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1 Einleitung

Clustering-Verfahren spielen bei der Auswertung von Daten eine grofie Rolle.
Das Ziel ist dabei die heterogenen Daten mdoglichst in homogene Gruppen (Clus-
ter) zu teilen. Dabei sollen die Elemente in den einzelnen Cluster untereinan-
der moglichst dhnlich sein, die Cluster selber jedoch zueinander moglichst un-
terschiedlich(vgl. [Fahrmeir et al.| (1996)). Beispielsweise lassen sich in der Pra-
xis (vgl. [Eckey et al| (2002))) anhand von Merkmalen wie z.B. Geschlecht, Be-
ruf, Bildung, Einkaufsgewohnheiten oder Lebensstil Konsumentengruppen bilden
um geeigente Zielgruppen zu identifizieren. Gleichermafien wird dies in der Medi-
zin und Psychologie dadurch umgesetzt, dass anhand von Krankheitsbildern und
Personlichkeitsstrukturen versucht wird Patientengruppen zu klassifizieren.

Die Herausforderung liegt nun darin, die optimale Anzahl von Cluster zu be-
stimmen. Eine Faustregel, die oft angewendet wird um die Clusteranzahl zu finden,
ist das sogenannte ,, Elbow-Kriterium® (vgl. Backhaus et al.| (2008) und |Tibshirani
et al.| (2001)). Hierbei werden die Fehlerquadratsummen bzw. Streuung der Cluster
W, in Abhéngigkeit der Anzahl von Clustern betrachtet. Dabei fallt W, monoton
mit der Steigung von der Clusteranzahl k£ ab, aber ab einem bestimmten k& aus
nimmt der monotone Abfall deutlich ab. Dieses k, das bei dem dieser ,,Knick®“ zu
beobachten ist, wird als optimale Clusterzahl hergenommen.

Tibshirani et al.| (2001)) hatten das Ziel aus dieser Heuristik ein statistisches Ver-
fahren zu entwickeln und schlagen die sogenannte Gap Statistik vor. Dabei werden
die Differenzen von log(Wy), mit der dazugehorigen Referenzverteilung betrach-
tet. Die optimale Clusterzahl ist dann gegeben, wenn der Abstand zwischen beiden
Werten maximal ist. Mohajer et al. (2010) schlugen vor, bei der Berechnung der
Gap-Statistik anstatt log(Wy) direkt die Streung der Cluster W} zu verwenden.
Diese wird anschlieend mit der Erwartung von W; unter einer Null Referenz-
verteilung verglichen. In der Arbeit wurde bei der Berechnung ihrer modifizierten
Gap*-Statistik bzw. W) das hierarchisch agglomerative average linkage Verfahren
verwendet. Sie konnten zeigen, dass ihre modifizierte Gap* Funktion in einigen
Féllen bessere Ergebnisse liefert als die Gap-Funktion. Im Umfang meiner Bache-
lorarbeit habe ich untersucht, inwiefern sich die Gap-Funktionen unterscheiden,
falls bei der Berechnung das weitgehend bekannte k-means Verfahren verwendet
wird.



2 Theorie

2.1 Gap Statistik

Sei {z;;} ein Datensatz mit ¢ = 1,2, ..., n unabhéngigen Beobachtungen und

7 =1,2,....p Variablen, welche in k € IN Cluster C, Cy, ..., C} geteilt wird. Dabei
bezeichnet C, das r-te Cluster und n, = |C,| die Anzahl der darin enthaltenen
Beobachtungen. Ferner sei d;; die Distanz zwischen Beobachtung i und i'. Ein
mogliches Distanzmafl wire die quadratische Euklidische Distanz

dii’ = Z(I’U - J}i/j/)Q
J
Die Summe der paarweisen Distanzen D, fiir alle Punkte im Cluster r lautet

Dy= > dw . (1)

1,1/ €Chr

Mit konnen wir W, folgendermaflen definieren:

W= b, 2)

Falls d die quadratische Euklidische Distanz ist, dann ist W) die within-cluster
dispersion. Diese lédsst sich dadurch berechnen, indem von jedem Cluster die mitt-
leren quadratischen Abstande berechnet und diese anschliefend summiert werden.
Die Idee von [Tibshirani et al.| (2001) war, sich die Differenz von log(W}) mit einer
geeigneten Referenzverteilung von log(W}) anzuschauen. Die Schitzung fir die
optimale Anzahl von Clustern k ist gegeben, bei dem log(W}) den grofiten Ab-
stand zu dessen Referenzverteilung hat. Darum wird die Gap-Statistik wie folgt
definiert:

Gapn(k) = Eylog(Wy) — log(Wy) (3)

E? bezeichnet dabei die Erwartung einer Stichprobe der Grofie n von der Referenz-
verteilung. Fiir das Erzielen der wahrscheinlich besten Ergebnisse fiir die Gap Sta-
tistik schlégt [Tibshirani et al.| (2001) als Referenzverteilung erzeugte Datenpunkte
vor, die auf die Originaldaten basierend gleichverteilt sind. Fiir die Berechnung
der Referenzverteilung wurden folgende Mdoglichkeiten vorgeschlagen:

1. Sei n x p die Dimension des Originaldatensatzes mit ¢ = 1,2,...,n und
j=1,2,....p. Ferner sei Wjo der Wertebereich der j-ten Variable des Original-
datensatzes. Erstelle die Refererenzdatensétze der gleichen Dimension und



die p Variablen wie folgt: Fiir die Werte der j-ten Variable des Referenzda-
tensatzes ziehe n gleichverteilte Werte aus dem entsprechenden Wertebereich
des Originaldatensatzes Wjo.

2. Erzeuge die Referenzdatensétze aus einer Gleichverteilung iiber einer Box
mit den abgeglichenen Hauptkomponenten des Datensatzes. Falls X unsere
n X p Datenmatrix ist, gehe davon, dass die Variablen jeweils den Mittel-
wert von 0 besitzen und erzeuge mit der Singulidrwertzerlegung X = UDV' T,
Transformiere X’ = XV und ziehe anschlieflend gleichverteilte Werte Z’ aus
dem Wertebereich der Variablen von X’ wie in der ersten Methode. Schlief3-
lich transformiere diese zuriick durch Z = Z’'T"", um den Referenzdatensatz
Z 7u erhalten.

Die erste Methode hat den Vorteil, dass sie einfach ist. Die zweite Methode bertick-
sichtigt die Verteilung der Daten und ermdoglicht somit eine invariante Prozedur,
sofern die Clusterverfahren selbst invariant sind. Fiir die Schétzung von E*log(Wy)
werden B Monte Carlo Stichproben generiert, die jeweils aus der Referenzvertei-
lung gezogen werden. Fiir jeden erzeugten Datensatz wird log(W}') berechnet und
anschliefend aus den B Werten der Mittelwert gebildet. Somit erhalten wir fiir die
Schétzung:

Erlog(Wy) = Zlog (W) (4)

Somit ergibt sich fiir die manuelle Berechnung der Gap-Statistik folgende Glei-
chung:

1 *
Gapa(k) = 5 > log(Wp,) — log(Wy) ()
b
Die optimale Clusterzahl fiir den gegebenen Datensatz ist das kleinste k, so dass

Gap,(k) > Gap,(k+ 1) — sk (6)

gelten muss, wobei s; der Simulationsfehler ist, welcher aus der Standardabwei-
chung sd(k) von den B Monte Carlo Simulationen berechnet wurde. Fiir

1
sd(k) = [B Z{log W) — ZZOQ Wi} 1/2
b

1
50 = \[ 1+ sd(k)

Mithilfe eines Beispiels soll die bisherige Theorie dargestellt werden (Abbil-
dung (I)). Oben links wurden 3 Clustern zu je 50 Daten aus N((2,2)",I) (rot),

ist



3 Cluster Within—Cluster Dispersion Wk

o
=} -
- 154 °

6 8
| |
200
| |
/

o~ x o
X< A bo? 0 = 7]
o @o ° Sopd” 8
N A u(g&% i 0 ° -
el o
®%0 et 3
o o o ° o —
o 4 °_°—o—o—'°‘o—o
T T T T T T 1 1T T T 1T T T 1
0 5 10 15 20 1 2 3 4 5 6 7 8 9 10
x1 Anzahl Cluster k
log(WK) und log(Wk*) Gap
© - 0 o
XN —6— log(Wk) o N, oo e
g °1 /. “E log(Wk¥) \/o
;‘c—,,’ < - .'E"-E.__ - < ] o
o E E E ) —
T @ E-E =
c O—¢ =
=1 ~
— O\o ~0 8 n
—;“ o~ o O\O o 7
k=3
o - -
S ]
o ° l.-°
T 1 1T T 1T 1T T T 1 1 1 1 T T 1T T T 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Anzahl Cluster k Anzahl Cluster k

Abbildung 1: Beispiel mit 3 Clustern und dazugehorigem Wy, log(Wy), log(W))
und Gap

N((8,8),1I) (griin) und N((15,2),I) (rot) erzeugt, wobei I die Identitdtsmatrix
ist. Rechts daneben ist W) in Abhéngigkeit von der Clusteranzahl k abgebildet.
Es ist deutlich ein ,,Knick®“ bei der Clusterzahl k£ = 3 zu sehen. Somit ist nach dem
,Elbow-Kriterium® eine 3-Cluster Losung zu wéahlen. Unten links werden log(Wy)
und die dazugehorige Referenzverteilung log(W}') gegen k aufgetragen. Daneben
wird die Gap Funktion, die sich aus der Differenz von log(W) und log(W}) be-
rechnen lésst, dargestellt. Die Gap Kurve hat ein deutliches Maximum bei k = 3.
Das Ergebnis der Bedingung, formuliert in Gleichung @, bestétigt die grafische
Auswertung und liefert ebenfalls das Ergebnis k = 3.



2.2 Modifizierte Gap Statistik

Die von Mohajer et al| (2010) modifizierte Gap-Statistik verwendet bei der Be-
rechnung Wj, anstatt log(Wy). Somit folgt fiir Gleichung

Gapy, (k) = E,(We) = Wi, (7)

wobei die Referenzverteilung nun durch
* 1 *
E,(Wy) = B Z Wi (8)
b

gegeben ist. Tibshirani et al.| (2001) hinterlieen in ihrer Arbeit die Anmerkung,
dass in dem Fall einer speziellen Gaufimischverteilung log(W}) als log-likelihood
interpretiert werden kann (Scott and Symons (1971)). Fiir die Berechnung des
Maximum-Likelihood Schétzers ist es vom rechnerischen Vorteil, die Maximum-
Likelihood Funktion zu Logarithmieren, um aus Produkten Summen zu erhalten.
Bei der Berechnung der Gap Statistik jedoch bringt es keinen rechnerischen Vorteil
log(W},) anstatt Wy, zu verwenden, da bei diesem Verfahren eben keine Produkte
vorkommen.

Mohajer et al. (2010) zeigten, dass das originale Gap,, eine hinreichende Be-
dingung fiir ihre modifierte Gap}, ist, jedoch nicht umgekehrt. Das heifit: Liefert
Gap,, ein Ergebnis mit dem optimalen Werten an Clustern k, ist diese auch in
Gap; moglich. Andererseits besteht die Moglichkeit, dass Gap!, Ergebnisse liefert,
bei dem Gap,, erfolglos blieb.

2.3 Clusterverfahren: hierarchisch agglomeratives average
linkage vs. k-means

Wie bereits erwahnt, ist die optimale Clusterzahl k so zu wéhlen, dass die Glei-
chung Gap, (k) > Gap,(k+1) — sgy1 bzw. mit Gap?, erfiillt ist. Das heifit, es muss
bei schrittweiser Erhohung von k jedes Mal die Gap-Statistik und somit auch Wy
berechnet werden. Um Wj, jedoch Berechnen zu koénnen, miissen zunichst Cluster
gebildet werden.

Mohajer et al| (2010) verwendeten fiir die Clusterbildung das hierarchische
agglomerative average linkage Verfahren. Bei diesem Verfahren werden sukzessiv
immer mehr Objekte zu gréfleren Clustern zusammengefasst. Ausgehend von der
grofftmoglichsten Clusterzahl, das bedeutet jedes Objekt bildet zu Beginn ein ei-
genes Cluster, werden Schritt fiir Schritt die dhnlichsten Objekte bzw. Cluster
vereint. Dabei lautet die Zuordnungsregel, dass diejenigen Cluster fusioniert wer-
den, die die kleinste durchschnittliche Distanz zueinander haben. Auf diese Weise
entsteht eine Hierarchie der Gruppen, die bei jedem Schritt in die ndchste Ebene
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durch Vereinigung disjunkter Gruppen enstehen. Die Hierarchie stellt also eine ge-
ordnete Darstellung der Schrittweisen Vereinigung der Daten dar (vgl. Eckey et al.
(2002) und Mohajer et al.| (2010)).

Das in meiner Arbeit verwende k-means Verfahren ist hingegen ein partitio-
nierendes Verfahren. Hierbei werden k zufillige Startpunkte als Clusterzentren
festgelegt. Die einzelnen Objekte werden dem Clusterzentrum zugeordnet, zu dem
sie die geringste Distanz besitzen. Anschliefend wird in jedem der k Cluster der
Mittweltwert ermittelt, die nun als neue Clusterzentren gelten. Ist die Distanz
eines Elements zu einem neu berechneten Clusterzentrum geringer, so wird die-
se umgruppiert. Dieser Algorithmus wird solange fortgesetzt, bis entweder eine
vorgegebene maximale [terationszahl an Wiederholungen erreicht wurde oder die
Schwerpunkte sich nicht mehr verschieben und somit ein Objekt keinem anderem
Cluster mehr zugeteilt werden kann (vgl. Litz| (2000) und [Eckey et al.| (2002)).

3 Anwendung auf simulierte und reale Daten

Im vorigen Kapitel wurde der theoretische Teil der Gap Statistik und der mo-
difizierten Gap Statistik vorgestellt. Ziel dieses Kapitels ist die beiden Verfahren
miteinander zu vergleichen, indem sie auf simulierte sowie reale Daten angewendet
werden. [Mohajer et al. (2010) haben diese Untersuchung mit dem hierarchischen
agglomerativen average linkage Verfahren bereits durchgefiihrt. In dieser Arbeit
werden die gleichen Simulationen und Datensédtzen mit dem k-means Verfahren
durchgefiihrt.

3.1 Klassische Testdatensitze

Zuerst werden die Gap Funktionen auf folgende zwei bekannten Datensétzen an-
gewendet: den , Fisher’s Iris data set* (Fisher| (1963)) und den ,Breast Cancer
Wisconsin data set“ (Wolberg (1992)). Der Datensatz von Fisher besteht aus 50
Beobachtungen zu je 3 verschiedenen Blumentypen. Jede Beobachtung wird von
vier Variablen beschrieben. Wolbergs Brustkrebs Datensatz besteht aus 699 Beob-
achtungen und neun Variablen. Dieser Datensatz wird in zwei Hauptgruppen un-

Gap Statistik | Anzahl Cluster Gap Statistik | Anzahl Cluster
Iris  DBreast Iris  DBreast
Gap 3 2 Gap 3 2
Gap* 3 2 Gap* 1 1
Tabelle 1: Ergebnisse Tabelle 2: Ergebnisse
Mohajer et al.| (2010) mit k-means Algortihmus



terteilt: 458 Beobachtungen gehoren zu den gutmiitigen und 241 zu den bosartigen
Tumoren.

Tabelle (1| zeigt die Ergebnisse von Mohajer et al.| (2010) fiir Schétzungen der
Clusterzahl der Gap Funktionen mit den hierarchisch agglomeratives average lin-
kage Verfahren. Man sieht, dass sowohl Gap als auch Gap* die richtige Anzahl an
Cluster in beiden Datensétzen korrekt geschitzt wurden.

Tabelle [2] gibt die von mir erzeugten Ergebnisse mit dem k-means Algorithmus
wieder. Die urspriingliche Gap Statistik liefert die korrekte Anzahl an Clustern
von den Datenséitzen, was bei der modifizierten Version jedoch nicht der Fall ist.
Betrachtet man die Gap* Funktion von , Fisher’s Iris data set* in Abbildung [2]
sieht man ein Maximum bei £ = 2, was auch die falsche Clusteranzahl wiederspie-
gelt. Die Bedingung nach Gleichung @ liefert ein geschétztes Optimum fiir £ = 1.
An der Gap™ Funktion des ,Breast Cancer Wisconsin data set® ist nicht einmal
ein Optimum zu sehen und Bedingung Gleichung @ liefert ebenfalls die falsche
Clusteranzahl von k = 1.
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Abbildung 2: Gap und Gap* fiir Fisher’s Iris data set
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Abbildung 3: Gap und Gap™ fiir Breast Cancer Wisconsin data set

3.2 Uberlappende Cluster

Anschlieend wurden Daten simuliert, bei denen sich die Cluster iiberlappen und
somit nicht mehr eindeutig voneinander getrennt werden kénnen. Hier wurden ins-
gesamt 1000 Datensétze mit je zwei Cluster erzeugt. Jeder Cluster besteht aus 50
Beobachtungen mit je zwei Variablen, die unabhéngig voneinander normalverteilt
sind. Der erste Cluster hat den Erwartungswert 0 und die Standardabweichung 1.
Fiir den zweiten Cluster wurden normalverteilte Werte generiert, die die Erwar-
tungswerte A = 0.5,1,1,5, ..., 5.0 und die Standardabweichung von 1 besitzen. Fiir
jeden Wert von A wurden 100 Datensétze erzeugt. Anschliefend wurde untersucht,
bei welchen Differenzen der Erwartungswerte die zwei separaten Cluster noch von
den Gap Statistiken aufgefasst werden konnen.

Meine Ergebnisse mit dem k-means Verfahren werden in Abbildung darge-
stellt. Man sieht, dass das originale Gap zwei iiberlappende Cluster besser erkennt
als Gap*. Betrigt die Differenz der Erwartungswerte mindestens 5, so erkennen
beide Verfahren die richtige Anzahl von zwei Clustern. Mohajer et al.| (2010) beob-
achteten mit dem hierarchisch agglomerativen average linkage Verfahren dasselbe.
Dieses Ergebnis wurde erwartet, da in dem Artikel von [Fridlyand and Dudoit
(2002) berichtet wurde, dass Gap die Tendenz hat die Anzahl von Clustern zu
iiberschéitzen.
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Abbildung 4: Uberlappende Cluster Ergebnisse mit k-means

3.3 Ungleichgrofle Cluster

Des Weiteren haben |Mohajer et al.| (2010) untersucht, wie gut die Gap Funktionen
Cluster erkennen, wenn diese von unterschiedliche Grofie sind. |Yin et al. (2008)
berichteten in ihrer Arbeit, dass wenn die Beobachtungen in einem Cluster mindes-
tens 6-mal so grof} ist als andere Cluster, dies zur Folge hat, dass die Gap Statistik
die korrekte Clusterzahl nicht mehr schétzen kann.

Fiir die Untersuchung wurden zwei Cluster erzeugt, welche zweidimensional
Normalverteilt N(p,I) und N(p',I), wobei g und g’ zwei voneinander unter-
schiedliche Erwartungswerte sind und I die Identitdtsmatrix.

Sei nun N; die Anzahl der Beobachtungen im ersten Cluster und N; die Anzahl
der Beobachtungen im zweiten Cluster, mit Ny = mN; und n = Ny + N,. Fiir
eine feste Anzahl an Beobachtungen n, ergibt sich bei einer Erhéhung von m die
Abnahme von Wj. Folglich sinkt Gap;, wobei Gaps unveréindert bleibt. Falls m
grof} genug wird, wird Gap; grofer als Gaps und die geschitzte Anzahl an Clustern
lautet k£ = 1. Die Daten wurden wir folgt erzeugt (vgl. [Mohajer et al.| (2010) S.9 :



Simulation N; Ny m = N;/Ny | Gap Gap*
1 765 765 1 2 1
2 1020 510 2 1 1
3 1224 306 4 1 1
4 1360 170 8 1 1
5 1440 90 16 1 1

Tabelle 3: Ubersicht UngleichgroBer Cluster (siche Mohajer et al.| (2010) S. 8) und
Ergebnisse mit k-means

1. Wahle N{"** als die Maximale Anzahl an Objekten im ersten Cluster fiir alle
fiinf Datensétze.

2. Wéhle Nj** als die Maximale Anzahl an Objekten im zweiten Cluster fiir
alle fiinf Datensétze.

3. Erzeuge N{"** Objekte aus einer Bivariaten Normalverteilung N(u,I), mit

p = (0,0)
4. Erzeuge N3 Objekte aus einer Bivariaten Normalverteilung N (u/,I), mit
p o= (5’ 0)

5. Wahle fiir jeden Datensatz die ersten N; Elemente von N{"** entsprechend
der Tabelle (3))

6. Wahle fiir jeden Datensatz die ersten N, Elemente von N{"** entsprechend
der Tabelle ({3

Mohajer et al. (2010) zeigten, dass fiir dieses Beispiel, das originale Gap bei
m < 6 und die modifizierte Gap* bei m < 2 noch die richtige Schitzung von 2
Clustern abgibt. Tabelle liefert eine Ubersicht der fiinf Datensitzen mit den
steigendem m und den dazugehérigen Clustergroflen. Zusétzlich sind daneben die
geschitzte Anzahl der Clustern mit dem k-means Verfahren angegeben. Sobald
also ein Cluster doppelt so grof} ist wie der andere, konnen weder Gap noch Gap*
zwei Cluster erkennen. Demnach konnte nicht gezeigt werden, dass Gap bei m < 6
und Gap* bei m < 2 noch zwei separate Cluster auffassen.

Die Abweichung kann unter anderem darauf zuriickgefithrt werden, dass k-
means keine optimale Clusterbildung vornimmt. Durch die zufllige Wahl der Clus-
terzentren konnen natiirliche Cluster getrennt oder zwei unterschiedliche Cluster
als eines zusammengefiigt werden. K-means liefert also je nach Wahl der Start-
positionen nur lokal optimale und keine global optimalen Losungen(Eckey et al.
(2002)). Folglich ist W} im Gegensatz zum hierarchisch agglomerativen average
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linkage Verfahren nicht fiir jedes k£ eindeutig definiert. Diese Folgerung ist letzt-
endlich der Grund dafiir, dass falsche Schéatzungen der Clusteranzahl abgegeben
werden..

3.4 Dynamische kontrastmittelbasierte Magnetresonanz-Bilder
(DCE-MRI)

Zum Schluss werden die Gap Funktionen auf sieben realen Datensitze der Dyna-
mische kontrastmittelbasierte Magnetresonanz-Bilder (DCE-MRI) von Brustkrebs
Tumoren angewendet(German Cancer Research Center| (2004)). Fiir jeden Daten-
satz wurden 6.9 Minuten lang in einem Abstand von 3.25s ein ausgewéhlter Schnitt
eines Tumors mit Dicke TTH = 6mm und Sichtfeld FOV = 320mm x 320mm
gemessen. Jedes Voxel in einem Datensatz wird durch eine Signal-Zeit Kurve
der Langte T' = 128 beschrieben wéhrend durch den Tumor ein Kontrastmittel
flieit. Diese Kurven liefern wertvolle Informationen iiber den Blutkreislauf und
die Durchléassigkeit des Tumorgewebes. Fiir die Medizin ist es wichtig Voxel zu
finden, die eine Ahnlichkeit in den Signal-Zeit Kurven aufweisen(vgl. Brix et al.
(2004) und Mohajer et al| (2010)).

Aus diesem Grund werden die Gap Statistiken auf die DCE-MRI Daten ange-
wendet. Die Stichproben bestehen aus den Signalkurven der Voxel, die durch 128
Variablen, hier 128 Zeitpunkte, beschrieben werden. Des Weiteren stammen die
Tumore in allen sieben Datenséitzen bzw. Bildern von der gleichen Art. Tabelle
gibt die Ergebnisse von Mohajer et al| (2010) sowie meine mit dem k-means Ver-
fahren wieder. Gap* konnte mit dem hierarchisch agglomerativen average linkage
Verfahren in fiinf der sieben Datensétzen eine Schitzung von fiinf Clustern, hier
Regionen abgeben. Das Gap hingegen erzielte keine konsistente Schatzung fiir die
Anzahl von Clustern.

Mit k-means konnte Gap* in sechs von den sieben Datensétzen eine Clusteran-

Datensatz Anzahl Voxel | Ergebnisse [Mohajer et al.| (2010) | Ergebnisse mit k-means
Gap Gap* Gap Gap*
1 1260 7 7 1 1
2 207 9 5 6 1
3 116 9 5 4 1
4 262 nicht definiert ) 5 1
5 141 11 5 1 1
6 277 nicht definiert 5 3 1
7 151 13 4 5 2

Tabelle 4: DCE-MRI Ubersicht und Ergebnisse
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zahl von eins entdecken und somit keine Gruppierung der Voxel entdeckt werden
konnten. Gap lieferte fiir fiinf Datensdtze Schétzungen ungleich eins, die jedoch
genau wie bei Mohajer et al.| (2010) nicht konsistent waren. Wie dem auch sei gibt
es bislang keinerlei Informationen {iber die Anzahl der Regionen

4 Zusammenfassung

Fiir die Schiatzung von Clustern in einem Datensatz schlugen Tibshirani et al.
(2001) die Gap Statistik vor. Die Methodik dahinter ist nicht sehr kompliziert.
Es werden dabei die Ergebnisse von Clusteralgorithmen, wie zum Beispiel von
hierarchischen oder partitionierenden Verfahren, verwendet. AnschlieBend werden
die Streuungen der Cluster W) mit dessen Referenzverteilung verglichen. Die op-
timale Clusteranzahl ist gegeben, wenn die Differenz von log(W)) mit der dazu-
gehorigen Referenzverteilung maximal ist. Obwohl die Gap Statistik, laut [T'ibshi-
rani et al. (2001)), besser ist als andere Verfahren, gibt es einige Falle bei denen die
Schitzungen der Cluster fehlerhaft sind. Yin et al| (2008) berichteten, dass falls
ein Cluster mindestens 6-mal so grof} ist wie ein anderer Cluster, die Gap Statis-
tik versagt. Auch teilten Fridlyand and Dudoit| (2002) mit, dass Gap die Tendenz
besitzt die Anzahl an Clustern zu iiberschétzen.

Aus diesem Grund schlugen Mohajer et al.| (2010) vor, den Logarithmus bei der
Berechnung der Gap Statistik wegzulassen, da dieser im Gegensatz zur Maximum-
Likelihood Schéatzung keinen rechnerischen Vorteil bringt. Sie zeigten, dass Gap
eine hinreichende Bedingung fiir ihre modifizierte Gap* ist, jedoch nicht umge-
kehrt. Allerdings kann Gap* Ergebnisse liefern, bei der Gap scheitert.

Bei den klassischen Testdatensétzen von , Fisher’s Iris data set“ (Fisher| (1963))
und ,,Breast Cancer Wisconsin data set“ (Wolberg (1992))) konnte mit dem k-
means Algortihmus nur die urspriingliche Gap Statistik die richtige Anzahl beider
Datensétzen bestimmen. Verwendet man hingegen das hierarchisch agglomerative
average linkage Verfahren, konnen Gap sowie Gap* die richtige Gruppierung, fiir
beide Datensétze, durchfiithren (vgl{Mohajer et al. (2010)).

Bei der Simulation mit Clustern, die sich {iberlappen, kamen Mohajer et al.
(2010) zu dem Ergebnis, dass das originale Gap eine bessere Arbeit verrichtet als
die modifizierte Version Gap*, welche auf die Uberschétzung von Gap zuriickzufiihren
ist. Das Ergebnis konnte in meiner Arbeit bestétigt werden.

In der zweiten Simulation wurde untersucht, bis zu welchem Verhéltnis der
Clustergrofien die Gap Funktionen zwei separate Cluster erkennen kénnen. Anhand
des Beispiels von Mohajer et al.| (2010)), das im Abschnitt vorgestellt wurde,
wurde die Aussage von |Yin et al.| (2008)) untersucht. Diese berichtete, dass falls
ein Cluster mindestens 6-mal so grof ist wie ein anderer Cluster, die Gap Statistik
nicht mehr richtig schétzen kann. Dabei gilt fiir diese Simulation, dass die Gap
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Statistik Cluster unterscheiden kann, solange ein Cluster nicht mindestens 6-mal
so grof} ist wie ein Anderer. Ferner prognostizierten sie, dass Gap* Cluster nicht
mehr voneinander unterscheiden kann, wenn ein Cluster mindestens doppelt so
viele Objekte besitzt wie ein Anderer. Mohajer et al.| (2010)) konnten nach der
Durchfithrung der Simulation, ihre Schiatzungen bestétigen. Dieses Ergebnis kann
nach meiner Durchfiihrung mit k-means nicht bestétigt werden. Gap konnte in
dem Fall, dass ein Cluster doppelt so grof} ist wie ein Anderer, die Cluster nicht
mehr voneinander trennen. Gap* konnte bereits bei gleichgrofien Clustern keine
Gruppierung durchfiihren.

Spétestens ab diesem Zeitpunkt wurde klar, dass das k-means Verfahren nicht
fiir die Gap bzw. Gap* Statistik hergenommen werden sollte. Das partitionierende
k-means Verfahren wéahlt zu Beginn zuféllige Clusterzentren aus, denen anschlie-
Bend Objekte zugeteilt werden, welche die geringste Distanz zu den Zentren aufwei-
sen. Abhéngig von der Wahl der Startzentren, konnen unterschiedliche Ergebnisse
entstehen. Dies hat zur Folge, dass im Gegensatz zum hierarchisch agglomerativen
average linkage Verfahren, W} nun nicht mehr fiir jedes k£ eindeutig definiert ist und
somit auch die Gap Funktionen invariant werden. Diese Invarianz ist letztendlich
verantwortlich fiir die falsche Schatzung der Clusteranzahl.

Nichts desto trotz, wurden zum Abschluss noch die Gap Statistiken an realen
Datensétzen angewendet. Sieben Datensétze der dynamischen kontrastmittelba-
sierten Magnetresonanz-Bildern (DCE-MRI) von Brustkrebs - Tumoren wurden
verwendet. Die Anzahl der Cluster war hierbei nicht bekannt. Mohajer et al.| (2010)
gaben mit Gap* eine Schitzung von fiinf Clustern ab. Das originale Gap konn-
te dabei keine eindeutige Clusteranzahl festlegen. Die Schétzungen mit k-means
lauten bei Gap* in sechs von sieben Féllen eins. Somit konnten mit Gap* die Da-
ten nicht in mehrere Cluster aufgeteilt werden. Gap hingegen erzielte Schatzungen
ungleich eins, die jedoch wie bei [Mohajer et al. (2010) variieren.
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5 Anhang

Beispiel (1) mit Gap*

3 Cluster Wk und Wk*
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Abbildung 5: Gap* fiir Beispiel mit 3 Clustern und dazugehorigem Wy, W} und
Gap*
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Grafiken fiir ,,Fisher’s Iris data set* mit Gap

Within—Cluster Dispersion Wk log(Wk) und log(Wk*)
—o o —
° N —0— Iog(WkZ
2 3 g CE- log(Wk¥)
S NG Ee L
] 5) \O\O\O ‘E'“EmE...E.. E
g o 2 - A O“O—O\o—o
8 - =1
g
o
| N S o
8 | o\o\o‘ -
- 0_0—0\0—0 o -
T T T T T T T T T T T T T T T T T T T T
1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
Anzahl Cluster k Anzahl Cluster k
Gap
(<) ° °
s 1 7 \ \
o\°
g n o/ N °
o
= N~
g 5 \
2 ©
§ S .
wn
9@
<
d _0

Anzahl Cluster k

Abbildung 6: ,,Fisher’s Iris data set® mit dazugehorigem Wy, log(Wy), log(W)
und Gap
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Grafiken fiir ,,Fisher’s Iris data set“ mit Gap*
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Abbildung 7: , Fisher’s Iris data set“ mit dazugehorigem Wy, W) und Gap*
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Grafiken fiir ,,Breast Cancer Wisconsin data set* mit Gap

Within—Cluster Dispersion Wk log(Wk) und log(Wk*)
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Abbildung 8: ,Breast Cancer Wisconsin data set“ mit dazugehorigem Wy, log(W}),
log(W}) und Gap
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Grafiken fiir ,,Breast Cancer Wisconsin data set* mit Gap*
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Abbildung 9: ,,Breast Cancer Wisconsin data set® mit dazugehorigem Wy, W} und

Gap*
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Grafiken fiir ungleichgrofie Cluster (m=1) mit Gap

Within—Cluster Dispersion Wk log(Wk) und log(Wk*)
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Abbildung 10: ungleichgrofie Cluster: m=1 mit dazugehérigem Wy, log(Wy),
log(W}) und Gap
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Grafiken fiir ungleichgrofle Cluster
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Abbildung 11: ungleichgroie Cluster: m=1 mit dazugehoérigem Wy, W, und Gap*
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Grafiken fiir ungleichgrofie Cluster (m=2) mit Gap

Within—Cluster Dispersion Wk log(Wk) und log(Wk*)
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Abbildung 12: ungleichgrofie Cluster: m=2 mit dazugehérigem Wy, log(Wy),
log(W}) und Gap
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Grafiken fiir ungleichgrofie Cluster (m=2) mit Gap*
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Abbildung 13: ungleichgroie Cluster: m=2 mit dazugehoérigem Wy, W) und Gap*
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Grafiken fiir DCE-MRI: Datensatz 1 mit Gap

Wk

Gap Wert

Abbildung 14: DCE-MRI: Datensatz 1 mit dazugehoérigem Wy, log(Wy), log(W)

und Gap
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Grafiken fiir DCE-MRI: Datensatz 1 mit Gap*
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Abbildung 15: DCE-MRI: Datensatz 1 mit dazugehorigem Wy, W) und Gap*

24



Grafiken fiir DCE-MRI: Datensatz 4 mit Gap

Wk

Gap Wert

Abbildung 16: DCE-MRI: Datensatz 1 mit dazugehoérigem Wy, log(Wy), log(W)

und Gap
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Grafiken fiir DCE-MRI: Datensatz 4 mit Gap*

Wk und Wk* Gap*
o
S
8 — o
3 B
: o
: o
: S 7
8 | N
S -
o B
Te] : o
. o
: {
=) : —6— Wk N
8 : B WK*
< : o
: S
X : e 8
= o [0: $
s © E =
c o - *
S Q . a o
2 ® - s g _|
s E. o 8
E. —
8 “E °
o - E E o
S E S | \
©
O —
\ o <
3 (O o 0\0
§ ] o\O‘O e} 8 - N
-0O- o
0-0-0 S ~,
~N
o
o \o\
o — § _ °
1T 1T 17T 17T 17T 1T T T71 — T T T T I
1234567829 2 4 6 8 10
Anzahl Cluster k Anzahl Cluster k

Abbildung 17: DCE-MRI: Datensatz 4 mit dazugehorigem Wy, W) und Gap*
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