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a b s t r a c t

Delaying gratification in value-based decision making is canonically related to activation in

the dorsolateral prefrontal cortex (dlPFC), but past research neglected that the dlPFC is part of

a larger frontoparietal network. It is therefore unknown whether the dlPFC causally imple-

ments delay of gratification in concert with posterior parts of the frontoparietal network

rather than in isolation. Here, we addressed this gap by testing the effects of frontoparietal

theta synchronization and desynchronization on impulsive decision making using trans-

cranial alternating current stimulation (tACS). Healthy participants performed an inter-

temporal choice task and a 3-back working memory task while left frontal and parietal

cortices were stimulated with a 5 Hz theta frequency at in-phase (synchronization), anti-

phase (desynchronization), or sham tACS. We found frontoparietal in-phase theta tACS to

improve working memory performance, while in the decision task anti-phase tACS was

associated with more impulsive choices and stronger hyperbolic discounting of future re-

wards. Overall, our findings suggest that future-oriented decision making might causally rely

on synchronous activation in a frontoparietal network related to working memory.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
Loewenstein, & Cohen, 2004; Wesley & Bickel, 2014). As the

1. Introduction

The ability to delay gratification is a hallmark of individual

success and psychological health (Baumeister, 2002; Bickel

et al., 2019; Daugherty & Brase, 2010). A large body of evi-

dence ascribes the dorsolateral prefrontal cortex (dlPFC) a

central role for resisting immediate rewards in order to ach-

ieve long-term goals (Figner et al., 2010; McClure, Laibson,
tment for Psychology, Ch

.lmu.de (A. Soutschek).
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dlPFC is part of the frontoparietal control network (Domenech,

Redout�e, Koechlin, & Dreher, 2018; Vincent, Kahn, Snyder,

Raichle, & Buckner, 2008), it seems implausible to assume

that dlPFC implements patience in intertemporal decisions in

isolation rather than in concert with posterior regions like

posterior parietal cortex (PPC). However, the majority of pre-

vious neural studies, and brain stimulation research in

particular (Yang, Mauer, Vollm, & Khalifa, 2020; Yang, Vollm,
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& Khalifa, 2018), focused on the dlPFC either in isolation or in

interaction with the neural reward system. Therefore, it re-

mains unknown whether delaying gratification causally re-

quires the dlPFC to synchronize activity with PPC.

Synchronous firing in dlPFC and PPC was already shown to

play an important role for working memory processes, which

in turn are hypothesized to contribute to delay of gratification

(Hofmann, Schmeichel, & Baddeley, 2012). Synchronous, in-

phase stimulation of dlPFC and PPC with transcranial alter-

nating current stimulation (tACS) in the theta band enhanced

working memory functioning, while desynchronous, out-of-

phase stimulation impaired it (Alekseichuk, Pabel, Antal, &

Paulus, 2017; Polania, Nitsche, Korman, Batsikadze, &

Paulus, 2012; Violante et al., 2017). This suggests a causal

role of functional coupling between dlPFC and PPC for working

memory processes (thought theremight be gender differences

in the relative recruitment of dlPFC and PPC; see Hill, Laird,

and Robinson (2014)). Importantly, working memory has

been linked to patience in intertemporal choice, as working

memory processes may allow maintaining abstract informa-

tion like the value of long-term rewards in mind during

intertemporal decisions. In particular, representations of the

value of long-term rewards in working memory are consid-

ered as less concrete than immediately available outcomes

(Fujita, 2011; Stillman et al., 2017), such that delay of gratifi-

cation crucially relies on the strength of these value repre-

sentations in working memory. Behavioral and neural

findings support this link between delay of gratification and

working memory: Behaviorally, working memory capacity

predicts patience in intertemporal choice (Hofmann et al.,

2012), and in the brain the neural correlates of working

memory and intertemporal choice were found to strongly

overlap (Jimura, Chushak, Westbrook, & Braver, 2018; Wesley

& Bickel, 2014). We therefore hypothesized that strengthening

value representations in working memory via synchroniza-

tion versus desynchronization of frontoparietal activity pro-

motes choices of long-term rewards.

To test our hypotheses, we aimed to synchronize and

desynchronize theta band oscillations in dlPFC and PPC with

tACS while participants performed a working memory and an

intertemporal decision task. We expected to replicate previ-

ous findings that frontoparietal synchronization, relative to

desynchronization, enhances working memory performance.

We furthermore predicted that synchronization versus

desynchronization of frontoparietal theta oscillations in-

creases preferences for delayed over immediate rewards in

the intertemporal decision task. This would provide evidence

for a causal involvement of frontoparietal synchronization in

delay of gratification and neurally link future-oriented inter-

temporal decisions to working memory functioning.
2. Methods

2.1. Participants

30 healthy volunteers (mean age ¼ 24 years, sd ¼ 2.88, 15 fe-

male, 15 male) were recruited through the participant pool of

the Munich Experimental Laboratory for Economic and Social

Sciences (MELESSA) at the Ludwig Maximilian University
Munich, Germany. The sample size was determined with an

apriori power analysis (power¼ 80%, alpha¼ 5%) assuming an

effect size of Cohen's d ¼ .47 from a previous study investi-

gating the effect of phase synchronization on working mem-

ory (Alekseichuk et al., 2017). Volunteers were screened for

counterindications to tACS prior to participation. Written

informed consent was provided by all volunteers before the

start of the experiment. Participants received a fixed

compensation of 20 euros and an additional bonus depending

on their decisions in the decisionmaking task (see below). The

study was approved by the local ethics committee of the

psychology department at the University of Munich.

2.2. Stimuli and task design

Workingmemory task. Participants performed a 3-backworking

memory task. During the task, participants viewed a sequence

of letters, and each letter was presented on the screen for 1.5 s

(inter-stimulus interval: 1.5 sec; Fig. 1A). Stimuli were present

in white (size: approx. 2� visual angle) against a grey back-

ground. The task was to indicate whether the letter currently

displayed on the screen was identical with the letter pre-

sented 3 trials before (target stimulus). Participants had to

indicate their responses before the start of the next trial. A

block of the 3-back task with 40 trials included a total of 6

target stimuli. Participants were instructed to press the space

button only if the current letter was a target.

Intertemporal choice task. Participants performed an inter-

temporal choice task where they chose between two monetary

rewards that were available at different points in time: a

smaller-sooner (SS) reward, which they obtained at the end of

the experimental session (delay¼ 0 days), and a larger-later (LL)

reward, which was delivered at a later date (Fig. 1B. The SS

reward ranged from .5 to 4.5 euro in steps of .5 euro (9 levels),

the LL was fixed at 5 euro and was delivered after 5e180 days

(administered delays: 5, 10, 20, 50, 90, or 180 days). The two

options were presented randomly on the left and right side of

the screen and participants were asked to indicate their choice

by pressing the left or right arrow key for the option on the left

and right screen side, respectively, on a standard keyboard.

Participants had 4 s to indicate their choice. After each decision,

a fixation cross appeared on the screen for the remaining time

of the 4 s, then the next trial started.

2.3. tACS protocol

We applied tACS using a 4-channel tDCS stimulator (DC-

Stimulator MC, neuroConn, Ilmenau, Germany). As in Biel,

Sterner, Roll, and Sauseng (2022), we employed a high-

definition 2 � 1 electrode set up. For the dlPFC we placed the

active electrode over position F3 and the reference electrodes

over positions Fz and F7 according to the international 10e20

system. For the PPC, the active electrode was placed over

electrode position P3 and the reference electrodes over elec-

trode positions Pz and P7. We used square rubber electrodes

(3 � 3 cm), which were attached to the participants’ head with

the Ten20 conductive paste (Ten20 EEG Conductive Paste,

Weaver and Company) and were kept steady throughout the

session using fixation bandages. We performed current

modeling using the Simnibs 2.1 toolbox (Saturnino et al., 2019,

https://doi.org/10.1016/j.cortex.2025.02.012
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Fig. 1 e Experimental procedures. (A) In the 3-back working memory task, participants had to decide whether the currently

presented letter is identical with the letter presented three trials before, requiring them to constantly maintain and update

information in their working memory. (B) In the intertemporal decision task, participants made choices between smaller-

sooner (e.g., 3 euro delivered today) and larger-later (e.g., 5 euro after 90 days) rewards. (C) Participants performed these

tasks while undergoing in-phase (synchronizing), anti-phase (desynchronizing), or sham tACS over the left prefrontal and

parietal cortex. We placed 3 £ 3 cm central electrodes over F3 and P3, which were surrounded by reference electrodes at Fz,

F7, Pz, and P7. Stimulation intensity was 1.5 mA peak-to-peak (frequency¼ 5 Hz). Current flow simulations were performed

with Simnibs 2.1 (Saturnino et al., 2019, pp. 3e25). (D) Participants performed six miniblocks for each task. The order of tACS

conditions in the miniblocks was counterbalanced across participants.
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pp. 3e25), which suggested that this electrode set up led to

strong and focal electrical fields in dlPFC and PPC, while

stimulation effects between the two areas were negligible

(Fig. 1C). We stimulated participants in three conditions:

synchronization (in-phase theta band (5 Hz) stimulation of

dlPFC and PPC), desynchronization (anti-phase theta band

stimulation of the two areas), and sham with a current

strength of 1.5 mA peak-to-peak.

2.4. Procedure

Participants performed the 3-back and the intertemporal

choice task in three tACS conditions: frontoparietal synchro-

nization, desynchronization, and sham (within-subject

design). The intertemporal choice task included a total of 180

trials (60 trials per tACS condition), and the working memory

task a total of 240 trials (80 per tACS condition). The taskswere

administered in counterbalanced order and were performed

in 12miniblocks (2 per task and tACS condition; Fig. 1D). At the

start of each miniblock, participants were stimulated with

tACS for 30 s (current ramp-up: 5 s) without performing the

task, followed by 120 s of task performance under stimulation.

At the end of each miniblock, participants indicated whether

they experienced any discomfort or flickering sensations due

to the stimulation on a rating scale ranging from 0 (not at all)
to 10 (very strongly). Note that we observed no significant ef-

fects of in-phase or anti-phase tACS on stimulation-induced

discomfort, both P > .15, or flickering, both P > .30. In the

sham condition, the current was ramped down prior to task

performance. Participants had a 30 s task- and stimulation-

free break between the miniblocks to minimize potential

carry-over effects between stimulation blocks (Christian,

Kapetaniou, & Soutschek, 2023; Moisa, Polania, Grueschow,

& Ruff, 2016; Soutschek, Moisa, Ruff, & Tobler, 2021).

At the end of the experiment, participants filled in de-

mographic questionnaires and were debriefed. For the pay-

ment, one trial from the intertemporal choice task was

randomly selected and implemented: if the participant had

chosen the SS option in that trial, the corresponding amount

was added as bonus to the standard compensation, whereas if

they chose the LL option 5 euro were sent to them on the

corresponding date via mail.

2.5. Statistical analysis

In the 3-back task, we analyzed tACS effects on reaction times

and the sensitivity index d’ (difference between z-trans-

formed hits and false alarms: Zhits minus Zfalse alarms

(Soutschek & Tobler, 2020; Westbrook, Kester, & Braver, 2013))

with repeated measures ANOVAs and paired-samples t-tests.

https://doi.org/10.1016/j.cortex.2025.02.012
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We Bonferroni-corrected the P-values of the t-tests for the

number of post-hoc tests (pcorrected ¼ P � 3).

In the intertemporal choice task, we performed both model-

free and model-based analyses. Model-based analyses of hy-

perbolic discounting quantify the influence of delay in reward

delivery on value computations during intertemporal choice

(Laibson, 1997), thereby providing insights into latent vari-

ables underlying observable choice behavior. The notion that

frontoparietal coupling promotes delay of gratification pre-

dicts that tACS should affect both model-free and model-

based measures of future-oriented decision making. Testing

for model-free and model-based stimulation effects therefore

allowed assessing the robustness of our findings, such that it

was not necessary to correct for multiple comparisons here

(Gelman, Hill,& Yajima, 2012). For themodel-free analysis, we

used generalized linear mixed models (GLMMs) implemented

via the lme4 package in R (Bates, M€achler, Bolker, & Walker,

2014). We regressed binary choices (0 ¼ SS option, 1 ¼ LL op-

tion) on predictors for tACS (synchronization versus shamand

desynchronization versus sham), amount of SS reward, and

delay of LL reward:

PðLL choiceÞ¼b0 þ b1 � tACSsynchronization þ b2

� tACSdesynchronization þ b3 � Rewardþ b4 �Delay

All continuous variables were z-standardized, and all

fixed-effect predictors were also modelled as random slopes

in addition to participant-specific random intercepts. As

control variables of no interest, we added random slopes for

stimulation-induced discomfort and flickering. Due to the bi-

nary nature of the dependent variable, we assumed a binomial

distribution with a logit link. All model assumptions (constant

and normally distributed errors) were fulfilled. Conditional R2

was .86. We also computed Bayes factors quantifying the ev-

idence for the alternative relative to the null hypothesis (BF10)

following the approach described by Wagenmakers (2007).

Note that we performed the apriori power analysis for the

workingmemory task due to the lack of an available effect size

specifically for tACS effects in intertemporal choice.Moreover,

power calculations for GLMM are based on simulations and

commonly require the availability of empirical data. However,

when we performed a posthoc power analysis for the GLMM

on intertemporal choice (assuming the same effect size as for

the 3-back task) with the SIMR package in R, the power with a

sample of 30 participants was 78%. This suggests that the

study was sufficiently powered to detect significant tACS ef-

fects in the GLMM on intertemporal choice.

For the model-based analysis, we fitted hyperbolic dis-

count functions to the choice data in a hierarchical Bayesian

fashion using the JAGS software package (Plummer, 2003). We

assumed that the subjective value of delayed rewards can be

described by a canonical hyperbolic discount function

(Frederick, Loewenstein, & O'Donoghue, 2002; Laibson, 1997):

SVLL ¼ LL reward magnitude

1þ delay� exp
�
ksham þ dummyin � kin þ dummyanti � kanti

�

Where ksham represents the hyperbolic discount factor (log-

transformed to facilitate parameter estimation) under sham,

whereas kin and kanti indicate the shift in hyperbolic
discounting under synchronization (in-phase) and desynch-

ronization (anti-phase), respectively, compared to sham.

Subjective values were fitted to binary choices with a softmax

link function including an inverse temperature parameter b as

measure of choice consistency:

PðLL choiceÞ ¼ 1
1þ expð � b� ðSVLL � SVSSÞ Þ

b ¼ bsham þ dummyin � bin þ dummyanti � banti

We fitted parameters both on the group and the individual

level by assuming that individual parameters are normally

distributed around the group means. To estimate the models,

we used non-informative uniform priors and two chains with

25,000 iterations (10,000 burn-in samples). For all group pa-

rameters bR was �1.01, indicating model convergence. For

statistical inference, we checkedwhether 95% highest-density

interval (HDI) of the group-level posterior distributions

included zero. We computed Bayes factors BF10 with the

SavageeDickey ratio (Wagenmakers, Lodewyckx, Kuriyal, &

Grasman, 2010), estimating the density of prior and posterior

distributions with the dlogspline function in R.

Lastly, we tested for correlations between individual dis-

count factors and working memory performance (sensitivity

d’) under sham as well as for the difference between in-phase

and anti-phase stimulation. We used non-parametric rank

correlations (Spearman's rho) to minimize the influence of

outliers on the correlation coefficients.
3. Results

3.1. Frontoparietal theta stimulation improves working
memory performance

As manipulation check, we first assessed whether frontopar-

ietal stimulation affected working memory performance. A

repeatedmeasures ANOVA revealed a significant effect of tACS

on sensitivity d’ as measure of performance accuracy in the n-

back task (hitsminus false alarms), F(2, 58)¼ 8.27, P< .001. Post-

hoc tests suggest that d’ was significantly increased under

synchronization relative to sham, t(29) ¼ 3.59, pcorrected ¼ .004,

Cohen's d ¼ .66, and desynchronization, t(29) ¼ 3.59, pcorrected-
¼ .003, Cohen's d ¼ .66, whereas desynchronization showed no

significant difference to sham, t(29) ¼ .08, pcorrected ¼ 1, Cohen's
d ¼ .01 (Fig. 2A). Reaction times in hit trials were not signifi-

cantly altered by tACS, F(2, 58) ¼ 1.04, P ¼ .36. Thus, our results

replicate previous findings on the causal involvement of fron-

toparietal synchronization in working memory (Alekseichuk

et al., 2017; Polania et al., 2012).

3.2. Frontoparietal anti-phase theta stimulation
enhances impulsive decision making

Based on the hypothesized link betweenworkingmemory and

the ability to delay gratification, we next assessed stimulation

effects on intertemporal decisions. A model-free GLMM

revealed that e as to be expectede the probability of choosing

the LL option decreased with increasing amounts of the SS

reward, beta ¼ �2.16, CI95% ¼ [�2.56, �1.76], z ¼ 10.52, P < .001,

https://doi.org/10.1016/j.cortex.2025.02.012
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Fig. 2 e (A) Frontoparietal in-phase theta stimulation significantly improved working memory performance (sensitivity d’)

compared to sham and anti-phase tACS. In the intertemporal decision task, anti-phase tACS resulted in (B) less choices of

larger-later rewards and (C) stronger temporal discounting compared with sham tACS. (D) We observed no stimulation

effects on choice consistency (inverse temperature). For illustration purpose, (C) and (D) show extracted individual

parameter estimates from the hierarchical Bayesian model. Black dots indicate individual data points; asterisks indicate

significant effects (*P < .05; **P < .01).

Table 1 e Results for the hierarchically estimated
hyperbolic discountmodel. The parameters ksham, kin, kanti

refer to the posterior distributions of the group-level log-
transformed hyperbolic discount factors under sham,
synchronization versus sham, and desynchronization
versus sham, respectively, whereas bsham, bin and banti

refer to the inverse temperature (choice consistency)
parameter. Standard errors of the mean are in brackets.

Parameter Mean HDI2.5% HDI97.5%

ksham �1.92 (.55) �2.97 �.79

kin .01 (.08) �.14 .17

kanti .20 (.09) .03 .36

bsham 1.51 (.28) .97 2.04

bin �.05 (.09) �.23 .15

banti �.05 (.10) �.24 .15
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BF10 ¼ 1.7 � 1010, and with longer delays until LL reward de-

livery, beta ¼ �1.85, CI95% ¼ [�2.34, �1.35], z ¼ 7.30, P < .001,

BF10 ¼ 1.8 � 106. While we observed no influence of synchro-

nization relative to sham on choices, beta ¼ .02, CI95% ¼ [�.36,

.41], z ¼ .12, P ¼ .91, BF10 ¼ .37, theta desynchronization

significantly reduced preferences for delayed rewards

compared with sham, beta ¼ �.30, CI95% ¼ [�.60, �.01],

z ¼ 2.04, P ¼ .04, BF10 ¼ 2.09, though not compared with syn-

chronization, beta ¼ .09, CI95% ¼ [�.29, .46], z ¼ .44, P ¼ .66,

BF10 < .001 (Fig. 2B). This supports the hypothesized involve-

ment of frontopolar theta coupling in intertemporal decision

making.

The model-free results are corroborated by a model-based

analysis of hierarchically estimated hyperbolic discount fac-

tors (Table 1). Desynchronization significantly increased hy-

perbolic discounting of delayed rewards, HDImean ¼ .20,

HDI95% ¼ [.03, .36], BF10 ¼ 1.3, while synchronization showed

no significant effects, HDImean ¼ .01, HDI95% ¼ [�.14, .17],

BF10 ¼ .1. A direct comparison between synchronization and

desynchronization suggested that desynchronization

increased delay discounting also relative to theta synchroni-

zation, HDImean ¼ .18, HDI95% ¼ [.01, .34], BF10 ¼ 4.2 (Fig. 2C).

There was no evidence for stimulation effects on choice
consistency, as the inverse temperature parameter was un-

affected by synchronization, HDImean ¼ �.05, HDI95% ¼ [�.23,

.15], BF10 ¼ .6, or desynchronization, HDImean ¼ �.05,

HDI95% ¼ [�.24, .15], BF10 ¼ .7 (Fig. 2D). Together, this provides

converging evidence that anti-phase frontoparietal theta tACS

increases impulsiveness in intertemporal choice.

https://doi.org/10.1016/j.cortex.2025.02.012
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Finally, based on studies suggesting a link between work-

ing memory and intertemporal decisions, we tested for the

hypothesized correlation between working memory perfor-

mance (sensitivity d’) and delay discounting (individual

parameter estimates log-k from hyperbolic discount model).

The hypothesized link between working memory and inter-

temporal choice predicts significant correlations between

sensitivity d’ and log-k both under sham and between the

tACS effects on these measures. Under sham, better working

memory performance (d’) was associated with weaker tem-

poral discounting (log-k), Spearman's rho ¼ �.39, P ¼ .02, one-

tailed (Fig. 3A). Moreover, the baseline-corrected influences of

synchronization versus desynchronization on d’ and log-k

were correlated, Spearman's rho ¼ �.34, P ¼ .03, one-tailed

(Fig. 3B): individuals with stronger working memory

improvement under synchronization versus desynchroniza-

tion showed also more future-oriented decisions (more

negative log-ks) under synchronization versus desynchroni-

zation. This suggests a possible link between the tACS effects

on working memory and decision making.
4. Discussion

Frontoparietal theta coupling plays an important role in

working memory functioning, but little is known about its

contribution to value-based decision making. Here, we show

that anti-phase frontoparietal theta tACS enhances the dis-

counting of delayed rewards, suggesting a causal role of

frontoparietal coupling for intertemporal choice. Because in-

phase versus anti-phase frontoparietal tACS also improved

working memory performance, replicating previous findings

(Alekseichuk et al., 2017; Biel et al., 2022; Polania et al., 2012),

our findings suggest overlapping neural mechanisms to un-

derlie working memory and intertemporal decision making.

This is further evidenced by significant correlations between

working memory performance and delay discounting. Taken

together, our results suggest that frontoparietal theta coupling

may causally underlie both working memory and decision

processes.

By highlighting the importance of synchronized brain

network activity, our findings go beyond current neural

models of intertemporal decision making: Previous research
Fig. 3 e Correlations between working memory performance (s

under sham and (B) under synchronization versus desynchroni

are based on non-parametric tests to account for the skewedne
ascribed the dlPFC a role for encoding long-term goals and for

modulating the subjective value of rewards in the brain's
reward system (Hare, Hakimi, & Rangel, 2014; Smith,

Monterosso, Wakslak, Bechara, & Read, 2018; van den Bos,

Rodriguez, Schweitzer, & McClure, 2014; Wesley & Bickel,

2014). However, this perspective neglected that the dlPFC is

part of a frontoparietal control network (Vincent et al., 2008),

making it reasonable to assume that the dlPFC implements

future-oriented decisions not in isolation but in interaction

with the parietal cortex. In fact, past studies provided evi-

dence for PPC activation during intertemporal decisions

(Boettiger et al., 2007; Rodriguez, Turner, Van Zandt, &

McClure, 2015) or also more ventral parts of the parietal

cortex (Soutschek, Moisa, Ruff, & Tobler, 2020; Soutschek,

Ruff, Strombach, Kalenscher, & Tobler, 2016), but evidence

for dlPFC-PPC connectivity during decision making was

lacking so far. Our findings fill this gap by showing that the

dlPFC's influence on intertemporal choice requires synchro-

nization with lateral PPC. Note that one previous study pro-

vided evidence for a causal involvement of medial (rather

than lateral) frontoparietal synchronization for value-based

decision making, positing that the network performs value-

to-action transformations communicated from the PFC to

the PPC to translate values into actions (Polania, Moisa,

Opitz, Grueschow, & Ruff, 2015). We assume that the lateral

network identified in the current study may play a similar

role in intertemporal choice: dlPFC-PPC synchronizationmay

promote the transfer of information about delayed reward

values encoded in dlPFC to the PPC, where the values are

assigned to action options (Sugrue, Corrado, & Newsome,

2004). As caveat, we note that the current findings provide

no insights into the directionality of the information flow

between dlPFC and PPC. Nevertheless, our results highlight

that the dlPFC contributes to value-based choice as part of a

frontoparietal network, going beyond prevalent views in the

literature (Smith et al., 2018; Wesley & Bickel, 2014; Yang

et al., 2018).

The influence of frontoparietal tACS on decision making

moreover appears to be related to workingmemory processes.

Consistent with past research (Hofmann et al., 2012), better

working memory performance was associated with less

impulsive decision making, and the stimulation effects on

delay discounting co-varied with tACS-induced working
ensitivity d’) and log-transformed discount parameters (A)

zation (baseline-corrected). Note that statistical inferences

ss of the parameter distributions.
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memory improvements. Delaying gratification is thought to

require the representation of the value of long-term rewards

(which are less concrete than immediately available outcomes

(Fujita, 2011; Stillman et al., 2017)) in workingmemory (Jimura

et al., 2018; Smith et al., 2018; Wesley & Bickel, 2014). As a

caveat, we note that the 3-back task showed effects of in-

phase, but not anti-phase stimulation, whereas the inter-

temporal decision task was affected only by anti-phase, not

in-phase tACS. While this result pattern was not expected

apriori, we might explain it by differences in the difficulty of

the employed tasks: In the rather demanding 3-back task,

participants benefitted from strengthening fronotoparietal

coupling through in-phase tACS. In the intertemporal decision

task, in contrast, value representations encoded in the fron-

toparietal network might already have been sufficiently

strong under sham such that they could not further be

strengthened by in-phase tACS. In any case, our findings

provide neural support for theoretical accounts on the role of

workingmemory for delay of gratification by suggesting a link

between frontoparietal coupling in working memory and

intertemporal decision making.

While our finding that in-phase frontoparietal tACS im-

proves working memory functioning is in line with previous

evidence (Alekseichuk et al., 2017; Biel et al., 2022; Polania

et al., 2012), other studies observed no influence of in-phase

theta tACS (Hosseinian, Yavari, Kuo, Nitsche, & Jamil, 2021;

Jones, Arciniega, & Berryhill, 2019; R€ohner et al., 2018). This

might be explained by differences in the applied theta fre-

quency (Jones et al., 2019), the electrode setup (Hosseinian

et al., 2021), or differences in task difficulty (R€ohner et al.,

2018). It is worth noting that past tDCS/tACS studies often

provided mixed or inconsistent results (Horvath, Forte, &

Carter, 2015a; 2015b), but recent meta-analyses suggest sig-

nificant stimulation effects in various domains of cognition,

including working memory (Grover, Fayzullina, Bullard,

Levina, & Reinhart, 2023; Lee, Lee, & Kang, 2023). The het-

erogeneity of stimulation effects might be related to differ-

ences in the employed stimulation protocols, including

factors such as electrode positioning, electrode size, and

current intensity. To maximize the robustness of our stim-

ulation effects, we employed a high-definition electrode

setup (to prevent a diffuse current flow through the brain)

and a current intensity within the recommended optimal

range (Ehrhardt, Filmer, Wards, Mattingley, & Dux, 2021).

Moreover, a limitation of tACS is that its influence on

cognition can be confounded with transcutaneous stimula-

tion of peripheral nerves (Asamoah, Khatoun, &Mc Laughlin,

2019) or of the retina (Schutter, 2016; Schutter & Hortensius,

2010). In our view, however, it seems unlikely that the cur-

rent results can be explained by such peripheral stimulation

effects. This is because we observed significant differences

between in-phase and anti-phase tACS on both tasks,

whereas peripheral effects should be similar for in-phase

and anti-phase stimulation (because in both conditions the

DLPFC and the PPC are stimulated with a theta frequency).

Lastly, a limitation of the current study is that we did not

directly assess frontoparietal coupling via electrophysiolog-

ical recordings during task performance. While previous
evidence suggests that frontoparietal phase-dependent theta

tACS can indeed modulate frontoparietal theta coupling

(Alekseichuk et al., 2017; Feher, Nakataki, &Morishima, 2022;

Hu et al., 2022), the current data do not allow concluding that

the observed stimulation effects on behavior can be

explained via changes in frontoparietal coupling. Combining

tACS with electrophysiological recording, following ap-

proaches described in previous studies (Haslacher et al.,

2023, 2024), would therefore further have strengthened our

conclusions.

Taken together, our results show that frontoparietal theta

coupling causally contributes to intertemporal decision

making. This provides a network perspective on the contri-

bution of the neural control system to decision making,

overcoming the focus of past research on the DLPFC in

isolation (or in interaction with the subcortical reward sys-

tem). Given the prevalence of impulsive decision making in

several clinical disorders (W. K. Bickel, Koffarnus, Moody, &

Wilson, 2014; Monterosso, Piray, & Luo, 2012; Stutzer &

Meier, 2015; Volkow & Baler, 2015), these findings may

contribute to the development of more effective neural

treatments of impulsiveness.
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