) 

and smoothed traces with a Gaussian kernel (σ = 0.2 s). To quantify the effect of running vs sitting on various response properties, 

the run modulation index (MIRun) was defined based on the mean firing rates during running vs sitting periods as MIRun = (running - 

sitting)/(running + sitting), where running periods were defined as those for which speed exceeded 1 cm/s, and sit periods as those for 

which speed fell below 0.25 cm/s.

To test for a significant difference in mean FRs between the run vs. sit conditions matched for each neuron, we used the Wilcoxon 

signed-rank test.

Eye tracking

To record eye position and pupil size, the animal’s eye that was viewing the stimulus was illuminated with infrared LED light and moni-

tored using a zoom lens (Navitar Zoom 6000) coupled with a camera (Guppy AVT camera; frame rate 50 Hz, Allied Vision, Exton, USA).

Pupil position was extracted from the eye-tracking videos using a custom, semi-automated algorithm. Briefly, each video frame 

was equalized using an adaptive bi-histogram equalization procedure, and then smoothed using median and bilateral kernels. 

The center of the pupil was detected by taking the darkest point in a convolution of the kerneled image with a black square. Next, 

the peaks of the image gradient along lines extending radially from the center point were used to define the pupil contour. Lastly, 

an ellipse was fit to the contour, and the center and area of this ellipse was taken as the position and size of the pupil, respectively. 

A similar procedure was used to extract the position of the corneal reflection (CR) of the LED illumination. Eye-closure, grooming, or 

implausible ellipse fitting was automatically detected and the adjacent data points 0.15 s before and after were excluded. Linear inter-

polation and a subsequent Gaussian smoothing (σ = 0.06 s) was applied to fill the removed segments. Adjustable algorithm param-

eters, such as the threshold of the mean pixel-wise difference between each frame and a reference frame to detect blinks, were set 

manually for each experiment.

To quantify the effect of large vs small pupil sizes on various response properties, the eye modulation index (MIPupil) was defined 

based on the mean firing rates during periods of large vs small pupils as MIPupil = (pupil large - pupil small) / (pupil large + pupil small), 

where periods of large pupils were defined as those for which pupil size was above the 50th percentile of the median normalized pupil 

trace, and periods of small pupils as those for which pupil size fell below the 25th percentile.

Optogenetic feedback suppression

To photosuppress V1 Ntsr1+ L6 CT pyramidal cells, an optic fiber (480 μm core diameter, MFP_480/500/1000-0.63_m_SMA, Doric 

Lenses, Quebec, Canada) was coupled to a light-emitting diode (blue LED, center wavelength 465 nm, LEDC2_465/635_SMA, Doric 

Lenses, Quebec, Canada) and positioned with a micromanipulator less than 1 mm above the exposed surface of V1. A black metal foil 

surrounding the tip of the head bar holder prevented the photostimulation light from reaching the animal’s eyes. To ensure that the 

photostimulation was effective, the first recording session for each mouse was carried out in V1. Only if the exposure to light reliably 

induced suppression of V1 activity was the animal used for subsequent dLGN recordings. LED light intensity was adjusted on a daily 

basis to evoke reliable effects and account for variations in exact virus titer, volume, incubation time, virus expression levels, and fiber 

position (0.85-9.5 mW at the fiber tip). Since the tip of the fiber never directly touched the surface of the brain, and since the clarity of 

the surface of the brain varied (generally decreasing every day following the craniotomy), the light intensity delivered even to 
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superficial layers of V1 was inevitably lower. For the movie stimulus, optogenetic pulses of 1 s duration were sent randomly each 

second with a 50% chance.

To quantify the effect of CT feedback suppression on various response properties, we defined the optogenetic modulation index 

(MICT FB supp) based on the mean FRs during CT feedback suppression (’opto’) versus the control condition as MICT FB supp = (opto - 

control)/(opto + control). To quantify the temporal dynamics of the effect of suppressing CT feedback with optogenetic pulses, we 

calculated rate of change (RoC) in the neurons’ responses based on both data and model prediction (see below). For each case, we 

first identified the time point t_min where the slope of neurons response flipped its sign. Then, we calculated the normalised change in 

responses MICT FB supp Finally, RoC was defined as: RoC = MICT FB supp/tmin.

Joint modulation by additional inputs

In order to quantify the joint effect of all the modulatory inputs, we calculated MIJoint as

MIJoint = 1 −
(
1 − MICT FB supp

)
(1 − MIRun)

(
1 − MIPupil

)

To test for the correlations between the variables of interest stimulus, opto, run, and eye, we computed their cross-correlations for 

all time points for which we had valid data (e.g. removing periods with eye blinks). We then used the delay time to shift the traces 

appropriately before computing their correlation value (Pearson’s r; Figure S3C). To test for significance while accounting for auto-

correlations we used a permutation test.54

Visual stimulation

During the experiment, the mice were passively viewing visual stimuli on an LCD monitor screen in their right visual field. The 

visual stimuli were presented on a gamma-calibrated liquid crystal display (LCD) monitor (Samsung SyncMaster 2233RZ, 

47×29 cm, 1680×1050 resolution at 60 Hz, mean luminance 50 cd/m2) positioned at a distance of 25 cm from the animal’s right 

eye (spanning ∼108×66◦ visual angle by small angle approximation) using custom written software (EXPO, https://sites.google. 

com/a/nyu.edu/expo/home). The display was gamma-corrected for the presentation of artificial stimuli, but not for movies 

(see below).

For movie stimulus generation, we adopted a set of randomly picked clips from various movies. Briefly, source movie clips were 

converted to grey scale, temporally downsampled to 30 frames per s, spatially resampled and cropped to 424×264 pixels, to be pre-

sented on our 47×29 cm monitor screen at 25 cm distance at 106×66◦ (4 pixels/◦) visual angle (by small angle approximation, which 

preserves the desired pixel resolution at the screen center better than the arctangent). Movie frames were not histogram-equalized 

and presented at 60 Hz (repeating each frame twice) without monitor gamma correction, since cameras are already gamma cor-

rected for consumer displays.104 To generate the movie sequence, we used a random set of 296 unique movie clips (5 s each) 

and split 188/296 clips into 8 parts of 36 unique clips (5 s×36 = 180 s per part). They were interleaved with set of 8 clips (5 s×8 = 

40 s) which was repeated 9 times. The repeated clips served to give an estimate of response reliability to the same clips. The movie 

sequence was flanked by a period of blank grey screen presentation (1 min) at the beginning and at the end, to record spontaneous 

activity. This resulted in a total stimulus duration of ∼32 mins. To rule out sequence effects, we randomized the clip order for different 

stimulus presentations. To investigate the effects of L6 CT FB suppression, we simultaneously presented a random optogenetic 

pulse train of 1 s pulses, occurring each second with a probability of 50%, throughout the entire stimulus duration, including blank 

grey screen periods.

To measure RFs in a more standard manner, we also presented an (artificial) sparse noise stimulus. The stimulus consisted of a 

rapid sequence of non-overlapping white and black squares appearing in succession within a 12x12 square grid presented on a 

grey background of mean luminance (50 cd/m2). The square grid spanned 60◦ per side, while individual squares spanned 5◦ per 

side. Each square flashed 20 times for 200 ms at random order. The stimulus triggered average (STA) for the sparse noise stimulus 

was computed using the onset of each square and then computing the normalised mean spike rate triggered by each position.

To categorize neurons into functional subtypes (see below), we used a full-field light intensity step stimulus. The stimulus consisted 

of four sequential light intensity levels, each presented for two seconds: a dark level (0% intensity), a bright level (100% intensity), a 

return to the dark level (0% intensity), and a medium level (50% intensity).

Histology

To verify virus expression and recording sites, we performed post-mortem histological analyses. After the final recording session, 

mice were first administered an analgesic (Metamizole, 200 mg/kg, sc, MSD Animal Health, Brussels, Belgium) and following a 

30 min latency period were transcardially perfused under deep anesthesia using a cocktail of Medetomidin (Domitor, 0.5 mg/kg, Ve-

toquinol, Ismaning, Germany), Midazolam (Climasol, 5 mg/kg, Ratiopharm, Ulm, Germany) and Fentanyl (Fentadon, 0.05 mg/kg, De-

chra Veterinary Products Deutschland, Aulendorf, Germany) (ip). Perfusion was first done with Ringer’s lactate solution followed by 

4% paraformaldehyde (PFA) in 0.2 M sodium phosphate buffer (PBS). Brains were removed, postfixed in PFA for 24 h, and then 

rinsed with and stored in PBS at 4◦C. Slices (50 μm) were cut using a vibrotome (Leica VT1200 S, Leica, Wetzlar, Germany), stained 

with DAPI-solution (DAPI, Thermo Fisher Scientific, Waltham, Massachusetts, USA), mounted on glass slides with Vectashield 

mounting medium (Vectashield H-1000, Vector Laboratories, Burlingame, USA), and coverslipped. A scanning fluorescent 
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microscope (BX61, Olympus, Tokyo, Japan) was used to inspect slices for the presence of red fluorescent protein (RFP/FusionRed) 

marking stGtACR2-channels, and DiI, marking electrode tracks. Recorded images were processed off-line using FIJI.105,106

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike sorting and unit extraction

Spike sorting was performed to obtain single unit activity from extracellular recordings. Electrophysiological signal recordings were 

filtered using a 4th-order Butterworth high-pass non-causal kernel with a low frequency cutoff of 300 Hz. We then used the open 

source, MATLAB-based (The Mathworks, Natick, Massachusetts, USA), automated spike sorting toolbox Kilosort and Kilosort2.93

Resulting clusters were manually refined using Spyke,94 a Python application that allows for the selection of channels and time ranges 

around clustered spikes for realignment, as well as representation in 3D space using dimension reduction (multichannel PCA, ICA, 

and/or spike time). In 3D, clusters were then further split via a gradient-ascent based clustering algorithm (GAC).107 Exhaustive pair-

wise comparisons of similar clusters allowed the merger of potentially over-clustered units. For subsequent analyses, we inspected 

autocorrelograms and mean voltage traces, and only considered units that displayed a clear refractory period and a distinct spike 

waveshape.

Unit quality metrics

To evaluate the quality of the sorted units, we performed a post-hoc analysis using several quality metrics.

1. Signal-to-noise ratio (SNR; Figure S10A). For each neuron, we assessed the SNR as: SNR = As/σn, where As is the maximum 

amplitude of the mean spike waveform on the best channel, and σn is the background noise level on the best channel calcu-

lated as the median absolute deviation.

2. Interspike interval (ISI) violations (Figure S10B). For each neuron, we calculated the percentage of spikes violating an ISI of 

1.5 ms.

3. Isolation distance (Figures S10C–S10G). We randomly sampled 1000 spikes from each extracted unit and conducted pairwise 

comparisons between simultaneously recorded pairs of units. Waveforms recorded across all channels were projected into a 

lower-dimensional space using the first three principal components (PCA; Figure S10C). We then calculated the within-cluster 

distance as the average Euclidean distance between spikes belonging to the same cluster and the minimum isolation distance 

as the smallest average distance to spikes from any other cluster recorded in the same session (Figure S10D). Additionally, we 

computed the cluster centres in PCA space and projected spikes onto the line connecting the centres of any two clusters 

(Figure S10E). This projection allowed us to calculate the discriminability of neurons using the d-prime measure 

(Figure S10F). Finally, we utilized NDsep (Figure S10H), a preferred metric of cluster separation employed by Spyke,94,107

as it avoids the loss of information associated with projecting 3D clusters onto a single dimension. The NDsep for any pair 

of neurons i, j was calculated as follows:

N = 1 −

1 −
Nnn

Ni

1 −
Ni

Ni+Nj

;Ni < Nj 

where Nnni is the number of points in cluster i whose nearest neighbour is also in cluster i. The value ranges from 1 for completely 

separate clusters, to 0 for completely mixed clusters.94,107

Neuronal data analysis

Data analysis was performed using the DataJoint framework92 with custom-written code in Python. We also used a customized 

version of RFEst (https://github.com/berenslab/RFEst) to allow for multiple model inputs. To obtain units firing rates in spikes per 

second (Hz), each unit’s spike density function (SDF) was calculated by binning spikes into a firing rate histogram (bin width = 

20 ms) and convolving this with a Gaussian of width 2σ = 10 ms. Mean firing rates (FRs) over a given condition were calculated as 

the mean of the time-varying firing rates for the defined periods. Neurons with mean evoked firing rates < 0.1 Hz were excluded 

from all further analysis. To compute how reliable a neuron responded to the visual stimulus we used the set of 8 clips that where 

repeated 9 times throughout the experiment. We computed reliability by correlating each repetition with the mean of all other repe-

titions and averaging that over all splits.

Reliability of CT feedback suppression

To compute the reliability of the optogenetic manipulation of L6 CT neurons, we developed a trial-based permutation test. In 

response to drifting gratings, we calculated the average firing rate during each trial and separated the trial with optogenetic CT feed-

back suppression (trialsCT FB supp; n=90-130) from those without (trialscontrol; n = 90-130). We calculated the observed statistics 

effectCT FB supp as the difference in the means between the trialsCT FB supp and the trialscontrol. We assessed significance by permuting 
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trial labels 1000 times and considered the effect significant if it fell outside of the distribution of permuted effectCT FB supp. Finally, we 

compared the percentage of neurons that passes the significance test between the included recording and a recording from a control 

mouse (Ntsr-negative).

Spline-based generalized linear model

To estimate the spatio-temporal RFs (stRFs), we used the RFEst Python toolbox for spline-based spatio-temporal RF estimation.39

By using natural cubic splines as the basis (e.g., Figures S6A–S6D), the estimates are automatically smooth, which is a desirable 

property for single stRFs. To impose sparsity on the weights we added L1 regularization, which pushed the weights for less relevant 

bases to zero. To compute the spline-based stRFs, wSPL, the coefficients, bSPL, were obtained as

bSPL =
(

ST XT XS
)− 1

STXTy 

with X as the stimulus design matrix, y as the neural response vector, and S as the spline matrix. The stRF was computed as

wSPL = SbSPL = S
(

ST XT XS
)− 1

STXTy 

To approximate wSPL we used a generalized linear model (GLM) that predicts the instantaneous firing rate for one neuron using the 

movie as a predictor. We extended this "Stimulus only" model by integrating also running speed and pupil size as behavioural pre-

dictors of neuronal firing rate. To estimate the effect of cortico-thalamic (CT) feedback, an additional bimodal input was used 

comprising the optogenetic light stimulation that could be either on (ot=1) or off (ot=0). All inputs where parameterized with a set 

of spline basis and multiplied with an extra weight vector (also referred to as kernel):

f(s;o; r; e) = g
(
wT

s s[t : t − Δt] + wT
oo[t : t − Δt] + wT

r r[t : t − Δt] + wT
e e[t : t − Δt]

)

with s, o, r, and e denoting the additional model inputs of stimulus, optogenetics, running and eye, respectively, and [t:t-Δt] defining 

the temporal integration window (250 ms for stimulus and 800 ms for the predictors for modulatory inputs).

We trained and evaluated the spline-GLM on the recorded dataset as follows: Given the known diversity of mouse dLGN feature 

selectivity,55,108 we performed a separate hyperparameter search for each neuron. All GLM fits in this study were cross-validated. 

The models analysed here were configured with the selected optimal hyperparameters and the reported performance is based on 

the held-out test set. Specifically, we estimated the kernels by gradient descent with respect to the cost function with L1 regulariza-

tion. As standard procedure for time series data, we used 150 out of the 188 unique movie clips (80%) for cross-validation to select 

optimal hyperparameters and reserved the remaining 38 clips (20%) as a held-out test set. To select optimal hyperparameters, we 

used five-fold cross-validation grid search on the training data (120 training clips and 30 validation clips in each fold). Hyperpara-

meters included the number of spline basis (between 10 and 19) in the temporal dimension (for stimulus, pupil size, locomotion, 

and feedback input) and spatial dimension (only stimulus), as well as the strength of the L1 regularization (with weights varying 

from 5 to 15). The stRFs were initialized randomly and optimized using gradient decent for 2000 iterations. We stopped the fitting 

early when the training cost changed less than 10-5 for 10 iterations. Finally, we selected the hyperparameters based on the 

mean performance on the validation set across folds. After optimal hyperparameter selection, models were retrained on the full 

training data (150 movie clips) and the final performance of the model was reported as the correlation coefficient between predicted 

and observed neural responses on the held-out test data (38 movie clips).

We further fitted spline GLMs with responses to a sparse noise stimulus. We conducted a separate hyperparameter search for this 

stimulus, using a similar procedure as for the movie stimulus, involving cross-validation. For each neuron, we determined a unique set 

of optimal hyperparameters and kernels for the sparse noise stimulus and the movie stimulus.

Following Harris (2020),54 we performed a permutation test to evaluate the significance of the model predictors. To achieve this, we 

provided the model with input data from the validation set of an unrelated session (for the model inputs ‘stimulus’, ‘running’, ‘pupil 

size’) or with synthetic inputs generated with the same statistics as the original (for the ‘CT feedback suppression’ input), one at a 

time. We repeated the process using all different data from all recording sessions. Subsequently, we compared for each input the 

actual model performance (Pearson’s r) on the validation set across its folds (n = 5) against a distribution of model performances 

with that specific input permuted from the different recording sessions across their folds (n = 5 folds × 9 recording sessions). Inputs 

were considered significant if the actual performance differed from the permuted performance with p ≤ 0.05 using the non-paired 

Mann-Whitney-U test.

Spatio-temporal RF characterization

To separate spatial and temporal components of the 3D stRFs, we performed singular value decomposition (SVD) on the norm of the 

stimulus weight vector w. The temporal RF was extracted as the first left-singular vector of U, i.e. temporal dimension with the highest 

variance, and the spatial RF as the first right-singular vector of V, reshaped into the height- and width-dimensions of the input vector 

w. The extremes of the reshaped spatial RF vector were then used to quantify RF position and RF area. The extracted temporal RF 

components were normalized and multiplied with the RF center value before computing the slope (-150 ms to peak).
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Model spatial RFs were estimated by extracting the 2D spatial RF component from the model weights and then drawing a contour 

line around the largest absolute peak (assumed to be the center of the spatial RF). The contour threshold was gradually lowered until 

any further decrease would result in a second contour around the second largest extremum (background irregularities considered as 

noise). To avoid overly large RFs in very clean spatial components (without any major second extremum), the contour threshold had 

to be 2 standard deviations above or below the mean. To improve estimate accuracy, the spatial RF component was upsampled 

16-fold via cubic spline interpolation. The spatial RF area was estimated by calculating the number of pixels of the spatial RF contour 

mask and converting it to squared degrees of visual angle.

To quantify the degree of center-surround organisation, similar to Lesica et al. (2007),66 stRFs were collapsed across the azimuth 

axis, and accordingly defined as a function of elevation and time. Then, we identified the time point with peak activity. Subsequently, 

centre regions were defined according to the spatial width of the peak activity, and surround regions were defined as a ring encircling 

the centre and extending up to twice the diameter or 9◦. We then summed pixel intensities within the centre region and the surround 

regions separately and calculated surround-to-centre ratio as:

2 ×
∑

centre
∑

surround1+
∑

surround2 

Cell types clustering

To categorize neurons into functional subtypes, we employed dimensionality reduction (PCA) on their PSTH responses to a full-field 

light intensity step stimulus. Subsequently, we conducted clustering using a Gaussian mixture model on the principal components, 

resulting in the identification of four primary groups (Sustained ON, Sustained OFF, Transient, and Mixed). Nevertheless, we 

observed substantial response diversity even within these main groups. To address this, we further subdivided neurons within 

each group through empirical selection of cluster numbers, aiming to optimize silhouette scores and reduce the standard error of 

the PSTH mean response within the subclasses. This two-step clustering approach allowed capturing finer distinctions of response 

patterns (Figures S5A and S5B).

In order to identify putative excitatory and inhibitory neurons in dLGN, we analysed the extracellular spike waveform. For each 

neuron, the mean waveform of the maximally responsive electrode channel was obtained, and we used parameters proposed by 

Molnar et al. (2021).14 The time between trough and peak (trough-to-peak time) and the height ratio of the peak to the trough 

were calculated and clustered for a large pool of previously recorded dLGN neurons (n = 666). We identified 0.25 ms as a threshold 

for separating broad spiking, putative relay cells, from narrow spiking, putative local dLGN inhibitory neurons (Figures S6Q–S6T).

Decoding analysis

For our in silico experiments to isolate the effects of CT feedback suppression, we used a two-alternative forced choice (2AFC) 

decoder31 to analyse if stimulus discriminability was easier with or without feedback. Given two spike trains {sA; sB} in response 

to two movie clips {A;B} we computed the model log-likelihood for the correct ((sA;A); (sB;B)) and the incorrect pairing ((sA;B);

(sB;A)). We used the ’Full model’ to predict spike trains in the two feedback conditions, (1) with the CT feedback component intact 

and (2) with the feedback component suppressed. In both conditions, we used 100 randomly selected 50 ms movie fragments from 

the test set that had not been used for model fitting and their corresponding responses. Using all possible pairs, we computed the 

model log-likelihood for the correct and the incorrect pairing in both feedback conditions.30 The log probability for the correct pairing 

of response sA and stimulus A is defined as follows:

log p(sA|A) =
∑

t

sA;t log λt(At) − λ(At)

where λ is the instantaneous firing rate at time t predicted by the model. Analogously, we computed log p(sB|B), log p(sA|B), and 

log p(sB|A). A correct choice was made if log p(sA|A)> log p(sA|B) or log p(sB|B)> log p(sB|A) respectively. We used the percentage 

correct over all possible pairs to quantify decoding performance. Finally, we computed the ratio of percentage correct for the CT 

feedback suppressed condition and the control condition. A ratio > 1 indicates better decoding performance in the feedback sup-

pressed condition and a ratio < 1 in the control condition.

To test the predictions of our in silico experiment for in vivo data, we analysed dLGN responses to a repeated 5-second natural 

movie under feedback-suppressed and control conditions (200 trials each) obtained from a published dataset.10 The decoding anal-

ysis employed support vector machines (SVMs) with the following protocol: The data was split into training (160 trials) and test sets 

(40 trials), and segmented into non-overlapping 50 ms or 500 ms fragments. For computational efficiency, 200 stimulus-response 

pairs (movie fragment A vs B) were randomly sampled, and SVMs were trained separately for each stimulus pair and condition, 

with hyperparameters (regularization parameter and RBF kernel coefficient) optimized through 5-fold cross-validation. Performance 

was evaluated on the held-out test set. For a robust comparison to our dataset, neurons with a positive average effect of CT feedback 

suppression were excluded. Results for each SVM were considered valid only if the firing rates of at least one of the two response 

e7 iScience 28, 112481, June 20, 2025 

iScience
Article

ll
OPEN ACCESS



fragments exceeded 5 Hz, and only neurons with at least 10 valid fragment pairs in either the CT feedback suppressed or control 

condition were included in the final analysis. This selection process resulted in the inclusion of 78 neurons (55% of all neurons).

The fold change (FC) was calculated as:

FC = log2
(
MCT FB sup

/
Mcontrol

)

with M representing either decoder accuracy or response reliability.

As in the original publication,10 response reliability was quantified according to Goard and Dan (2009)109 as the mean pairwise cor-

relation of all trial pairs of a unit’s single-trial responses. Single-trial responses were computed by counting spikes in 20 ms, over-

lapping time bins at 1 ms resolution. Pearson’s correlation was calculated between all possible pairs of trials and then averaged 

across trials per condition.
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