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SUMMARY

RNA plays a central role in protein biosynthesis and performs diverse regulatory and catalytic functions, mak-
ing it essential for all processes of life. Like DNA, RNA is constantly subjected to damage from endogenous
and environmental sources. However, while the DNA damage response has been extensively studied, it was
long assumed that RNA lesions are relatively inconsequential due to the transient nature of most RNA mol-
ecules. Here, we review recent studies that challenge this view by revealing complex RNA damage responses
that determine survival when cells are exposed to nucleic acid-damaging agents and promote the resolution

of RNA lesions.

INTRODUCTION

DNA and RNA encode and transmit genetic information along
the central dogma of molecular biology," enabling not only pro-
tein synthesis but also catalytic and regulatory functions of non-
coding RNAs. How cells respond when the integrity of DNA is
challenged by genotoxic agents such as UV irradiation has
been studied for decades. Hence, we have a detailed under-
standing of the cellular DNA damage response (DDR) that
coordinates DNA repair, cell cycle progression, and cellular
survival.” However, most sources of DNA damage act pleio-
tropically and also affect RNA.® Nonetheless, the consequences
of RNA damage have been largely overlooked, due to the
assumption that damaged RNA poses a negligible challenge
for cellular integrity because RNA can simply be degraded
and resynthesized. This view has changed with several recent
studies showing that mRNA damage induces translation-
dependent signaling cascades that dominate the immediate
cellular response following exposure to “DNA-damaging”
agents.*® The consequences of persistent RNA damage-
induced signaling are severe, ranging from inflammation and
cell death to whole-genome doubling (WGD) events.>'° More-
over, the discovery of a pathway dedicated to the resolution
of mRNA crosslinking damage'’'? and the identification of a
mammalian RNA repair ligase'® demonstrate that cells possess
mechanisms for the detection and resolution of specific RNA
lesions.

Here, we review the emerging evidence for a coordinated
cellular response to RNA damage in human cells and examine
its crosstalk with DDR pathways. We propose two key roles
for the RNA damage response: first, in the face of severe
acute nucleic acid damage, the RNA damage response is
crucial to ensure the momentary functioning of the damaged
cell by resolving damaged RNA molecules; second, the detec-
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tion of RNA lesions acts as a sentinel for concurrent DNA
damage.

SOURCES OF RNA DAMAGE

DNA and RNA are both susceptible to chemical modifications,
either of their nucleobases or sugar-phosphate backbone. Impor-
tantly, RNA is generally more vulnerable to damage due to its pri-
marily single-stranded nature, whereas DNA is protected through
base pairing and chromatinization (Figure 1)."*'®> Additionally,
cytosolic RNA is exposed to the relatively more oxidizing condi-
tions of the cytoplasm, in contrast to the more reductive nucleo-
plasm.’® In the cytosol, RNA faces further risk of damage from
reactive oxygen species (ROSs) leaking from mitochondria, as
well as other reactive agents that enter cells from the environment
(Figure 1).

Oxidation and alkylation of the nucleobase, the phospho-
diester backbone, and the 2’-hydroxyl group of the ribose moiety
damages RNA (Figure 1)."” The most common oxidative RNA
lesion is 8-oxo-guanine (8-oxoG), but other nucleobase modifi-
cations and abasic sites arise frequently as well.'”'® Alkylating
agents such as the chemotherapeutic drug temozolomide,
which is used to treat several brain cancers, cause different
types of RNA lesions, for example, N1-methyladenosine (m'A)
and O6-methylguanosine (m®G).>'° Additionally, UV irradiation
causes diverse photolesions, including uracil photoproducts
and covalent RNA-RNA and RNA-protein crosslinks.?®?" Such
crosslinks are also induced by metabolic bifunctional cross-
linkers, such as formaldehyde or acetaldehyde (Figure 1).'"+12
Formaldehyde is produced in substantial quantities during
one-carbon metabolism and as a consequence of various
cellular demethylation reactions.?” Acetaldehyde is generated
in the liver upon consumption of alcohol and is the primary cause
of ethanol toxicity.>® Various additional relevant sources of RNA
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Figure 1. Chemical diversity of RNA lesions

RNA is highly susceptible to environmental and endogenous damage and lacks the 3-fold protection provided to DNA by nuclear sequestration, base pairing, and
chromatinization. While RNA is also bound by RNA-binding proteins (RBPs), the protection provided is likely less pronounced due to the dynamic nature of the

involved interactions.

damage, including chemotherapeutic drugs, tobacco smoke,
and environmental pollution, produce chemically diverse le-
sions.®?* RNA integrity is further challenged by damaged ribonu-
cleotides. For example, spontaneous deamination of adenosine
triphosphate leads to the formation of inosine triphosphate (ITP).
To remove ITP, ITP pyrophosphatase (ITPase) hydrolyzes it into
inosine monophosphate. This sanitization of the nucleotide pool
is compromised in patients with infantile multisystem disorder,
which is caused by germline mutations in the gene encoding IT-
Pase.?® If ITPase is defective, ITP accumulates, leading to its
incorporation into RNA. During translation, inosine in mRNAs is
likely to be decoded as guanine, resulting in missense and
nonsense alterations. The resulting impediment of faithful trans-
lation presumably underlies the severe pathology observed in
affected individuals.?® In addition to deamination, the ribonucle-
otide pool can also be damaged by oxidation.?® This is counter-
acted by the nucleotide pool sanitizing enzyme MTH1,%” which
hydrolyzes 8-oxoGTP to prevent RNA incorporation. If sanitiza-
tion fails or RNA is damaged by other sources, the conse-
quences for the cell can be severe.

CONSEQUENCES OF RNA DAMAGE

RNA lesions affect almost every step in the life cycle of an RNA
molecule, from transcription and splicing to translation and
post-transcriptional gene regulation (Figure 2). Transcription fi-
delity is compromised by oxidative damage to the nucleotide
pool,”® which leads to the incorporation of 8-oxoGTP into
nascent RNA by RNA polymerases.® Following transcription,
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selection of splice sites and removal of introns during splicing
depends on correct base pairing of sShRNAs within small nuclear
ribonucleoproteins (snRNPs).>® RNA lesions that affect base
pairing thus compromise splicing fidelity, resulting in splicing de-
fects and intron retention following UV irradiation.*® Analogously,
it is likely that functions of other short non-coding RNAs that rely
on precise base pairing, including microRNAs (miRNAs), small
interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs),
are perturbed by RNA damage as well.>"**> RNA lesions also
affect the processing of ribosomal RNA (rRNA) and the assem-
bly, maturation, and function of ribosomes. Oxidative damage
of rRNA impacts protein synthesis in bacteria®=** and disrupts
rRNA processing in eukaryotes,*® while certain platinum-based
chemotherapeutic drugs prevent efficient ribosome biogenesis
in human cells.*® rRNA integrity can additionally be affected by
chemotherapeutic nucleoside analogs that cause damage
upon incorporation into rRNA, ultimately leading to the degrada-
tion of faulty ribosomes.®” Translation itself is affected by RNA
damage, as it depends on the catalytic and structural functions
of rRNA and on the establishment of correct base pairing be-
tween amino-acyl tRNAs and mRNA.*® The presence of m°G
at the first or second position in codons decreases the accuracy
of tRNA selection, ultimately leading to miscoding.*®*° In addi-
tion, translation of oxidized or alkylated mRNAs stalls ribosomes
in bacteria'®*" and eukaryotes.*"*? Similarly, bulky RNA lesions
such as mRNA-protein crosslinks (mMRPCs) within the coding re-
gion of mMRNA cause translation stress by stalling translating ri-
bosomes.”'""'? These severe consequences necessitate a fast
and effective cellular response to RNA damage.
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Figure 2. Consequences of RNA damage

RNA damage affects all stages during the life cycle of an RNA molecule.
Misincorporation of damaged nucleotides by RNA polymerases or nascent
RNA damage interferes with productive splicing (top). Mispairing of damaged
mRNA bases with tRNA can lead to amino acid misincorporation and subse-
quent proteostasis defects (middle). mRNA lesions block progression of
translating ribosomes (bottom).
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RESPONSES TO RNA DAMAGE

The diverse nature of RNA damage makes it challenging for cells
to sense specific lesions. An overarching theme of nucleic acid
damage sensing is the detection of stalled molecular machin-
eries as a proxy. DNA damage is detected and resolved by repli-
cation- and transcription-coupled pathways, which are initiated
when DNA and RNA polymerases, respectively, stall at DNA le-
sions.*®** Stalling not only promotes repair but can also lead
to a local and global shutdown of DNA and RNA synthesis.** %
A corresponding principle has emerged for the detection of RNA
lesions that stall elongating ribosomes. Ribosome stalling and
the subsequent collisions with trailing ribosomes elicit a rapid
signaling response, shutting down protein synthesis and alerting
cells to the presence of RNA damage.*>"'""'? Hence, RNA
damage can be detected due to its detrimental consequences
on mRNA translation.

The ribotoxic stress response (RSR) and the integrated stress
response (ISR) have emerged as two major RNA damage response
pathways that are activated by ribosome collisions,* regulating cell
cycle progression, activation of proinflammatory pathways, and
induction of cell death.>®°“° The RSR was initially identified as a
translation-coupled stress response pathway triggered by certain
ribotoxins, such as ricin or sarcin, and protein synthesis inhibitors
such as anisomycin.”® Subsequent work identified UV irradiation
as a potent inducer of the RSR, implicating RNA damage as a
source of activation.®” The RSR is a MAP kinase signaling cascade
initiated by the ribosome-associated MAP3K ZAKa.>? ZAKa. is
activated when ribosomes stall and collide at mRNA lesions
induced by UV, nitric oxide,*® ROS,? or metabolic aldehydes'"'?
(Figure 3A). ZAKa activation ultimately leads to phosphorylation of
the stress-activated protein kinases (SAPKs) JNK and p38. SAPKs
stall cell cycle progression by inhibition of cyclin-dependent ki-
nases (CDKs).>* In response to UV irradiation, p38 can initiate a
G2 arrest via phosphorylation of MAPKAP kinase-2 (MK-2) and
subsequent phosphorylation and inhibition of CDC25B. Inhibition
of CDC25B was shown to block activation of cyclin A/CDK2, all
of which occurs independently of the canonical DDR.*>™°" Addi-
tionally, SAPKs can mediate cell cycle arrest through stabilization
of the CDK inhibitor p21.°® Consequentially, failure to resolve
stalled ribosomes induces a persistent G2 arrest.” Of note, contin-
uous ZAKa-mediated p38 activation and the resulting inhibition of
cyclin A/CDK1 and CDK4/6 can lead to premature APC/C®" re-
activation, driving cells into G2 exit and subsequent mitotic
bypass. Thisresults in a new round of DNA replication without prior
cell division, causing endoreplication.® In parallel to p38/MK2-
mediated cell cycle checkpoint regulation, ZAKa can induce cell
death through initiation of p38-dependent pyroptosis or JNK-
dependent apoptosis.®®°°

The ISR acts in concert with the RSR and is activated by GCN2
in response to ribosome collisions (Figure 3B).**%¢" |n addition to
GCN2, three other kinases can initiate the ISR in response to
different types of stressors,®” HRI activates the ISR upon heme
deprivation and mitochondrial damage, while PERK when cells
experience endoplasmic reticulum stress. PKR activates the ISR
upon sensing of double-stranded RNA (dsRNA), which can arise
as a consequence of UV-induced damage to nascent RNA.*? All
four kinases induce the ISR through phosphorylation of the
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Figure 3. Signaling responses to RNA and DNA damage

(A) mRNA lesions induce ribosome collisions, which in turn activate the MAP3K ZAKu, triggering the ribotoxic stress response. Downstream of ZAKa. activation,
MAP kinases p38 and JNK trigger various cell fate decisions ranging from cell cycle arrest to cell death.

(B) RNA damage-induced ribosome collisions activate the kinase GCN2, downstre:
triggering the integrated stress response, which entails a global translation shutd
(C) Lesions within DNA activate DNA damage response kinases. ATR is activated

am of the collision sensor protein GCN1. GCN2 phosphorylates elF2q, thereby
own and a concurrent expression of specific stress response genes.
by ssDNA, which is sensed by the ATR interaction partner ATRIP. ATM can be

activated by the MRN complex that senses DNA double-strand breaks. ATR and ATM activate CHK1 and CHK2, respectively, promoting DNA repair, arresting the

cell cycle, and potentially inducing senescence.
(D) The relative importance of the RNA or DNA damage response is determined by

the intensity of damage. During acute and high doses of nucleic acid damage,

the rapid sensing of RNA lesions by translating ribosomes activates the RNA damage response. During chronic and low doses of nucleic acid damage, the DNA

damage response prevails, promoting DNA repair or inducing senescence to pre

a-subunit of translation initiation factor elF2 (elF2x). As a result,
global translation shuts down, while translation of ISR transcrip-
tion factors, like ATF4, is induced via de-repression of an inhibitory
UORF, steering gene expression toward stress response
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vent the proliferation of cells with unrepaired DNA lesions.

genes.®>® GCN2 phosphorylates elF20. not only by sensing
uncharged tRNAs during starvation®®®” but also upon induction
of mRNA damage.*'>®® Like ZAKa, GCN2 is activated by ribo-
some collisions, which occur after mRNA damage.“’60 Activation
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requires the sensor protein GCN1 that binds to collided ribo-
somes, promoting recruitment and activation of GCN2,%° which
is further enhanced by its binding to the ribosomal P-stalk.”®""
GCN2 provides cells with resistance to UV and limits ribosome
collisions and, thus, RSR activation under stress conditions.>”?
While the ISR is generally considered to be protective, it can
lead to expression of pro-apoptotic factors and ultimately cell
death,*9:62

INTEGRATION OF DNA AND RNA DAMAGE RESPONSES

Research on the DDR was conducted over decades under the
assumption that it is primarily the response to DNA lesions that
determines survival when cells are exposed to genotoxic agents.
Here, we integrate the resulting paradigms with emerging in-
sights on the RNA damage response.

DNA lesions activate a sophisticated DDR network that orches-
trates cellular DNA repair activities, cell cycle checkpoints, and
survival decisions in response to DNA damage (Figure 3C). The
DDR is initiated by members of the phosphoinositide-3-kinase-
related protein kinase (PIKK) family.”® Ataxia-telangiectasia and
Rad3-related kinase (ATR) is recruited by its interaction partner
ATRIP to single-stranded DNA (ssDNA) that accumulates when
replication forks encounter lesions in template DNA.”* By contrast,
ataxia-telangiectasia mutated (ATM) is recruited to DNA double-
strand breaks (DSBs) via the MRE11-RAD50-NBS1 (MRN) com-
plex, which senses DNA ends.”® Upon activation of ATM or ATR,
downstream phosphorylation cascades are initiated by the trans-
ducer kinases CHK2 or CHK1, respectively.”®’” The subsequent
phosphorylation of CDC25 phosphatases prevents dephosphory-
lation and activation of CDKs.”® Additionally, ATM and CHK2 both
phosphorylate and stabilize p53, leading to p21 expression, which
also inhibits CDKs.”® As a consequence, cells arrest at the G1/S or
G2/M transitions of the cell cycle and thereby provide time for DNA
repair to occur.®C If cells fail to repair DNA lesions during this tran-
sient cell cycle arrest orif they are exposed to extensive amounts of
damage, persistent CHK2 activation will lead to continuous
expression of p21, which ultimately induces cellular senes-
cence.?’®? |n parallel, p53 stabilization leads to transcription of
pro-apoptotic target genes, resulting in permeabilization of the
mitochondrial outer membrane, thereby promoting apoptosis.®®
Accordingly, it is often discussed in the literature that persistent
activation of the DDR leads to cell death, but experimental data
supporting this notion are sparse.

The canonical understanding of the DDR was challenged by the
observation that loss of ZAKa, and thus the RSR, leads to resis-
tance to high doses of UV irradiation.® This observation suggests
that upon acute exposure to UV, apoptosis is primarily driven by
the induction of RNA damage and not DNA damage. By contrast,
loss of ATM or ATR activity leads to severe sensitivity to various
genotoxic agents,®*®° highlighting fundamental differences in
how both signaling networks determine the fate of cells experi-
encing complex nucleic acid damage. The DDR is important to
prevent cell cycle progression before DNA repair has been
completed. Inthe absence of DDR activation, cells initially continue
to proliferate even in the presence of unrepaired DNA lesions,
potentially leading to genetic aberrations and loss of chromo-
somes. While in most cells this will result in a reduction of fitness,
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the associated genetic changes may cause malignant transforma-
tion of individual cells. In addition to promoting DNA repair in the
firstinstance, the DDR further prevents tumorigenesis by inducing
cellular senescence if DNA repair is not successful.?%” In mice
with reduced DNA repair capacity or increased endogenous
DNA damage, DDR-induced senescence can lead to tissue
dysfunction, which can be suppressed by deletion of p53.7%%®
However, and in line with the tumor-suppressive role of the DDR,
p53 loss does not suppress the underlying genome instability
and can therefore lead to an increased cancer burden.?® In general,
it thus appears that the role of the DDR is particularly prominent
when cells experience low dose or chronic DNA damage
(Figure 3D). The response to RNA damage, on the other hand,
seems to dominate in situations of acute and severe damage.”°°
Such damage can be efficiently and rapidly sensed by translating
ribosomes independently of cell cycle status. The resulting activa-
tion of ISR and RSR elicits an immediate stress response that en-
sures the recovery and continuation of essential cellular functions.
Moreover, RNA damage likely serves as the proverbial canary in
the coalmine that alerts cells to the presence of coinciding DNA
damage. The induction of apoptosis by continuous activation of
the ZAKa-dependent RSR in response to persistent RNA damage
is thus an efficient strategy to limit the proliferation of cells that also
bear substantial amounts of potentially tumorigenic DNA lesions,
independently of p53 or cell cycle status. In agreement with this
idea, the off-target inhibition of ZAKa-induced cell death by certain
cancer drugs has been linked to secondary UV-induced tumori-
genesis and cutaneous squamous cell carcinoma.®’

In addition to the parallel operation of DNA and RNA damage
responses, the sensing of DNA lesions in the nucleus can indi-
rectly trigger ISR and RSR activation. This crosstalk is mediated
by the tRNA endoribonuclease SLFN11°° that responds to DNA
damage (Figure 4). While the precise signal for SLFN11 activa-
tion remains elusive, it is likely activated by ssDNA that accumu-
lates in the presence of DNA damage.®' Once activated, SLFN11
specifically cleaves nascent and mature leucine tRNAs recog-
nizing UUA codons.”®%? The resulting depletion of tRNA-Leu-
UUA leads to ribosome stalling on the corresponding codons
and ensuing ribosome collisions. The subsequent GCN2-depen-
dent activation of the ISR leads to a global translation shutdown,
while the concurrent ZAKa-dependent RSR activation triggers
p53-independent apoptosis.? Its ability to trigger apoptosis in
response to DNA damage makes SLFN11 a key determinant of
cellular sensitivity to DNA-damaging agents such as camptothe-
cin or cisplatin.”® Consequentially, SLFN11 expression strongly
correlates with the response of cancer patients to treatment
with camptothecin- or cisplatin-derivatives and is often lost in tu-
mors that do not respond to chemotherapy.®*

Collectively, these insights paint a picture of a highly intercon-
nected nucleic acid damage response that integrates informa-
tion from networks that respond to DNA and RNA damage to
inform cellular survival decisions.

SEQUESTRATION OF RNA DAMAGE
A key function of the DDR is to facilitate efficient DNA repair, for

example through direct reversal or lesion excision.”>°® While
DNA must be repaired to preserve genetic information, cells
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The tRNA endoribonuclease SLFN11 links DNA damage responses with
activation of RNA damage response pathways. ssDNA that accumulates
because of DNA damage activates SLFN11, which then specifically cleaves
tRNAs-UUA-Leu in the nucleus and the cytoplasm. The lack of corresponding
tRNAs leads to the stalling of ribosomes at UUA codons, inducing ribosome
collisions and subsequent activation of the ribotoxic stress response and in-
tegrated stress response.

have a wider range of options to deal with damaged RNAs to pre-
vent the disruption of crucial cellular processes such as splicing
or translation (Figure 5).
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The toxicity of damaged mRNA molecules can be limited
through their sequestration. mMRNAs damaged by alkylation or
oxidation are sequestered in membrane-less organelles such
as stress granules or P-bodies.””"?® These granules contain
non-translated mMRNAs and RNA-binding proteins and form in
cells that experience various types of stresses. Unique cyto-
plasmic RNA damage-induced stress granules appear upon
UV irradiation (Figure 5A).°° These granules contain primarily
mis-spliced nascent mRNAs and dsRNA species and are
marked by the presence of the RNA helicase DHX9. Interestingly,
DHX9-positive granules form predominantly in daughter cells of
UV-irradiated parental cells following mitosis. In the daughter
cells, sequestration by DHX9 is important to prevent an innate
immune response against cytosolic dsRNA.°C Even in the
absence of exogenously induced RNA damage, DHX9 defi-
ciency leads to the accumulation of cytosolic dsRNA and innate
immune responses,’® presumably caused by the accumulation
of endogenous RNA damage.

In addition to preventing the aberrant activation of immune
sensors, sequestrating damaged RNA in stress granules may
help to prevent the translation of problematic mRNAs. The
sequestration of oxidized mRNAs is likely promoted by RNA-
binding proteins such as YB-1 that binds 8-oxoG-containing
RNA'? and has been shown to initiate the formation of stress
granules in response to arsenite-induced oxidative stress.'""
Interestingly, RNA enriched in these stress granules is highly
modified with m®A and m’G."%>"'%° Reader proteins for both
modifications are essential for the formation of stress gran-
ules'%271941% and to target correspondingly modified mRNAs
to these compartments.'%"% Given that UV irradiation induces
m®A’%” and alkylating agents induce m’G,*® it seems plausible
that these modifications play a general role in regulating the
sequestration of damaged RNAs. Indeed, sodium arsenite-
induced m’G modifications target RNAs to stress granules.'®
Once formed, stress granules act as a triage center for mRNA.
Sequestered mRNAs can in principle be transferred back into
the cytosol and reused for translation but can also be degraded
via the autophagy pathway.*?'%®

RESOLUTION OF mRNA DAMAGE

Degradation is a straightforward strategy to dispose of damaged
mRNAs. Cells have multiple mRNA surveillance and quality
control mechanisms at their disposal that can degrade aberrant
transcripts. Historically, defined model substrates containing
secondary structures, truncations, premature stop codons, or
lacking stop codons have been used to study mRNA degrada-
tion."”® Notably, however, the recognition principles of all
three major mRNA quality control pathways—nonsense-medi-
ated decay (NMD), non-stop decay (NSD), and no-go decay
(NGD)—are all perfectly suited to also recognize damaged
RNAs. 99119117 NMD responds to premature stop codons,
which can arise from aberrant splicing events, which in turn
can be a consequence of UV crosslinking damage on nuclear
pre-mRNAs.*° NSD is initiated when ribosomes reach the far
3’-end of an mRNA, which can happen due to the lack of a
stop codon but also upon induction of RNA breaks.''? Finally,
NGD is activated when roadblocks within mRNA, such as strong
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Figure 5. Cellular processes mitigating the toxicity of RNA damage

(A) The toxicity of UV-induced nascent RNA damage is limited by sequestration into DHX9-positive stress granules. The sequestration of damaged RNAs
prevents the accumulation of cytoplasmic dsRNA after mitosis and averts activation of inflammatory responses in daughter cells.

(B) UV- and aldehyde-induced mRNA-protein crosslinks (MRPCs) are resolved in a translation-coupled manner. Stalling and subsequent collisions of ribosomes
at mRPCs are sensed by the collision sensor protein GCN1. E3 ligase RNF25 is recruited to ubiquitylate ribosomal proteins, followed by ubiquitylation of the
mRPC by E3 ligase RNF14. The modification with atypical K6-/K48-linked ubiquitin chains then triggers proteasomal degradation of the adduct, supported by the

ubiquitin-dependent segregase p97.

(C) RNA methylation damage caused by alkylating agents can be directly reverted by dioxygenase ALKBH3.
(D) RNA breaks can be repaired by dedicated RNA repair ligases. RTCB ligase repairs RNAs bearing 5'-hydroxyl and 2/,3'-cyclic phosphate or 3'-phosphate
termini. RLIG1 promotes ligation of clean 5’-phosphate and 3'-hydroxyl RNA ends.

hairpin structures, prevent ribosomal progression.”'® As such,
NGD is likely activated by the multitude of RNA lesions that stall
ribosomes. Indeed, NGD has a critical role in clearing mRNAs
damaged by ROS or alkylation.*? All three pathways are cyto-
plasmic and rely on translating ribosomes to sense faulty mRNAs
and ultimately lead to exosome- or XRN1-mediated RNA
decay.""? In the nucleus, un-spliced and incorrectly adenylated
transcripts can be targeted by exosome- and XRN2-mediated
decay.'™

In conjunction with translation-coupled decay of faulty
mRNAs, the partially synthesized nascent peptide chains must
be degraded, which is accomplished through ribosome-associ-
ated quality control (RQC). This pathway is initiated by the bind-
ing of the ubiquitin E3 ligase ZNF598 (Hel2 in yeast) to an inter-

face formed between two collided ribosomes, leading to the
subsequent ubiquitylation of ribosomal proteins €eS10, uS10,
and uS3.""°7""8 |In a second step, the affected ribosomes are
split,""®7"?" and the released nascent polypeptide is degraded
by the proteasome, depending on ubiquitylation by the ubiquitin
E3 ligase Listerin (Ltn1).'227124

In addition, a pathway has recently been identified that re-
solves covalent mRPCs that arise upon treatment of cells with
UV irradiation or metabolic aldehydes (Figure 5B)." "2 This qual-
ity control process is initiated when elongating ribosomes
encounter covalent protein adducts within the coding regions
of mRNA. The crosslinked protein stalls the elongating ribosome,
eventually causing collisions with trailing ribosomes. While
these collisions activate the ISR and RSR in a GCN2- and
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ZAKa-dependent manner, respectively, they also promote the
proteolytic degradation of the crosslinked protein. To this end,
the collision sensor GCN1 recruits two ubiquitin E3 ligases.
One of these, RNF25, ubiquitylates specific lysine residues on
the ribosome, including lysine residues on €S31.72%12¢ This
modification appears to be important to support the function of
the second recruited E3, RNF14."2>'2° RNF14 modifies the
crosslinked protein with atypical K6- and K48-linked ubiquitin
chains.”"'? Of note, RNF14 does not only target mRPCs but
also entrapped translation factors.'?*'?% Ubiquitylation targets
the crosslinked protein for proteasomal degradation, which is
in addition supported by the ubiquitin-dependent segregase
p97."" However, the fate of the damaged mRNA following degra-
dation of the protein adduct remains currently unclear.

RESOLUTION OF rRNA AND tRNA DAMAGE

In addition to serving as sensors for mRNA damage, ribosomes
can be subjected to damage themselves. rRNA damage disrupts
ribosome function and ensuing impairment of protein homeosta-
sis, necessitating distinct quality control pathways, collectively
termed non-functional rRNA decay (NRD). NRD was initially
discovered in yeast and resolves aberrant rRNA, ensuring that
only properly assembled and fully functional ribosomes partici-
pate in translation. Two conceptually different pathways are
known for NRD: ribosomal 40S subunits with damage to their de-
coding site in the 18S rRNA can still fully assemble and translate
but lead to ribosome stalling and initiate NRD in a translation-
coupled manner."?”'?° Ribosomal protein uS3 is ubiquitylated,
triggering the subsequent dissociation of the faulty small subunit
and elimination of the problematic 18S rRNA."*%'" NRD in
mammalian cells appears to rely on the GCN2-dependent ISR
to promote 18S rRNA degradation.’®? Additionally, translation-
coupled ubiquitylation of uS3 and uS5 by RNF10 is important
to promote 40S subunit degradation.**'** By contrast, the res-
olution of defective 60S subunits containing non-functional 25S
rRNA is translation-independent, as indicated by experiments in
yeast.'?® Aberrant 25S rRNA is cleared by exosome-mediated
degradation in the cytoplasm,’?® while defective 60S ribosomal
particles are targeted by proteasomal degradation to prevent as-
sembly of faulty 80S ribosomes. %3¢

While tRNA damage has been investigated only scantly,
research on the consequences of defective tRNA modifications
in yeast provides insights into the principles of cellular tRNA
quality control. tRNAs undergo diverse modifications that are
critical for their stability and function. Disrupting these modifica-
tions leads to the elimination of tRNAs through the rapid-tRNA
decay (RTD) pathway involving the cytosolic exonuclease Xrn1
and nuclear exonuclease Rat1."®"'*% |n the nucleus, abnormal
pre-tRNAs are degraded upon polyadenylation by the TRAMP
complex followed by exosome-mediated decay. '*°

REPAIR OF RNA DAMAGE
Degrading damaged RNA molecules is an effective strategy to
prevent the toxic consequences of RNA lesions, but it results

in the irreversible loss of the affected RNA. By contrast, repairing
damaged RNA molecules would eliminate the need for their
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energetically expensive resynthesis, reducing the metabolic
burden required for transcriptome maintenance and ribosome
biogenesis.

Indeed, viral and human nucleic acid dioxygenases of the AlkB
family have been proposed to repair alkylated RNA molecules
(Figure 5C)."*%'4" ALKBHS3 directly reverts methylated bases in
single-stranded RNA,'*"'*? thereby preventing translation de-
fects upon cellular exposure to methylating agents.'*® While
the precise regulation of ALKBH3-dependent RNA repair is not
well understood, it has been linked to the stalling of ribosomes
at the lesion and their subsequent splitting by the helicase
ASCC3 during RQC.%® Interestingly, ALKBH3-dependent DNA
repair also depends on ASCC3 and is tightly connected to
RNA damage. ALKBH3 repairs DNA in nuclear speckles,
requiring the activity of the ubiquitin E3 ligase RNF113A."%
RNF113A is activated upon binding to methylated RNA, which
is required for the formation of nuclear ASCC3-ALKBHS3 foci
and thus repair of methylated DNA.'*® Hence, efficient DNA
repair can be linked to the presence of coinciding proximal
RNA damage.

In addition to direct reversal, damaged RNA bases can be
excised by lesion-specific glycosylases. Single-strand-selec-
tive monofunctional uracil-DNA glycosylase 1 (SMUG1) targets
not only 5-hydroxymethyluracil in DNA but can also act on RNA,
such as the RNA component of telomerase, hTERC.'*® In
addition to its role in RNA processing for telomere mainte-
nance, SMUGH1 is localized to the nucleoli—the location of
rRNA synthesis—and its depletion leads to increased amounts
of 5-hydroxymethyluracil in 28S and 18S rRNA and reduced
amounts of mature rRNA, underscoring an essential role in
rRNA quality control.'*” Base excision by SMUGH1 yields abasic
sites in RNA. In DNA, abasic sites are further processed by the
endonuclease APE1, enabling repair by the DNA single-strand
break repair machinery. APE1 has been reported to also pro-
cess abasic sites in RNA,*® but the relevance of this reaction
has not been investigated in eukaryotes. Interestingly, howev-
er, a recent study in bacteria indicated that the ribosomal pro-
tein Rps3 acts as an endonuclease that incises abasic sites
within mRNAs."*® While this activity appears to protect cells
from oxidative and UV-induced stress,'“° the fate of the result-
ing RNA break remains uncertain.

Breaks in RNA can indeed be repaired (Figure 5D). The Hen1-
Pnkp heterotetramer repairs ribotoxin-induced tRNA breaks in
bacteria by religating cleaved tRNA termini.'*° This process en-
tails the transfer of a methyl group to the 2’-hydroxyl group of the
cleaved tRNA, which protects against re-cleavage by the ribo-
toxin.”®" The RNA ligase Rtcb similarly ligates rRNA and tRNA
breaks bearing 5'-hydroxyl and 2',3'-cyclic phosphate or
3'-phosphate termini.'?~'°° The same enzymatic activity is em-
ployed by the mammalian homolog RTCB during the unconven-
tional splicing of XBP1-mRNA upon induction of ER stress %17
and to repair RNA breaks induced by a CRISPR-based RNA ed-
iting system.'>® However, given that this type of repair requires
specific RNA termini, it is unlikely that it constitutes a general
RNA break repair system. Intriguingly, however, RLIG1 was
recently identified as the first human RNA ligase that promotes
ligation of clean 5’-phosphate and 3’-hydroxyl RNA ends, pro-
tecting cells against the toxic effect of oxidative RNA damage.'®
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This discovery indicates the presence of an RNA break repair
pathway in mammals. Understanding how RNA breaks would
be positioned by such a system to ensure faithful repair remains
a critical question. It seems plausible that ligation-dependent
repair of RNA breaks would be particularly suited for repairing
highly structured RNAs, such as tRNAs, in which the affected
termini are likely to be positioned correctly due to the inherent
folding of the molecule. Consistent with this idea, RLIG1 loss is
associated with aberrant tRNA levels in mouse brains.">®

How damaged RNAs are sensed independently of translation,
the choice between degradation and repair of damaged RNAs,
and how both processes are regulated in physiological and path-
ological situations are important future questions.

RNA DAMAGE RESPONSES IN HUMAN DISEASE

The existence of complex RNA damage resolution and repair
pathways highlights the importance of minimizing the toxic ef-
fects of RNA lesions. Hence, it is not surprising that RNA damage
and the associated cellular response are closely connected to a
range of human diseases.

The ZAKo-dependent activation of the RSR at stalled and
collided ribosomes is a key nexus that integrates various patho-
logical conditions caused by compromised RNA integrity. UVB
irradiation drives the expression of proinflammatory genes in
skin keratinocytes, '°° which express the innate immune sensor
NLRP1. ZAKa and p38 phosphorylate NLRP1 in response to
UVB-induced RNA damage.”'®" The phosphorylation of
NLRP1 promotes inflammasome formation, triggering proinflam-
matory signaling and pyroptosis upon acute sunburn®
(Figure BA). As a consequence, patients with NLRP1 gain-of-
function mutations are susceptible to inflammatory skin disor-
ders and skin cancers.'®? Of note, ZAKa-dependent activation
of the RSR drives rapid dermal inflammation, skin thickening,
and JNK-dependent apoptosis in response to UVB also in
mice, '°, where NLRP1 is not subjected to p38-mediated activa-
tion.® Proinflammatory signaling and the development of autoim-
mune diseases also arise when components of the NMD
pathway are defective,’®® but the identity of the causative
damaged or otherwise aberrant RNA species has not been es-
tablished. Nonetheless, RNA damage and the downstream
signaling responses are emerging as highly relevant sources of
endogenous inflammation.

In addition to driving proinflammatory signaling, persistent
activation of the ZAKa-dependent RSR can lead to excessive
cell death, affecting tissue integrity and organismal fitness.
Consequently, loss of ZAKa activity in animal models slows the
development of metabolic aging hallmarks caused by oxidative
RNA damage.® Moreover, in a mouse model of high-fat, high-
sugar diet-induced obesity, ROS-induced RSR activation pro-
motes various metabolic dysfunctions, including blood glucose
intolerance and liver steatosis.® In further agreement, loss of
ZAKo. leads to reduced adiposity and lower fat content in the
liver,"®* implicating the RSR as a potential therapeutic target to
treat obesity-related disorders (Figure 6B). Oxidative RNA dam-
age may be particularly relevant in neurons, which are especially
susceptible to oxidative stress due to their high metabolic
needs.'® Indeed, oxidized RNA molecules accumulate in pa-
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tients with aging-related neurodegenerative diseases.'®®'%®

Furthermore, ribosome pausing and collisions—which can be
caused by RNA damage—increase during aging, leading to the
activation of RQC."® If cellular quality control becomes over-
whelmed, proteostasis is disrupted, threatening all organismal
functions.'®® Consequentially, loss of RQC factors, such as
LTN1 or NEMF, leads to neurodegeneration and neuromuscular
disease in mice."”®""" However, the underlying sources of
increased ribosome pausing and collisions during aging, and
whether they include accumulation of RNA damage, have not
been determined.

Induction of RNA damage is likely also responsible for at
least some of the therapeutic effects of certain chemother-
apies. Cancer cells rely on efficient translation to produce suf-
ficient proteins to sustain their rapid growth rates. Therefore,
targeting protein synthesis, particularly ribosome biogenesis,
has been proposed as a potential treatment strategy.'’” In
support, some chemotherapeutics traditionally considered to
be genotoxic agents appear to kill cancer cells rather by their
ability to disrupt ribosome biogenesis.*® Oxaliplatin, a plat-
inum-based agent that induces DNA and RNA crosslinking
damage, disrupts nucleolar integrity, thereby indirectly impair-
ing rRNA synthesis and ribosome biogenesis.*®'"® Similarly,
the chemotherapeutic drug 5-fluorouracil (5-FU) causes cyto-
toxicity not only by inhibiting dNTP synthesis by targeting thy-
midylate synthase (TYMS),'”* but also by impairing ribosome
biogenesis and protein translation upon incorporation into
RNA.37’175

An intriguing additional possibility is that chemotherapy-
induced RSR activation during cancer treatment may promote
relapse and treatment resistance by promoting WGD. Approxi-
mately a third of all cancers undergo WGD, also known as endor-
eplication. WGD occurs due to mitotic bypass and genome
duplication without cell division, resulting in a polyploid state."®
Cancers with WGD tend to be more metastatic, drug-resistant,
and have worse overall prognosis compared with non-WGD can-
cers'’” (Figure 6C). Persistent RSR signaling has the ability to
induce WGD events by promoting premature G2 exit and mitotic
bypass.®

In summary, RNA damage and the associated signaling re-
sponses are central to various pathological contexts, which
also highlights the potential of targeting RNA damage response
networks for improved and novel treatments.

CONCLUDING REMARKS

An efficient response to the various flavors of RNA damage is
vital to maintain the diverse cellular functions of RNA mole-
cules, some of which can be exceptionally long-lived.'”®
Despite the fundamental importance of RNA, the mechanistic
understanding of RNA damage sensing, resolution, and repair
lags far behind our knowledge of DNA repair. How RNA dam-
age response pathways, like the RSR and ISR, control cell
fate following the induction of RNA lesions in physiological
and pathological situations is an exciting future topic. A partic-
ularly interesting question is how the RNA damage response
crosstalks with established DDR networks to regulate cell
death, cell cycle progression, and inflammation in response
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Figure 6. RNA damage and disease

(A) UVB-induced RNA damage activates the ribotoxic stress response in keratinocytes, resulting in phosphorylation of the skin-specific innate immune sensor
protein NLRP1 by ZAKa and p38. NLRP1 phosphorylation promotes inflammasome formation, driving proinflammatory signaling and pyroptosis upon acute

sunburn.

(B) Higher RNA damage load in metabolic diseases and aging induces ribosome stalling and subsequent collisions. The corresponding persistent activation of the
RSR and the continuous overload of RQC likely contribute to metabolic insufficiency or aberrant proteostasis in metabolic diseases, neurodegeneration, and

aging.

(C) RNA damage-induced ribosome collision leads to persistent activation of the RSR, which can result in cell cycle arrest, mitotic bypass, and whole-genome
doubling events. Cancer cells with WGD are more metastatic, drug-resistant, and have an overall worse prognosis.

to genotoxic agents that induce both RNA and DNA damage.
The pleiotropic nature of these agents makes it challenging to
determine the specific cellular responses caused by RNA
damage. Therefore, it will be critical to develop and deploy
experimental systems that enable the specific induction of
RNA damage, such as the mimicry of RNA crosslinking damage
by metabolic labeling with 4-SU followed by photoactiva-
tion."'2 An important issue to be addressed using such meth-
odologies is to what degree lesions within mRNA, rRNA, tRNA,
and other non-coding RNAs contribute to the cellular RNA
damage response. Extending our knowledge of translation-
dependent RNA damage responses and revealing yet unknown
translation-independent mechanisms will improve our under-
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standing of various human diseases and provide opportunities
for novel therapeutic strategies.
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