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• PURPOSE: To evaluate the predictive performance of 
traditional intraocular lens (IOL) power calculation for- 
mulas (e.g., SRK/T, Haigis, Hoffer Q, and Holladay I) 
compared to advanced regression models, including clas- 
sical linear models, regression splines, and random forest 
regression, in predicting postoperative refraction follow- 
ing cataract surgery. 
• DESIGN: Retrospective, comparative analysis of IOL 

power calculations. 
• SUBJECTS: The study included 886 eyes from 631 pa- 
tients who underwent cataract surgery with monofocal 
aspherical IOL implantation. 
• METHODS: Biometric measurements were obtained us- 
ing optical biometry (IOLMaster 700), and postoperative 
refraction was assessed at least 4 weeks after surgery. 
Formula constants for 5 IOL formulas (SRK/T, Haigis, 
Hoffer Q, Holladay I and Castrop V1) were optimized 

using root mean squared error (RMSE). Regression mod- 
els (classical linear model, regression splines, and random 

forest regression) were trained on 4 datasets categorized 

by axial length (AL); normal, short, long, and random. 
Model performance was assessed using mean absolute er- 
ror (MAE), RMSE, and prediction error variance, for 
both in-sample and out-of-sample predictions. 
• MAIN OUTCOME MEASURES: The primary parameters 
measured were MAE, RMSE, and prediction error vari- 
ance. 
• RESULTS: Regression models outperformed traditional 
IOL formulas in in-sample prediction error. Overall, 
linear regression models performed similarly to tradi- 
tional formulas with respect to out-of-sample predic- 
tion error. The lowest out-of-sample prediction error 
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(MAE = 0.279, RMSE = 0.359) was achieved with a 
model where effects of some covariates (R2, AL, CCT) 
were modelled as nonlinear via regression splines. This 
model outperformed all traditional formulas, and the Cas- 
trop formula, which had the lowest errors among the for- 
mulas (MAE = 0.284, RMSE = 0.359). Random forest 
regression showed strong in-sample performance but poor 
out-of-sample generalizability due to overfitting. 
• CONCLUSIONS: Regression models which allow for 
nonlinear effects, e.g. based on regression splines, 
provide a promising alternative to traditional IOL for- 
mulas for predicting postoperative refraction. Linear 
regression and random forest regression models can 

reduce in-sample error, however, their clinical utility 

is currently limited by out-of-sample performance. Fu- 
ture work should focus on improving generalizability 

and integrating machine learning models into clinical 
practice to enhance refractive outcomes, especially 

for eyes with atypical anatomy. (Am J Ophthal- 
mol 2025;273: 141–150. © 2025 The Authors. 
Published by Elsevier Inc. This is an open 

access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ )) 
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INTRODUCTION 

 

ataract surgery is 1 of the most common
and successful procedures performed worldwide,
with intraocular lens (IOL) implantation signifi-

antly improving visual outcomes for millions of patients
nnually. 1 , 2 However, achieving the desired postoperative
efractive outcomes remains a challenge, particularly as pa-
ient expectations for precision continue to rise. 3-6 Accu-
ate prediction of postoperative refraction is critical, as re-
ractive errors can result in the need for additional correc-
ive measures, impacting patient satisfaction and quality of
ife. 

Historically, the prediction of postoperative refraction
as been guided by IOL power calculation formulas, which
ely on biometric measurements of the eye such as ax-
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ial length (AL), anterior chamber depth (ACD), and ker-
atometry (K) readings. 7 , 8 These formulas, including SRK/T,
Haigis, Hoffer Q, and Holladay I, are based on combina-
tions of vergence calculation and empirical components
such as ELP prediction, and while they generally perform
well, their accuracy can vary depending on the character-
istics of the patient’s eye. 9 Recent advancements in biome-
try, such as the introduction of optical biometry, nowadays
usually in the form of swept-source optical coherence to-
mography (SS-OCT), have improved the precision of ocu-
lar measurements. However, challenges in prediction accu-
racy persist, especially in cases with atypical eye anatomies,
such as short or long axial lengths. 10-12 

In light of these challenges, alternative approaches to
postoperative refraction prediction have been explored, in-
cluding the use of advanced statistical models and machine
learning algorithms. 7 , 13-20 These methods have the poten-
tial to offer more individualized predictions by capturing
complex relationships between biometric variables and re-
fractive outcomes. 

In this study, we compare the performance of all openly
disclosed IOL power calculation formulas including classi-
cal formulas and a new generation IOL power calculation
formula with 3 regression-based models, including classical
linear models, regression splines, and random forest regres-
sion, to evaluate their ability to predict postoperative re-
fraction following cataract surgery. In particular, we focus
on comparing in-sample and out-of-sample prediction er-
rors. Furthermore, we explore the performance of regression
models trained on different subsets of data, including those
with normal axial lengths and random distributions of ocu-
lar measurements, to determine the most effective approach
for optimizing postoperative refractive outcomes. 

METHODS 

• ETHICS: This retrospective study adhered to the tenets of
the Declaration of Helsinki. Ethics approval was obtained
from the study institution’s Institutional Review Board, and
HIPAA regulations were followed (Ärztekammer des Saar-
landes, 157/21). 

• PATIENT ELIGIBILITY: The study population consisted
of 886 consecutive eyes of 631 patients who underwent
cataract surgery with a monofocal 1-piece hydrophobic as-
pherical IOL implantation (IOL model: Vivinex, Hoya Sur-
gical Optics, Singapore) by experienced surgeons at the
study institution (Augen- und Laserklinik Castrop Rauxel,
Germany). 

Further inclusion criteria were complete biometric mea-
surements with the mark “Successful,” postoperative sub-
jective refraction, and a corrected distance visual acuity of
0.2 logMAR or better. Exclusion criteria were any history
142 AMERICAN JOURNAL OF OP
f ophthalmic surgery (except cataract surgery), periopera-
ive or postoperative complications, and any other ocular
athologies influencing the biometric measurements such
s corneal pathologies, and retinal pathologies. 

Optical biometry was performed with an SS-OCT
iometer (IOLMaster 700; Carl Zeiss Meditec AG [soft-
are v. 1.70.14.53814-1.80.10.61129]) measuring the AL,
CD, lens thickness (LT), white-to-white (WTW), cen-

ral corneal thickness (CCT), corneal front surface radii in
he flat (R1) and steep meridians (R2), corneal back sur-
ace radii in the flat (PR1), and steep meridians (PR2).
ubjective manifest refraction (sphere, cylinder, and axis)
nd visual acuity were measured by experienced clini-
ians/optometrists at least 4 weeks after surgery. Postopera-
ive refractions were performed with adjustments for a lane
ength of 6 m. IOL Power Calculation 

Four different training sets of 200 observations were gen-
rated: (1) the normal trainin g set, which only included ob-
ervations with normal AL (23-25mm); (2) the random set,
onsisting of randomly drawn observations from the entire
et; and (3) the short AL and 4) long AL sets, which included
 higher proportion of short ( < 23mm) or long ( > 25mm)
yes, respectively. 

Each of the 4 different training sets was used to calibrate
 disclosed and openly available formulas; SRK/T, Haigis,
offer Q, Holladay I and Castrop (V1), 10 to a specific en-

ironment using a comparison of diverse optimization met-
ics, including root mean squared error (RMSE), mean er-
or (ME), median error (medE) and mean absolute error
MAE). RMSE was selected as the metric for constant op-
imization after the predictive performance of the 5 formu-
as, and different optimization metrics were compared us-
ng mean, median, mean absolute error (MAE), and RMSE,
nd all yielded similar results. The resulting postoperative
efraction is referred to as the achieved refraction, while the
rediction of the refraction, based on ocular measurements
nd the power of the implanted lens, is denoted as target
efraction. The prediction error is defined as the difference
etween the achieved refraction and the target refraction. 

The 3 regression models used in this study were the clas-
ical linear model, regression splines, and random forest re-
ression. The significance level for the testing of regression
oefficients was set to α = 0.05. 

Linear Regression : This is a traditional statistical approach
here the relationship between biometric variables and
ostoperative refraction is modeled using a straight-line
quation. It assumes that changes in input variables lead
o proportional changes in the predicted outcome. 

Regression Splines : Unlike simple linear models, splines
ivide the data into segments and fit smooth, flexible curves
ather than straight lines. This allows for more accurate
odeling of complex, nonlinear relationships, such as the
ay axial length and corneal curvature interact with refrac-

ive outcomes. By smoothing the curve, regression splines
an provide better predictions without the need for rigid
ssumptions about data behavior. 
HTHALMOLOGY MAY 2025



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1. Out-of-Sample Prediction Error for Different 
Formulas and Splits for Optimization Metric RMSE 

Formula Split MAE RMSE Variance 

Haigis Normal 0.327 0.414 0.170 

Random 0.317 0.407 0.166 

Short 0.325 0.407 0.152 

Long 0.306 0.389 0.152 

Hoffer Q Normal 0.351 0.499 0.247 

Random 0.348 0.498 0.248 

Short 0.335 0.485 0.225 

Long 0.330 0.425 0.178 

Castrop Normal 0.280 0.355 0.126 

Random 0.284 0.360 0.129 

Short 0.278 0.354 0.124 

Long 0.277 0.348 0.121 

SRKT Normal 0.342 0.442 0.196 

Random 0.343 0.447 0.197 

Short 0.328 0.419 0.176 

Long 0.330 0.431 0.183 

Holladay 1 Normal 0.334 0.434 0.188 

Random 0.329 0.429 0.184 

Short 0.318 0.413 0.170 

Long 0.317 0.412 0.169 
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Random Forest Regression : This machine learning tech-
nique builds multiple decision trees based on different sub-
sets of the data. Each tree makes a prediction, and the fi-
nal output is the average of all these predictions. While
random forests excel at capturing complex interactions be-
tween variables, they are prone to overfitting, meaning they
might perform well in training but not generalize as effec-
tively to new data. A thorough descriptive analysis was first
conducted to identify relationships in the data, providing
a foundational understanding of the variables and their in-
teraction effects. A linear model with main effects of all
covariates was fitted for the response variable achieved re-
fraction with the R-function lm using the normal training
set for predicting postoperative refraction. For predicting
postoperative refraction, a linear model with main effects of
all covariates was fitted for the response variable achieved
refraction with the R-function lm using the normal train-
ing set. This model was named M1LMnormal . A stepwise
backward selection on the main effects model M1LMnormal
with respect to the Akaike information criterion (AIC) was
performed with the R-function step AIC from the pack-
age MASS . The selection begins with the full model and
gradually removes covariates (Laterality, R1, R2, AL, ACD,
IOL Power, CCT, LT, WTW) or interaction terms from the
regression model at each step to find the reduced model
with the lowest AIC. The resulting model was denoted
by M2LMnormal . Finally, the next step was a backward
selection performed on a model considering all possible
2-way interactions. The resulting model was denoted by
M3LMnormal . 

Next, the random training set was used to fit the re-
gression models. For the linear model, a stepwise back-
ward selection on the main effects model with respect to
the Akaike information criterion (AIC) was denoted by
M1LMrandom and the model with all possible 2-way in-
teractions after stepwise model selection was denoted by
M2LMrandom . 

For regression splines (cubic spline), the effects of metric
covariates on the achieved refraction were modelled non-
linearly by penalized splines with a second-order difference
penalty on their coefficients using the R-function gam from
the mgcv package. The smoothing parameter for the penalty
was automatically chosen via generalized cross-validation.
First, effects of all covariates were modelled by P-splines and
the model was denoted by M1splines . Next, a less complex
model M2splines was fitted, where linear effects were mod-
eled with parametric effects and covariates with nonsignif-
icant effects were omitted from the model. 

Random forest models were fitted to the response using
R-function caret . 10-fold cross-validation was used to train
and evaluate the model. The best fit in terms of RMSE was
determined from a grid of hyperparameters. These hyper-
parameters include the number of variables randomly sam-
pled as candidates at each split ( mtry = (3, 5, 7, 9)) and
the minimum size of terminal nodes ( min, node, size = (1,
3, 5)). Another important hyperparameter, known as the
VOL. 273 IOL POWER CALCULATION: BIG DA
plitting rule, was the criterion used to determine how to
plit the data at each node. The splitting rules considered
n this context included variance , which selects splits based
n variance reduction, and Extra Trees , which randomly se-
ects splitting points. 

The MAE, RMSE, and the variance of the out-of-sample
rediction error were used to compare the prediction per-
ormance of the various described models and the 5 IOL
alculation formulas. 

RESULTS 

able 1 shows the MAE, RMSE and variance of the out-
f-sample prediction error for different training splits sepa-
ately for each formula. Except for the SRK/T formula, we
bserved that using the long training set to build the model
esults in the smallest MAE, RMSE and variance. The re-
ults for the different splits were almost identical for the
astrop formula. 

NORMAL TRAINING SET: 

inear model 
he MAE, RMSE and variance of the in-sample predic-

ion error for formulas with the optimization metric RMSE
nd regression models trained on the normal training set
ere compared ( Table 2 ). The regression models had a no-

ably smaller in-sample prediction error than the formu-
TA VERSUS TRADITIONAL FORMULAS 143



TABLE 2. In-Sample Prediction Error for Formulas With 
Optimization Metric RMSE and Regression Models Trained 

on Normal Training set 

Formula/Model MAE RMSE Variance 

Haigis 0.273 0.359 0.130 

SRKT 0.320 0.418 0.175 

Holladay1 0.291 0.384 0.148 

HofferQ 0.298 0.390 0.153 

Castrop 0.281 0.359 0.130 

M2LMnormal 0.240 0.321 0.104 

M3LMnormal 0.218 0.290 0.084 

TABLE 3. Out-of-Sample Prediction Error for Formulas With 
Optimization Metric RMSE and Regression Models Trained 

on Normal Training Set 

Formula/Model MAE RMSE Variance 

Haigis 0.327 0.414 0.170 

SRKT 0.342 0.442 0.195 

Holladay1 0.334 0.434 0.188 

HofferQ 0.351 0.499 0.247 

Castrop 0.280 0.355 0.126 

M2LMnormal 0.368 0.514 0.237 

M3LMnormal 0.375 0.534 0.274 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 4. In-Sample Prediction Error for Formulas With 
Optimization Metric RMSE and Regression Models Trained 

on Random Training Set 

Formula/Model MAE RMSE Variance 

Haigis 0.311 0.388 0.150 

SRKT 0.324 0.410 0.169 

Holladay1 0.318 0.408 0.168 

HofferQ 0.332 0.419 0.174 

Castrop 0.271 0.347 0.121 

M1LMrandom 0.291 0.378 0.144 

M2LMrandom 0.215 0.274 0.075 

M2splines 0.236 0.306 0.094 

Random forest regression 0.202 0.263 0.070 

TABLE 5. Out-of-Sample Prediction Error for Formulas With 
Optimization Metric RMSE and Regression Models Trained 

on Random Training Set 

Formula/Model MAE RMSE Variance 

Haigis 0.317 0.407 0.166 

SRKT 0.343 0.447 0.197 

Holladay1 0.329 0.429 0.184 

HofferQ 0.348 0.498 0.248 

Castrop 0.284 0.359 0.129 

M1LMrandom 0.333 0.436 0.190 

M2LMrandom 0.304 0.397 0.158 

M2splines 0.279 0.359 0.129 

Random forest regression 0.569 0.754 0.570 
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las. The M3LMnormal regression model yielded the small-
est in sample prediction errors with MAE of 0.218, RMSE
of 0.290, and variance of 0.084. For the out-of-sample pre-
diction error, the Castrop formula had the lowest MAE,
RMSE, and variance at 0.280, 0.355, and 0.126 respec-
tively, compared to the other formulas and regression mod-
els ( Table 3 ). M2LMnormal performed slightly better than
M3LMnormal , but both models had less accurate results
compared to the formulas. The in-sample prediction error
was smaller than the out-of-sample error for the regression
models. For M3LMnormal , the correlation between pre-
dicted target refraction and the observed achieved refrac-
tion was high but prediction errors were large particularly
for eyes with short and long axial lengths ( Figure 1 ). This
suggests that the normal training set which comprises only
eyes with normal axial length, might not be appropriate to
build a good prediction model for all eyes. Hence, in the
next steps, the random training set, which contains a ran-
dom sample of all eyes, was used as the training set. 

• RANDOM TRAINING SET: 

Linear model 
Model M2LMrandom performed better than model
M1LMrandom with respect to in-sample prediction er-
ror ( Table 4 ). For out-of-sample prediction error, the
regression models performed on the same level as most of
144 AMERICAN JOURNAL OF OP
he formulas, with the exception of the Castrop formula,
hich gave by far the best out-of-sample predictions with
AE of 0.284, RMSE of 0.359, and variance of 0.129

 Table 5 ). The MAE, RMSE and variance are slightly
maller for the in-sample error compared to the out-of-
ample error for the formulas and M1LMrandom ( Table 4
nd 5 ). For M2LMrandom the in-sample error is noticeably
maller than the out-of-sample prediction error. Fitted val-
es were around zero for most observations and, for some,
round –2.5 ( Figure 2 ). The distribution of the residuals
id not substantially deviate from the normal distributions,
owever indicated heteroscedasticity ( Figure 2 ). There
ere no highly influential observations ( Figure 2 ). 

egression splines 
or the M2splines model the in-sample prediction error was
ower than the out-of-sample error with respect to MAE,
MSE, and variance ( Table 4 and 5 ), but it performed sim-

larly to the Castrop formula for the out-of-sample predic-
ion error with a slightly better MAE at 0.279 for M2splines
ersus 0.284 for Castrop ( Table 5 ). Overall, the M2splines
odel had lower MAE, RMSE, and variance of both in-

ample as well as out-of-sample prediction error than all for-
ulas. Further splines models (cubic spline (polynomial or-
HTHALMOLOGY MAY 2025



FIGURE 1. Scatterplots of TR and AR and PE and AL for the linear model after stepwise selection with 2-way interactions 
(M3LMnormal). TR = target refraction; AR = achieved refraction; PE = prediction error; AL = axial length . 
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der 3) with a penalization term to control overfitting) with
interaction terms reduced the in-sample error, but did not
lead to an improvement in the out-of-sample error, indi-
cating overfitting to the training data. Hence only predic-
tion performance of the M2splines model without interac-
tion was investigated. For this model, target and achieved
refraction were highly correlated and there was no asso-
ciation between the prediction error and the axial length
( Figure 3 ). 

Random forest regression 

The scatter plot of target versus achieved refraction shows
deviations from the main diagonal for the training data and
large deviations in the test data with similar ranges for my-
opic and hyperopic ( Figure 4 ). In the training set prediction
errors were small and slightly positive for myopic and neg-
ative for hyperopic eyes. However, in the test data predic-
tion errors had large prediction errors, particularly for long
eyes ( Figure 5 ). Overall, random forest regression resulted
in the lowest MAE, RMSE and variance in the in-sample
prediction of all models and formulas but performed worst
in out-of-sample prediction ( Table 4 and 5 ). 

DISCUSSION 

This study aimed to evaluate the performance of tradi-
tional physical optics-based IOL power calculation formu-
las against 3 regression-based models for predicting postop-
VOL. 273 IOL POWER CALCULATION: BIG DA
rative refraction following cataract surgery. Our findings
emonstrate that while some regression models like regres-
ion splines offer promising results, physical optics-based
ormulas, such as the 4 classical formulas and the Castrop
ormula, remain highly effective in real-world clinical set-
ings. 

Linear models are among the most commonly used in
linical research, as they assume a straight forward, pro-
ortional relationship between input variables (such as AL
r corneal curvature) and the predicted outcome. While
imple and interpretable, linear models may not fully cap-
ure more complex, nonlinear relationships inherent in bi-
logical systems. Regression splines offer a more flexible
lternative by dividing the data into segments and fitting
mooth, piecewise polynomial functions, allowing for grad-
al changes in the relationship between variables. This
akes them particularly useful when the association be-

ween biometric parameters and refractive outcomes is not
trictly linear. Random forest regression, on the other hand,
s a machine learning technique that builds multiple deci-
ion trees and aggregates their predictions to identify pat-
erns in the data. Unlike traditional regression models, ran-
om forest does not rely on predefined assumptions about
ariable relationships, making it well-suited for capturing
omplex interactions. 

Linear models and regression splines demonstrated bal-
nced performance. The out-of-sample performance was
omparable to that of traditional formulas for the linear
odels. However, the M2splines model achieved the most

ccurate out-of-sample predictions among all of the regres-
TA VERSUS TRADITIONAL FORMULAS 145



FIGURE 2. Residual analysis for the linear model with 2-way interactions resulting after backward step-wise selection 

( M2LMrandom ). 
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sion models and formulas, suggesting that nonlinear rela-
tionships between biometric parameters and refractive out-
comes can be captured effectively without overfitting. In
this model, penalized splines allowed nonlinear effects be-
tween biometric covariates, such as AL, CCT, and the
corneal radius of curvature of the flat meridian to be mod-
eled. Their relatively low prediction errors suggest that they
could be an effective alternative for improving refractive
outcomes. The use of regression splines in IOL prediction
has been limited thus far with only 1 model using a com-
bination of support vector machines with a Gaussian ker-
nel radial basis function and multivariate adaptive regres-
sion spline, designated Karmona. 21 Karmona emerged as
the most accurate to predict IOL power among Haigis, Hol-
laday 2, Barrett Universal II, and Hill-RBF v2.0, 21 suggest-
ing that regression splines hold promise in designing future
formulas. In our study the M2splines model just barely sur-
passed the Castrop formula in out-of-sample prediction er-
ror, which consistently had the lowest MAE, RMSE, and
146 AMERICAN JOURNAL OF OP
ariance in both in-sample and out-of-sample predictions
mong the formulas. 

Interestingly, while outperforming other methods for in-
ample predictions, the random forest regression performed
he worst in terms of out-of-sample accuracy. This discrep-
ncy suggests that random forest models may be prone to
verfitting, particularly in the context of small or highly
ariable datasets. There is very little literature to compare
o the use of random forests in IOL calculation, with differ-
nt studies reporting superior algorithms and methods. 22-24

espite its potential to handle complex, nonlinear interac-
ions between variables, the inability of random forest re-
ression to generalize well across different patient popula-
ions may limit its clinical utility for IOL power calcula-
ion without further refinement. Reliable, consistent out-
f-sample performance is key in the real-world application
f newer formulas as many eyes will lie outside of the train-
ng dataset. 
HTHALMOLOGY MAY 2025



FIGURE 3. Scatterplots of TR and AR and PE and AL for model M2splines. TR = target refraction; AR = achieved refraction; 
PE = prediction error; AL = axial length. 

FIGURE 4. Scatterplots of TR and AR and PE and AL for the random forest regression. TR = target refraction; AR = achieved 
refraction; PE = prediction error; AL = axial length. 
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FIGURE 5. Boxplots of the out-of-sample prediction error separately for each AL category for the random forest regression. 
AL = axial length. 
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In line with previous literature, the traditional IOL for-
mulas performed well overall. 25 However, while the tradi-
tional formulas are robust, depending on their lens position
algorithms and other empirical parts, their accuracy can
be limited in patients with atypical ocular anatomy, such
as those with short or long AL, where the error margins
are generally higher. 10 , 11 While these time-tested formulas
still play a role in clinical practice, newer data-driven ap-
proaches may offer potential, if sufficient case numbers of
these atypical eyes are available for training algorithms. In
particular, an area of study showing promise is hybrid or en-
semble models combining the strength of both traditional
formulas with machine learning. 26 Furthermore, instead of
using purely empirical prediction models, a combination of
physical optics and empirical regression-based models may
also show potential to increase the performance in atypical
eyes. 14 , 27 

Interestingly, an optimization based on the “long” subset
of eyes, which included a higher proportion of long AL eyes,
yielded the best out-of-sample prediction performance in
most formulas, except for the SRK/T formula. Conversely,
148 AMERICAN JOURNAL OF OP
he short training set lacked prediction accuracy, particu-
arly for long AL eyes. Therefore, it may be recommended
o consider long AL eyes in formula optimization. The ef-
ects of this observation may be dependent on the IOL
odel. 28 

A strength of this study design was a large dataset of eyes
eeting the optimal numbers for constant optimization as

iscussed by Langenbucher et al. 29 Further research should
ocus on increasing the sample size for these outlier pop-
lations or exploring additional techniques, such as regu-
arization or ensemble learning, to improve generalizability
cross diverse eye anatomies. 

The limitations of this study include the retrospective
onocentric design, and the limitation to 1 single IOL plat-

orm. Furthermore, due to the calibration processes, we in-
luded only disclosed and published formulas or formula
ersions (such as Castrop V1) into our study. Therefore, we
ere not able to compare results to some other popularly
sed new-generation IOL calculation formulas, such as Bar-
ett Universal 2, Castrop V2, EVO 2.0, Hoffer QST, Kane,
EARL-DGS, and others. The multitude of optimization
HTHALMOLOGY MAY 2025
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processes performed in this study led to the decision to omit
all undisclosed formulas. Only purely empirical models were
tested, whereas combinations of physical optics and empir-
ical regression based prediction models were not tested. Fi-
nally, this study did not include external validation. In the
future, testing the models on independent datasets would
help demonstrate their robustness and generalizability. 

In conclusion, this study highlights the potential of
regression-based models as an alternative or complement
to traditional IOL formulas for predicting postoperative re-
fraction after cataract surgery. Nonlinear models such as
regression splines can perform at a level comparable and
sometimes superior to complex theoretical-optical formu-
las. However, while linear and random forest models can re-
duce in-sample error, their practical application was limited
by their out-of-sample performance, which remained infe-
rior to that of the most traditional formulae. Future research
should focus on improving the generalizability of these ad-
vanced models and investigating ways to integrate them
with existing clinical tools to enhance the accuracy of re-
fractive outcomes, particularly in eyes with unusual biomet-
ric profiles. 
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