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A B S T R A C T

Objectives: Annotating carious lesions on images is challenging. For artificial intelligence (AI) applications, the 
aggregation of heterogeneous multi-examiner annotations into one single annotation (e.g. via majority voting, 
MV) is usually needed. We assessed different aggregation strategies for multi-examiner annotations of primary 
proximal carious lesions on orthoradial radiographs and Near-Infrared Light Transillumination (NILT) images.
Methods: A total of 1007 proximal surfaces from 522 extracted posterior teeth were assessed by five dentists. 
Histological analysis provided the gold standard. Surfaces were classified as (1) sound, (2) enamel lesion or (3) 
dentin lesion. Four label aggregation strategies - MV, Weighted Majority Voting (WMV), Dawid-Skene (DS), and 
multi-annotator competence estimation (MACE) - were applied to unimodal (radiographs, NILT) and multimodal 
(combined) datasets. The area under the receiver operating characteristic curve (AUROC) was the primary 
outcome metric.
Results: According to the gold standard, 637 (63 %) surfaces were sound, 280 (28 %) showed carious lesions 
limited to the enamel, and 90 (9 %) showed lesions extending into the dentin. For radiographs, aggregation using 
MACE outperformed MV, WMV and DS significantly across all lesion depths (p < 0.002). For NILT, MACE 
significantly outperformed MV across all lesion depths (p < 0.001) and DS for enamel and dentin lesions (p ≤
0.002). In the multimodal dataset, DS outperformed the other label aggregation strategies across all lesion depths 
significantly (p < 0.05).
Conclusions: The commonly applied MV may be suboptimal. There is a need for informed application of specific 
aggregation strategies, depending on the dataset characteristics.
Clinical significance: Most AI applications for dental image analysis are trained on a single annotation, usually 
resulting from aggregated multi-examiner annotations of each image. However, since these annotations are 
usually aggregated in an in vivo setting where no definitive ground truth is available, the choice of aggregation 
strategy plays a crucial role.

1. Introduction

Numerous studies have focused on the accuracy of dentists in 
detecting carious lesions on radiographic images, demonstrating limited 
accuracy and, more so, significant variability between different anno
tators, even after calibrating them [1–4]. The accuracy of these 

annotators is frequently assessed against a reference test, in many cases 
histological assessment (“gold standard”) of extracted teeth [5].

Recently, dentistry experienced a surge of applications of artificial 
intelligence (AI), with one particularly prominent focus being image 
analysis, and one highly common task being carious lesion detection on 
radiographs [2,3,6]. Notably, these applications are trained on 
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thousands of retrospectively collected, de-identified images, where 
establishing a hard reference test (such as histology) is not possible [7]. 
In this case, and to address the described variability of single annotators, 
multiple annotators are used to establish the reference test against which 
the AI model is trained and tested [7]. Notably, multiple annotators 
frequently produce so-called fuzzy (heterogenous) annotations [8] 
which pose challenges in deciding how to best handle them [9]. While 
there are methods available to train deep learning models directly on 
such fuzzy data [9,10], the most common approach in the dental domain 
currently taken is to aggregate the heterogenous, fuzzy annotations into 
a single annotation (e.g. of a carious lesion being present on a tooth or 
surface, or not being present), and then train and test the AI model on 
the resulting, annotated images.

A range of strategies for this aggregation exist, for example majority 
voting (MV, using the annotation which has been provided most often), 
weighted majority voting (WMV, where certain factors alter the weight 
of a given annotation), or probabilistic approaches such as Dawid-Skene 
algorithm (DS) or multi-annotator competence estimation (MACE) [11]. 
Bayesian methods, like MACE, utilize probabilistic models and likeli
hood functions to explicitly account for uncertainty, which can be 
particularly valuable in dentistry, where creating reliable datasets from 
fuzzy labels benefits from modeling uncertainty as a probabilistic 
function.

We here explored the accuracy of different annotation aggregation 
strategies, namely MV, WMV, DS, and MACE, for detecting primary 
proximal carious lesions on two common imaging modalities, orthor
adial radiographs and Near-Infrared-Light-Transillumination (NILT) 
imagery, against the gold standard for caries detection (histology). We 
further assessed the impact of lesion depth on this accuracy. Our study 
setup allowed us to gauge the generalizability of our findings across 
image types and detection task. We hypothesized that there were no 
significant differences in accuracy (measured via the area under the 
receiver operating characteristic curve, AUROC) between different ag
gregation strategies.

2. Materials and methods

2.1. Study samples

608 extracted teeth (Fig. 1), both sound and showing carious lesions 
of different depths, were collected. Exemplary depictions of these lesions 
are shown in Fig. 2. All teeth were obtained with informed consent 
under an ethics-approved protocol (Ethics Committee of the Charité - 
Universitätsmedizin Berlin, EA4/102/14). During the study, the teeth 
were stored at 4 ◦C in a 0.5 % chloramine-T solution, which was 
exchanged every four weeks. As for 86 teeth, the restorative status 
(extended restorations and other defects on both proximal surfaces) was 
impeding histological evaluation, the number of teeth used for the study 
was eventually reduced to 522. The number of surfaces included in this 
study was reduced to 1007, as some teeth could only contribute with one 
proximal surface due to restorations (exclusion criterion) (Fig. 1). Prior 
to testing, the teeth were cleaned and polished using a scaler (S204S9E2, 
Hu-Friedy, Chicago, USA) and polishing paste (Proxyt fein, Ivoclar 
Vivadent, Schaan, Liechtenstein).

To generate models on which imagery could be obtained in a simu
lated clinical fashion, teeth (four premolars and four molars per model) 
were mounted in lower jaw models constructed from wax (Typodont, 
Dentaurum, Ispringen, Germany). Both upper and lower jaw premolars 
and molars were assembled in a single model. Negative silicone molds 
(Z-Dupe Catalyst A and Base B, HS-Dubliermasse, Henry Schein, Mel
ville, USA) of the wax models were made, and a cold-curing clear epoxy 
resin (Epo-Thin 2, Buehler, Lake Bluff, USA) was used to produce resin 
models. Wax was then applied to shape the gingiva (ROSA Mod
ellierwachs, ORBIS-Dental, Offenbach, Germany). The models were 
stored at 4 ◦C in a 0.5 % chloramine-T solution until further analysis. 
Models were stored for up to 7 months prior to radiograph acquisition 
and up to 14 months prior to NILT imaging.

2.2. Imagery

The generation of imagery followed established protocols [12]. Each 
model generated two images per imaging modality (radiographs, NILT), 
representing the left and right sides. Radiographs were taken using a 

Fig. 1. Study samples. From the total assessed sample (n = 608 teeth assembled in 76 models), 522 teeth were included in the study, enabling the histological 
evaluation of 1044 tooth surfaces. Of these surfaces, 37 exhibited restorations or other defects and were thus unsuitable for the detection of primary carious lesions. 
Consequently, the number of surfaces evaluated was reduced to 1007.
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digital X-ray sensor plate (VistaScan, DÜRR DENTAL SE, 
Bietigheim-Bissingen, Germany) and a radiation source (Heliodent Plus, 
Sirona Dental Systems GmbH, Bensheim, Germany) with an exposure 
time of 0.04 s, operating at 70 kV and 7 mA. To ensure consistent im
aging conditions, a mounting aid (LEGO System A/S, Billund, Denmark) 
was used to position each model identically, as described elsewhere 
[13]. A 15-mm-thick plexiglass plate was placed between the radiation 
source and the model to simulate soft tissue scattering. NILT images 
were captured using DIAGNOcam (KaVo, Biberach, Germany) and the 
associated software (KaVo Integrated Desktop version 2.4.1.6821). The 
models were mounted in a dummy head (Phantomkopf P-6, Frasaco, 
Tettnang, Germany), with the operating light switched off as per the 
manufacturer’s instructions. NILT images were taken vertically to the 
occlusal surfaces of each tooth, as described before [14].

2.3. Gold standard

Histological examination served as gold standard for assessing the 
presence and depth of carious lesions. Teeth were first removed from the 
resin models and sectioned in a mesio-distal direction using a band saw 
(Exakt 300, Exakt Apparatebau, Norderstedt, Germany). The section 
was made close to the area where the carious lesion on each tooth was 
clinically presumed to be the deepest. The sectioned teeth were then 
embedded in a cold-curing clear methyl-methacrylate-based resin 
(Technovit 4004, Kulzer, Hanau, Germany) and mounted on glass slides. 
As each tooth could present with two surfaces (mesial, distal) being 
carious on both image types, we first assessed the depth of the clinically 
more extended (deeper) lesion and then progressively ground and pol
ished the tooth halves down with a micro grinder (EXAKT 400 CS, 
Norderstedt, Schleswig-Holstein) with a series of sandpapers (grit size 
1200, 2400, and 4000), ensuring all relevant areas of the tooth were 
adequately evaluated.

To assess the depth of carious lesions and verify whether other le
sions had been reached, photographs were taken every 300 micrometers 
using a digital light microscope (VHX-5000, Keyence, Osaka, Japan) at 
20× magnification. Surfaces were classified as sound, enamel lesion, or 
dentin lesion. Throughout the study, the annotators had no access to the 
gold standard data.

2.4. Annotation process

The digital imagery was annotated by five dentists with varying 
levels of professional experience (2 - 21 years). While some were 

employed in university clinics, others worked in private dental practices. 
All dentists received a detailed written guideline on how to annotate 
carious lesions on proximal tooth surfaces (mesial, distal). Lesions 
within the enamel, i.e. to the dentinoenamel junction (DEJ) were labeled 
as enamel caries, while lesions beyond DEJ were labeled as dentin 
caries. A custom-built annotation software was used [15]. This classifi
cation approach enabled comparability between imaging modalities.

2.5. Annotation aggregation strategies

We evaluated four different annotation aggregation strategies to 
generate a final, aggregated label for each surface: (1) MV, (2) WMV, (3) 
the Dawid-Skene algorithm (DS) and (4) multi-annotator competence 
estimation (MACE) described below. A summary of the advantages and 
disadvantages of each aggregation strategy is provided in Table 1.

Majority voting (MV): The most often occurring class (sound surface, 
enamel lesion, dentin lesion) from all five annotators was used to 
generate the aggregated annotation. For each surface, the class that 

Fig. 2. Representative examples of dental surfaces with varying lesion depths, assessed through histology, radiographs, and Near-Infrared Light Trans
illumination (NILT).

Table 1 
Advantages and disadvantages of label aggregation methods compared in this 
study.

Method Advantages Disadvantages

Majority Voting 
(MV)

Simple and easy to 
implement consensus 
prediction. 
Encapsulates the 
collective judgment of 
all annotators.

Does not account for annotator 
reliability. 
Can be biased if there are more 
unreliable annotators.

Weighted Majority 
Voting (WMV)

Incorporates annotator 
reliability into the 
decision process. 
Utilizes ground truth 
data to calculate 
weights.

Requires a subset of data with 
known ground truth 
annotations. 
May be affected by noisy 
annotations if weights are not 
accurate in the subset.

Dawid-Skene 
Algorithm (DS)

Iteratively estimates 
true annotations and 
annotator reliability. 
Reduces the impact of 
noisy or unreliable 
annotators.

Computationally intensive due 
to iterative processes. 
Assumes that annotator 
reliability can be accurately 
estimated.

Multi-Annotator 
Competence 
Estimation 
(MACE)

Models annotator 
reliability and 
spamming behavior. 
Effective at handling 
noisy annotations.

Computationally intensive due 
to iterative process. 
May require more data to 
accurately estimate 
parameters.
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received the highest number of votes was selected as the final label. This 
method resulted in a consensus prediction based on the majority 
agreement of the annotators. The final aggregated annotations repre
sented a single annotation for each surface, encapsulating the collective 
judgment of the five annotators.

Weighted majority voting (WMV): For weighted majority voting, the 
dataset was split in two parts: a small subset which contained each lesion 
depth 20 times and where ground truth labels are available, and the 
remaining dataset. For the small subset, each annotator’s probability of 
correctly assigning each lesion depth is calculated. The model then de
termines the final aggregated label by weighting annotators’ contribu
tions based on their reliability, summing these probabilities across all 
annotators, and selecting the label with the highest total probability.

Dawid-Skene algorithm (DS): A Dawid-Skene algorithm imple
mentation was used to estimate the true labels from fuzzy data [16,17]. 
In DS, different weights are assigned to each annotator based on their 
reliability, ensuring that more competent and reliable annotators have a 
greater influence on the final label. This is achieved through an iterative 
Expectation-Maximization (EM) process, which alternates between 
estimating the most likely true label and updating annotator reliability 
scores. As the iterations progress, annotator accuracy is dynamically 
adjusted, improving label aggregation and reducing the impact of noisy 
or unreliable annotators. Once the model converges, the final prediction 
is made based on the estimated labels and the refined annotator reli
ability scores.

Multi-annotator competence estimation (MACE): MACE is a Bayesian 
model designed to estimate true labels from noisy annotations while 
accounting for annotator reliability and spamming behavior [17,18]. 
MACE models initial annotator credibility and the likelihood of random 
guessing (spamming behavior) in the dataset. These parameters are 
iteratively updated based on observed data, allowing the model to adjust 
for annotator inconsistencies. While MACE is more effective at handling 
noisy annotations, it is computationally more intensive than DS due to 
the additional modelling of spamming tendencies.

2.6. Statistical evaluation

The level of statistical significance was set to < 0.05. Fleiss’ Kappa 
was calculated to assess inter-annotator agreement [19]. Individual 
annotators were evaluated by calculating their sensitivity, specificity, 
F1-score and AUROC. Mann-Whitney-U tests were performed to test 
significant differences between imaging modalities and lesion depths on 
account of the absence of a normal distribution. For annotation aggre
gation, AUROC was the primary evaluation metric. Metrics were 
calculated for each imaging dataset separately (radiographs, NILT) as 
well as for the combined, multimodal dataset. Aggregated labels were 
derived using the methods described above. We further performed an 
analysis stratified according to lesion depth. The normality of the data 
was assessed visually using Q-Q plots and statistically tested with the 
Shapiro-Wilk test. Since most subgroups violated the assumption of 
normality, we utilized the Kruskal-Wallis tests, followed by Dunn’s 
post-hoc test with Holm adjustment for multiple comparisons, to eval
uate the annotation aggregation strategies.

2.7. Software

Python (version 3.12.2) along with several supporting libraries was 
utilized for data preparation, cleaning and analysis. Pandas (version 
2.2.1) and NumPy (version 1.26.4) were used for data cleaning and 
numerical computations, while Seaborn (version 0.12.2) was employed 
for data visualization. Scikit-learn (version 1.4.1.post1) was used to 
calculate annotation metrics, and SciPy (version 1.15.0) was used to 
perform the Shapiro-Wilk test and Kruskal-Wallis tests. Scikit-posthocs 
(version 0.11.2) was used for post-hoc Dunn’s test with adjusted p- 
values for multiple comparisons using the Holm method. Statsmodels 
(version 0.14.4) was used to compute Fleiss’ Kappa values. Crowd-kit 

(version 1.4.1) was utilized for annotation aggregation.

3. Results

According to the histological examination, 637 (63 %) surfaces were 
sound, 280 (28 %) showed carious lesions limited to the enamel, and 90 
(9 %) showed lesions extending into dentin (Fig. 1). True positives (TP), 
true negatives (TN), false positives (FP) and false negatives (FN) for the 
annotators are presented in Table 2 as summary statistics and descrip
tive annotation metrics are presented in Table 3. Fleiss’ Kappa values for 
the five annotators were 0.41 for radiographs and 0.42 for NILT, indi
cating moderate agreement.

Across all imaging modalities and lesion depths, variability in diag
nostic performance was observed. For lesions detected on radiographs, 
median sensitivity was highest for sound surfaces (0.89, p < 0.05) fol
lowed by dentin lesions (0.74) and enamel lesions (0.46). Median 
specificity for radiographs reached 0.96 for dentin lesions, 0.91 for 
enamel lesions and was lowest (0.6, p < 0.05) for sound surfaces 
(Table 3). In NILT images, median sensitivity was highest for sound 
surfaces (0.91, p < 0.05), 0.6 for dentin lesions and 0.49 for enamel 
lesions. Median specificity was highest for dentin lesions (0.98, p <
0.05), 0.91 for enamel lesions and 0.58 for sound surfaces (Table 3). 
There were no significant differences across dataset modalities (p >
0.05).

Analysis of annotation aggregation strategies was stratified by 
dataset modality (radiographs, NILT and multimodal) and lesion depth 
(sound, enamel lesion, and dentin lesion; Fig. 3). Kruskal-Wallis test 
revealed statistically significant differences between aggregation stra
tegies across modalities and surface classes (all p < 0.001). Dunn’s post- 
hoc tests were conducted to determine pairwise differences (Supple
mentary Table 1). For radiographs, MACE outperformed MV, DS and 
WMV significantly across all surface classes (all p ≤ 0.002). MACE 
yielded median AUROC values of 0.77 for sound surfaces, 0.73 for 
enamel lesions, and 0.88 for dentin lesions (Table 4). In the NILT 
dataset, MACE demonstrated superior performance compared to MV 
across all surface classes (p ≤ 0.001) and higher performance than DS in 
enamel and dentin lesions (p < 0.001). MACE achieved median AUROC 
values of 0.76 for sound surfaces, 0.72 for enamel lesions, and 0.87 for 
dentin lesions (Table 4). In the multimodal dataset, DS outperformed the 
other label aggregation strategies across all surface classes (all p < 0.05). 
Median AUROC was 0.79 for sound surfaces, 0.74 for enamel lesions, 
and 0.90 for dentin lesions. Further details can be found in the 

Table 2 
Descriptive statistics of annotation performance in percent ( %) of five different 
annotators across datasets and lesion depth. Statistics are provided as median 
(minimum, maximum). TN = true negative, FP = false positive, FN = false 
negative, TP = true positive.

Dataset Lesion 
depth

TN FP FN TP

Radiography Sound 60.0 
(14.1, 
75.4)

40.0 
(24.6, 
85.9)

10.7 (2.0, 
24.2)

89.3 
(75.8, 
98.0)

​ Enamel 91.1 
(79.1, 
97.4)

8.9 (2.6, 
20.9)

54.3 
(37.1, 
96.1)

45.7 (3.9, 
62.9)

​ Dentin 96.4 
(95.9, 
99.1)

3.6 (0.9, 
4.1)

25.6 
(21.1, 
70.0)

74.4 
(30.0, 
78.9)

NILT Sound 58.1 
(10.8, 
77.0)

41.9 
(23.0, 
89.2)

8.8 (3.8, 
23.5)

91.2 
(76.5, 
96.2)

​ Enamel 91.3 
(78.3, 
97.1)

8.7 (2.9, 
21.7)

51.1 
(30.0, 
93.9)

48.9 (6.1, 
70.0)

​ Dentin 97.7 
(96.1, 
99.0)

2.3 (1.0, 
3.9)

40.0 
(31.1, 
81.1)

60.0 
(18.9, 
68.9)
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Supplementary Table 1. Label aggregation in multimodal datasets 
resulted in higher AUROC-scores compared to unimodal datasets. DS, 
the best-performing method in multimodal datasets, outperformed 
MACE, the best-performing method in unimodal datasets, in all lesion 
depths except enamel lesions (Supplementary Table 2). Additional label 
aggregation metrics such as sensitivity and specificity are presented in 
Supplementary Table 3 and Supplementary Table 4.

4. Discussion

High quality labels are important for both training and testing AI [20,
21]. However, generating gold standard annotations, such as those 
derived from histology, is often not feasible given ethical and practical 
limitations. Consequently, multiple annotators are employed to anno
tate each image, assuming this “crowd intelligence” to overcome the 
limitations of individual examiners, yielding robust annotations. 
Nevertheless, this raises another challenge, because these annotations 
need to be aggregated into one final annotation for the training and 
testing of AI models. We assessed which of four different annotation 
aggregation strategies yielded the best performance when measured 
against the gold standard (histology), in two dental image modalities for 
one specific task, detecting carious lesions. Our work is of relevance to 
dental AI researchers and developers, as presently, the choice of strategy 
is seldom justified or reported to be made on an informed basis. Our 
findings indicate that DS performed best in multimodal datasets, while 
MACE excelled in unimodal ones. Both strategies performed better than 
the currently common MV or (the less common) WMV. Our results also 
confirm a high variability in annotations when detecting carious lesions 
on dental images. Notably, while the annotation variability was high in 
our study sample, annotation quality especially of our radiographs 
dataset was comparably high, with median sensitivity values of 0.46 for 
enamel lesions and 0.74 for dentin lesions [4,22].

Tackling high inter-annotator variability to generate high quality 
data is not only a task limited to dentistry. Moderate inter-annotator 
agreement was reported for specific tasks in the field of histopatholo
gy as well [23–25]. Here, annotations are often refined using a single (or 
multiple) gold standard annotator(s), and it was shown that annotation 
accuracy increases with experience [26,27]. The same approach is not 
always feasible in dentistry, as it was shown that annotation accuracy 
does not necessarily correlate with seniority [5]. Here, 
imaging-modality-specific performance seems to play a more important 
role [4], especially in detecting enamel lesions.

All aggregation strategies applied in this study have their own 

strengths and limitations. MV excels in its simplicity but can be signif
icantly impacted by individual annotators with low sensitivity and 
specificity, particularly when the total number of annotators is small. 
This is especially true in scenarios where sensitivity is low, such as with 
enamel lesions [22]. WMV addresses this limitation by reducing the 
influence of low-performing individual raters through weighting their 
contributions based on confidence scores. However, this approach re
quires a ground truth test set to determine the confidence scores for each 
annotator. Since these scores can vary depending on cavity depth, 
multiple annotations of images with known ground truth values are 
necessary. In our study, we used 20 images per cavity depth (sound, 
enamel lesion, dentin lesion) for this purpose. The key advantage of 
WMV is not only its potential for improved annotation accuracy but also 
its ability to facilitate cross-study comparisons of annotator perfor
mance, enhancing transparency in reporting.

Probabilistic aggregation methods (DS, MACE) demonstrated supe
rior performance in our study and do not require a ground truth dataset, 
as they estimate the underlying ground truth by modeling annotator 
behavior and the observed annotation patterns. Here, uncertainties 
stemming from underlying patterns such as diagnostic modality used, 
individual annotator performance, annotation complexity and anno
tator biases can be accounted for. However, while the lack of a need for 
ground truth allows greater flexibility, it also poses a major limitation: it 
may hinder the ability to transparently report annotator performance, as 
no explicit benchmarking against a gold standard is performed. Thus, we 
recommend reporting annotator accuracy/aggregated annotation ac
curacy on a separate in vitro test set where ground truth values are 
available, to ensure transparent reporting of annotation quality.

Notably, the current study focused on detecting carious lesions, 
leading to surface-based classification. A growing trend in dental image 
analysis using AI, however, is to employ object detection or segmenta
tion models. The latter yield pixel-wise classifications and, conse
quently, pixel blobs indicating the presence of a condition (e.g. a carious 
lesion) in a certain image area. Segmentation introduces additional 
complexity, requiring both lesion presence and depth to be identified 
alongside precise pixel-level location. Similarly to classification tasks, 
label aggregation such as majority voting can be employed, treating 
each pixel as an individual classification task. However, due to the high 
variability in the annotations, these methods might not prove as suffi
cient. The segmentation expectation-maximization algorithm is one 
method used to aggregate crowd-sourced segmentations. Here the an
notator’s skill is modeled as a latent parameter representing the prob
ability of providing a correct annotation [17]. Other methods employ 
neural networks to learn from diverse annotations by modeling 
annotator-specific biases and spatial error patterns [28]. These networks 
can aggregate multiple, variable segmentation labels into a consensus 
label map, leveraging their ability to capture complex spatial charac
teristics of annotator mistakes. Another promising approach involves 
semi-supervised learning, which reduces the reliance on labeled data. By 
leveraging large volumes of unlabeled data, semi-supervised methods 
can learn to extract clinically relevant features from dental imagery 
without requiring explicit labels [29]. These representations can then be 
fine-tuned on smaller, labeled datasets or even in-vitro datasets to 
achieve high performance with fewer annotations.

In addition to these methods that could be applied to retrospective, 
clinically yielded datasets, in vitro data may offer opportunities to 
improve supervised model training and validation. Micro-CT provides 
high-resolution imaging that is particularly valuable for generating 
ground truth labels [30]. A first open in vitro dataset was released in 
2024 which contains both micro CT data and corresponding conven
tional dental radiographs [31]. Annotating accuracy significantly 
increased if annotators had access to the corresponding micro CTs 
instead of merely the radiographs [31]. Notably, training and testing AI 
models solely on in vitro datasets poses significant limitations. In vitro 
data lacks the variability and complexity of real-world clinical imagery, 
such as patient motion, anatomical variability, and imaging artifacts. 

Table 3 
Stratified annotation metrics (AUROC) for different imaging modalities (radio
graphs, NILT), and lesion depths (sound, enamel lesion, dentin lesion). Metrics 
of the five annotators are provided as median (minimum, maximum).

Dataset Lesion 
depth

Sensitivity Specificity F1-score AUROC

Radiographs Sound 0.89 (0.76, 
0.98)

0.60 (0.14, 
0.75)

0.89 
(0.76, 
0.85)

0.75 
(0.56, 
0.77)

​ Enamel 0.46 (0.04, 
0.63)

0.91 (0.79, 
0.97)

0.46 
(0.04, 
0.59)

0.69 
(0.51, 
0.71)

​ Dentin 0.74 (0.30, 
0.79)

0.96 (0.96, 
0.99)

0.74 
(0.30, 
0.75)

0.85 
(0.65, 
0.88)

NILT Sound 0.91 (0.76, 
0.96)

0.58 (0.11, 
0.77)

0.82 
(0.78, 
0.85)

0.75 
(0.54, 
0.77)

​ Enamel 0.49 (0.06, 
0.70)

0.91 (0.78, 
0.97)

0.57 
(0.11, 
0.62)

0.70 
(0.52, 
0.74)

​ Dentin 0.60 (0.19, 
0.69)

0.98 (0.96, 
0.99)

0.64 
(0.29, 
0.72)

0.79 
(0.59, 
0.83)
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These datasets are also often limited in size and diversity, potentially 
introducing biases that undermine clinical utility. To address these 
limitations while benefiting from the increased sensitivity, datasets for 
model training could include both in vitro as well as in vivo data.

While our study provides valuable insights into the performance of 
annotation aggregation strategies in detecting carious lesions, several 
limitations must be acknowledged. These include the mentioned focus 
on surface-wise classification tasks and the reliance on in vitro data, 
which may limit the generalizability of our findings. Additionally, 
annotator variability was limited to five annotators per modality, which 
may not fully capture the diversity of real-world annotation scenarios. 
Further, bootstrapping from the original dataset allowed us to model 
variability across datasets; however, it may have introduced a certain 
bias by over-representing individual annotators or patterns present in 
the original data. Lastly, a class imbalance was present in our dataset, as 
most surfaces in our study were sound, which, however, is common in 
clinical imagery. This imbalance may have influenced annotator de
cisions and consequentially the performance of aggregation methods, 

particularly MV due to its reliance on majority consensus, which can 
lead to biases toward the dominant class and reduced sensitivity for 
underrepresented lesion categories. Future research should explore the 
applicability of our findings to segmentation tasks, evaluate the aggre
gation strategies on in vivo datasets, and incorporate additional imaging 
modalities and longitudinal datasets to enhance label accuracy and, 
consequently, the performance of AI models.

5. Conclusion

The high variability of caries annotations underscores the challenges 
posed by inter-annotator differences and the inherent complexity of 
diagnosing caries in radiographs and NILT images. Our findings 
demonstrate that annotation aggregation strategies such as DS and 
MACE outperformed MV and WMV, with DS excelling in multimodal 
datasets and MACE performing best in unimodal datasets. This indicated 
that the commonly applied simple MV may not be ideal and that the 
optimal aggregation strategy depends on the dataset characteristics. 

Fig. 3. Mean area under the receiver operating characteristic curve (AUROC) scores across different aggregation strategies, dataset modalities and lesion depths. 
Boxplots represent the distribution of AUROC values for each aggregation strategy (MV = Majority voting, WMV = Weighted majority voting, DS = Dawid-Skene 
Algorithm, MACE = multi-annotator competence estimation) applied to radiographs, NILT, and the multimodal dataset. Each subplot corresponds to a specific lesion 
depth (sound, enamel lesion, dentin lesion). The black diamonds indicate the mean AUROC for each aggregation strategy.
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Therefore, there is a need for informed application of specific aggrega
tion strategies.
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