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ABSTRACT

Climate change is increasing the occurrence of extreme precipitation events,
threatening infrastructure, agriculture, and public safety. Ensemble prediction sys-
tems provide probabilistic forecasts but exhibit biases and difficulties in capturing
extreme weather. While post-processing techniques aim to enhance forecast ac-
curacy, they rarely focus on precipitation, which exhibits complex spatial depen-
dencies and tail behavior. Our novel framework leverages graph neural networks
to post-process ensemble forecasts, specifically modeling the extremes of the un-
derlying distribution. This allows to capture spatial dependencies and improves
forecast accuracy for extreme events, thus leading to more reliable forecasts and
mitigating risks of extreme precipitation and flooding. 1

1 INTRODUCTION

The increasing impacts of climate change have led to more frequent and severe extreme precip-
itation events, posing significant risks to infrastructure, agriculture, and public safety (Trenberth,
2011). Accurate and well-calibrated precipitation forecasts are critical for mitigating these risks, es-
pecially concerning important applications such as disaster management, urban planning, and water
resource management (IPCC, 2021). Ensemble prediction systems (EPS) have become a cornerstone
of modern weather forecasting, generating probabilistic predictions by running numerical weather
predictions (NWPs) under varied initial conditions. Despite their widespread use, ensemble fore-
casts often exhibit biases, a lack of sharpness, and difficulty capturing the extreme tail behavior of
precipitation distributions, which limits their utility for decision-making under the increased risks
associated with climate change (Tabari, 2020; Trenberth, 2011).

Post-processing techniques have been developed to address the limitations of raw ensemble forecasts
by refining them into more accurate probabilistic predictions. Statistical methods such as ensemble
model output statistics (Gneiting et al., 2005), random forests (Muschinski et al., 2023), or nonpara-
metric regression (Bremnes, 2019) have been widely used to improve the calibration and sharpness
of ensemble forecasts. More recently, neural-network-based post-processing has shown promise
by leveraging machine learning to learn high-dimensional relationships directly from data (Rasp
& Lerch, 2018; Schulz & Lerch, 2022). These post-processing approaches have been extended to
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Figure 1: The left panel shows the precipitation rates on April 29, 2018 with a highlighted extreme
precipitation occurrence of about 70mm over 6 hours. The two right plots show the threshold ex-
ceedance probability P[Y > 25mm] for our model and the ensemble prediction. In contrast to the
ensemble, our model assigns a nonzero probability (0.63%) to the corresponding event.

convolutional (Horat & Lerch, 2024) and graph neural networks (Feik et al., 2024) and to post-
processing of neural network prediction systems (Bülte et al., 2025). While these approaches are
effective for general forecasting tasks, they often fail to capture the complex spatial dependencies
and heavy-tailed characteristics of precipitation data, particularly during extreme weather events.

In this work, we introduce a novel framework for improving precipitation forecasts by post-
processing ensemble predictions. Our method addresses key issues in forecasting extremes by
explicitly accounting for the frequent occurrence of dry periods with a point mass and using a gen-
eralized Pareto distribution to capture the tail behavior associated with heavy rainfall. To enhance
spatial accuracy, we employ graph neural networks (GNNs), which represent weather stations and
ensemble forecasts with regards to their spatial dependence structure. This graph-based approach
improves the model’s ability to identify patterns and dependencies in extreme events that often span
across regions (Feik et al., 2024). We validate our framework on a benchmark dataset for ensemble
post-processing methods in medium-range weather forecasting.

2 DATA

To compare to existing methods, we utilize the EUPPBench dataset, a benchmark dataset for en-
semble post-processing (Demaeyer et al., 2023). The dataset comprises 122 weather stations across
Europe and includes medium-range ensemble forecasts from the European Centre for Medium-
Range Weather Forecasts (ECMWF) and corresponding station observations, spanning from 1997
to 2018. The dataset includes both, typical forecasts, but also reforecasts, which are numerical
weather prediction (NWP) models run for past dates. In total, EUPPBench includes 730 daily oper-
ational forecasts with 51 ensemble members and 4180 reforecasts with 11 ensemble members and
a total of 31 variables each (compare Demaeyer et al., 2023). We follow the setup in Feik et al.
(2024), where the model is trained on reforecast data from 1997-2013 and evaluated on reforecasts
from 2014-2017, as well as on forecast data from 2017-2018. For modeling precipitation, we focus
on predicting the TP6 variable, the total precipitation in mm accumulated over six hours.

3 METHODOLOGY

We base our approach on a distributional regression network (DRN) (Rasp & Lerch, 2018), a bench-
mark for station-based post-processing, that has been successfully applied to various domains, such
as wind gusts (Schulz & Lerch, 2022) or atmospheric rivers (Chapman et al., 2022). The central
idea is to use a neural network that outputs the parameters of a specified predictive distribution. The
model is then trained by minimizing the Continuous Ranked Probability Score (CRPS), defined as
CRPS(F, y) :=

∫∞
−∞(F (x)− 1y≤x)

2 dx, where F denotes the cumulative distribution function and
y denotes the realized outcome (Gneiting & Katzfuss, 2014). Similar to Feik et al. (2024), we em-
ploy a graph neural network to account for spatial dependencies and in addition choose a predictive
distribution specifically designed to account for the characteristics of precipitation data.
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Figure 2: The figure compares a sample prediction of the different modeling methods. In our pro-
posed approach, the low precipitation scenarios are modeled via a discrete point mass that accounts
for the event of no precipitation, while the GPD models the tail behavior over a certain threshold.

3.1 PROBABILISTIC PRECIPITATION MODELING

While precipitation is one of the most critical meteorological variables, as its extremes have sig-
nificant environmental and societal impacts, its highly variable nature and complex spatiotemporal
characteristics make forecasting difficult. A dominant modeling approach in the literature is based
on the mixed lognormal distribution (Kedem et al., 1990; Cho et al., 2004), which incorporates an
additional point mass at zero with probability p, accounting for instances of no precipitation. A log-
normal distribution describes a random variable Y such that its logarithm, log(Y ), follows a normal
distribution. While this has shown to perform well in practice (Kedem et al., 1990; Syed Jamaludin
et al., 2011), the underlying data is heavily skewed, making neural network training difficult. There-
fore, we propose to transform the underlying data space by applying a log-transform to the data, i.e.,
h(y) = log(y + ε), where we add ε > 0 for numerical stability (see Appendix B for more details).
By definition, the transformed precipitation can now be modeled with a normal distribution with a
discrete point mass at the left endpoint. As this distribution only accounts for the lower extreme of
no precipitation, we further employ the Peaks-Over-Threshold approach to account for extreme high
precipitation. By the Pickands-Balkema-De Haan theorem (Pickands, 1975), we know that under
some regularity conditions, the excess function P(Y ≤ x+ u | Y > u) for a threshold u, converges
to the generalized Pareto distribution (GPD). This allows to explicitly model the upper tails of the
underlying distribution. To sum up, we model the (shifted and log-transformed) precipitation as

FY (y) :=


0, y < c

F̃ (y) := p+ (1− p)Φµ,σ2(y), y ∈ [c, u]

F̃ (u) + (1− F̃ (u))GPDu.σ2
u,ξ

(y), y > u,

(1)

where p denotes the discrete probability mass assigned to the left endpoint of the distribution
c := log(ε). We then use the neural network to predict the parameters {p, µ, σ2, σ2

u, ξ, u} per
individual station with various meteorological variables from the NWP ensemble as input. The op-
timal parameters are obtained by minimizing the CRPS(FY , y), for which a closed-form expression
is given in Equation 11 in Appendix C.

3.2 SPATIAL DEPENDENCE MODELING WITH GRAPH NEURAL NETWORKS

So far, the modeling has focused on station-specific features, with a single predictive distribution
for each station. To apply graph-based learning methods, the data is transformed into a graph rep-
resentation, where each station is treated as a node in the graph. Let N denote the total number of
stations, and define the distance matrix D ∈ RN×N based on geodesic distances between stations.
An edge is created between nodes i and j if Dij ≤ dmax, where dmax is a predefined distance thresh-
old. To incorporate ensemble forecasts, every node is associated with a nens×F -dimensional feature
matrix, where nens is the number of ensemble members and F denotes the corresponding number of
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Model 24h 72 120h

Metric CRPS Brier QS0.99 CRPS Brier QS0.99 CRPS Brier QS0.99

ENS 0.662 0.180 0.108 0.699 0.180 0.106 0.797 0.200 0.117
Nµ,σ2 0.515 0.316 0.299 0.640 0.384 0.381 0.782 0.337 0.558
Np,µ,σ2 0.467 0.092 0.077 0.569 0.114 0.092 0.682 0.139 0.117
N -GPDσ2

u
0.470 0.093 0.084 0.577 0.116 0.096 0.678 0.138 0.113

N -GPDu,σ2
u

0.467 0.092 0.082 0.597 0.119 0.099 0.678 0.137 0.113

Table 1: The table shows the evaluation metrics for the different models and some selected lead
times on the forecasting task. The best model is highlighted in bold.

meteorological features. Edge weights wi,j between nodes i and j are defined based on normalized
geodesic distances, capturing spatial relationships between stations.

Since the ensemble members are interchangeable, the ensemble dimension introduces permutation
symmetry. To account for this, the input features are embedded using a DeepSet (Zaheer et al., 2017),
ensuring permutation invariance. Specifically, we compute the initial node embedding as h

(0)
v =

Ψ(
∑nens

n=1 ρ (xv,n)) , where xv,n ∈ RF is the node feature vector for station v and ensemble member
n. Here, ρ and Ψ are both two-layer multilayer perceptrons (MLPs). This setup allows the model to
aggregate ensemble features while respecting their permutation-invariant nature. Unlike Feik et al.
(2024), we perform this step before the GNN to reduce the dimensionality. The GNN processes the
graph with input node features h(0)

v by iteratively aggregating features from neighboring nodes. In
addition, residual connections are applied to stabilize learning: h(t) = h(t−1)+σ

(
GNN

(
h(t−1)

))
,

where h(t) represents the hidden representation at layer t, and σ is the ReLU activation function.
Furthermore, we employ a Graph Isomorphism Network (GINE) (Xu et al., 2019; Hu* et al., 2020),
which incorporates both node features and edge weights to effectively model interactions between
neighboring nodes. After aggregation, the resulting features predict the station-specific parameters
{p, µ, σ2, σ2

u, ξ, u}. To ensure parameter constraints, we use a softplus activation for σ2, σ2
u, sigmoid

activation for p and ξ, and linear activation for µ, u.

4 RESULTS

We evaluate our approach on the EUPPBench dataset, comparing it against three baselines: ensem-
ble prediction (ENS), a normal distribution (Nµ,σ2 ), and a normal distribution with a point mass
(Np,µ,σ2 ). Implemented in PyTorch with early stopping (compare Appendix D), our method uses
two threshold selection strategies: (1) a global threshold, u, set as the 90th percentile of the training
data (N -GPDσ2

u
); (2) and learned station-specific thresholds, ui (N -GPDu,σ2

u
). Due to numerical

instability when optimizing the CRPS with respect to the GPD shape parameter, ξ, we fixed ξ at
0.5 after a small hyperparameter search. Performance is evaluated using the CRPS, the Brier score
for the binary event of no rain (= precipitation less than 0.01mm/6h), and the quantile score (QS)
at α = 0.99 for extreme precipitation. These metrics collectively evaluate the entire predictive
distribution, including both the lower and upper tails.

Table 1 presents the results for the forecast task, with additional reforecast results available in the
supplementary materials. The Np,µ,σ2 model performs well for most lead times, whereas the ad-
ditional GPD modeling achieves similar performance and tends to outperform other methods at the
120h lead time. As the zero probability p accounts for much of the data, we cannot expect the
metrics to be too different. Figure 2 visualizes the different probabilistic predictions for a high pre-
cipitation and zero precipitation event at a selected station, demonstrating a good fit between the
predictive distribution and the realized event. In addition, Figure 1 shows a spatial visualization of
a selected extreme precipitation event. In contrast to the ensemble prediction, our approach leads to
a higher probability of the extreme event occurring. In addition, it correctly assigns low probability
to sites that are spatially separated and where no precipitation occurred. Although more prominent
for the lower tail, the above results suggest that our proposed approach can model the full range of
precipitation, by explicitly considering the extremes on both ends of the support of the distribution.
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5 CONCLUSION

We propose a predictive modeling framework for precipitation post-processing that focuses directly
on the underlying extremes. By combining the modeling framework with a powerful graph neural
network architecture, we can provide improvements in predictions regarding different baselines and
with a focus on the extremes of the precipitation, allowing for more thorough prediction of extreme
precipitation, mitigating risks of climate-change related events such as floods. Possible future re-
search might revolve around combining our modeling approach with an end-to-end neural network
model, such as Graphcast (Lam et al., 2023) or RainNet (Ayzel et al., 2020), to work with direct
forecasting tasks. In addition, more detailed investigation of the extreme modeling with the GPD
approach is required, especially with regards to the choice of the threshold u and the shape param-
eter ξ. Further improving the tail modeling provides an interesting direction of research, regarding
analysis of precipitation extremes.
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A ADDITIONAL RESULTS

Model 24h 72 120h

Metric CRPS Brier QS0.99 CRPS Brier QS0.99 CRPS Brier QS0.99

ENS 0.757 0.196 0.208 0.854 0.216 0.221 0.965 0.233 0.270
Nµ,σ2 0.585 0.319 0.376 0.735 0.385 0.507 0.915 0.341 0.804
Np,µ,σ2 mixed 0.523 0.103 0.089 0.652 0.131 0.105 0.782 0.158 0.120
N -GPDσ2

u
0.530 0.104 0.095 0.656 0.132 0.102 0.786 0.159 0.133

N -GPDu,σ2
u

0.524 0.102 0.096 0.676 0.136 0.117 0.782 0.157 0.116

Table 2: The table shows the evaluation metrics for the different models and some selected lead
times on the reforecasting task. The best model is highlighted in bold.

B PRECIPITATION MODELING

Let Y denote the precipitation variable in the unit [mm/6h]. To simplify the training procedure, we
apply two successive transformations to the data. First, we shift our data by a small constant value
ε > 02. We model this shifted variable with a mixture distribution of the following form:

FY (y) := p+ (1− p)LNµ,σ2(y), ε ≤ y. (2)

Here, p ∈ [0, 1] is the probability of the point mass at ε and LN denotes the log-normal distribution,
defined as

LNµ,σ2(x) := Nµ,σ2(log(x)) = Φ

(
log(x)− µ

σ

)
. (3)

with Φ the cumulative distribution function (CDF) of a centered normal distribution. The combined
distribution in Equation 2 is also known as the mixed lognormal distribution (Kedem et al., 1990)
and has been commonly applied to precipitation modeling (Kedem et al., 1990; Cho et al., 2004).

Log-transform To remove skewness from the data, we perform a second transformation Ỹ =
g(Y ) := log(Y ), Y ∼ FY . Note, for numerical stability, it is crucial that we have introduced the
threshold ε > 0, thereby avoiding the singularity at log(0). We now want to analyze the resulting
distribution FỸ (y). Using the cumulative distribution function (CDF), we obtain:

FỸ (y) = P{Ỹ ≤ y} = P{g(Y ) ≤ y} = P{X ≤ g−1(y)} = FY (g
−1(y)).

Since g−1(y) = ey , we obtain for our transformed distribution:

FỸ (y) := p+ (1− p)Nµ,σ2(y) log(ε) ≤ y. (4)

Modeling Pareto in transformed space To model the upper tails of the distribution, we utilize
the Pickands-Balkema-de Haan theorem (Pickands, 1975), which states that, under some regularity
assumptions, the excess distribution of a random variable P(Ỹ ≤ x + u | Ỹ > u) for a certain
threshold u can be approximated by a generalized Pareto distribution (GPDu,σ2

u,ξ
), defined as

GPDu,σu,ξ(x) :=

1−
(
1 + ξ(x−µ)

σ

)−1/ξ

, ξ ̸= 0,

1− exp
(
−x−µ

σ

)
, ξ = 0.

(5)

For our modeling, this leads to the final definition of the CDF as

FỸ (y) :=

{
F̃ (y) := p+ (1− p)Nµ,σ2(y), log(ε) ≤ y ≤ u,

F̃ (u) + (1− F̃ (u))GPDu,σu,ξ(y), y > u.
(6)

2For our experiments we chose ε = 0.01.

8
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C CRPS OF THE MIXTURE DISTRIBUTION

As a loss function, we want to utilize the continuous ranked probability score (CRPS), which is a
proper scoring rule and, therefore, can be used to measure the distance between a predictive distri-
bution and a single data point Gneiting & Katzfuss (2014). It is defined as

CRPS(F, y) :=
∫ ∞

−∞
(F (x)− 1y≤x)

2 dx =

∫ y

−∞
F 2(x)dx+

∫ ∞

y

(1− F (x))2dx. (7)

for a given CDF F and observation y. To compute it efficiently during training, it is important to
compute the closed-form CRPS for the predictive distribution, shown in Equation 6.

For the ease of computation, we rewrite FŶ (y) as

Fŷ(y) =

{
F1(y), y ≤ u

F2(y), y > u,
(8)

where we assume that y ≥ c := log(ϵ). Furthermore, we denote

F1(y) =


0, y < c

p+ (1− p)Φµ,σ2(y), y ∈ [c, u)

1, y ≥ u,

(9)

where Φµ,σ2(y) denotes the CDF of the normal distribution with mean µ and standard deviation σ,
and

F2(y) =

{
0, y < u

F1(u) + (1− F1(u))GPDu,σu,ξ(y), y ≥ u.
(10)

Then, following Jordan (2016) we can decompose the CRPS into the following form:

CRPS(Fŷ, y) =

{
CRPS(F1, y) + CRPS(F2, u), y < u

CRPS(F1, u) + CRPS(F2, y), y ≥ u.
(11)

Equation 11 gives the loss of the predicted CDF proposed in this paper: a mixture of a truncated
normal distribution with point mass and GPD for extreme values. The different parts of it are
computed in Equation 12, 13, 14, and 17.

CRPS for F2 Jordan et al. (2018) provide a closed-form expression for the Generalized Pareto
distribution with point mass, which is given as

CRPS(F2, y) = σu

(
y − u

σu
− 2(1−M)

1− ξ

(
1−

(
1− Fξ

(
y − u

σu

))1−ξ
)

+
(1−M)2

2− ξ

)
, (12)

where in our case M = F1(u). In addition, we obtain

CRPS(F2, u) = σu
(1−M)2

2− ξ
. (13)

Note that the CRPS for the GPD distribution is only defined for ξ < 1.

CRPS for F1 We use the following representation of the CRPS by Jordan (2016), which we first
derive for the case of a standard normal distribution. Denote Fu

c,µ,σ2 := F1, where µ and σ are the
mean of the normal distribution. Then we have

CRPS(Fu
c,0,1, y) = y(2Fu

c,0,1(y)− 1)− cP 2
c + uP 2

u + 2(1− p)G(c)Pc + 2(1− p)G(u)Pu

− 2


(1− p)G(c)− cPc, y < c,

(1− p)G(y), c ≤ y < u,

(1− p)G(u) + uPu, y ≥ u,

+ 2(1− p)2
∫ u

c

G(x)f(x) dx,

(14)

9
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where f = φ, Px = F1(x) − F1(x
−), and G(x) =

∫ x

−∞ tφ(t) dt with φ denoting the density of
a standard normal distribution. First, note that G(x) = −φ(x). Then, we can consider each term
individually:

Pc = p+ (1− p)Φ(c)

Pu = 1− (p+ (1− p)Φ(u)) = (1− p)(1− Φ(u))

G(c) = −φ(c)

G(u) = −φ(u)

G(y) = −φ(y)

The only remaining unknown term is the last integral, which can be expressed as∫ u

c

G(x)f(x) dx = −
∫ u

c

φ2 dx = − 1

2
√
π

(
Φ(

√
2u)− Φ(

√
2c)
)

(15)

Following Jordan et al. (2018), we know that for a location-scale transformation, we have

CRPS(F1, y) = σCRPS
(
F

(u−µ)/σ
(c−µ)/σ,0,1,

y − µ

σ

)
(16)

Lastly, we can compute

CRPS(Fu
c,0,1, u) = u− cP 2

c + uP 2
u + 2(1− p)G(c)Pc + 2(1− p)G(u)Pu

− 2((1− p)G(u) + uPu)− (1− p)2
1√
π

(
Φ(

√
2u)− Φ(

√
2c)
) (17)

D EXPERIMENTAL DETAILS

In this section, we describe the experimental setup in detail, covering the software libraries used,
the graph construction process, the permutation-invariant ensemble embedding, and the specifics of
our Graph Neural Network (GNN) architecture, including the Graph Isomorphism Network with
Edge features (GINE). All experiments were implemented in PyTorch (Paszke et al., 2019) and
PyTorch Geometric (PyG) (Fey & Lenssen, 2019). The code for our method will be made public
upon acceptance.

GRAPH CONSTRUCTION.

Meteorological stations are modeled as nodes in a graph. For N stations, we first compute the
geodesic distance matrix D ∈ RN×N , where each element Du,v represents the geodesic distance
between station u and station v. An edge is created between nodes u and v if

Du,v ≤ dmax,

with dmax = 300 km in our experiments. Each node is assigned a feature matrix of dimensions nens×
F , where nens is the number of ensemble members and F denotes the number of meteorological
features.

Edge weights wu,v are computed based on the inverse of the geodesic distance between the corre-
sponding stations. Specifically, given the locations lu and lv for stations u and v, respectively, the
weight is defined as:

wu,v =
1

d(lu, lv)
,

where d(lu, lv) is the normalized geodesic distance between the two locations. After computing
these weights, we normalize them and set the self-connection weight wu,u = 1 for all nodes u.

We summarize the graph as G = (V,E,X,D,W ), where V is the set of nodes, E is the set of
edges, X represents the node feature matrices, D is the distance matrix, and W is the weight matrix.

10
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PERMUTATION-INVARIANT ENSEMBLE EMBEDDING

To address the permutation symmetry in ensemble forecasts, where the order of ensemble members
is irrelevant, we incorporate a DeepSet architecture (Zaheer et al., 2017) into the preprocessing stage.
The initial node embedding for station v is computed as:

h(0)
v = Ψ

(
nens∑
n=1

ρ(xv,n)

)
,

where xv,n ∈ RF is the feature vector corresponding to ensemble member n at node v. The func-
tions ρ and Ψ are implemented as two-layer multilayer perceptrons (MLPs), ensuring that the em-
bedding remains invariant to the permutation of ensemble members.

GRAPH NEURAL NETWORK ARCHITECTURE

The core of our model is a Graph Neural Network with residual connection that processes the con-
structed graph to capture spatial dependencies. Specifically, we use a Graph Isomorphism Network
with Edge features (GINE) (Xu et al., 2019; Hu* et al., 2020) to integrate both node and edge infor-
mation.

For each node v at layer t, the GINE update the node feature via:

h(t)
v = h(t−1)

v +MLP(t)

(1 + ϵ(t)) · h(t−1)
v +

∑
u∈N (v)

ReLU
(
h(t−1)
u + wu,v

) ,

where N (v) := {u ∈ V | (v, u) ∈ E}.

OUTPUT LAYER AND PARAMETER PREDICTION

The final node representations are used to predict station-specific parameters {p, µ, σ2, σ2
u, ξ, u}. To

enforce appropriate parameter constraints, we apply:

• a softplus activation for σ2 and σ2
u and

• a sigmoid activation for p and ξ and
• a linear activation for µ and u.

OPTIMIZATION AND TRAINING

Our model is trained using the Adam optimizer (Kingma & Ba, 2017) with a learning rate set to
0.0001. Training and evaluation are performed on NVIDIA Tesla RTX3090 GPUs with 24GB RAM.
Each model is trained for 25 epochs, and we report the test CRPS at the epoch that achieves the
lowest validation CRPS.
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